1 /* 2 * SMP related functions 3 * 4 * Copyright IBM Corp. 1999, 2012 5 * Author(s): Denis Joseph Barrow, 6 * Martin Schwidefsky <schwidefsky@de.ibm.com>, 7 * Heiko Carstens <heiko.carstens@de.ibm.com>, 8 * 9 * based on other smp stuff by 10 * (c) 1995 Alan Cox, CymruNET Ltd <alan@cymru.net> 11 * (c) 1998 Ingo Molnar 12 * 13 * The code outside of smp.c uses logical cpu numbers, only smp.c does 14 * the translation of logical to physical cpu ids. All new code that 15 * operates on physical cpu numbers needs to go into smp.c. 16 */ 17 18 #define KMSG_COMPONENT "cpu" 19 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt 20 21 #include <linux/workqueue.h> 22 #include <linux/module.h> 23 #include <linux/init.h> 24 #include <linux/mm.h> 25 #include <linux/err.h> 26 #include <linux/spinlock.h> 27 #include <linux/kernel_stat.h> 28 #include <linux/delay.h> 29 #include <linux/interrupt.h> 30 #include <linux/irqflags.h> 31 #include <linux/cpu.h> 32 #include <linux/slab.h> 33 #include <linux/crash_dump.h> 34 #include <asm/asm-offsets.h> 35 #include <asm/switch_to.h> 36 #include <asm/facility.h> 37 #include <asm/ipl.h> 38 #include <asm/setup.h> 39 #include <asm/irq.h> 40 #include <asm/tlbflush.h> 41 #include <asm/vtimer.h> 42 #include <asm/lowcore.h> 43 #include <asm/sclp.h> 44 #include <asm/vdso.h> 45 #include <asm/debug.h> 46 #include <asm/os_info.h> 47 #include <asm/sigp.h> 48 #include "entry.h" 49 50 enum { 51 ec_schedule = 0, 52 ec_call_function_single, 53 ec_stop_cpu, 54 }; 55 56 enum { 57 CPU_STATE_STANDBY, 58 CPU_STATE_CONFIGURED, 59 }; 60 61 struct pcpu { 62 struct cpu *cpu; 63 struct _lowcore *lowcore; /* lowcore page(s) for the cpu */ 64 unsigned long async_stack; /* async stack for the cpu */ 65 unsigned long panic_stack; /* panic stack for the cpu */ 66 unsigned long ec_mask; /* bit mask for ec_xxx functions */ 67 int state; /* physical cpu state */ 68 int polarization; /* physical polarization */ 69 u16 address; /* physical cpu address */ 70 }; 71 72 static u8 boot_cpu_type; 73 static u16 boot_cpu_address; 74 static struct pcpu pcpu_devices[NR_CPUS]; 75 76 /* 77 * The smp_cpu_state_mutex must be held when changing the state or polarization 78 * member of a pcpu data structure within the pcpu_devices arreay. 79 */ 80 DEFINE_MUTEX(smp_cpu_state_mutex); 81 82 /* 83 * Signal processor helper functions. 84 */ 85 static inline int __pcpu_sigp_relax(u16 addr, u8 order, u32 parm, u32 *status) 86 { 87 int cc; 88 89 while (1) { 90 cc = __pcpu_sigp(addr, order, parm, NULL); 91 if (cc != SIGP_CC_BUSY) 92 return cc; 93 cpu_relax(); 94 } 95 } 96 97 static int pcpu_sigp_retry(struct pcpu *pcpu, u8 order, u32 parm) 98 { 99 int cc, retry; 100 101 for (retry = 0; ; retry++) { 102 cc = __pcpu_sigp(pcpu->address, order, parm, NULL); 103 if (cc != SIGP_CC_BUSY) 104 break; 105 if (retry >= 3) 106 udelay(10); 107 } 108 return cc; 109 } 110 111 static inline int pcpu_stopped(struct pcpu *pcpu) 112 { 113 u32 uninitialized_var(status); 114 115 if (__pcpu_sigp(pcpu->address, SIGP_SENSE, 116 0, &status) != SIGP_CC_STATUS_STORED) 117 return 0; 118 return !!