xref: /openbmc/linux/arch/s390/kernel/smp.c (revision b627b4ed)
1 /*
2  *  arch/s390/kernel/smp.c
3  *
4  *    Copyright IBM Corp. 1999,2007
5  *    Author(s): Denis Joseph Barrow (djbarrow@de.ibm.com,barrow_dj@yahoo.com),
6  *		 Martin Schwidefsky (schwidefsky@de.ibm.com)
7  *		 Heiko Carstens (heiko.carstens@de.ibm.com)
8  *
9  *  based on other smp stuff by
10  *    (c) 1995 Alan Cox, CymruNET Ltd  <alan@cymru.net>
11  *    (c) 1998 Ingo Molnar
12  *
13  * We work with logical cpu numbering everywhere we can. The only
14  * functions using the real cpu address (got from STAP) are the sigp
15  * functions. For all other functions we use the identity mapping.
16  * That means that cpu_number_map[i] == i for every cpu. cpu_number_map is
17  * used e.g. to find the idle task belonging to a logical cpu. Every array
18  * in the kernel is sorted by the logical cpu number and not by the physical
19  * one which is causing all the confusion with __cpu_logical_map and
20  * cpu_number_map in other architectures.
21  */
22 
23 #define KMSG_COMPONENT "cpu"
24 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
25 
26 #include <linux/module.h>
27 #include <linux/init.h>
28 #include <linux/mm.h>
29 #include <linux/err.h>
30 #include <linux/spinlock.h>
31 #include <linux/kernel_stat.h>
32 #include <linux/delay.h>
33 #include <linux/cache.h>
34 #include <linux/interrupt.h>
35 #include <linux/irqflags.h>
36 #include <linux/cpu.h>
37 #include <linux/timex.h>
38 #include <linux/bootmem.h>
39 #include <asm/ipl.h>
40 #include <asm/setup.h>
41 #include <asm/sigp.h>
42 #include <asm/pgalloc.h>
43 #include <asm/irq.h>
44 #include <asm/s390_ext.h>
45 #include <asm/cpcmd.h>
46 #include <asm/tlbflush.h>
47 #include <asm/timer.h>
48 #include <asm/lowcore.h>
49 #include <asm/sclp.h>
50 #include <asm/cpu.h>
51 #include <asm/vdso.h>
52 #include "entry.h"
53 
54 static struct task_struct *current_set[NR_CPUS];
55 
56 static u8 smp_cpu_type;
57 static int smp_use_sigp_detection;
58 
59 enum s390_cpu_state {
60 	CPU_STATE_STANDBY,
61 	CPU_STATE_CONFIGURED,
62 };
63 
64 DEFINE_MUTEX(smp_cpu_state_mutex);
65 int smp_cpu_polarization[NR_CPUS];
66 static int smp_cpu_state[NR_CPUS];
67 static int cpu_management;
68 
69 static DEFINE_PER_CPU(struct cpu, cpu_devices);
70 
71 static void smp_ext_bitcall(int, ec_bit_sig);
72 
73 void smp_send_stop(void)
74 {
75 	int cpu, rc;
76 
77 	/* Disable all interrupts/machine checks */
78 	__load_psw_mask(psw_kernel_bits & ~PSW_MASK_MCHECK);
79 	trace_hardirqs_off();
80 
81 	/* stop all processors */
82 	for_each_online_cpu(cpu) {
83 		if (cpu == smp_processor_id())
84 			continue;
85 		do {
86 			rc = signal_processor(cpu, sigp_stop);
87 		} while (rc == sigp_busy);
88 
89 		while (!smp_cpu_not_running(cpu))
90 			cpu_relax();
91 	}
92 }
93 
94 /*
95  * This is the main routine where commands issued by other
96  * cpus are handled.
97  */
98 
99 static void do_ext_call_interrupt(__u16 code)
100 {
101 	unsigned long bits;
102 
103 	/*
104 	 * handle bit signal external calls
105 	 *
106 	 * For the ec_schedule signal we have to do nothing. All the work
107 	 * is done automatically when we return from the interrupt.
108 	 */
109 	bits = xchg(&S390_lowcore.ext_call_fast, 0);
110 
111 	if (test_bit(ec_call_function, &bits))
112 		generic_smp_call_function_interrupt();
113 
114 	if (test_bit(ec_call_function_single, &bits))
115 		generic_smp_call_function_single_interrupt();
116 }
117 
118 /*
119  * Send an external call sigp to another cpu and return without waiting
120  * for its completion.
121  */
122 static void smp_ext_bitcall(int cpu, ec_bit_sig sig)
123 {
124 	/*
125 	 * Set signaling bit in lowcore of target cpu and kick it
126 	 */
127 	set_bit(sig, (unsigned long *) &lowcore_ptr[cpu]->ext_call_fast);
128 	while (signal_processor(cpu, sigp_emergency_signal) == sigp_busy)
129 		udelay(10);
130 }
131 
132 void arch_send_call_function_ipi(cpumask_t mask)
133 {
134 	int cpu;
135 
136 	for_each_cpu_mask(cpu, mask)
137 		smp_ext_bitcall(cpu, ec_call_function);
138 }
139 
140 void arch_send_call_function_single_ipi(int cpu)
141 {
142 	smp_ext_bitcall(cpu, ec_call_function_single);
143 }
144 
145 #ifndef CONFIG_64BIT
146 /*
147  * this function sends a 'purge tlb' signal to another CPU.
