1 /* 2 * SMP related functions 3 * 4 * Copyright IBM Corp. 1999, 2012 5 * Author(s): Denis Joseph Barrow, 6 * Martin Schwidefsky <schwidefsky@de.ibm.com>, 7 * Heiko Carstens <heiko.carstens@de.ibm.com>, 8 * 9 * based on other smp stuff by 10 * (c) 1995 Alan Cox, CymruNET Ltd <alan@cymru.net> 11 * (c) 1998 Ingo Molnar 12 * 13 * The code outside of smp.c uses logical cpu numbers, only smp.c does 14 * the translation of logical to physical cpu ids. All new code that 15 * operates on physical cpu numbers needs to go into smp.c. 16 */ 17 18 #define KMSG_COMPONENT "cpu" 19 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt 20 21 #include <linux/workqueue.h> 22 #include <linux/module.h> 23 #include <linux/init.h> 24 #include <linux/mm.h> 25 #include <linux/err.h> 26 #include <linux/spinlock.h> 27 #include <linux/kernel_stat.h> 28 #include <linux/delay.h> 29 #include <linux/interrupt.h> 30 #include <linux/irqflags.h> 31 #include <linux/cpu.h> 32 #include <linux/slab.h> 33 #include <linux/crash_dump.h> 34 #include <asm/asm-offsets.h> 35 #include <asm/switch_to.h> 36 #include <asm/facility.h> 37 #include <asm/ipl.h> 38 #include <asm/setup.h> 39 #include <asm/irq.h> 40 #include <asm/tlbflush.h> 41 #include <asm/vtimer.h> 42 #include <asm/lowcore.h> 43 #include <asm/sclp.h> 44 #include <asm/vdso.h> 45 #include <asm/debug.h> 46 #include <asm/os_info.h> 47 #include <asm/sigp.h> 48 #include "entry.h" 49 50 enum { 51 ec_schedule = 0, 52 ec_call_function, 53 ec_call_function_single, 54 ec_stop_cpu, 55 }; 56 57 enum { 58 CPU_STATE_STANDBY, 59 CPU_STATE_CONFIGURED, 60 }; 61 62 struct pcpu { 63 struct cpu cpu; 64 struct _lowcore *lowcore; /* lowcore page(s) for the cpu */ 65 unsigned long async_stack; /* async stack for the cpu */ 66 unsigned long panic_stack; /* panic stack for the cpu */ 67 unsigned long ec_mask; /* bit mask for ec_xxx functions */ 68 int state; /* physical cpu state */ 69 int polarization; /* physical polarization */ 70 u16 address; /* physical cpu address */ 71 }; 72 73 static u8 boot_cpu_type; 74 static u16 boot_cpu_address; 75 static struct pcpu pcpu_devices[NR_CPUS]; 76 77 /* 78 * The smp_cpu_state_mutex must be held when changing the state or polarization 79 * member of a pcpu data structure within the pcpu_devices arreay. 80 */ 81 DEFINE_MUTEX(smp_cpu_state_mutex); 82 83 /* 84 * Signal processor helper functions. 85 */ 86 static inline int __pcpu_sigp(u16 addr, u8 order, u32 parm, u32 *status) 87 { 88 register unsigned int reg1 asm ("1") = parm; 89 int cc; 90 91 asm volatile( 92 " sigp %1,%2,0(%3)\n" 93 " ipm %0\n" 94 " srl %0,28\n" 95 : "=d" (cc), "+d" (reg1) : "d" (addr), "a" (order) : "cc"); 96 if (status && cc == 1) 97 *status = reg1; 98 return cc; 99 } 100 101 static inline int __pcpu_sigp_relax(u16 addr, u8 order, u32 parm, u32 *status) 102 { 103 int cc; 104 105 while (1) { 106 cc = __pcpu_sigp(addr, order, parm, NULL); 107 if (cc != SIGP_CC_BUSY) 108 return cc; 109 cpu_relax(); 110 } 111 } 112 113 static int pcpu_sigp_retry(struct pcpu *pcpu, u8 order, u32 parm) 114 { 115 int cc, retry; 116 117 for (retry = 0; ; retry++) { 118 cc = __pcpu_sigp(pcpu->address, order, parm, NULL); 119 if (cc != SIGP_CC_BUSY) 120 break; 121 if (retry >= 3) 122 udelay(10); 123 } 124 return cc; 125 } 126 127 static inline int pcpu_stopped(struct pcpu *pcpu) 128 { 129 u32 uninitialized_var(status); 130 131 if (__pcpu_sigp(pcpu->address, SIGP_SENSE, 132 0, &status) != SIGP_CC_STATUS_STORED) 133 return 0; 134 return !!(status & (SIGP_STATUS_CHECK_STOP|SIGP_STATUS_STOPPED)); 135 } 136 137 static inline int pcpu_running(struct pcpu *pcpu) 138 { 139 if (__pcpu_sigp(pcpu->address, SIGP_SENSE_RUNNING, 140 0, NULL) != SIGP_CC_STATUS_STORED) 141 return 1; 142 /* Status stored condition code is equivalent to cpu not running. */ 143 return 0; 144 } 145 146 /* 147 * Find struct pcpu by cpu address. 