xref: /openbmc/linux/arch/s390/kernel/smp.c (revision ca79522c)
1 /*
2  *  SMP related functions
3  *
4  *    Copyright IBM Corp. 1999, 2012
5  *    Author(s): Denis Joseph Barrow,
6  *		 Martin Schwidefsky <schwidefsky@de.ibm.com>,
7  *		 Heiko Carstens <heiko.carstens@de.ibm.com>,
8  *
9  *  based on other smp stuff by
10  *    (c) 1995 Alan Cox, CymruNET Ltd  <alan@cymru.net>
11  *    (c) 1998 Ingo Molnar
12  *
13  * The code outside of smp.c uses logical cpu numbers, only smp.c does
14  * the translation of logical to physical cpu ids. All new code that
15  * operates on physical cpu numbers needs to go into smp.c.
16  */
17 
18 #define KMSG_COMPONENT "cpu"
19 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
20 
21 #include <linux/workqueue.h>
22 #include <linux/module.h>
23 #include <linux/init.h>
24 #include <linux/mm.h>
25 #include <linux/err.h>
26 #include <linux/spinlock.h>
27 #include <linux/kernel_stat.h>
28 #include <linux/delay.h>
29 #include <linux/interrupt.h>
30 #include <linux/irqflags.h>
31 #include <linux/cpu.h>
32 #include <linux/slab.h>
33 #include <linux/crash_dump.h>
34 #include <asm/asm-offsets.h>
35 #include <asm/switch_to.h>
36 #include <asm/facility.h>
37 #include <asm/ipl.h>
38 #include <asm/setup.h>
39 #include <asm/irq.h>
40 #include <asm/tlbflush.h>
41 #include <asm/vtimer.h>
42 #include <asm/lowcore.h>
43 #include <asm/sclp.h>
44 #include <asm/vdso.h>
45 #include <asm/debug.h>
46 #include <asm/os_info.h>
47 #include <asm/sigp.h>
48 #include "entry.h"
49 
50 enum {
51 	ec_schedule = 0,
52 	ec_call_function,
53 	ec_call_function_single,
54 	ec_stop_cpu,
55 };
56 
57 enum {
58 	CPU_STATE_STANDBY,
59 	CPU_STATE_CONFIGURED,
60 };
61 
62 struct pcpu {
63 	struct cpu cpu;
64 	struct _lowcore *lowcore;	/* lowcore page(s) for the cpu */
65 	unsigned long async_stack;	/* async stack for the cpu */
66 	unsigned long panic_stack;	/* panic stack for the cpu */
67 	unsigned long ec_mask;		/* bit mask for ec_xxx functions */
68 	int state;			/* physical cpu state */
69 	int polarization;		/* physical polarization */
70 	u16 address;			/* physical cpu address */
71 };
72 
73 static u8 boot_cpu_type;
74 static u16 boot_cpu_address;
75 static struct pcpu pcpu_devices[NR_CPUS];
76 
77 /*
78  * The smp_cpu_state_mutex must be held when changing the state or polarization
79  * member of a pcpu data structure within the pcpu_devices arreay.
80  */
81 DEFINE_MUTEX(smp_cpu_state_mutex);
82 
83 /*
84  * Signal processor helper functions.
85  */
86 static inline int __pcpu_sigp(u16 addr, u8 order, u32 parm, u32 *status)
87 {
88 	register unsigned int reg1 asm ("1") = parm;
89 	int cc;
90 
91 	asm volatile(
92 		"	sigp	%1,%2,0(%3)\n"
93 		"	ipm	%0\n"
94 		"	srl	%0,28\n"
95 		: "=d" (cc), "+d" (reg1) : "d" (addr), "a" (order) : "cc");
96 	if (status && cc == 1)
97 		*status = reg1;
98 	return cc;
99 }
100 
101 static inline int __pcpu_sigp_relax(u16 addr, u8 order, u32 parm, u32 *status)
102 {
103 	int cc;
104 
105 	while (1) {
106 		cc = __pcpu_sigp(addr, order, parm, NULL);
107 		if (cc != SIGP_CC_BUSY)
108 			return cc;
109 		cpu_relax();
110 	}
111 }
112 
113 static int pcpu_sigp_retry(struct pcpu *pcpu, u8 order, u32 parm)
114 {
115 	int cc, retry;
116 
117 	for (retry = 0; ; retry++) {
118 		cc = __pcpu_sigp(pcpu->address, order, parm, NULL);
119 		if (cc != SIGP_CC_BUSY)
120 			break;
121 		if (retry >= 3)
122 			udelay(10);
123 	}
124 	return cc;
125 }
126 
127 static inline int pcpu_stopped(struct pcpu *pcpu)
128 {
129 	u32 uninitialized_var(status);
130 
131 	if (__pcpu_sigp(pcpu->address, SIGP_SENSE,
132 			0, &status) != SIGP_CC_STATUS_STORED)
133 		return 0;
134 	return !!(status & (SIGP_STATUS_CHECK_STOP|SIGP_STATUS_STOPPED));
135 }
136 
137 static inline int pcpu_running(struct pcpu *pcpu)
138 {
139 	if (__pcpu_sigp(pcpu->address, SIGP_SENSE_RUNNING,
140 			0, NULL) != SIGP_CC_STATUS_STORED)
141 		return 1;
142 	/* Status stored condition code is equivalent to cpu not running. */
143 	return 0;
144 }
145 
146 /*
147  * Find struct pcpu by cpu address.