148  */
149 static void smp_ptlb_callback(void *info)
150 {
151 	__tlb_flush_local();
152 }
153 
154 void smp_ptlb_all(void)
155 {
156 	on_each_cpu(smp_ptlb_callback, NULL, 1);
157 }
158 EXPORT_SYMBOL(smp_ptlb_all);
159 #endif /* ! CONFIG_64BIT */
160 
161 /*
162  * this function sends a 'reschedule' IPI to another CPU.
163  * it goes straight through and wastes no time serializing
164  * anything. Worst case is that we lose a reschedule ...
165  */
166 void smp_send_reschedule(int cpu)
167 {
168 	smp_ext_bitcall(cpu, ec_schedule);
169 }
170 
171 /*
172  * parameter area for the set/clear control bit callbacks
173  */
174 struct ec_creg_mask_parms {
175 	unsigned long orvals[16];
176 	unsigned long andvals[16];
177 };
178 
179 /*
180  * callback for setting/clearing control bits
181  */
182 static void smp_ctl_bit_callback(void *info)
183 {
184 	struct ec_creg_mask_parms *pp = info;
185 	unsigned long cregs[16];
186 	int i;
187 
188 	__ctl_store(cregs, 0, 15);
189 	for (i = 0; i <= 15; i++)
190 		cregs[i] = (cregs[i] & pp->andvals[i]) | pp->orvals[i];
191 	__ctl_load(cregs, 0, 15);
192 }
193 
194 /*
195  * Set a bit in a control register of all cpus
196  */
197 void smp_ctl_set_bit(int cr, int bit)
198 {
199 	struct ec_creg_mask_parms parms;
200 
201 	memset(&parms.orvals, 0, sizeof(parms.orvals));
202 	memset(&parms.andvals, 0xff, sizeof(parms.andvals));
203 	parms.orvals[cr] = 1 << bit;
204 	on_each_cpu(smp_ctl_bit_callback, &parms, 1);
205 }
206 EXPORT_SYMBOL(smp_ctl_set_bit);
207 
208 /*
209  * Clear a bit in a control register of all cpus
210  */
211 void smp_ctl_clear_bit(int cr, int bit)
212 {
213 	struct ec_creg_mask_parms parms;
214 
215 	memset(&parms.orvals, 0, sizeof(parms.orvals));
216 	memset(&parms.andvals, 0xff, sizeof(parms.andvals));
217 	parms.andvals[cr] = ~(1L << bit);
218 	on_each_cpu(smp_ctl_bit_callback, &parms, 1);
219 }
220 EXPORT_SYMBOL(smp_ctl_clear_bit);
221 
222 /*
223  * In early ipl state a temp. logically cpu number is needed, so the sigp
224  * functions can be used to sense other cpus. Since NR_CPUS is >= 2 on
225  * CONFIG_SMP and the ipl cpu is logical cpu 0, it must be 1.
226  */
227 #define CPU_INIT_NO	1
228 
229 #ifdef CONFIG_ZFCPDUMP
230 
231 /*
232  * zfcpdump_prefix_array holds prefix registers for the following scenario:
233  * 64 bit zfcpdump kernel and 31 bit kernel which is to be dumped. We have to
234  * save its prefix registers, since they get lost, when switching from 31 bit
235  * to 64 bit.
236  */
237 unsigned int zfcpdump_prefix_array[NR_CPUS + 1] \
238 	__attribute__((__section__(".data")));
239 
240 static void __init smp_get_save_area(unsigned int cpu, unsigned int phy_cpu)
241 {
242 	if (ipl_info.type != IPL_TYPE_FCP_DUMP)
243 		return;
244 	if (cpu >= NR_CPUS) {
245 		pr_warning("CPU %i exceeds the maximum %i and is excluded from "
246 			   "the dump\n", cpu, NR_CPUS - 1);
247 		return;
248 	}
249 	zfcpdump_save_areas[cpu] = kmalloc(sizeof(union save_area), GFP_KERNEL);
250 	__cpu_logical_map[CPU_INIT_NO] = (__u16) phy_cpu;
251 	while (signal_processor(CPU_INIT_NO, sigp_stop_and_store_status) ==
252 	       sigp_busy)
253 		cpu_relax();
254 	memcpy(zfcpdump_save_areas[cpu],
255 	       (void *)(unsigned long) store_prefix() + SAVE_AREA_BASE,
256 	       SAVE_AREA_SIZE);
257 #ifdef CONFIG_64BIT
258 	/* copy original prefix register */
259 	zfcpdump_save_areas[cpu]->s390x.pref_reg = zfcpdump_prefix_array[cpu];
260 #endif
261 }
262 
263 union save_area *zfcpdump_save_areas[NR_CPUS + 1];
264 EXPORT_SYMBOL_GPL(zfcpdump_save_areas);
265 
266 #else
267 
268 static inline void smp_get_save_area(unsigned int cpu, unsigned int phy_cpu) { }
269 
270 #endif /* CONFIG_ZFCPDUMP */
271 
272 static int cpu_stopped(int cpu)
273 {
274 	__u32 status;
275 
276 	/* Check for stopped state */
277 	if (signal_processor_ps(&status, 0, cpu, sigp_sense) ==
278 	    sigp_status_stored) {
279 		if (status & 0x40)
280 			return 1;