148 */ 149 static struct pcpu *pcpu_find_address(const struct cpumask *mask, int address) 150 { 151 int cpu; 152 153 for_each_cpu(cpu, mask) 154 if (pcpu_devices[cpu].address == address) 155 return pcpu_devices + cpu; 156 return NULL; 157 } 158 159 static void pcpu_ec_call(struct pcpu *pcpu, int ec_bit) 160 { 161 int order; 162 163 set_bit(ec_bit, &pcpu->ec_mask); 164 order = pcpu_running(pcpu) ? 165 SIGP_EXTERNAL_CALL : SIGP_EMERGENCY_SIGNAL; 166 pcpu_sigp_retry(pcpu, order, 0); 167 } 168 169 static int __cpuinit pcpu_alloc_lowcore(struct pcpu *pcpu, int cpu) 170 { 171 struct _lowcore *lc; 172 173 if (pcpu != &pcpu_devices[0]) { 174 pcpu->lowcore = (struct _lowcore *) 175 __get_free_pages(GFP_KERNEL | GFP_DMA, LC_ORDER); 176 pcpu->async_stack = __get_free_pages(GFP_KERNEL, ASYNC_ORDER); 177 pcpu->panic_stack = __get_free_page(GFP_KERNEL); 178 if (!pcpu->lowcore || !pcpu->panic_stack || !pcpu->async_stack) 179 goto out; 180 } 181 lc = pcpu->lowcore; 182 memcpy(lc, &S390_lowcore, 512); 183 memset((char *) lc + 512, 0, sizeof(*lc) - 512); 184 lc->async_stack = pcpu->async_stack + ASYNC_SIZE 185 - STACK_FRAME_OVERHEAD - sizeof(struct pt_regs); 186 lc->panic_stack = pcpu->panic_stack + PAGE_SIZE 187 - STACK_FRAME_OVERHEAD - sizeof(struct pt_regs); 188 lc->cpu_nr = cpu; 189 #ifndef CONFIG_64BIT 190 if (MACHINE_HAS_IEEE) { 191 lc->extended_save_area_addr = get_zeroed_page(GFP_KERNEL); 192 if (!lc->extended_save_area_addr) 193 goto out; 194 } 195 #else 196 if (vdso_alloc_per_cpu(lc)) 197 goto out; 198 #endif 199 lowcore_ptr[cpu] = lc; 200 pcpu_sigp_retry(pcpu, SIGP_SET_PREFIX, (u32)(unsigned long) lc); 201 return 0; 202 out: 203 if (pcpu != &pcpu_devices[0]) { 204 free_page(pcpu->panic_stack); 205 free_pages(pcpu->async_stack, ASYNC_ORDER); 206 free_pages((unsigned long) pcpu->lowcore, LC_ORDER); 207 } 208 return -ENOMEM; 209 } 210 211 #ifdef CONFIG_HOTPLUG_CPU 212 213 static void pcpu_free_lowcore(struct pcpu *pcpu) 214 { 215 pcpu_sigp_retry(pcpu, SIGP_SET_PREFIX, 0); 216 lowcore_ptr[pcpu - pcpu_devices] = NULL; 217 #ifndef CONFIG_64BIT 218 if (MACHINE_HAS_IEEE) { 219 struct _lowcore *lc = pcpu->lowcore; 220 221 free_page((unsigned long) lc->extended_save_area_addr); 222 lc->extended_save_area_addr = 0; 223 } 224 #else 225 vdso_free_per_cpu(pcpu->lowcore); 226 #endif 227 if (pcpu != &pcpu_devices[0]) { 228 free_page(pcpu->panic_stack); 229 free_pages(pcpu->async_stack, ASYNC_ORDER); 230 free_pages((unsigned long) pcpu->lowcore, LC_ORDER); 231 } 232 } 233 234 #endif /* CONFIG_HOTPLUG_CPU */ 235 236 static void pcpu_prepare_secondary(struct pcpu *pcpu, int cpu) 237 { 238 struct _lowcore *lc = pcpu->lowcore; 239 240 atomic_inc(&init_mm.context.attach_count); 241 lc->cpu_nr = cpu; 242 lc->percpu_offset = __per_cpu_offset[cpu]; 243 lc->kernel_asce = S390_lowcore.kernel_asce; 244 lc->machine_flags = S390_lowcore.machine_flags; 245 lc->ftrace_func = S390_lowcore.ftrace_func; 246 lc->user_timer = lc->system_timer = lc->steal_timer = 0; 247 __ctl_store(lc->cregs_save_area, 0, 15); 248 save_access_regs((unsigned int *) lc->access_regs_save_area); 249 memcpy(lc->stfle_fac_list, S390_lowcore.stfle_fac_list, 250 MAX_FACILITY_BIT/8); 251 } 252 253 static void pcpu_attach_task(struct pcpu *pcpu, struct task_struct *tsk) 254 { 255 struct _lowcore *lc = pcpu->lowcore; 256 struct thread_info *ti = task_thread_info(tsk); 257 258 lc->kernel_stack = (unsigned long) task_stack_page(tsk) 259 + THREAD_SIZE - STACK_FRAME_OVERHEAD - sizeof(struct pt_regs); 260 lc->thread_info = (unsigned long) task_thread_info(tsk); 261 lc->current_task = (unsigned long) tsk; 262 lc->user_timer = ti->user_timer; 263 lc->system_timer = ti->system_timer; 264 lc->steal_timer = 0; 265 } 266 267 static void pcpu_start_fn(struct pcpu *pcpu, void (*func)(void *), void *data) 268 { 269 struct _lowcore *lc = pcpu->lowcore; 270 271 lc->restart_stack = lc->kernel_stack; 272 lc->restart_fn = (unsigned long) func; 273 lc->restart_data = (unsigned long) data; 274 lc->restart_source = -1UL; 275 pcpu_sigp_retry(pcpu, SIGP_RESTART, 0); 276 } 277 278 /* 279 * Call function via PSW restart on pcpu and stop the current cpu. 280 */ 281 static void pcpu_delegate(struct pcpu *pcpu, void (*func)(void *), 282 void *data, unsigned long stack) 283 { 284 struct _lowcore *lc = lowcore_ptr[pcpu - pcpu_devices]; 285 unsigned long source_cpu = stap(); 286 287 __load_psw_mask(psw_kernel_bits); 288 if (pcpu->address == source_cpu) 289 func(data); /* should not return */ 290 /* Stop target cpu (if func returns this stops the current cpu). */ 291 pcpu_sigp_retry(pcpu, SIGP_STOP, 0); 292 /* Restart func on the target cpu and stop the current cpu. */ 293 mem_assign_absolute(lc->restart_stack, stack); 294 mem_assign_absolute(lc->restart_fn, (unsigned long) func); 295 mem_assign_absolute(lc->restart_data, (unsigned long) data); 296 mem_assign_absolute(lc->restart_source, source_cpu); 297 asm volatile( 298 "0: sigp 0,%0,%2 # sigp restart to target cpu\n" 299 " brc 2,0b # busy, try again\n" 300 "1: sigp 0,%1,%3 # sigp stop to current cpu\n" 301 " brc 2,1b # busy, try again\n" 302 : : "d" (pcpu->address), "d" (source_cpu), 303 "K" (SIGP_RESTART), "K" (SIGP_STOP) 304 : "0", "1", "cc"); 305 for (;;) ; 306 } 307 308 /* 309 * Call function on an online CPU. 310 */ 311 void smp_call_online_cpu(void (*func)(void *), void *data) 312 { 313 struct pcpu *pcpu; 314 315 /* Use the current cpu if it is online. */ 316 pcpu = pcpu_find_address(cpu_online_mask, stap()); 317 if (!pcpu) 318 /* Use the first online cpu. */ 319 pcpu = pcpu_devices + cpumask_first(cpu_online_mask); 320 pcpu_delegate(pcpu, func, data, (unsigned long) restart_stack); 321 } 322 323 /* 324 * Call function on the ipl CPU. 325 */ 326 void smp_call_ipl_cpu(void (*func)(void *), void *data) 327 { 328 pcpu_delegate(&pcpu_devices[0], func, data, 329 pcpu_devices->panic_stack + PAGE_SIZE); 330 } 331 332 int smp_find_processor_id(u16 address) 333 { 334 int cpu; 335 336 for_each_present_cpu(cpu) 337 if (pcpu_devices[cpu].address == address) 338 return cpu; 339 return -1; 340 } 341 342 int smp_vcpu_scheduled(int cpu) 343 { 344 return pcpu_running(pcpu_devices + cpu); 345 } 346 347 void smp_yield(void) 348 { 349 if (MACHINE_HAS_DIAG44) 350 asm volatile("diag 0,0,0x44"); 351 } 352 353 void smp_yield_cpu(int cpu) 354 { 355 if (MACHINE_HAS_DIAG9C) 356 asm volatile("diag %0,0,0x9c" 357 : : "d" (pcpu_devices[cpu].address)); 358 else if (MACHINE_HAS_DIAG44) 359 asm volatile("diag 0,0,0x44"); 360 } 361 362 /* 363 * Send cpus emergency shutdown signal. This gives the cpus the 364 * opportunity to complete outstanding interrupts. 365 */ 366 void smp_emergency_stop(cpumask_t *cpumask) 367 { 368 u64 end; 369 int cpu; 370 371 end = get_tod_clock() + (1000000UL << 12); 372 for_each_cpu(cpu, cpumask) { 373 struct pcpu *pcpu = pcpu_devices + cpu; 374 set_bit(ec_stop_cpu, &pcpu->ec_mask); 375 while (__pcpu_sigp(pcpu->address, SIGP_EMERGENCY_SIGNAL, 376 0, NULL) == SIGP_CC_BUSY && 377 get_tod_clock() < end) 378 cpu_relax(); 379 } 380 while (get_tod_clock() < end) { 381 for_each_cpu(cpu, cpumask) 382 if (pcpu_stopped(pcpu_devices + cpu)) 383 cpumask_clear_cpu(cpu, cpumask); 384 if (cpumask_empty(cpumask)) 385 break; 386 cpu_relax(); 387 } 388 } 389 390 /* 391 * Stop all cpus but the current one. 392 */ 393 void smp_send_stop(void) 394 { 395 cpumask_t cpumask; 396 int cpu; 397 398 /* Disable all interrupts/machine checks */ 399 __load_psw_mask(psw_kernel_bits | PSW_MASK_DAT); 400 trace_hardirqs_off(); 401 402 debug_set_critical(); 403 cpumask_copy(&cpumask, cpu_online_mask); 404 cpumask_clear_cpu(smp_processor_id(), &cpumask); 405 406 if (oops_in_progress) 407 smp_emergency_stop(&cpumask); 408 409 /* stop all processors */ 410 for_each_cpu(cpu, &cpumask) { 411 struct pcpu *pcpu = pcpu_devices + cpu; 412 pcpu_sigp_retry(pcpu, SIGP_STOP, 0); 413 while (!pcpu_stopped(pcpu)) 414 cpu_relax(); 415 } 416 } 417 418 /* 419 * Stop the current cpu. 420 */ 421 void smp_stop_cpu(void) 422 { 423 pcpu_sigp_retry(pcpu_devices + smp_processor_id(), SIGP_STOP, 0); 424 for (;;) ; 425 } 426 427 /* 428 * This is the main routine where commands issued by other 429 * cpus are handled. 430 */ 431 static void do_ext_call_interrupt(struct ext_code ext_code, 432 unsigned int param32, unsigned long param64) 433 { 434 unsigned long bits; 435 int cpu; 436 437 cpu = smp_processor_id(); 438 if (ext_code.code == 0x1202) 439 inc_irq_stat(IRQEXT_EXC); 440 else 441 inc_irq_stat(IRQEXT_EMS); 442 /* 443 * handle bit signal external calls 444 */ 445 bits = xchg(&pcpu_devices[cpu].ec_mask, 0); 446 447 if (test_bit(ec_stop_cpu, &bits)) 448 smp_stop_cpu(); 449 450 if (test_bit(ec_schedule, &bits)) 451 scheduler_ipi(); 452 453 if (test_bit(ec_call_function, &bits)) 454 generic_smp_call_function_interrupt(); 455 456 if (test_bit(ec_call_function_single, &bits)) 457 generic_smp_call_function_single_interrupt(); 458 459 } 460 461 void arch_send_call_function_ipi_mask(const struct cpumask *mask) 462 { 463 int cpu; 464 465 for_each_cpu(cpu, mask) 466 pcpu_ec_call(pcpu_devices + cpu, ec_call_function); 467 } 468 469 void arch_send_call_function_single_ipi(int cpu) 470 { 471 pcpu_ec_call(pcpu_devices + cpu, ec_call_function_single); 472 } 473 474 #ifndef CONFIG_64BIT 475 /* 476 * this function sends a 'purge tlb' signal to another CPU. 477 */ 478 static void smp_ptlb_callback(void *info) 479 { 480 __tlb_flush_local(); 481 } 482 483 void smp_ptlb_all(void) 484 { 485 on_each_cpu(smp_ptlb_callback, NULL, 1); 486 } 487 EXPORT_SYMBOL(smp_ptlb_all); 488 #endif /* ! CONFIG_64BIT */ 489 490 /* 491 * this function sends a 'reschedule' IPI to another CPU. 492 * it goes straight through and wastes no time serializing 493 * anything. Worst case is that we lose a reschedule ... 494 */ 495 void smp_send_reschedule(int cpu) 496 { 497 pcpu_ec_call(pcpu_devices + cpu, ec_schedule); 498 } 499 500 /* 501 * parameter area for the set/clear control bit callbacks 502 */ 503 struct ec_creg_mask_parms { 504 unsigned long orval; 505 unsigned long andval; 506 int cr; 507 }; 508 509 /* 510 * callback for setting/clearing control bits 511 */ 512 static void smp_ctl_bit_callback(void *info) 513 { 514 struct ec_creg_mask_parms *pp = info; 515 unsigned long cregs[16]; 516 517 __ctl_store(cregs, 0, 15); 518 cregs[pp->cr] = (cregs[pp->cr] & pp->andval) | pp->orval; 519 __ctl_load(cregs, 0, 15); 520 } 521 522 /* 523 * Set a bit in a control register of all cpus 524 */ 525 void smp_ctl_set_bit(int cr, int bit) 526 { 527 struct ec_creg_mask_parms parms = { 1UL << bit, -1UL, cr }; 528 529 on_each_cpu(smp_ctl_bit_callback, &parms, 1); 530 } 531 EXPORT_SYMBOL(smp_ctl_set_bit); 532 533 /* 534 * Clear a bit in a control register of all cpus 535 */ 536 void smp_ctl_clear_bit(int cr, int bit) 537 { 538 struct ec_creg_mask_parms parms = { 0, ~(1UL << bit), cr }; 539 540 on_each_cpu(smp_ctl_bit_callback, &parms, 1); 541 } 542 EXPORT_SYMBOL(smp_ctl_clear_bit); 543 544 #if defined(CONFIG_ZFCPDUMP) || defined(CONFIG_CRASH_DUMP) 545 546 struct save_area *zfcpdump_save_areas[NR_CPUS + 1]; 547 EXPORT_SYMBOL_GPL(zfcpdump_save_areas); 548 549 static void __init smp_get_save_area(int cpu, u16 address) 550 { 551 