148  */
149 static struct pcpu *pcpu_find_address(const struct cpumask *mask, int address)
150 {
151 	int cpu;
152 
153 	for_each_cpu(cpu, mask)
154 		if (pcpu_devices[cpu].address == address)
155 			return pcpu_devices + cpu;
156 	return NULL;
157 }
158 
159 static void pcpu_ec_call(struct pcpu *pcpu, int ec_bit)
160 {
161 	int order;
162 
163 	set_bit(ec_bit, &pcpu->ec_mask);
164 	order = pcpu_running(pcpu) ?
165 		SIGP_EXTERNAL_CALL : SIGP_EMERGENCY_SIGNAL;
166 	pcpu_sigp_retry(pcpu, order, 0);
167 }
168 
169 static int __cpuinit pcpu_alloc_lowcore(struct pcpu *pcpu, int cpu)
170 {
171 	struct _lowcore *lc;
172 
173 	if (pcpu != &pcpu_devices[0]) {
174 		pcpu->lowcore =	(struct _lowcore *)
175 			__get_free_pages(GFP_KERNEL | GFP_DMA, LC_ORDER);
176 		pcpu->async_stack = __get_free_pages(GFP_KERNEL, ASYNC_ORDER);
177 		pcpu->panic_stack = __get_free_page(GFP_KERNEL);
178 		if (!pcpu->lowcore || !pcpu->panic_stack || !pcpu->async_stack)
179 			goto out;
180 	}
181 	lc = pcpu->lowcore;
182 	memcpy(lc, &S390_lowcore, 512);
183 	memset((char *) lc + 512, 0, sizeof(*lc) - 512);
184 	lc->async_stack = pcpu->async_stack + ASYNC_SIZE
185 		- STACK_FRAME_OVERHEAD - sizeof(struct pt_regs);
186 	lc->panic_stack = pcpu->panic_stack + PAGE_SIZE
187 		- STACK_FRAME_OVERHEAD - sizeof(struct pt_regs);
188 	lc->cpu_nr = cpu;
189 #ifndef CONFIG_64BIT
190 	if (MACHINE_HAS_IEEE) {
191 		lc->extended_save_area_addr = get_zeroed_page(GFP_KERNEL);
192 		if (!lc->extended_save_area_addr)
193 			goto out;
194 	}
195 #else
196 	if (vdso_alloc_per_cpu(lc))
197 		goto out;
198 #endif
199 	lowcore_ptr[cpu] = lc;
200 	pcpu_sigp_retry(pcpu, SIGP_SET_PREFIX, (u32)(unsigned long) lc);
201 	return 0;
202 out:
203 	if (pcpu != &pcpu_devices[0]) {
204 		free_page(pcpu->panic_stack);
205 		free_pages(pcpu->async_stack, ASYNC_ORDER);
206 		free_pages((unsigned long) pcpu->lowcore, LC_ORDER);
207 	}
208 	return -ENOMEM;
209 }
210 
211 #ifdef CONFIG_HOTPLUG_CPU
212 
213 static void pcpu_free_lowcore(struct pcpu *pcpu)
214 {
215 	pcpu_sigp_retry(pcpu, SIGP_SET_PREFIX, 0);
216 	lowcore_ptr[pcpu - pcpu_devices] = NULL;
217 #ifndef CONFIG_64BIT
218 	if (MACHINE_HAS_IEEE) {
219 		struct _lowcore *lc = pcpu->lowcore;
220 
221 		free_page((unsigned long) lc->extended_save_area_addr);
222 		lc->extended_save_area_addr = 0;
223 	}
224 #else
225 	vdso_free_per_cpu(pcpu->lowcore);
226 #endif
227 	if (pcpu != &pcpu_devices[0]) {
228 		free_page(pcpu->panic_stack);
229 		free_pages(pcpu->async_stack, ASYNC_ORDER);
230 		free_pages((unsigned long) pcpu->lowcore, LC_ORDER);
231 	}
232 }
233 
234 #endif /* CONFIG_HOTPLUG_CPU */
235 
236 static void pcpu_prepare_secondary(struct pcpu *pcpu, int cpu)
237 {
238 	struct _lowcore *lc = pcpu->lowcore;
239 
240 	atomic_inc(&init_mm.context.attach_count);
241 	lc->cpu_nr = cpu;
242 	lc->percpu_offset = __per_cpu_offset[cpu];
243 	lc->kernel_asce = S390_lowcore.kernel_asce;
244 	lc->machine_flags = S390_lowcore.machine_flags;
245 	lc->ftrace_func = S390_lowcore.ftrace_func;
246 	lc->user_timer = lc->system_timer = lc->steal_timer = 0;
247 	__ctl_store(lc->cregs_save_area, 0, 15);
248 	save_access_regs((unsigned int *) lc->access_regs_save_area);
249 	memcpy(lc->stfle_fac_list, S390_lowcore.stfle_fac_list,
250 	       MAX_FACILITY_BIT/8);
251 }
252 
253 static void pcpu_attach_task(struct pcpu *pcpu, struct task_struct *tsk)
254 {
255 	struct _lowcore *lc = pcpu->lowcore;
256 	struct thread_info *ti = task_thread_info(tsk);
257 
258 	lc->kernel_stack = (unsigned long) task_stack_page(tsk)
259 		+ THREAD_SIZE - STACK_FRAME_OVERHEAD - sizeof(struct pt_regs);
260 	lc->thread_info = (unsigned long) task_thread_info(tsk);
261 	lc->current_task = (unsigned long) tsk;
262 	lc->user_timer = ti->user_timer;
263 	lc->system_timer = ti->system_timer;
264 	lc->steal_timer = 0;
265 }
266 
267 static void pcpu_start_fn(struct pcpu *pcpu, void (*func)(void *), void *data)
268 {
269 	struct _lowcore *lc = pcpu->lowcore;
270 
271 	lc->restart_stack = lc->kernel_stack;
272 	lc->restart_fn = (unsigned long) func;
273 	lc->restart_data = (unsigned long) data;
274 	lc->restart_source = -1UL;
275 	pcpu_sigp_retry(pcpu, SIGP_RESTART, 0);
276 }
277 
278 /*
279  * Call function via PSW restart on pcpu and stop the current cpu.