281 	}
282 	return 0;
283 }
284 
285 static int cpu_known(int cpu_id)
286 {
287 	int cpu;
288 
289 	for_each_present_cpu(cpu) {
290 		if (__cpu_logical_map[cpu] == cpu_id)
291 			return 1;
292 	}
293 	return 0;
294 }
295 
296 static int smp_rescan_cpus_sigp(cpumask_t avail)
297 {
298 	int cpu_id, logical_cpu;
299 
300 	logical_cpu = cpumask_first(&avail);
301 	if (logical_cpu >= nr_cpu_ids)
302 		return 0;
303 	for (cpu_id = 0; cpu_id <= 65535; cpu_id++) {
304 		if (cpu_known(cpu_id))
305 			continue;
306 		__cpu_logical_map[logical_cpu] = cpu_id;
307 		smp_cpu_polarization[logical_cpu] = POLARIZATION_UNKNWN;
308 		if (!cpu_stopped(logical_cpu))
309 			continue;
310 		cpu_set(logical_cpu, cpu_present_map);
311 		smp_cpu_state[logical_cpu] = CPU_STATE_CONFIGURED;
312 		logical_cpu = cpumask_next(logical_cpu, &avail);
313 		if (logical_cpu >= nr_cpu_ids)
314 			break;
315 	}
316 	return 0;
317 }
318 
319 static int smp_rescan_cpus_sclp(cpumask_t avail)
320 {
321 	struct sclp_cpu_info *info;
322 	int cpu_id, logical_cpu, cpu;
323 	int rc;
324 
325 	logical_cpu = cpumask_first(&avail);
326 	if (logical_cpu >= nr_cpu_ids)
327 		return 0;
328 	info = kmalloc(sizeof(*info), GFP_KERNEL);
329 	if (!info)
330 		return -ENOMEM;
331 	rc = sclp_get_cpu_info(info);
332 	if (rc)
333 		goto out;
334 	for (cpu = 0; cpu < info->combined; cpu++) {
335 		if (info->has_cpu_type && info->cpu[cpu].type != smp_cpu_type)
336 			continue;
337 		cpu_id = info->cpu[cpu].address;
338 		if (cpu_known(cpu_id))
339 			continue;
340 		__cpu_logical_map[logical_cpu] = cpu_id;
341 		smp_cpu_polarization[logical_cpu] = POLARIZATION_UNKNWN;
342 		cpu_set(logical_cpu, cpu_present_map);
343 		if (cpu >= info->configured)
344 			smp_cpu_state[logical_cpu] = CPU_STATE_STANDBY;
345 		else
346 			smp_cpu_state[logical_cpu] = CPU_STATE_CONFIGURED;
347 		logical_cpu = cpumask_next(logical_cpu, &avail);
348 		if (logical_cpu >= nr_cpu_ids)
349 			break;
350 	}
351 out:
352 	kfree(info);
353 	return rc;
354 }
355 
356 static int __smp_rescan_cpus(void)
357 {
358 	cpumask_t avail;
359 
360 	cpus_xor(avail, cpu_possible_map, cpu_present_map);
361 	if (smp_use_sigp_detection)
362 		return smp_rescan_cpus_sigp(avail);
363 	else
364 		return smp_rescan_cpus_sclp(avail);
365 }
366 
367 static void __init smp_detect_cpus(void)
368 {
369 	unsigned int cpu, c_cpus, s_cpus;
370 	struct sclp_cpu_info *info;
371 	u16 boot_cpu_addr, cpu_addr;
372 
373 	c_cpus = 1;
374 	s_cpus = 0;
375 	boot_cpu_addr = __cpu_logical_map[0];
376 	info = kmalloc(sizeof(*info), GFP_KERNEL);
377 	if (!info)
378 		panic("smp_detect_cpus failed to allocate memory\n");
379 	/* Use sigp detection algorithm if sclp doesn't work. */
380 	if (sclp_get_cpu_info(info)) {
381 		smp_use_sigp_detection = 1;
382 		for (cpu = 0; cpu <= 65535; cpu++) {
383 			if (cpu == boot_cpu_addr)
384 				continue;
385 			__cpu_logical_map[CPU_INIT_NO] = cpu;
386 			if (!cpu_stopped(CPU_INIT_NO))
387 				continue;
388 			smp_get_save_area(c_cpus, cpu);
389 			c_cpus++;
390 		}
391 		goto out;
392 	}
393 
394 	if (info->has_cpu_type) {
395 		for (cpu = 0; cpu < info->combined; cpu++) {
396 			if (info->cpu[cpu].address == boot_cpu_addr) {
397 				smp_cpu_type = info->cpu[cpu].type;
398 				break;
399 			}
400 		}
401 	}
402 
403 	for (cpu = 0; cpu < info->combined; cpu++) {
404 		if (info->has_cpu_type && info->cpu[cpu].type != smp_cpu_type)
405 			continue;
406 		cpu_addr = info->cpu[cpu].address;
407 		if (cpu_addr == boot_cpu_addr)
408 			continue;
409 		__cpu_logical_map[CPU_INIT_NO] = cpu_addr;
410 		if (!cpu_stopped(CPU_INIT_NO)) {
411 			s_cpus++;
412 			continue;
413 		}
414 		smp_get_save_area(c_cpus, cpu_addr);
415 		c_cpus++;
416 	}
417 out:
418 	kfree(info);
419 	pr_info("%d configured CPUs, %d standby CPUs\n", c_cpus, s_cpus);
420 	get_online_cpus();
421 	__smp_rescan_cpus();
422 	put_online_cpus();
423 }
424 
425 /*
426  *	Activate a secondary processor.