void *lc = pcpu_devices[0].lowcore; 552 struct save_area *save_area; 553 554 if (is_kdump_kernel()) 555 return; 556 if (!OLDMEM_BASE && (address == boot_cpu_address || 557 ipl_info.type != IPL_TYPE_FCP_DUMP)) 558 return; 559 if (cpu >= NR_CPUS) { 560 pr_warning("CPU %i exceeds the maximum %i and is excluded " 561 "from the dump\n", cpu, NR_CPUS - 1); 562 return; 563 } 564 save_area = kmalloc(sizeof(struct save_area), GFP_KERNEL); 565 if (!save_area) 566 panic("could not allocate memory for save area\n"); 567 zfcpdump_save_areas[cpu] = save_area; 568 #ifdef CONFIG_CRASH_DUMP 569 if (address == boot_cpu_address) { 570 /* Copy the registers of the boot cpu. */ 571 copy_oldmem_page(1, (void *) save_area, sizeof(*save_area), 572 SAVE_AREA_BASE - PAGE_SIZE, 0); 573 return; 574 } 575 #endif 576 /* Get the registers of a non-boot cpu. */ 577 __pcpu_sigp_relax(address, SIGP_STOP_AND_STORE_STATUS, 0, NULL); 578 memcpy_real(save_area, lc + SAVE_AREA_BASE, sizeof(*save_area)); 579 } 580 581 int smp_store_status(int cpu) 582 { 583 struct pcpu *pcpu; 584 585 pcpu = pcpu_devices + cpu; 586 if (__pcpu_sigp_relax(pcpu->address, SIGP_STOP_AND_STORE_STATUS, 587 0, NULL) != SIGP_CC_ORDER_CODE_ACCEPTED) 588 return -EIO; 589 return 0; 590 } 591 592 #else /* CONFIG_ZFCPDUMP || CONFIG_CRASH_DUMP */ 593 594 static inline void smp_get_save_area(int cpu, u16 address) { } 595 596 #endif /* CONFIG_ZFCPDUMP || CONFIG_CRASH_DUMP */ 597 598 void smp_cpu_set_polarization(int cpu, int val) 599 { 600 pcpu_devices[cpu].polarization = val; 601 } 602 603 int smp_cpu_get_polarization(int cpu) 604 { 605 return pcpu_devices[cpu].polarization; 606 } 607 608 static struct sclp_cpu_info *smp_get_cpu_info(void) 609 { 610 static int use_sigp_detection; 611 struct sclp_cpu_info *info; 612 int address; 613 614 info = kzalloc(sizeof(*info), GFP_KERNEL); 615 if (info && (use_sigp_detection || sclp_get_cpu_info(info))) { 616 use_sigp_detection = 1; 617 for (address = 0; address <= MAX_CPU_ADDRESS; address++) { 618 if (__pcpu_sigp_relax(address, SIGP_SENSE, 0, NULL) == 619 SIGP_CC_NOT_OPERATIONAL) 620 continue; 621 info->cpu[info->configured].address = address; 622 info->configured++; 623 } 624 info->combined = info->configured; 625 } 626 return info; 627 } 628 629 static int __cpuinit smp_add_present_cpu(int cpu); 630 631 static int __cpuinit __smp_rescan_cpus(struct sclp_cpu_info *info, 632 int sysfs_add) 633 { 634 struct pcpu *pcpu; 635 cpumask_t avail; 636 int cpu, nr, i; 637 638 nr = 0; 639 cpumask_xor(&avail, cpu_possible_mask, cpu_present_mask); 640 cpu = cpumask_first(&avail); 641 for (i = 0; (i < info->combined) && (cpu < nr_cpu_ids); i++) { 642 if (info->has_cpu_type && info->cpu[i].type != boot_cpu_type) 643 continue; 644 if (pcpu_find_address(cpu_present_mask, info->cpu[i].address)) 645 continue; 646 pcpu = pcpu_devices + cpu; 647 pcpu->address = info->cpu[i].address; 648 pcpu->state = (i >= info->configured) ? 649 CPU_STATE_STANDBY : CPU_STATE_CONFIGURED; 650 smp_cpu_set_polarization(cpu, POLARIZATION_UNKNOWN); 651 set_cpu_present(cpu, true); 652 if (sysfs_add && smp_add_present_cpu(cpu) != 0) 653 set_cpu_present(cpu, false); 654 else 655 nr++; 656 cpu = cpumask_next(cpu, &avail); 657 } 658 return nr; 659 } 660 661 static void __init smp_detect_cpus(void) 662 { 663 unsigned int cpu, c_cpus, s_cpus; 664 struct sclp_cpu_info *info; 665 666 info = smp_get_cpu_info(); 667 if (!info) 668 panic("smp_detect_cpus failed to allocate memory\n"); 669 if (info->has_cpu_type) { 670 for (cpu = 0; cpu < info->combined; cpu++) { 671 if (info->cpu[cpu].address != boot_cpu_address) 672 continue; 673 /* The boot cpu dictates the cpu type. */ 674 boot_cpu_type = info->cpu[cpu].type; 675 break; 676 } 677 } 678 c_cpus = s_cpus = 0; 679 for (cpu = 0; cpu < info->combined; cpu++) { 680 if (info->has_cpu_type && info->cpu[cpu].type != boot_cpu_type) 681 continue; 682 if (cpu < info->configured) { 683 smp_get_save_area(c_cpus, info->cpu[cpu].address); 684 c_cpus++; 685 } else 686 s_cpus++; 687 } 688 pr_info("%d configured CPUs, %d standby CPUs\n", c_cpus, s_cpus); 689 get_online_cpus(); 690 __smp_rescan_cpus(info, 0); 691 put_online_cpus(); 692 kfree(info); 693 } 694 695 /* 696 * Activate a secondary processor. 