280  */
281 static void pcpu_delegate(struct pcpu *pcpu, void (*func)(void *),
282 			  void *data, unsigned long stack)
283 {
284 	struct _lowcore *lc = lowcore_ptr[pcpu - pcpu_devices];
285 	unsigned long source_cpu = stap();
286 
287 	__load_psw_mask(psw_kernel_bits);
288 	if (pcpu->address == source_cpu)
289 		func(data);	/* should not return */
290 	/* Stop target cpu (if func returns this stops the current cpu). */
291 	pcpu_sigp_retry(pcpu, SIGP_STOP, 0);
292 	/* Restart func on the target cpu and stop the current cpu. */
293 	mem_assign_absolute(lc->restart_stack, stack);
294 	mem_assign_absolute(lc->restart_fn, (unsigned long) func);
295 	mem_assign_absolute(lc->restart_data, (unsigned long) data);
296 	mem_assign_absolute(lc->restart_source, source_cpu);
297 	asm volatile(
298 		"0:	sigp	0,%0,%2	# sigp restart to target cpu\n"
299 		"	brc	2,0b	# busy, try again\n"
300 		"1:	sigp	0,%1,%3	# sigp stop to current cpu\n"
301 		"	brc	2,1b	# busy, try again\n"
302 		: : "d" (pcpu->address), "d" (source_cpu),
303 		    "K" (SIGP_RESTART), "K" (SIGP_STOP)
304 		: "0", "1", "cc");
305 	for (;;) ;
306 }
307 
308 /*
309  * Call function on an online CPU.
310  */
311 void smp_call_online_cpu(void (*func)(void *), void *data)
312 {
313 	struct pcpu *pcpu;
314 
315 	/* Use the current cpu if it is online. */
316 	pcpu = pcpu_find_address(cpu_online_mask, stap());
317 	if (!pcpu)
318 		/* Use the first online cpu. */
319 		pcpu = pcpu_devices + cpumask_first(cpu_online_mask);
320 	pcpu_delegate(pcpu, func, data, (unsigned long) restart_stack);
321 }
322 
323 /*
324  * Call function on the ipl CPU.
325  */
326 void smp_call_ipl_cpu(void (*func)(void *), void *data)
327 {
328 	pcpu_delegate(&pcpu_devices[0], func, data,
329 		      pcpu_devices->panic_stack + PAGE_SIZE);
330 }
331 
332 int smp_find_processor_id(u16 address)
333 {
334 	int cpu;
335 
336 	for_each_present_cpu(cpu)
337 		if (pcpu_devices[cpu].address == address)
338 			return cpu;
339 	return -1;
340 }
341 
342 int smp_vcpu_scheduled(int cpu)
343 {
344 	return pcpu_running(pcpu_devices + cpu);
345 }
346 
347 void smp_yield(void)
348 {
349 	if (MACHINE_HAS_DIAG44)
350 		asm volatile("diag 0,0,0x44");
351 }
352 
353 void smp_yield_cpu(int cpu)
354 {
355 	if (MACHINE_HAS_DIAG9C)
356 		asm volatile("diag %0,0,0x9c"
357 			     : : "d" (pcpu_devices[cpu].address));
358 	else if (MACHINE_HAS_DIAG44)
359 		asm volatile("diag 0,0,0x44");
360 }
361 
362 /*
363  * Send cpus emergency shutdown signal. This gives the cpus the
364  * opportunity to complete outstanding interrupts.
365  */
366 void smp_emergency_stop(cpumask_t *cpumask)
367 {
368 	u64 end;
369 	int cpu;
370 
371 	end = get_tod_clock() + (1000000UL << 12);
372 	for_each_cpu(cpu, cpumask) {
373 		struct pcpu *pcpu = pcpu_devices + cpu;
374 		set_bit(ec_stop_cpu, &pcpu->ec_mask);
375 		while (__pcpu_sigp(pcpu->address, SIGP_EMERGENCY_SIGNAL,
376 				   0, NULL) == SIGP_CC_BUSY &&
377 		       get_tod_clock() < end)
378 			cpu_relax();
379 	}
380 	while (get_tod_clock() < end) {
381 		for_each_cpu(cpu, cpumask)
382 			if (pcpu_stopped(pcpu_devices + cpu))
383 				cpumask_clear_cpu(cpu, cpumask);
384 		if (cpumask_empty(cpumask))
385 			break;
386 		cpu_relax();
387 	}
388 }
389 
390 /*
391  * Stop all cpus but the current one.