427  */
428 int __cpuinit start_secondary(void *cpuvoid)
429 {
430 	/* Setup the cpu */
431 	cpu_init();
432 	preempt_disable();
433 	/* Enable TOD clock interrupts on the secondary cpu. */
434 	init_cpu_timer();
435 	/* Enable cpu timer interrupts on the secondary cpu. */
436 	init_cpu_vtimer();
437 	/* Enable pfault pseudo page faults on this cpu. */
438 	pfault_init();
439 
440 	/* call cpu notifiers */
441 	notify_cpu_starting(smp_processor_id());
442 	/* Mark this cpu as online */
443 	ipi_call_lock();
444 	cpu_set(smp_processor_id(), cpu_online_map);
445 	ipi_call_unlock();
446 	/* Switch on interrupts */
447 	local_irq_enable();
448 	/* Print info about this processor */
449 	print_cpu_info();
450 	/* cpu_idle will call schedule for us */
451 	cpu_idle();
452 	return 0;
453 }
454 
455 static void __init smp_create_idle(unsigned int cpu)
456 {
457 	struct task_struct *p;
458 
459 	/*
460 	 *  don't care about the psw and regs settings since we'll never
461 	 *  reschedule the forked task.
462 	 */
463 	p = fork_idle(cpu);
464 	if (IS_ERR(p))
465 		panic("failed fork for CPU %u: %li", cpu, PTR_ERR(p));
466 	current_set[cpu] = p;
467 }
468 
469 static int __cpuinit smp_alloc_lowcore(int cpu)
470 {
471 	unsigned long async_stack, panic_stack;
472 	struct _lowcore *lowcore;
473 	int lc_order;
474 
475 	lc_order = sizeof(long) == 8 ? 1 : 0;
476 	lowcore = (void *) __get_free_pages(GFP_KERNEL | GFP_DMA, lc_order);
477 	if (!lowcore)
478 		return -ENOMEM;
479 	async_stack = __get_free_pages(GFP_KERNEL, ASYNC_ORDER);
480 	panic_stack = __get_free_page(GFP_KERNEL);
481 	if (!panic_stack || !async_stack)
482 		goto out;
483 	memcpy(lowcore, &S390_lowcore, 512);
484 	memset((char *)lowcore + 512, 0, sizeof(*lowcore) - 512);
485 	lowcore->async_stack = async_stack + ASYNC_SIZE;
486 	lowcore->panic_stack = panic_stack + PAGE_SIZE;
487 
488 #ifndef CONFIG_64BIT
489 	if (MACHINE_HAS_IEEE) {
490 		unsigned long save_area;
491 
492 		save_area = get_zeroed_page(GFP_KERNEL);
493 		if (!save_area)
494 			goto out;
495 		lowcore->extended_save_area_addr = (u32) save_area;
496 	}
497 #else
498 	if (vdso_alloc_per_cpu(cpu, lowcore))
499 		goto out;
500 #endif
501 	lowcore_ptr[cpu] = lowcore;
502 	return 0;
503 
504 out:
505 	free_page(panic_stack);
506 	free_pages(async_stack, ASYNC_ORDER);
507 	free_pages((unsigned long) lowcore, lc_order);
508 	return -ENOMEM;
509 }
510 
511 static void smp_free_lowcore(int cpu)
512 {
513 	struct _lowcore *lowcore;
514 	int lc_order;
515 
516 	lc_order = sizeof(long) == 8 ? 1 : 0;
517 	lowcore = lowcore_ptr[cpu];
518 #ifndef CONFIG_64BIT
519 	if (MACHINE_HAS_IEEE)
520 		free_page((unsigned long) lowcore->extended_save_area_addr);
521 #else
522 	vdso_free_per_cpu(cpu, lowcore);
523 #endif
524 	free_page(lowcore->panic_stack - PAGE_SIZE);
525 	free_pages(lowcore->async_stack - ASYNC_SIZE, ASYNC_ORDER);
526 	free_pages((unsigned long) lowcore, lc_order);
527 	lowcore_ptr[cpu] = NULL;
528 }
529 
530 /* Upping and downing of CPUs */
531 int __cpuinit __cpu_up(unsigned int cpu)
532 {
533 	struct task_struct *idle;
534 	struct _lowcore *cpu_lowcore;
535 	struct stack_frame *sf;
536 	sigp_ccode ccode;
537 	u32 lowcore;
538 
539 	if (smp_cpu_state[cpu] != CPU_STATE_CONFIGURED)
540 		return -EIO;
541 	if (smp_alloc_lowcore(cpu))
542 		return -ENOMEM;
543 	do {
544 		ccode = signal_processor(cpu, sigp_initial_cpu_reset);
545 		if (ccode == sigp_busy)
546 			udelay(10);
547 		if (ccode == sigp_not_operational)
548 			goto err_out;
549 	} while (ccode == sigp_busy);
550 