697 */ 698 static void __cpuinit smp_start_secondary(void *cpuvoid) 699 { 700 S390_lowcore.last_update_clock = get_tod_clock(); 701 S390_lowcore.restart_stack = (unsigned long) restart_stack; 702 S390_lowcore.restart_fn = (unsigned long) do_restart; 703 S390_lowcore.restart_data = 0; 704 S390_lowcore.restart_source = -1UL; 705 restore_access_regs(S390_lowcore.access_regs_save_area); 706 __ctl_load(S390_lowcore.cregs_save_area, 0, 15); 707 __load_psw_mask(psw_kernel_bits | PSW_MASK_DAT); 708 cpu_init(); 709 preempt_disable(); 710 init_cpu_timer(); 711 init_cpu_vtimer(); 712 pfault_init(); 713 notify_cpu_starting(smp_processor_id()); 714 set_cpu_online(smp_processor_id(), true); 715 inc_irq_stat(CPU_RST); 716 local_irq_enable(); 717 cpu_startup_entry(CPUHP_ONLINE); 718 } 719 720 /* Upping and downing of CPUs */ 721 int __cpuinit __cpu_up(unsigned int cpu, struct task_struct *tidle) 722 { 723 struct pcpu *pcpu; 724 int rc; 725 726 pcpu = pcpu_devices + cpu; 727 if (pcpu->state != CPU_STATE_CONFIGURED) 728 return -EIO; 729 if (pcpu_sigp_retry(pcpu, SIGP_INITIAL_CPU_RESET, 0) != 730 SIGP_CC_ORDER_CODE_ACCEPTED) 731 return -EIO; 732 733 rc = pcpu_alloc_lowcore(pcpu, cpu); 734 if (rc) 735 return rc; 736 pcpu_prepare_secondary(pcpu, cpu); 737 pcpu_attach_task(pcpu, tidle); 738 pcpu_start_fn(pcpu, smp_start_secondary, NULL); 739 while (!cpu_online(cpu)) 740 cpu_relax(); 741 return 0; 742 } 743 744 static int __init setup_possible_cpus(char *s) 745 { 746 int max, cpu; 747 748 if (kstrtoint(s, 0, &max) < 0) 749 return 0; 750 init_cpu_possible(cpumask_of(0)); 751 for (cpu = 1; cpu < max && cpu < nr_cpu_ids; cpu++) 752 set_cpu_possible(cpu, true); 753 return 0; 754 } 755 early_param("possible_cpus", setup_possible_cpus); 756 757 #ifdef CONFIG_HOTPLUG_CPU 758 759 int __cpu_disable(void) 760 { 761 unsigned long cregs[16]; 762 763 set_cpu_online(smp_processor_id(), false); 764 /* Disable pseudo page faults on this cpu. */ 765 pfault_fini(); 766 /* Disable interrupt sources via control register. */ 767 __ctl_store(cregs, 0, 15); 768 cregs[0] &= ~0x0000ee70UL; /* disable all external interrupts */ 769 cregs[6] &= ~0xff000000UL; /* disable all I/O interrupts */ 770 cregs[14] &= ~0x1f000000UL; /* disable most machine checks */ 771 __ctl_load(cregs, 0, 15); 772 return 0; 773 } 774 775 void __cpu_die(unsigned int cpu) 776 { 777 struct pcpu *pcpu; 778 779 /* Wait until target cpu is down */ 780 pcpu = pcpu_devices + cpu; 781 while (!pcpu_stopped(pcpu)) 782 cpu_relax(); 783 pcpu_free_lowcore(pcpu); 784 atomic_dec(&init_mm.context.attach_count); 785 } 786 787 void __noreturn cpu_die(void) 788 { 789 idle_task_exit(); 790 pcpu_sigp_retry(pcpu_devices + smp_processor_id(), SIGP_STOP, 0); 791 for (;;) ; 792 } 793 794 #endif /* CONFIG_HOTPLUG_CPU */ 795 796 void __init smp_prepare_cpus(unsigned int max_cpus) 797 { 798 /* request the 0x1201 emergency signal external interrupt */ 799 if (register_external_interrupt(0x1201, do_ext_call_interrupt) != 0) 800 panic("Couldn't request external interrupt 0x1201"); 801 /* request the 0x1202 external call external interrupt */ 802 if (register_external_interrupt(0x1202, do_ext_call_interrupt) != 0) 803 panic("Couldn't request external interrupt 0x1202"); 804 smp_detect_cpus(); 805 } 806 807 void __init