392  */
393 void smp_send_stop(void)
394 {
395 	cpumask_t cpumask;
396 	int cpu;
397 
398 	/* Disable all interrupts/machine checks */
399 	__load_psw_mask(psw_kernel_bits | PSW_MASK_DAT);
400 	trace_hardirqs_off();
401 
402 	debug_set_critical();
403 	cpumask_copy(&cpumask, cpu_online_mask);
404 	cpumask_clear_cpu(smp_processor_id(), &cpumask);
405 
406 	if (oops_in_progress)
407 		smp_emergency_stop(&cpumask);
408 
409 	/* stop all processors */
410 	for_each_cpu(cpu, &cpumask) {
411 		struct pcpu *pcpu = pcpu_devices + cpu;
412 		pcpu_sigp_retry(pcpu, SIGP_STOP, 0);
413 		while (!pcpu_stopped(pcpu))
414 			cpu_relax();
415 	}
416 }
417 
418 /*
419  * Stop the current cpu.
420  */
421 void smp_stop_cpu(void)
422 {
423 	pcpu_sigp_retry(pcpu_devices + smp_processor_id(), SIGP_STOP, 0);
424 	for (;;) ;
425 }
426 
427 /*
428  * This is the main routine where commands issued by other
429  * cpus are handled.
430  */
431 static void do_ext_call_interrupt(struct ext_code ext_code,
432 				  unsigned int param32, unsigned long param64)
433 {
434 	unsigned long bits;
435 	int cpu;
436 
437 	cpu = smp_processor_id();
438 	if (ext_code.code == 0x1202)
439 		inc_irq_stat(IRQEXT_EXC);
440 	else
441 		inc_irq_stat(IRQEXT_EMS);
442 	/*
443 	 * handle bit signal external calls
444 	 */
445 	bits = xchg(&pcpu_devices[cpu].ec_mask, 0);
446 
447 	if (test_bit(ec_stop_cpu, &bits))
448 		smp_stop_cpu();
449 
450 	if (test_bit(ec_schedule, &bits))
451 		scheduler_ipi();
452 
453 	if (test_bit(ec_call_function, &bits))
454 		generic_smp_call_function_interrupt();
455 
456 	if (test_bit(ec_call_function_single, &bits))
457 		generic_smp_call_function_single_interrupt();
458 
459 }
460 
461 void arch_send_call_function_ipi_mask(const struct cpumask *mask)
462 {
463 	int cpu;
464 
465 	for_each_cpu(cpu, mask)
466 		pcpu_ec_call(pcpu_devices + cpu, ec_call_function);
467 }
468 
469 void arch_send_call_function_single_ipi(int cpu)
470 {
471 	pcpu_ec_call(pcpu_devices + cpu, ec_call_function_single);
472 }
473 
474 #ifndef CONFIG_64BIT
475 /*
476  * this function sends a 'purge tlb' signal to another CPU.
477  */
478 static void smp_ptlb_callback(void *info)
479 {
480 	__tlb_flush_local();
481 }
482 
483 void smp_ptlb_all(void)
484 {
485 	on_each_cpu(smp_ptlb_callback, NULL, 1);
486 }
487 EXPORT_SYMBOL(smp_ptlb_all);
488 #endif /* ! CONFIG_64BIT */
489 
490 /*
491  * this function sends a 'reschedule' IPI to another CPU.
492  * it goes straight through and wastes no time serializing
493  * anything. Worst case is that we lose a reschedule ...
494  */
495 void smp_send_reschedule(int cpu)
496 {
497 	pcpu_ec_call(pcpu_devices + cpu, ec_schedule);
498 }
499 
500 /*
501  * parameter area for the set/clear control bit callbacks
502  */
503 struct ec_creg_mask_parms {
504 	unsigned long orval;
505 	unsigned long andval;
506 	int cr;
507 };
508 
509 /*
510  * callback for setting/clearing control bits
511  */
512 static void smp_ctl_bit_callback(void *info)
513 {
514 	struct ec_creg_mask_parms *pp = info;
515 	unsigned long cregs[16];
516 
517 	__ctl_store(cregs, 0, 15);
518 	cregs[pp->cr] = (cregs[pp->cr] & pp->andval) | pp->orval;
519 	__ctl_load(cregs, 0, 15);
520 }
521 
522 /*
523  * Set a bit in a control register of all cpus
524  */
525 void smp_ctl_set_bit(int cr, int bit)
526 {
527 	struct ec_creg_mask_parms parms = { 1UL << bit, -1UL, cr };
528 
529 	on_each_cpu(smp_ctl_bit_callback, &parms, 1);
530 }
531 EXPORT_SYMBOL(smp_ctl_set_bit);
532 
533 /*
534  * Clear a bit in a control register of all cpus
535  */
536 void smp_ctl_clear_bit(int cr, int bit)
537 {
538 	struct ec_creg_mask_parms parms = { 0, ~(1UL << bit), cr };
539 
540 	on_each_cpu(smp_ctl_bit_callback, &parms, 1);
541 }
542 EXPORT_SYMBOL(smp_ctl_clear_bit);
543 
544 #if defined(CONFIG_ZFCPDUMP) || defined(CONFIG_CRASH_DUMP)
545 
546 struct save_area *zfcpdump_save_areas[NR_CPUS + 1];
547 EXPORT_SYMBOL_GPL(zfcpdump_save_areas);
548 
549 static void __init smp_get_save_area(int cpu, u16 address)
550 {
551 	void *lc = pcpu_devices[0].lowcore;
552 	struct save_area *save_area;
553 
554 	if (is_kdump_kernel())
555 		return;
556 	if (!OLDMEM_BASE && (address == boot_cpu_address ||
557 			     ipl_info.type != IPL_TYPE_FCP_DUMP))