551 	lowcore = (u32)(unsigned long)lowcore_ptr[cpu];
552 	while (signal_processor_p(lowcore, cpu, sigp_set_prefix) == sigp_busy)
553 		udelay(10);
554 
555 	idle = current_set[cpu];
556 	cpu_lowcore = lowcore_ptr[cpu];
557 	cpu_lowcore->kernel_stack = (unsigned long)
558 		task_stack_page(idle) + THREAD_SIZE;
559 	cpu_lowcore->thread_info = (unsigned long) task_thread_info(idle);
560 	sf = (struct stack_frame *) (cpu_lowcore->kernel_stack
561 				     - sizeof(struct pt_regs)
562 				     - sizeof(struct stack_frame));
563 	memset(sf, 0, sizeof(struct stack_frame));
564 	sf->gprs[9] = (unsigned long) sf;
565 	cpu_lowcore->save_area[15] = (unsigned long) sf;
566 	__ctl_store(cpu_lowcore->cregs_save_area, 0, 15);
567 	asm volatile(
568 		"	stam	0,15,0(%0)"
569 		: : "a" (&cpu_lowcore->access_regs_save_area) : "memory");
570 	cpu_lowcore->percpu_offset = __per_cpu_offset[cpu];
571 	cpu_lowcore->current_task = (unsigned long) idle;
572 	cpu_lowcore->cpu_nr = cpu;
573 	cpu_lowcore->kernel_asce = S390_lowcore.kernel_asce;
574 	eieio();
575 
576 	while (signal_processor(cpu, sigp_restart) == sigp_busy)
577 		udelay(10);
578 
579 	while (!cpu_online(cpu))
580 		cpu_relax();
581 	return 0;
582 
583 err_out:
584 	smp_free_lowcore(cpu);
585 	return -EIO;
586 }
587 
588 static int __init setup_possible_cpus(char *s)
589 {
590 	int pcpus, cpu;
591 
592 	pcpus = simple_strtoul(s, NULL, 0);
593 	for (cpu = 0; cpu < pcpus && cpu < nr_cpu_ids; cpu++)
594 		set_cpu_possible(cpu, true);
595 	return 0;
596 }
597 early_param("possible_cpus", setup_possible_cpus);
598 
599 #ifdef CONFIG_HOTPLUG_CPU
600 
601 int __cpu_disable(void)
602 {
603 	struct ec_creg_mask_parms cr_parms;
604 	int cpu = smp_processor_id();
605 
606 	cpu_clear(cpu, cpu_online_map);
607 
608 	/* Disable pfault pseudo page faults on this cpu. */
609 	pfault_fini();
610 
611 	memset(&cr_parms.orvals, 0, sizeof(cr_parms.orvals));
612 	memset(&cr_parms.andvals, 0xff, sizeof(cr_parms.andvals));
613 
614 	/* disable all external interrupts */
615 	cr_parms.orvals[0] = 0;
616 	cr_parms.andvals[0] = ~(1 << 15 | 1 << 14 | 1 << 13 | 1 << 12 |
617 				1 << 11 | 1 << 10 | 1 <<  6 | 1 <<  4);
618 	/* disable all I/O interrupts */
619 	cr_parms.orvals[6] = 0;
620 	cr_parms.andvals[6] = ~(1 << 31 | 1 << 30 | 1 << 29 | 1 << 28 |
621 				1 << 27 | 1 << 26 | 1 << 25 | 1 << 24);
622 	/* disable most machine checks */
623 	cr_parms.orvals[14] = 0;
624 	cr_parms.andvals[14] = ~(1 << 28 | 1 << 27 | 1 << 26 |
625 				 1 << 25 | 1 << 24);
626 
627 	smp_ctl_bit_callback(&cr_parms);
628 
629 	return 0;
630 }
631 
632 void __cpu_die(unsigned int cpu)
633 {
634 	/* Wait until target cpu is down */
635 	while (!smp_cpu_not_running(cpu))
636 		cpu_relax();
637 	smp_free_lowcore(cpu);
638 	pr_info("Processor %d stopped\n", cpu);
639 }
640 
641 void cpu_die(void)
642 {
643 	idle_task_exit();
644 	signal_processor(smp_processor_id(), sigp_stop);
645 	BUG();
646 	for (;;);
647 }
648 
649 #endif /* CONFIG_HOTPLUG_CPU */
650 
651 void __init smp_prepare_cpus(unsigned int max_cpus)
652 {
653 #ifndef CONFIG_64BIT
654 	unsigned long save_area = 0;
655 #endif
656 	unsigned long async_stack, panic_stack;
657 	struct _lowcore *lowcore;
658 	unsigned int cpu;
659 	int lc_order;
660 
661 	smp_detect_cpus();
662 
663 	/* request the 0x1201 emergency signal external interrupt */
664 	if (register_external_interrupt(0x1201, do_ext_call_interrupt) != 0)
665 		panic("Couldn't request external interrupt 0x1201");
666 	print_cpu_info();
667 
668 	/* Reallocate current lowcore, but keep its contents. */