(status & (SIGP_STATUS_CHECK_STOP|SIGP_STATUS_STOPPED)); 119 } 120 121 static inline int pcpu_running(struct pcpu *pcpu) 122 { 123 if (__pcpu_sigp(pcpu->address, SIGP_SENSE_RUNNING, 124 0, NULL) != SIGP_CC_STATUS_STORED) 125 return 1; 126 /* Status stored condition code is equivalent to cpu not running. */ 127 return 0; 128 } 129 130 /* 131 * Find struct pcpu by cpu address. 132 */ 133 static struct pcpu *pcpu_find_address(const struct cpumask *mask, int address) 134 { 135 int cpu; 136 137 for_each_cpu(cpu, mask) 138 if (pcpu_devices[cpu].address == address) 139 return pcpu_devices + cpu; 140 return NULL; 141 } 142 143 static void pcpu_ec_call(struct pcpu *pcpu, int ec_bit) 144 { 145 int order; 146 147 if (test_and_set_bit(ec_bit, &pcpu->ec_mask)) 148 return; 149 order = pcpu_running(pcpu) ? SIGP_EXTERNAL_CALL : SIGP_EMERGENCY_SIGNAL; 150 pcpu_sigp_retry(pcpu, order, 0); 151 } 152 153 static int pcpu_alloc_lowcore(struct pcpu *pcpu, int cpu) 154 { 155 struct _lowcore *lc; 156 157 if (pcpu != &pcpu_devices[0]) { 158 pcpu->lowcore = (struct _lowcore *) 159 __get_free_pages(GFP_KERNEL | GFP_DMA, LC_ORDER); 160 pcpu->async_stack = __get_free_pages(GFP_KERNEL, ASYNC_ORDER); 161 pcpu->panic_stack = __get_free_page(GFP_KERNEL); 162 if (!pcpu->lowcore || !pcpu->panic_stack || !pcpu->async_stack) 163 goto out; 164 } 165 lc = pcpu->lowcore; 166 memcpy(lc, &S390_lowcore, 512); 167 memset((char *) lc + 512, 0, sizeof(*lc) - 512); 168 lc->async_stack = pcpu->async_stack + ASYNC_SIZE 169 - STACK_FRAME_OVERHEAD - sizeof(struct pt_regs); 170 lc->panic_stack = pcpu->panic_stack + PAGE_SIZE 171 - STACK_FRAME_OVERHEAD - sizeof(struct pt_regs); 172 lc->cpu_nr = cpu; 173 #ifndef CONFIG_64BIT 174 if (MACHINE_HAS_IEEE) { 175 lc->extended_save_area_addr = get_zeroed_page(GFP_KERNEL); 176 if (!lc->extended_save_area_addr) 177 goto out; 178 } 179 #else 180 if (vdso_alloc_per_cpu(lc)) 181 goto out; 182 #endif 183 lowcore_ptr[cpu] = lc; 184 pcpu_sigp_retry(pcpu, SIGP_SET_PREFIX, (u32)(unsigned long) lc); 185 return 0; 186 out: 187 if (pcpu != &pcpu_devices[0]) { 188 free_page(pcpu->panic_stack); 189 free_pages(pcpu->async_stack, ASYNC_ORDER); 190 free_pages((unsigned long) pcpu->lowcore, LC_ORDER); 191 } 192 return -ENOMEM; 193 } 194 195 #ifdef CONFIG_HOTPLUG_CPU 196 197 static void pcpu_free_lowcore(struct pcpu *pcpu) 198 { 199 pcpu_sigp_retry(pcpu, SIGP_SET_PREFIX, 0); 200 lowcore_ptr[pcpu - pcpu_devices] = NULL; 201 #ifndef CONFIG_64BIT 202 if (MACHINE_HAS_IEEE) { 203 struct _lowcore *lc = pcpu->lowcore; 204 205 free_page((unsigned long) lc->extended_save_area_addr); 206 lc->extended_save_area_addr = 0; 207 } 208 #else 209 vdso_free_per_cpu(pcpu->lowcore); 210 #endif 211 if (pcpu != &pcpu_devices[0]) { 212 free_page(pcpu->panic_stack); 213 free_pages(pcpu->async_stack, ASYNC_ORDER); 214 free_pages((unsigned long) pcpu->lowcore, LC_ORDER); 215 } 216 } 217 218 #endif /* CONFIG_HOTPLUG_CPU */ 219 220 static void pcpu_prepare_secondary(struct pcpu *pcpu, int cpu) 221 { 222 struct _lowcore *lc = pcpu->lowcore; 223 224 if (MACHINE_HAS_TLB_LC) 225 cpumask_set_cpu(cpu, &init_mm.context.cpu_attach_mask); 226 cpumask_set_cpu(cpu, mm_cpumask(&init_mm)); 227 atomic_inc(&init_mm.context.attach_count); 228 lc->cpu_nr = cpu; 229 lc->percpu_offset = __per_cpu_offset[cpu]; 230 lc->kernel_asce = S390_lowcore.kernel_asce; 231 lc->machine_flags = S390_lowcore.machine_flags; 232 lc->ftrace_func = S390_lowcore.ftrace_func; 233 lc->user_timer = lc->system_timer = lc->steal_timer = 0; 234 __ctl_store(lc->cregs_save_area, 0, 15); 235 save_access_regs((unsigned int *) lc->access_regs_save_area); 236 memcpy(lc->stfle_fac_list, S390_lowcore.stfle_fac_list, 237 MAX_FACILITY_BIT/8); 238 } 239 240 static void pcpu_attach_task(struct pcpu *pcpu, struct task_struct *tsk) 241 { 242 struct _lowcore *lc = pcpu->lowcore; 243 struct thread_info *ti = task_thread_info(tsk); 244 245 lc->kernel_stack = (unsigned long) task_stack_page(tsk) 246 + THREAD_SIZE - STACK_FRAME_OVERHEAD - sizeof(struct pt_regs); 247 lc->thread_info = (unsigned long) task_thread_info(tsk); 248 lc->current_task = (unsigned long) tsk; 249 lc->user_timer = ti->user_timer; 250 lc->system_timer = ti->system_timer; 251 lc->steal_timer = 0; 252 } 253 254 static void pcpu_start_fn(struct pcpu *pcpu, void (*func)(void *), void *data) 255 { 256 struct _lowcore *lc = pcpu->lowcore; 257 258 lc->restart_stack = lc->kernel_stack; 259 lc->restart_fn = (unsigned long) func; 260 lc->restart_data = (unsigned long) data; 261 lc->restart_source = -1UL; 262 pcpu_sigp_retry(pcpu, SIGP_RESTART, 0); 263 } 264 265 /* 266 * Call function via PSW restart on pcpu and stop the current cpu. 267 */ 268 static void pcpu_delegate(struct pcpu *pcpu, void (*func)(void *), 269 void *data, unsigned long stack) 270 { 271 struct _lowcore *lc = lowcore_ptr[pcpu - pcpu_devices]; 272 unsigned long source_cpu = stap(); 273 274 __load_psw_mask(PSW_KERNEL_BITS); 275 if (pcpu->address == source_cpu) 276 func(data); /* should not return */ 277 /* Stop target cpu (if func returns this stops the current cpu). */ 278 pcpu_sigp_retry(pcpu, SIGP_STOP, 0); 279 /* Restart func on the target cpu and stop the current cpu. */ 280 mem_assign_absolute(lc->restart_stack, stack); 281 mem_assign_absolute(lc->restart_fn, (unsigned long) func); 282 mem_assign_absolute(lc->restart_data, (unsigned long) data); 283 mem_assign_absolute(lc->restart_source, source_cpu); 284 asm volatile( 285 "0: sigp 0,%0,%2 # sigp restart to target cpu\n" 286 " brc 2,0b # busy, try again\n" 287 "1: sigp 0,%1,%3 # sigp stop to current cpu\n" 288 " brc 2,1b # busy, try again\n" 289 : : "d" (pcpu->address), "d" (source_cpu), 290 "K" (SIGP_RESTART), "K" (SIGP_STOP) 291 : "0", "1", "cc"); 292 for (;;) ; 293 } 294 295 /* 296 * Call function on an online CPU. 297 */ 298 void smp_call_online_cpu(void (*func)(void *), void *data) 299 { 300 struct pcpu *pcpu; 301 302 /* Use the current cpu if it is online. */ 303 pcpu = pcpu_find_address(cpu_online_mask, stap()); 304 if (!pcpu) 305 /* Use the first online cpu. */ 306 pcpu = pcpu_devices + cpumask_first(cpu_online_mask); 307 pcpu_delegate(pcpu, func, data, (unsigned long) restart_stack); 308 } 309 310 /* 311 * Call function on the ipl CPU. 312 */ 313 void smp_call_ipl_cpu(void (*func)(void *), void *data) 314 { 315 pcpu_delegate(&pcpu_devices[0], func, data, 316 pcpu_devices->panic_stack + PAGE_SIZE); 317 } 318 319 int smp_find_processor_id(u16 address) 320 { 321 int cpu; 322 323 for_each_present_cpu(cpu) 324 if (pcpu_devices[cpu].address == address) 325 return cpu; 326 return -1; 327 } 328 329 int smp_vcpu_scheduled(int cpu) 330 { 331 return pcpu_running(pcpu_devices + cpu); 332 } 333 334 void smp_yield(void) 335 { 336 if (MACHINE_HAS_DIAG44) 337 asm volatile("diag 0,0,0x44"); 338 } 339 340 void smp_yield_cpu(int cpu) 341 { 342 if (MACHINE_HAS_DIAG9C) 343 asm volatile("diag %0,0,0x9c" 344 : : "d" (pcpu_devices[cpu].address)); 345 else if (MACHINE_HAS_DIAG44) 346 asm volatile("diag 0,0,0x44"); 347 } 348 349 /* 350 * Send cpus emergency shutdown signal. This gives the cpus the 351 * opportunity to complete outstanding interrupts. 