558 		return;
559 	if (cpu >= NR_CPUS) {
560 		pr_warning("CPU %i exceeds the maximum %i and is excluded "
561 			   "from the dump\n", cpu, NR_CPUS - 1);
562 		return;
563 	}
564 	save_area = kmalloc(sizeof(struct save_area), GFP_KERNEL);
565 	if (!save_area)
566 		panic("could not allocate memory for save area\n");
567 	zfcpdump_save_areas[cpu] = save_area;
568 #ifdef CONFIG_CRASH_DUMP
569 	if (address == boot_cpu_address) {
570 		/* Copy the registers of the boot cpu. */
571 		copy_oldmem_page(1, (void *) save_area, sizeof(*save_area),
572 				 SAVE_AREA_BASE - PAGE_SIZE, 0);
573 		return;
574 	}
575 #endif
576 	/* Get the registers of a non-boot cpu. */
577 	__pcpu_sigp_relax(address, SIGP_STOP_AND_STORE_STATUS, 0, NULL);
578 	memcpy_real(save_area, lc + SAVE_AREA_BASE, sizeof(*save_area));
579 }
580 
581 int smp_store_status(int cpu)
582 {
583 	struct pcpu *pcpu;
584 
585 	pcpu = pcpu_devices + cpu;
586 	if (__pcpu_sigp_relax(pcpu->address, SIGP_STOP_AND_STORE_STATUS,
587 			      0, NULL) != SIGP_CC_ORDER_CODE_ACCEPTED)
588 		return -EIO;
589 	return 0;
590 }
591 
592 #else /* CONFIG_ZFCPDUMP || CONFIG_CRASH_DUMP */
593 
594 static inline void smp_get_save_area(int cpu, u16 address) { }
595 
596 #endif /* CONFIG_ZFCPDUMP || CONFIG_CRASH_DUMP */
597 
598 void smp_cpu_set_polarization(int cpu, int val)
599 {
600 	pcpu_devices[cpu].polarization = val;
601 }
602 
603 int smp_cpu_get_polarization(int cpu)
604 {
605 	return pcpu_devices[cpu].polarization;
606 }
607 
608 static struct sclp_cpu_info *smp_get_cpu_info(void)
609 {
610 	static int use_sigp_detection;
611 	struct sclp_cpu_info *info;
612 	int address;
613 
614 	info = kzalloc(sizeof(*info), GFP_KERNEL);
615 	if (info && (use_sigp_detection || sclp_get_cpu_info(info))) {
616 		use_sigp_detection = 1;
617 		for (address = 0; address <= MAX_CPU_ADDRESS; address++) {
618 			if (__pcpu_sigp_relax(address, SIGP_SENSE, 0, NULL) ==
619 			    SIGP_CC_NOT_OPERATIONAL)
620 				continue;
621 			info->cpu[info->configured].address = address;
622 			info->configured++;
623 		}
624 		info->combined = info->configured;
625 	}
626 	return info;
627 }
628 
629 static int __cpuinit smp_add_present_cpu(int cpu);
630 
631 static int __cpuinit __smp_rescan_cpus(struct sclp_cpu_info *info,
632 				       int sysfs_add)
633 {
634 	struct pcpu *pcpu;
635 	cpumask_t avail;
636 	int cpu, nr, i;
637 
638 	nr = 0;
639 	cpumask_xor(&avail, cpu_possible_mask, cpu_present_mask);
640 	cpu = cpumask_first(&avail);
641 	for (i = 0; (i < info->combined) && (cpu < nr_cpu_ids); i++) {
642 		if (info->has_cpu_type && info->cpu[i].type != boot_cpu_type)
643 			continue;
644 		if (pcpu_find_address(cpu_present_mask, info->cpu[i].address))
645 			continue;
646 		pcpu = pcpu_devices + cpu;
647 		pcpu->address = info->cpu[i].address;
648 		pcpu->state = (cpu >= info->configured) ?
649 			CPU_STATE_STANDBY : CPU_STATE_CONFIGURED;
650 		smp_cpu_set_polarization(cpu, POLARIZATION_UNKNOWN);
651 		set_cpu_present(cpu, true);
652 		if (sysfs_add && smp_add_present_cpu(cpu) != 0)
653 			set_cpu_present(cpu, false);
654 		else
655 			nr++;
656 		cpu = cpumask_next(cpu, &avail);
657 	}
658 	return nr;
659 }
660 
661 static void __init smp_detect_cpus(void)
662 {
663 	unsigned int cpu, c_cpus, s_cpus;
664 	struct sclp_cpu_info *info;
665 
666 	info = smp_get_cpu_info();
667 	if (!info)
668 		panic("smp_detect_cpus failed to allocate memory\n");
669 	if (info->has_cpu_type) {
670 		for (cpu = 0; cpu < info->combined; cpu++) {
671 			if (info->cpu[cpu].address != boot_cpu_address)
672 				continue;
673 			/* The boot cpu dictates the cpu type. */
674 			boot_cpu_type = info->cpu[cpu].type;
675 			break;
676 		}
677 	}
678 	c_cpus = s_cpus = 0;
679 	for (cpu = 0; cpu < info->combined; cpu++) {
680 		if (info->has_cpu_type && info->cpu[cpu].type != boot_cpu_type)
681 			continue;
682 		if (cpu < info->configured) {
683 			smp_get_save_area(c_cpus, info->cpu[cpu].address);
684 			c_cpus++;
685 		} else
686 			s_cpus++;
687 	}
688 	pr_info("%d configured CPUs, %d standby CPUs\n", c_cpus, s_cpus);
689 	get_online_cpus();
690 	__smp_rescan_cpus(info, 0);
691 	put_online_cpus();
692 	kfree(info);
693 }
694 
695 /*
696  *	Activate a secondary processor.