669 	lc_order = sizeof(long) == 8 ? 1 : 0;
670 	lowcore = (void *) __get_free_pages(GFP_KERNEL | GFP_DMA, lc_order);
671 	panic_stack = __get_free_page(GFP_KERNEL);
672 	async_stack = __get_free_pages(GFP_KERNEL, ASYNC_ORDER);
673 	BUG_ON(!lowcore || !panic_stack || !async_stack);
674 #ifndef CONFIG_64BIT
675 	if (MACHINE_HAS_IEEE)
676 		save_area = get_zeroed_page(GFP_KERNEL);
677 #endif
678 	local_irq_disable();
679 	local_mcck_disable();
680 	lowcore_ptr[smp_processor_id()] = lowcore;
681 	*lowcore = S390_lowcore;
682 	lowcore->panic_stack = panic_stack + PAGE_SIZE;
683 	lowcore->async_stack = async_stack + ASYNC_SIZE;
684 #ifndef CONFIG_64BIT
685 	if (MACHINE_HAS_IEEE)
686 		lowcore->extended_save_area_addr = (u32) save_area;
687 #else
688 	if (vdso_alloc_per_cpu(smp_processor_id(), lowcore))
689 		BUG();
690 #endif
691 	set_prefix((u32)(unsigned long) lowcore);
692 	local_mcck_enable();
693 	local_irq_enable();
694 	for_each_possible_cpu(cpu)
695 		if (cpu != smp_processor_id())
696 			smp_create_idle(cpu);
697 }
698 
699 void __init smp_prepare_boot_cpu(void)
700 {
701 	BUG_ON(smp_processor_id() != 0);
702 
703 	current_thread_info()->cpu = 0;
704 	cpu_set(0, cpu_present_map);
705 	cpu_set(0, cpu_online_map);
706 	S390_lowcore.percpu_offset = __per_cpu_offset[0];
707 	current_set[0] = current;
708 	smp_cpu_state[0] = CPU_STATE_CONFIGURED;
709 	smp_cpu_polarization[0] = POLARIZATION_UNKNWN;
710 }
711 
712 void __init smp_cpus_done(unsigned int max_cpus)
713 {
714 }
715 
716 /*
717  * the frequency of the profiling timer can be changed
718  * by writing a multiplier value into /proc/profile.
719  *
720  * usually you want to run this on all CPUs ;)
721  */
722 int setup_profiling_timer(unsigned int multiplier)
723 {
724 	return 0;
725 }
726 
727 #ifdef CONFIG_HOTPLUG_CPU
728 static ssize_t cpu_configure_show(struct sys_device *dev,
729 				struct sysdev_attribute *attr, char *buf)
730 {
731 	ssize_t count;
732 
733 	mutex_lock(&smp_cpu_state_mutex);
734 	count = sprintf(buf, "%d\n", smp_cpu_state[dev->id]);
735 	mutex_unlock(&smp_cpu_state_mutex);
736 	return count;
737 }
738 
739 static ssize_t cpu_configure_store(struct sys_device *dev,
740 				  struct sysdev_attribute *attr,
741 				  const char *buf, size_t count)
742 {
743 	int cpu = dev->id;
744 	int val, rc;
745 	char delim;
746 
747 	if (sscanf(buf, "%d %c", &val, &delim) != 1)
748 		return -EINVAL;
749 	if (val != 0 && val != 1)
750 		return -EINVAL;
751 
752 	get_online_cpus();
753 	mutex_lock(&smp_cpu_state_mutex);
754 	rc = -EBUSY;
755 	if (cpu_online(cpu))
756 		goto out;
757 	rc = 0;
758 	switch (val) {
759 	case 0:
760 		if (smp_cpu_state[cpu] == CPU_STATE_CONFIGURED) {
761 			rc = sclp_cpu_deconfigure(__cpu_logical_map[cpu]);
762 			if (!rc) {
763 				smp_cpu_state[cpu] = CPU_STATE_STANDBY;
764 				smp_cpu_polarization[cpu] = POLARIZATION_UNKNWN;
765 			}
766 		}
767 		break;
768 	case 1:
769 		if (smp_cpu_state[cpu] == CPU_STATE_STANDBY) {
770 			rc = sclp_cpu_configure(__cpu_logical_map[cpu]);
771 			if (!rc) {
772 				smp_cpu_state[cpu] = CPU_STATE_CONFIGURED;
773 				smp_cpu_polarization[cpu] = POLARIZATION_UNKNWN;
774 			}
775 		}
776 		break;
777 	default:
778 		break;
779 	}
780 out:
781 	mutex_unlock(&smp_cpu_state_mutex);
782 	put_online_cpus();
783 	return rc ? rc : count;
784 }
785 static SYSDEV_ATTR(configure, 0644, cpu_configure_show, cpu_configure_store);
786 #endif /* CONFIG_HOTPLUG_CPU */
787 
788 static ssize_t cpu_polarization_show(struct sys_device *dev,
789 				     struct sysdev_attribute *attr, char *buf)