352 */ 353 static void smp_emergency_stop(cpumask_t *cpumask) 354 { 355 u64 end; 356 int cpu; 357 358 end = get_tod_clock() + (1000000UL << 12); 359 for_each_cpu(cpu, cpumask) { 360 struct pcpu *pcpu = pcpu_devices + cpu; 361 set_bit(ec_stop_cpu, &pcpu->ec_mask); 362 while (__pcpu_sigp(pcpu->address, SIGP_EMERGENCY_SIGNAL, 363 0, NULL) == SIGP_CC_BUSY && 364 get_tod_clock() < end) 365 cpu_relax(); 366 } 367 while (get_tod_clock() < end) { 368 for_each_cpu(cpu, cpumask) 369 if (pcpu_stopped(pcpu_devices + cpu)) 370 cpumask_clear_cpu(cpu, cpumask); 371 if (cpumask_empty(cpumask)) 372 break; 373 cpu_relax(); 374 } 375 } 376 377 /* 378 * Stop all cpus but the current one. 379 */ 380 void smp_send_stop(void) 381 { 382 cpumask_t cpumask; 383 int cpu; 384 385 /* Disable all interrupts/machine checks */ 386 __load_psw_mask(PSW_KERNEL_BITS | PSW_MASK_DAT); 387 trace_hardirqs_off(); 388 389 debug_set_critical(); 390 cpumask_copy(&cpumask, cpu_online_mask); 391 cpumask_clear_cpu(smp_processor_id(), &cpumask); 392 393 if (oops_in_progress) 394 smp_emergency_stop(&cpumask); 395 396 /* stop all processors */ 397 for_each_cpu(cpu, &cpumask) { 398 struct pcpu *pcpu = pcpu_devices + cpu; 399 pcpu_sigp_retry(pcpu, SIGP_STOP, 0); 400 while (!pcpu_stopped(pcpu)) 401 cpu_relax(); 402 } 403 } 404 405 /* 406 * Stop the current cpu. 407 */ 408 void smp_stop_cpu(void) 409 { 410 pcpu_sigp_retry(pcpu_devices + smp_processor_id(), SIGP_STOP, 0); 411 for (;;) ; 412 } 413 414 /* 415 * This is the main routine where commands issued by other 416 * cpus are handled. 417 */ 418 static void smp_handle_ext_call(void) 419 { 420 unsigned long bits; 421 422 /* handle bit signal external calls */ 423 bits = xchg(&pcpu_devices[smp_processor_id()].ec_mask, 0); 424 if (test_bit(ec_stop_cpu, &bits)) 425 smp_stop_cpu(); 426 if (test_bit(ec_schedule, &bits)) 427 scheduler_ipi(); 428 if (test_bit(ec_call_function_single, &bits)) 429 generic_smp_call_function_single_interrupt(); 430 } 431 432 static void do_ext_call_interrupt(struct ext_code ext_code, 433 unsigned int param32, unsigned long param64) 434 { 435 inc_irq_stat(ext_code.code == 0x1202 ? IRQEXT_EXC : IRQEXT_EMS); 436 smp_handle_ext_call(); 437 } 438 439 void arch_send_call_function_ipi_mask(const struct cpumask *mask) 440 { 441 int cpu; 442 443 for_each_cpu(cpu, mask) 444 pcpu_ec_call(pcpu_devices + cpu, ec_call_function_single); 445 } 446 447 void arch_send_call_function_single_ipi(int cpu) 448 { 449 pcpu_ec_call(pcpu_devices + cpu, ec_call_function_single); 450 } 451 452 #ifndef CONFIG_64BIT 453 /* 454 * this function sends a 'purge tlb' signal to another CPU. 455 */ 456 static void smp_ptlb_callback(void *info) 457 { 458 __tlb_flush_local(); 459 } 460 461 void smp_ptlb_all(void) 462 { 463 on_each_cpu(smp_ptlb_callback, NULL, 1); 464 } 465 EXPORT_SYMBOL(smp_ptlb_all); 466 #endif /* ! CONFIG_64BIT */ 467 468 /* 469 * this function sends a 'reschedule' IPI to another CPU. 470 * it goes straight through and wastes no time serializing 471 * anything. Worst case is that we lose a reschedule ... 