697  */
698 static void __cpuinit smp_start_secondary(void *cpuvoid)
699 {
700 	S390_lowcore.last_update_clock = get_tod_clock();
701 	S390_lowcore.restart_stack = (unsigned long) restart_stack;
702 	S390_lowcore.restart_fn = (unsigned long) do_restart;
703 	S390_lowcore.restart_data = 0;
704 	S390_lowcore.restart_source = -1UL;
705 	restore_access_regs(S390_lowcore.access_regs_save_area);
706 	__ctl_load(S390_lowcore.cregs_save_area, 0, 15);
707 	__load_psw_mask(psw_kernel_bits | PSW_MASK_DAT);
708 	cpu_init();
709 	preempt_disable();
710 	init_cpu_timer();
711 	init_cpu_vtimer();
712 	pfault_init();
713 	notify_cpu_starting(smp_processor_id());
714 	set_cpu_online(smp_processor_id(), true);
715 	inc_irq_stat(CPU_RST);
716 	local_irq_enable();
717 	cpu_startup_entry(CPUHP_ONLINE);
718 }
719 
720 /* Upping and downing of CPUs */
721 int __cpuinit __cpu_up(unsigned int cpu, struct task_struct *tidle)
722 {
723 	struct pcpu *pcpu;
724 	int rc;
725 
726 	pcpu = pcpu_devices + cpu;
727 	if (pcpu->state != CPU_STATE_CONFIGURED)
728 		return -EIO;
729 	if (pcpu_sigp_retry(pcpu, SIGP_INITIAL_CPU_RESET, 0) !=
730 	    SIGP_CC_ORDER_CODE_ACCEPTED)
731 		return -EIO;
732 
733 	rc = pcpu_alloc_lowcore(pcpu, cpu);
734 	if (rc)
735 		return rc;
736 	pcpu_prepare_secondary(pcpu, cpu);
737 	pcpu_attach_task(pcpu, tidle);
738 	pcpu_start_fn(pcpu, smp_start_secondary, NULL);
739 	while (!cpu_online(cpu))
740 		cpu_relax();
741 	return 0;
742 }
743 
744 static int __init setup_possible_cpus(char *s)
745 {
746 	int max, cpu;
747 
748 	if (kstrtoint(s, 0, &max) < 0)
749 		return 0;
750 	init_cpu_possible(cpumask_of(0));
751 	for (cpu = 1; cpu < max && cpu < nr_cpu_ids; cpu++)
752 		set_cpu_possible(cpu, true);
753 	return 0;
754 }
755 early_param("possible_cpus", setup_possible_cpus);
756 
757 #ifdef CONFIG_HOTPLUG_CPU
758 
759 int __cpu_disable(void)
760 {
761 	unsigned long cregs[16];
762 
763 	set_cpu_online(smp_processor_id(), false);
764 	/* Disable pseudo page faults on this cpu. */
765 	pfault_fini();
766 	/* Disable interrupt sources via control register. */
767 	__ctl_store(cregs, 0, 15);
768 	cregs[0]  &= ~0x0000ee70UL;	/* disable all external interrupts */
769 	cregs[6]  &= ~0xff000000UL;	/* disable all I/O interrupts */
770 	cregs[14] &= ~0x1f000000UL;	/* disable most machine checks */
771 	__ctl_load(cregs, 0, 15);
772 	return 0;
773 }
774 
775 void __cpu_die(unsigned int cpu)
776 {
777 	struct pcpu *pcpu;
778 
779 	/* Wait until target cpu is down */
780 	pcpu = pcpu_devices + cpu;
781 	while (!pcpu_stopped(pcpu))
782 		cpu_relax();
783 	pcpu_free_lowcore(pcpu);
784 	atomic_dec(&init_mm.context.attach_count);
785 }
786 
787 void __noreturn cpu_die(void)
788 {
789 	idle_task_exit();
790 	pcpu_sigp_retry(pcpu_devices + smp_processor_id(), SIGP_STOP, 0);
791 	for (;;) ;
792 }
793 
794 #endif /* CONFIG_HOTPLUG_CPU */
795 
796 void __init smp_prepare_cpus(unsigned int max_cpus)
797 {
798 	/* request the 0x1201 emergency signal external interrupt */
799 	if (register_external_interrupt(0x1201, do_ext_call_interrupt) != 0)
800 		panic("Couldn't request external interrupt 0x1201");
801 	/* request the 0x1202 external call external interrupt */
802 	if (register_external_interrupt(0x1202, do_ext_call_interrupt) != 0)
803 		panic("Couldn't request external interrupt 0x1202");
804 	smp_detect_cpus();
805 }
806 
807 void __init smp_prepare_boot_cpu(void)
808 {
809 	struct pcpu *pcpu = pcpu_devices;
810 
811 	boot_cpu_address = stap();
812 	pcpu->state = CPU_STATE_CONFIGURED;
813 	pcpu->address = boot_cpu_address;
814 	pcpu->lowcore = (struct _lowcore *)(unsigned long) store_prefix();
815 	pcpu->async_stack = S390_lowcore.async_stack - ASYNC_SIZE
816 		+ STACK_FRAME_OVERHEAD + sizeof(struct pt_regs);
817 	pcpu->panic_stack = S390_lowcore.panic_stack - PAGE_SIZE
818 		+ STACK_FRAME_OVERHEAD + sizeof(struct pt_regs);
819 	S390_lowcore.percpu_offset = __per_cpu_offset[0];
820 	smp_cpu_set_polarization(0, POLARIZATION_UNKNOWN);
821 	set_cpu_present(0, true);
822 	set_cpu_online(0, true);
823 }
824 
825 void __init smp_cpus_done(unsigned int max_cpus)
826 {
827 }
828 
829 void __init smp_setup_processor_id(void)
830 {
831 	S390_lowcore.cpu_nr = 0;
832 }
833 
834 /*
835  * the frequency of the profiling timer can be changed
836  * by writing a multiplier value into /proc/profile.