790 {
791 	int cpu = dev->id;
792 	ssize_t count;
793 
794 	mutex_lock(&smp_cpu_state_mutex);
795 	switch (smp_cpu_polarization[cpu]) {
796 	case POLARIZATION_HRZ:
797 		count = sprintf(buf, "horizontal\n");
798 		break;
799 	case POLARIZATION_VL:
800 		count = sprintf(buf, "vertical:low\n");
801 		break;
802 	case POLARIZATION_VM:
803 		count = sprintf(buf, "vertical:medium\n");
804 		break;
805 	case POLARIZATION_VH:
806 		count = sprintf(buf, "vertical:high\n");
807 		break;
808 	default:
809 		count = sprintf(buf, "unknown\n");
810 		break;
811 	}
812 	mutex_unlock(&smp_cpu_state_mutex);
813 	return count;
814 }
815 static SYSDEV_ATTR(polarization, 0444, cpu_polarization_show, NULL);
816 
817 static ssize_t show_cpu_address(struct sys_device *dev,
818 				struct sysdev_attribute *attr, char *buf)
819 {
820 	return sprintf(buf, "%d\n", __cpu_logical_map[dev->id]);
821 }
822 static SYSDEV_ATTR(address, 0444, show_cpu_address, NULL);
823 
824 
825 static struct attribute *cpu_common_attrs[] = {
826 #ifdef CONFIG_HOTPLUG_CPU
827 	&attr_configure.attr,
828 #endif
829 	&attr_address.attr,
830 	&attr_polarization.attr,
831 	NULL,
832 };
833 
834 static struct attribute_group cpu_common_attr_group = {
835 	.attrs = cpu_common_attrs,
836 };
837 
838 static ssize_t show_capability(struct sys_device *dev,
839 				struct sysdev_attribute *attr, char *buf)
840 {
841 	unsigned int capability;
842 	int rc;
843 
844 	rc = get_cpu_capability(&capability);
845 	if (rc)
846 		return rc;
847 	return sprintf(buf, "%u\n", capability);
848 }
849 static SYSDEV_ATTR(capability, 0444, show_capability, NULL);
850 
851 static ssize_t show_idle_count(struct sys_device *dev,
852 				struct sysdev_attribute *attr, char *buf)
853 {
854 	struct s390_idle_data *idle;
855 	unsigned long long idle_count;
856 
857 	idle = &per_cpu(s390_idle, dev->id);
858 	spin_lock(&idle->lock);
859 	idle_count = idle->idle_count;
860 	if (idle->idle_enter)
861 		idle_count++;
862 	spin_unlock(&idle->lock);
863 	return sprintf(buf, "%llu\n", idle_count);
864 }
865 static SYSDEV_ATTR(idle_count, 0444, show_idle_count, NULL);
866 
867 static ssize_t show_idle_time(struct sys_device *dev,
868 				struct sysdev_attribute *attr, char *buf)
869 {
870 	struct s390_idle_data *idle;
871 	unsigned long long now, idle_time, idle_enter;
872 
873 	idle = &per_cpu(s390_idle, dev->id);
874 	spin_lock(&idle->lock);
875 	now = get_clock();
876 	idle_time = idle->idle_time;
877 	idle_enter = idle->idle_enter;
878 	if (idle_enter != 0ULL && idle_enter < now)
879 		idle_time += now - idle_enter;
880 	spin_unlock(&idle->lock);
881 	return sprintf(buf, "%llu\n", idle_time >> 12);
882 }
883 static SYSDEV_ATTR(idle_time_us, 0444, show_idle_time, NULL);
884 
885 static struct attribute *cpu_online_attrs[] = {
886 	&attr_capability.attr,
887 	&attr_idle_count.attr,
888 	&attr_idle_time_us.attr,
889 	NULL,
890 };
891 
892 static struct attribute_group cpu_online_attr_group = {
893 	.attrs = cpu_online_attrs,
894 };
895 
896 static int __cpuinit smp_cpu_notify(struct notifier_block *self,
897 				    unsigned long action, void *hcpu)
898 {
899 	unsigned int cpu = (unsigned int)(long)hcpu;
900 	struct cpu *c = &per_cpu(cpu_devices, cpu);
901 	struct sys_device *s = &c->sysdev;
902 	struct s390_idle_data *idle;
903 
904 	switch (action) {
905 	case CPU_ONLINE:
906 	case CPU_ONLINE_FROZEN:
907 		idle = &per_cpu(s390_idle, cpu);
908 		spin_lock_irq(&idle->lock);
909 		idle->idle_enter = 0;
910 		idle->idle_time = 0;
911 		idle->idle_count = 0;
912 		spin_unlock_irq(&idle->lock);