472 */ 473 void smp_send_reschedule(int cpu) 474 { 475 pcpu_ec_call(pcpu_devices + cpu, ec_schedule); 476 } 477 478 /* 479 * parameter area for the set/clear control bit callbacks 480 */ 481 struct ec_creg_mask_parms { 482 unsigned long orval; 483 unsigned long andval; 484 int cr; 485 }; 486 487 /* 488 * callback for setting/clearing control bits 489 */ 490 static void smp_ctl_bit_callback(void *info) 491 { 492 struct ec_creg_mask_parms *pp = info; 493 unsigned long cregs[16]; 494 495 __ctl_store(cregs, 0, 15); 496 cregs[pp->cr] = (cregs[pp->cr] & pp->andval) | pp->orval; 497 __ctl_load(cregs, 0, 15); 498 } 499 500 /* 501 * Set a bit in a control register of all cpus 502 */ 503 void smp_ctl_set_bit(int cr, int bit) 504 { 505 struct ec_creg_mask_parms parms = { 1UL << bit, -1UL, cr }; 506 507 on_each_cpu(smp_ctl_bit_callback, &parms, 1); 508 } 509 EXPORT_SYMBOL(smp_ctl_set_bit); 510 511 /* 512 * Clear a bit in a control register of all cpus 513 */ 514 void smp_ctl_clear_bit(int cr, int bit) 515 { 516 struct ec_creg_mask_parms parms = { 0, ~(1UL << bit), cr }; 517 518 on_each_cpu(smp_ctl_bit_callback, &parms, 1); 519 } 520 EXPORT_SYMBOL(smp_ctl_clear_bit); 521 522 #if defined(CONFIG_ZFCPDUMP) || defined(CONFIG_CRASH_DUMP) 523 524 static void __init smp_get_save_area(int cpu, u16 address) 525 { 526 void *lc = pcpu_devices[0].lowcore; 527 struct save_area *save_area; 528 529 if (is_kdump_kernel()) 530 return; 531 if (!OLDMEM_BASE && (address == boot_cpu_address || 532 ipl_info.type != IPL_TYPE_FCP_DUMP)) 533 return; 534 save_area = dump_save_area_create(cpu); 535 if (!save_area) 536 panic("could not allocate memory for save area\n"); 537 #ifdef CONFIG_CRASH_DUMP 538 if (address == boot_cpu_address) { 539 /* Copy the registers of the boot cpu. */ 540 copy_oldmem_page(1, (void *) save_area, sizeof(*save_area), 541 SAVE_AREA_BASE - PAGE_SIZE, 0); 542 return; 543 } 544 #endif 545 /* Get the registers of a non-boot cpu. */ 546 __pcpu_sigp_relax(address, SIGP_STOP_AND_STORE_STATUS, 0, NULL); 547 memcpy_real(save_area, lc + SAVE_AREA_BASE, sizeof(*save_area)); 548 } 549 550 int smp_store_status(int cpu) 551 { 552 struct pcpu *pcpu; 553 554 pcpu = pcpu_devices + cpu; 555 if (__pcpu_sigp_relax(pcpu->address, SIGP_STOP_AND_STORE_STATUS, 556 0, NULL) != SIGP_CC_ORDER_CODE_ACCEPTED) 557 return -EIO; 558 return 0; 559 } 560 561 #else /* CONFIG_ZFCPDUMP || CONFIG_CRASH_DUMP */ 562 563 static inline void smp_get_save_area(int cpu, u16 address) { } 564 565 #endif /* CONFIG_ZFCPDUMP || CONFIG_CRASH_DUMP */ 566 567 void smp_cpu_set_polarization(int cpu, int val) 568 { 569 pcpu_devices[cpu].polarization = val; 570 } 571 572 int smp_cpu_get_polarization(int cpu) 573 { 574 return pcpu_devices[cpu].polarization; 575 } 576 577 static struct sclp_cpu_info *smp_get_cpu_info(void) 578 { 579 static int use_sigp_detection; 580 struct sclp_cpu_info *info; 581 int address; 582 583 info = kzalloc(sizeof(*info), GFP_KERNEL); 584 if (info && (use_sigp_detection || sclp_get_cpu_info(info))) { 585 use_sigp_detection = 1; 586 for (address = 0; address <= MAX_CPU_ADDRESS; address++) { 587 if (__pcpu_sigp_relax(address, SIGP_SENSE, 0, NULL) == 588 SIGP_CC_NOT_OPERATIONAL) 589 continue; 590 info->cpu[info->configured].address = address; 591 info->configured++; 592 } 593 info->combined = info->configured; 594 } 595 return info; 596 } 597 598 static int smp_add_present_cpu(int cpu); 599 600 static int __smp_rescan_cpus(struct sclp_cpu_info *info, int sysfs_add) 601 { 602 struct pcpu *pcpu; 603 cpumask_t avail; 604 int cpu, nr, i; 605 606 nr = 0; 607 cpumask_xor(&avail, cpu_possible_mask, cpu_present_mask); 608 cpu = cpumask_first(&avail); 609 for (i = 0; (i < info->combined) && (cpu < nr_cpu_ids); i++) { 610 if (info->has_cpu_type && info->cpu[i].type != boot_cpu_type) 611 continue; 612 if (pcpu_find_address(cpu_present_mask, info->cpu[i].address)) 613 continue; 614 pcpu = pcpu_devices + cpu; 615 pcpu->address = info->cpu[i].address; 616 pcpu->state = (i >= info->configured) ? 617 CPU_STATE_STANDBY : CPU_STATE_CONFIGURED; 618 smp_cpu_set_polarization(cpu, POLARIZATION_UNKNOWN); 619 set_cpu_present(cpu, true); 620 if (sysfs_add && smp_add_present_cpu(cpu) != 0) 621 set_cpu_present(cpu, false); 622 else 623 nr++; 624 cpu = cpumask_next(cpu, &avail); 625 } 626 return nr; 627 } 628 629 static void __init smp_detect_cpus(void) 630 { 631 unsigned int cpu, c_cpus, s_cpus; 632 struct sclp_cpu_info *info; 633 634 info = smp_get_cpu_info(); 635 if (!info) 636 panic("smp_detect_cpus failed to allocate memory\n"); 637 if (info->has_cpu_type) { 638 for (cpu = 0; cpu < info->combined; cpu++) { 639 if (info->cpu[cpu].address != boot_cpu_address) 640 continue; 641 /* The boot cpu dictates the cpu type. */ 642 boot_cpu_type = info->cpu[cpu].type; 643 break; 644 } 645 } 646 c_cpus = s_cpus = 0; 647 for (cpu = 0; cpu < info->combined; cpu++) { 648 if (info->has_cpu_type && info->cpu[cpu].type != boot_cpu_type) 649 continue; 650 if (cpu < info->configured) { 651 smp_get_save_area(c_cpus, info->cpu[cpu].address); 652 c_cpus++; 653 } else 654 s_cpus++; 655 } 656 pr_info("%d configured CPUs, %d standby CPUs\n", c_cpus, s_cpus); 657 get_online_cpus(); 658 __smp_rescan_cpus(info, 0); 659 put_online_cpus(); 660 kfree(info); 661 } 662 663 /* 664 * Activate a secondary processor. 665 */ 666 static void smp_start_secondary(void *cpuvoid) 667 { 668 S390_lowcore.last_update_clock = get_tod_clock(); 669 S390_lowcore.restart_stack = (unsigned long) restart_stack; 670 S390_lowcore.restart_fn = (unsigned long) do_restart; 671 S390_lowcore.restart_data = 0; 672 S390_lowcore.restart_source = -1UL; 673 restore_access_regs(S390_lowcore.access_regs_save_area); 674 __ctl_load(S390_lowcore.cregs_save_area, 0, 15); 675 __load_psw_mask(PSW_KERNEL_BITS | PSW_MASK_DAT); 676 cpu_init(); 677 preempt_disable(); 678 init_cpu_timer(); 679 init_cpu_vtimer(); 680 pfault_init(); 681 notify_cpu_starting(smp_processor_id()); 682 set_cpu_online(smp_processor_id(), true); 683 inc_irq_stat(CPU_RST); 684 local_irq_enable(); 685 cpu_startup_entry(CPUHP_ONLINE); 686 } 687 688 /* Upping and downing of CPUs */ 689 int __cpu_up(unsigned int cpu, struct task_struct *tidle) 690 { 691 struct pcpu *pcpu; 692 int rc; 693 694 