smp_prepare_boot_cpu(void) 808 { 809 struct pcpu *pcpu = pcpu_devices; 810 811 boot_cpu_address = stap(); 812 pcpu->state = CPU_STATE_CONFIGURED; 813 pcpu->address = boot_cpu_address; 814 pcpu->lowcore = (struct _lowcore *)(unsigned long) store_prefix(); 815 pcpu->async_stack = S390_lowcore.async_stack - ASYNC_SIZE 816 + STACK_FRAME_OVERHEAD + sizeof(struct pt_regs); 817 pcpu->panic_stack = S390_lowcore.panic_stack - PAGE_SIZE 818 + STACK_FRAME_OVERHEAD + sizeof(struct pt_regs); 819 S390_lowcore.percpu_offset = __per_cpu_offset[0]; 820 smp_cpu_set_polarization(0, POLARIZATION_UNKNOWN); 821 set_cpu_present(0, true); 822 set_cpu_online(0, true); 823 } 824 825 void __init smp_cpus_done(unsigned int max_cpus) 826 { 827 } 828 829 void __init smp_setup_processor_id(void) 830 { 831 S390_lowcore.cpu_nr = 0; 832 } 833 834 /* 835 * the frequency of the profiling timer can be changed 836 * by writing a multiplier value into /proc/profile. 837 * 838 * usually you want to run this on all CPUs ;) 839 */ 840 int setup_profiling_timer(unsigned int multiplier) 841 { 842 return 0; 843 } 844 845 #ifdef CONFIG_HOTPLUG_CPU 846 static ssize_t cpu_configure_show(struct device *dev, 847 struct device_attribute *attr, char *buf) 848 { 849 ssize_t count; 850 851 mutex_lock(&smp_cpu_state_mutex); 852 count = sprintf(buf, "%d\n", pcpu_devices[dev->id].state); 853 mutex_unlock(&smp_cpu_state_mutex); 854 return count; 855 } 856 857 static ssize_t cpu_configure_store(struct device *dev, 858 struct device_attribute *attr, 859 const char *buf, size_t count) 860 { 861 struct pcpu *pcpu; 862 int cpu, val, rc; 863 char delim; 864 865 if (sscanf(buf, "%d %c", &val, &delim) != 1) 866 return -EINVAL; 867 if (val != 0 && val != 1) 868 return -EINVAL; 869 get_online_cpus(); 870 mutex_lock(&smp_cpu_state_mutex); 871 rc = -EBUSY; 872 /* disallow configuration changes of online cpus and cpu 0 */ 873 cpu = dev->id; 874 if (cpu_online(cpu) || cpu == 0) 875 goto out; 876 pcpu = pcpu_devices + cpu; 877 rc = 0; 878 switch (val) { 879 case 0: 880 if (pcpu->state != CPU_STATE_CONFIGURED) 881 break; 882 rc = sclp_cpu_deconfigure(pcpu->address); 883 if (rc) 884 break; 885 pcpu->state = CPU_STATE_STANDBY; 886 smp_cpu_set_polarization(cpu, POLARIZATION_UNKNOWN); 887 topology_expect_change(); 888 break; 889 case 1: 890 if (pcpu->state != CPU_STATE_STANDBY) 891 break; 892 rc = sclp_cpu_configure(pcpu->address); 893 if (rc) 894 break; 895 pcpu->state = CPU_STATE_CONFIGURED; 896 smp_cpu_set_polarization(cpu, POLARIZATION_UNKNOWN); 897 topology_expect_change(); 898 break; 899 default: 900 break; 901 } 902 out: 903 mutex_unlock(&smp_cpu_state_mutex); 904 put_online_cpus(); 905 return rc ? rc : count; 906 } 907 static DEVICE_ATTR(configure, 0644, cpu_configure_show, cpu_configure_store); 908 #endif /* CONFIG_HOTPLUG_CPU */ 909 910 static ssize_t show_cpu_address(struct device *dev, 911 struct device_attribute *attr, char *buf) 912 { 913 return sprintf(buf, "%d\n", pcpu_devices[dev->id].address); 914 } 915 static DEVICE_ATTR(address, 0444, show_cpu_address, NULL); 916 917 static struct attribute *cpu_common_attrs[] = { 918 #ifdef CONFIG_HOTPLUG_CPU 919 &dev_attr_configure.attr, 920 #endif 921 &dev_attr_address.attr, 922 NULL, 923 }; 924 925 static struct attribute_group cpu_common_attr_group = { 926 .attrs = cpu_common_attrs, 927 }; 928 929 static ssize_t show_idle_count(struct device *dev, 930 struct device_attribute *attr, char *buf) 931 { 932 struct s390_idle_data *idle = &per_cpu(s390_idle, dev->id); 933 unsigned long long idle_count; 934 unsigned int sequence; 935 936 do { 937 sequence = ACCESS_ONCE(idle->sequence); 938 idle_count = ACCESS_ONCE(idle->idle_count); 939 if (ACCESS_ONCE(idle->clock_idle_enter)) 940 idle_count++; 941 } while ((sequence & 