837  *
838  * usually you want to run this on all CPUs ;)
839  */
840 int setup_profiling_timer(unsigned int multiplier)
841 {
842 	return 0;
843 }
844 
845 #ifdef CONFIG_HOTPLUG_CPU
846 static ssize_t cpu_configure_show(struct device *dev,
847 				  struct device_attribute *attr, char *buf)
848 {
849 	ssize_t count;
850 
851 	mutex_lock(&smp_cpu_state_mutex);
852 	count = sprintf(buf, "%d\n", pcpu_devices[dev->id].state);
853 	mutex_unlock(&smp_cpu_state_mutex);
854 	return count;
855 }
856 
857 static ssize_t cpu_configure_store(struct device *dev,
858 				   struct device_attribute *attr,
859 				   const char *buf, size_t count)
860 {
861 	struct pcpu *pcpu;
862 	int cpu, val, rc;
863 	char delim;
864 
865 	if (sscanf(buf, "%d %c", &val, &delim) != 1)
866 		return -EINVAL;
867 	if (val != 0 && val != 1)
868 		return -EINVAL;
869 	get_online_cpus();
870 	mutex_lock(&smp_cpu_state_mutex);
871 	rc = -EBUSY;
872 	/* disallow configuration changes of online cpus and cpu 0 */
873 	cpu = dev->id;
874 	if (cpu_online(cpu) || cpu == 0)
875 		goto out;
876 	pcpu = pcpu_devices + cpu;
877 	rc = 0;
878 	switch (val) {
879 	case 0:
880 		if (pcpu->state != CPU_STATE_CONFIGURED)
881 			break;
882 		rc = sclp_cpu_deconfigure(pcpu->address);
883 		if (rc)
884 			break;
885 		pcpu->state = CPU_STATE_STANDBY;
886 		smp_cpu_set_polarization(cpu, POLARIZATION_UNKNOWN);
887 		topology_expect_change();
888 		break;
889 	case 1:
890 		if (pcpu->state != CPU_STATE_STANDBY)
891 			break;
892 		rc = sclp_cpu_configure(pcpu->address);
893 		if (rc)
894 			break;
895 		pcpu->state = CPU_STATE_CONFIGURED;
896 		smp_cpu_set_polarization(cpu, POLARIZATION_UNKNOWN);
897 		topology_expect_change();
898 		break;
899 	default:
900 		break;
901 	}
902 out:
903 	mutex_unlock(&smp_cpu_state_mutex);
904 	put_online_cpus();
905 	return rc ? rc : count;
906 }
907 static DEVICE_ATTR(configure, 0644, cpu_configure_show, cpu_configure_store);
908 #endif /* CONFIG_HOTPLUG_CPU */
909 
910 static ssize_t show_cpu_address(struct device *dev,
911 				struct device_attribute *attr, char *buf)
912 {
913 	return sprintf(buf, "%d\n", pcpu_devices[dev->id].address);
914 }
915 static DEVICE_ATTR(address, 0444, show_cpu_address, NULL);
916 
917 static struct attribute *cpu_common_attrs[] = {
918 #ifdef CONFIG_HOTPLUG_CPU
919 	&dev_attr_configure.attr,
920 #endif
921 	&dev_attr_address.attr,
922 	NULL,
923 };
924 
925 static struct attribute_group cpu_common_attr_group = {
926 	.attrs = cpu_common_attrs,
927 };
928 
929 static ssize_t show_idle_count(struct device *dev,
930 				struct device_attribute *attr, char *buf)
931 {
932 	struct s390_idle_data *idle = &per_cpu(s390_idle, dev->id);
933 	unsigned long long idle_count;
934 	unsigned int sequence;
935 
936 	do {
937 		sequence = ACCESS_ONCE(idle->sequence);
938 		idle_count = ACCESS_ONCE(idle->idle_count);
939 		if (ACCESS_ONCE(idle->clock_idle_enter))
940 			idle_count++;
941 	} while ((sequence & 1) || (idle->sequence != sequence));
942 	return sprintf(buf, "%llu\n", idle_count);
943 }
944 static DEVICE_ATTR(idle_count, 0444, show_idle_count, NULL);
945 
946 static ssize_t show_idle_time(struct device *dev,
947 				struct device_attribute *attr, char *buf)
948 {
949 	struct s390_idle_data *idle = &per_cpu(s390_idle, dev->id);
950 	unsigned long long now, idle_time, idle_enter, idle_exit;
951 	unsigned int sequence;
952 
953 	do {
954 		now = get_tod_clock();