pcpu = pcpu_devices + cpu; 695 if (pcpu->state != CPU_STATE_CONFIGURED) 696 return -EIO; 697 if (pcpu_sigp_retry(pcpu, SIGP_INITIAL_CPU_RESET, 0) != 698 SIGP_CC_ORDER_CODE_ACCEPTED) 699 return -EIO; 700 701 rc = pcpu_alloc_lowcore(pcpu, cpu); 702 if (rc) 703 return rc; 704 pcpu_prepare_secondary(pcpu, cpu); 705 pcpu_attach_task(pcpu, tidle); 706 pcpu_start_fn(pcpu, smp_start_secondary, NULL); 707 while (!cpu_online(cpu)) 708 cpu_relax(); 709 return 0; 710 } 711 712 static unsigned int setup_possible_cpus __initdata; 713 714 static int __init _setup_possible_cpus(char *s) 715 { 716 get_option(&s, &setup_possible_cpus); 717 return 0; 718 } 719 early_param("possible_cpus", _setup_possible_cpus); 720 721 #ifdef CONFIG_HOTPLUG_CPU 722 723 int __cpu_disable(void) 724 { 725 unsigned long cregs[16]; 726 727 /* Handle possible pending IPIs */ 728 smp_handle_ext_call(); 729 set_cpu_online(smp_processor_id(), false); 730 /* Disable pseudo page faults on this cpu. */ 731 pfault_fini(); 732 /* Disable interrupt sources via control register. */ 733 __ctl_store(cregs, 0, 15); 734 cregs[0] &= ~0x0000ee70UL; /* disable all external interrupts */ 735 cregs[6] &= ~0xff000000UL; /* disable all I/O interrupts */ 736 cregs[14] &= ~0x1f000000UL; /* disable most machine checks */ 737 __ctl_load(cregs, 0, 15); 738 return 0; 739 } 740 741 void __cpu_die(unsigned int cpu) 742 { 743 struct pcpu *pcpu; 744 745 /* Wait until target cpu is down */ 746 pcpu = pcpu_devices + cpu; 747 while (!pcpu_stopped(pcpu)) 748 cpu_relax(); 749 pcpu_free_lowcore(pcpu); 750 atomic_dec(&init_mm.context.attach_count); 751 cpumask_clear_cpu(cpu, mm_cpumask(&init_mm)); 752 if (MACHINE_HAS_TLB_LC) 753 cpumask_clear_cpu(cpu, &init_mm.context.cpu_attach_mask); 754 } 755 756 void __noreturn cpu_die(void) 757 { 758 idle_task_exit(); 759 pcpu_sigp_retry(pcpu_devices + smp_processor_id(), SIGP_STOP, 0); 760 for (;;) ; 761 } 762 763 #endif /* CONFIG_HOTPLUG_CPU */ 764 765 void __init smp_fill_possible_mask(void) 766 { 767 unsigned int possible, sclp, cpu; 768 769 sclp = sclp_get_max_cpu() ?: nr_cpu_ids; 770 possible = setup_possible_cpus ?: nr_cpu_ids; 771 possible = min(possible, sclp); 772 for (cpu = 0; cpu < possible && cpu < nr_cpu_ids; cpu++) 773 set_cpu_possible(cpu, true); 774 } 775 776 void __init smp_prepare_cpus(unsigned int max_cpus) 777 { 778 /* request the 0x1201 emergency signal external interrupt */ 779 if (register_external_irq(EXT_IRQ_EMERGENCY_SIG, do_ext_call_interrupt)) 780 panic("Couldn't request external interrupt 0x1201"); 781 /* request the 0x1202 external call external interrupt */ 782 if (register_external_irq(EXT_IRQ_EXTERNAL_CALL, do_ext_call_interrupt)) 783 panic("Couldn't request external interrupt 0x1202"); 784 smp_detect_cpus(); 785 } 786 787 void __init smp_prepare_boot_cpu(void) 788 { 789 struct pcpu *pcpu = pcpu_devices; 790 791 boot_cpu_address = stap(); 792 pcpu->state = CPU_STATE_CONFIGURED; 793 pcpu->address = boot_cpu_address; 794 pcpu->lowcore = (struct _lowcore *)(unsigned long) store_prefix(); 795 pcpu->async_stack = S390_lowcore.async_stack - ASYNC_SIZE 796 + STACK_FRAME_OVERHEAD + sizeof(struct pt_regs); 797 pcpu->panic_stack = S390_lowcore.panic_stack - PAGE_SIZE 798 + STACK_FRAME_OVERHEAD + sizeof(struct pt_regs); 799 S390_lowcore.percpu_offset = __per_cpu_offset[0]; 800 smp_cpu_set_polarization(0, POLARIZATION_UNKNOWN); 801 set_cpu_present(0, true); 802 set_cpu_online(0, true); 803 } 804 805 void __init smp_cpus_done(unsigned int max_cpus) 806 { 807 } 808 809 void __init smp_setup_processor_id(void) 810 { 811 S390_lowcore.cpu_nr = 0; 812 } 813 814 /* 815 * the frequency of the profiling timer can be changed 816 * by writing a multiplier value into /proc/profile. 