913 		if (sysfs_create_group(&s->kobj, &cpu_online_attr_group))
914 			return NOTIFY_BAD;
915 		break;
916 	case CPU_DEAD:
917 	case CPU_DEAD_FROZEN:
918 		sysfs_remove_group(&s->kobj, &cpu_online_attr_group);
919 		break;
920 	}
921 	return NOTIFY_OK;
922 }
923 
924 static struct notifier_block __cpuinitdata smp_cpu_nb = {
925 	.notifier_call = smp_cpu_notify,
926 };
927 
928 static int __devinit smp_add_present_cpu(int cpu)
929 {
930 	struct cpu *c = &per_cpu(cpu_devices, cpu);
931 	struct sys_device *s = &c->sysdev;
932 	int rc;
933 
934 	c->hotpluggable = 1;
935 	rc = register_cpu(c, cpu);
936 	if (rc)
937 		goto out;
938 	rc = sysfs_create_group(&s->kobj, &cpu_common_attr_group);
939 	if (rc)
940 		goto out_cpu;
941 	if (!cpu_online(cpu))
942 		goto out;
943 	rc = sysfs_create_group(&s->kobj, &cpu_online_attr_group);
944 	if (!rc)
945 		return 0;
946 	sysfs_remove_group(&s->kobj, &cpu_common_attr_group);
947 out_cpu:
948 #ifdef CONFIG_HOTPLUG_CPU
949 	unregister_cpu(c);
950 #endif
951 out:
952 	return rc;
953 }
954 
955 #ifdef CONFIG_HOTPLUG_CPU
956 
957 int __ref smp_rescan_cpus(void)
958 {
959 	cpumask_t newcpus;
960 	int cpu;
961 	int rc;
962 
963 	get_online_cpus();
964 	mutex_lock(&smp_cpu_state_mutex);
965 	newcpus = cpu_present_map;
966 	rc = __smp_rescan_cpus();
967 	if (rc)
968 		goto out;
969 	cpus_andnot(newcpus, cpu_present_map, newcpus);
970 	for_each_cpu_mask(cpu, newcpus) {
971 		rc = smp_add_present_cpu(cpu);
972 		if (rc)
973 			cpu_clear(cpu, cpu_present_map);
974 	}
975 	rc = 0;
976 out:
977 	mutex_unlock(&smp_cpu_state_mutex);
978 	put_online_cpus();
979 	if (!cpus_empty(newcpus))
980 		topology_schedule_update();
981 	return rc;
982 }
983 
984 static ssize_t __ref rescan_store(struct sysdev_class *class, const char *buf,
985 				  size_t count)
986 {
987 	int rc;
988 
989 	rc = smp_rescan_cpus();
990 	return rc ? rc : count;
991 }
992 static SYSDEV_CLASS_ATTR(rescan, 0200, NULL, rescan_store);
993 #endif /* CONFIG_HOTPLUG_CPU */
994 
995 static ssize_t dispatching_show(struct sysdev_class *class, char *buf)
996 {
997 	ssize_t count;
998 
999 	mutex_lock(&smp_cpu_state_mutex);
1000 	count = sprintf(buf, "%d\n", cpu_management);
1001 	mutex_unlock(&smp_cpu_state_mutex);
1002 	return count;
1003 }
1004 
1005 static ssize_t dispatching_store(struct sysdev_class *dev, const char *buf,
1006 				 size_t count)
1007 {
1008 	int val, rc;
1009 	char delim;
1010 
1011 	if (sscanf(buf, "%d %c", &val, &delim) != 1)
1012 		return -EINVAL;
1013 	if (val != 0 && val != 1)
1014 		return -EINVAL;
1015 	rc = 0;
1016 	get_online_cpus();
1017 	mutex_lock(&smp_cpu_state_mutex);
1018 	if (cpu_management == val)
1019 		goto out;
1020 	rc = topology_set_cpu_management(val);
1021 	if (!rc)
1022 		cpu_management = val;
1023 out:
1024 	mutex_unlock(&smp_cpu_state_mutex);
1025 	put_online_cpus();
1026 	return rc ? rc : count;
1027 }
1028 static SYSDEV_CLASS_ATTR(dispatching, 0644, dispatching_show,
1029 			 dispatching_store);
1030 
1031 static int __init topology_init(void)
1032 {
1033 	int cpu;
1034 	int rc;
1035 
1036 	register_cpu_notifier(&smp_cpu_nb);
1037 
1038 #ifdef CONFIG_HOTPLUG_CPU
1039 	rc = sysdev_class_create_file(&cpu_sysdev_class, &attr_rescan);
1040 	if (rc)
1041 		return rc;
1042 #endif
1043 	rc = sysdev_class_create_file(&cpu_sysdev_class, &attr_dispatching);
1044 	if (rc)
1045 		return rc;
1046 	for_each_present_cpu(cpu) {
1047 		rc = smp_add_present_cpu(cpu);
1048 		if (rc)
1049 			return rc;
1050 	}
1051 	return 0;
1052 }
1053 subsys_initcall(topology_init);
1054