955 		sequence = ACCESS_ONCE(idle->sequence);
956 		idle_time = ACCESS_ONCE(idle->idle_time);
957 		idle_enter = ACCESS_ONCE(idle->clock_idle_enter);
958 		idle_exit = ACCESS_ONCE(idle->clock_idle_exit);
959 	} while ((sequence & 1) || (idle->sequence != sequence));
960 	idle_time += idle_enter ? ((idle_exit ? : now) - idle_enter) : 0;
961 	return sprintf(buf, "%llu\n", idle_time >> 12);
962 }
963 static DEVICE_ATTR(idle_time_us, 0444, show_idle_time, NULL);
964 
965 static struct attribute *cpu_online_attrs[] = {
966 	&dev_attr_idle_count.attr,
967 	&dev_attr_idle_time_us.attr,
968 	NULL,
969 };
970 
971 static struct attribute_group cpu_online_attr_group = {
972 	.attrs = cpu_online_attrs,
973 };
974 
975 static int __cpuinit smp_cpu_notify(struct notifier_block *self,
976 				    unsigned long action, void *hcpu)
977 {
978 	unsigned int cpu = (unsigned int)(long)hcpu;
979 	struct cpu *c = &pcpu_devices[cpu].cpu;
980 	struct device *s = &c->dev;
981 	int err = 0;
982 
983 	switch (action & ~CPU_TASKS_FROZEN) {
984 	case CPU_ONLINE:
985 		err = sysfs_create_group(&s->kobj, &cpu_online_attr_group);
986 		break;
987 	case CPU_DEAD:
988 		sysfs_remove_group(&s->kobj, &cpu_online_attr_group);
989 		break;
990 	}
991 	return notifier_from_errno(err);
992 }
993 
994 static int __cpuinit smp_add_present_cpu(int cpu)
995 {
996 	struct cpu *c = &pcpu_devices[cpu].cpu;
997 	struct device *s = &c->dev;
998 	int rc;
999 
1000 	c->hotpluggable = 1;
1001 	rc = register_cpu(c, cpu);
1002 	if (rc)
1003 		goto out;
1004 	rc = sysfs_create_group(&s->kobj, &cpu_common_attr_group);
1005 	if (rc)
1006 		goto out_cpu;
1007 	if (cpu_online(cpu)) {
1008 		rc = sysfs_create_group(&s->kobj, &cpu_online_attr_group);
1009 		if (rc)
1010 			goto out_online;
1011 	}
1012 	rc = topology_cpu_init(c);
1013 	if (rc)
1014 		goto out_topology;
1015 	return 0;
1016 
1017 out_topology:
1018 	if (cpu_online(cpu))
1019 		sysfs_remove_group(&s->kobj, &cpu_online_attr_group);
1020 out_online:
1021 	sysfs_remove_group(&s->kobj, &cpu_common_attr_group);
1022 out_cpu:
1023 #ifdef CONFIG_HOTPLUG_CPU
1024 	unregister_cpu(c);
1025 #endif
1026 out:
1027 	return rc;
1028 }
1029 
1030 #ifdef CONFIG_HOTPLUG_CPU
1031 
1032 int __ref smp_rescan_cpus(void)
1033 {
1034 	struct sclp_cpu_info *info;
1035 	int nr;
1036 
1037 	info = smp_get_cpu_info();
1038 	if (!info)
1039 		return -ENOMEM;
1040 	get_online_cpus();
1041 	mutex_lock(&smp_cpu_state_mutex);
1042 	nr = __smp_rescan_cpus(info, 1);
1043 	mutex_unlock(&smp_cpu_state_mutex);
1044 	put_online_cpus();
1045 	kfree(info);
1046 	if (nr)
1047 		topology_schedule_update();
1048 	return 0;
1049 }
1050 
1051 static ssize_t __ref rescan_store(struct device *dev,
1052 				  struct device_attribute *attr,
1053 				  const char *buf,
1054 				  size_t count)
1055 {
1056 	int rc;
1057 
1058 	rc = smp_rescan_cpus();
1059 	return rc ? rc : count;
1060 }
1061 static DEVICE_ATTR(rescan, 0200, NULL, rescan_store);
1062 #endif /* CONFIG_HOTPLUG_CPU */
1063 
1064 static int __init s390_smp_init(void)
1065 {
1066 	int cpu, rc;
1067 
1068 	hotcpu_notifier(smp_cpu_notify, 0);
1069 #ifdef CONFIG_HOTPLUG_CPU
1070 	rc = device_create_file(cpu_subsys.dev_root, &dev_attr_rescan);
1071 	if (rc)
1072 		return rc;
1073 #endif
1074 	for_each_present_cpu(cpu) {
1075 		rc = smp_add_present_cpu(cpu);
1076 		if (rc)
1077 			return rc;
1078 	}
1079 	return 0;
1080 }
1081 subsys_initcall(s390_smp_init);
1082