1) || (idle->sequence != sequence)); 942 return sprintf(buf, "%llu\n", idle_count); 943 } 944 static DEVICE_ATTR(idle_count, 0444, show_idle_count, NULL); 945 946 static ssize_t show_idle_time(struct device *dev, 947 struct device_attribute *attr, char *buf) 948 { 949 struct s390_idle_data *idle = &per_cpu(s390_idle, dev->id); 950 unsigned long long now, idle_time, idle_enter, idle_exit; 951 unsigned int sequence; 952 953 do { 954 now = get_tod_clock(); 955 sequence = ACCESS_ONCE(idle->sequence); 956 idle_time = ACCESS_ONCE(idle->idle_time); 957 idle_enter = ACCESS_ONCE(idle->clock_idle_enter); 958 idle_exit = ACCESS_ONCE(idle->clock_idle_exit); 959 } while ((sequence & 1) || (idle->sequence != sequence)); 960 idle_time += idle_enter ? ((idle_exit ? : now) - idle_enter) : 0; 961 return sprintf(buf, "%llu\n", idle_time >> 12); 962 } 963 static DEVICE_ATTR(idle_time_us, 0444, show_idle_time, NULL); 964 965 static struct attribute *cpu_online_attrs[] = { 966 &dev_attr_idle_count.attr, 967 &dev_attr_idle_time_us.attr, 968 NULL, 969 }; 970 971 static struct attribute_group cpu_online_attr_group = { 972 .attrs = cpu_online_attrs, 973 }; 974 975 static int __cpuinit smp_cpu_notify(struct notifier_block *self, 976 unsigned long action, void *hcpu) 977 { 978 unsigned int cpu = (unsigned int)(long)hcpu; 979 struct cpu *c = &pcpu_devices[cpu].cpu; 980 struct device *s = &c->dev; 981 int err = 0; 982 983 switch (action & ~CPU_TASKS_FROZEN) { 984 case CPU_ONLINE: 985 err = sysfs_create_group(&s->kobj, &cpu_online_attr_group); 986 break; 987 case CPU_DEAD: 988 sysfs_remove_group(&s->kobj, &cpu_online_attr_group); 989 break; 990 } 991 return notifier_from_errno(err); 992 } 993 994 static int __cpuinit smp_add_present_cpu(int cpu) 995 { 996 struct cpu *c = &pcpu_devices[cpu].cpu; 997 struct device *s = &c->dev; 998 int rc; 999 1000 c->hotpluggable = 1; 1001 rc = register_cpu(c, cpu); 1002 if (rc) 1003 goto out; 1004 rc = sysfs_create_group(&s->kobj, &cpu_common_attr_group); 1005 if (rc) 1006 goto out_cpu; 1007 if (cpu_online(cpu)) { 1008 rc = sysfs_create_group(&s->kobj, &cpu_online_attr_group); 1009 if (rc) 1010 goto out_online; 1011 } 1012 rc = topology_cpu_init(c); 1013 if (rc) 1014 goto out_topology; 1015 return 0; 1016 1017 out_topology: 1018 if (cpu_online(cpu)) 1019 sysfs_remove_group(&s->kobj, &cpu_online_attr_group); 1020 out_online: 1021 sysfs_remove_group(&s->kobj, &cpu_common_attr_group); 1022 out_cpu: 1023 #ifdef CONFIG_HOTPLUG_CPU 1024 unregister_cpu(c); 1025 #endif 1026 out: 1027 return rc; 1028 } 1029 1030 #ifdef CONFIG_HOTPLUG_CPU 1031 1032 int __ref smp_rescan_cpus(void) 1033 { 1034 struct sclp_cpu_info *info; 1035 int nr; 1036 1037 info = smp_get_cpu_info(); 1038 if (!info) 1039 return -ENOMEM; 1040 get_online_cpus(); 1041 mutex_lock(&smp_cpu_state_mutex); 1042 nr = __smp_rescan_cpus(info, 1); 1043 mutex_unlock(&smp_cpu_state_mutex); 1044 put_online_cpus(); 1045 kfree(info); 1046 if (nr) 1047 topology_schedule_update(); 1048 return 0; 1049 } 1050 1051 static ssize_t __ref rescan_store(struct device *dev, 1052 struct device_attribute *attr, 1053 const char *buf, 1054 size_t count) 1055 { 1056 int rc; 1057 1058 rc = smp_rescan_cpus(); 1059 return rc ? rc : count; 1060 } 1061 static DEVICE_ATTR(rescan, 0200, NULL, rescan_store); 1062 #endif /* CONFIG_HOTPLUG_CPU */ 1063 1064 static int __init s390_smp_init(void) 1065 { 1066 int cpu, rc; 1067 1068 hotcpu_notifier(smp_cpu_notify, 0); 1069 #ifdef CONFIG_HOTPLUG_CPU 1070 rc = device_create_file(cpu_subsys.dev_root, &dev_attr_rescan); 1071 if (rc) 1072 return rc; 1073 #endif 1074 for_each_present_cpu(cpu) { 1075 rc = smp_add_present_cpu(cpu); 1076 if (rc) 1077 return rc; 1078 } 1079 return 0; 1080 } 1081 subsys_initcall(s390_smp_init); 1082