817 * 818 * usually you want to run this on all CPUs ;) 819 */ 820 int setup_profiling_timer(unsigned int multiplier) 821 { 822 return 0; 823 } 824 825 #ifdef CONFIG_HOTPLUG_CPU 826 static ssize_t cpu_configure_show(struct device *dev, 827 struct device_attribute *attr, char *buf) 828 { 829 ssize_t count; 830 831 mutex_lock(&smp_cpu_state_mutex); 832 count = sprintf(buf, "%d\n", pcpu_devices[dev->id].state); 833 mutex_unlock(&smp_cpu_state_mutex); 834 return count; 835 } 836 837 static ssize_t cpu_configure_store(struct device *dev, 838 struct device_attribute *attr, 839 const char *buf, size_t count) 840 { 841 struct pcpu *pcpu; 842 int cpu, val, rc; 843 char delim; 844 845 if (sscanf(buf, "%d %c", &val, &delim) != 1) 846 return -EINVAL; 847 if (val != 0 && val != 1) 848 return -EINVAL; 849 get_online_cpus(); 850 mutex_lock(&smp_cpu_state_mutex); 851 rc = -EBUSY; 852 /* disallow configuration changes of online cpus and cpu 0 */ 853 cpu = dev->id; 854 if (cpu_online(cpu) || cpu == 0) 855 goto out; 856 pcpu = pcpu_devices + cpu; 857 rc = 0; 858 switch (val) { 859 case 0: 860 if (pcpu->state != CPU_STATE_CONFIGURED) 861 break; 862 rc = sclp_cpu_deconfigure(pcpu->address); 863 if (rc) 864 break; 865 pcpu->state = CPU_STATE_STANDBY; 866 smp_cpu_set_polarization(cpu, POLARIZATION_UNKNOWN); 867 topology_expect_change(); 868 break; 869 case 1: 870 if (pcpu->state != CPU_STATE_STANDBY) 871 break; 872 rc = sclp_cpu_configure(pcpu->address); 873 if (rc) 874 break; 875 pcpu->state = CPU_STATE_CONFIGURED; 876 smp_cpu_set_polarization(cpu, POLARIZATION_UNKNOWN); 877 topology_expect_change(); 878 break; 879 default: 880 break; 881 } 882 out: 883 mutex_unlock(&smp_cpu_state_mutex); 884 put_online_cpus(); 885 return rc ? rc : count; 886 } 887 static DEVICE_ATTR(configure, 0644, cpu_configure_show, cpu_configure_store); 888 #endif /* CONFIG_HOTPLUG_CPU */ 889 890 static ssize_t show_cpu_address(struct device *dev, 891 struct device_attribute *attr, char *buf) 892 { 893 return sprintf(buf, "%d\n", pcpu_devices[dev->id].address); 894 } 895 static DEVICE_ATTR(address, 0444, show_cpu_address, NULL); 896 897 static struct attribute *cpu_common_attrs[] = { 898 #ifdef CONFIG_HOTPLUG_CPU 899 &dev_attr_configure.attr, 900 #endif 901 &dev_attr_address.attr, 902 NULL, 903 }; 904 905 static struct attribute_group cpu_common_attr_group = { 906 .attrs = cpu_common_attrs, 907 }; 908 909 static ssize_t show_idle_count(struct device *dev, 910 struct device_attribute *attr, char *buf) 911 { 912 struct s390_idle_data *idle = &per_cpu(s390_idle, dev->id); 913 unsigned long long idle_count; 914 unsigned int sequence; 915 916 do { 917 sequence = ACCESS_ONCE(idle->sequence); 918 idle_count = ACCESS_ONCE(idle->idle_count); 919 if (ACCESS_ONCE(idle->clock_idle_enter)) 920 idle_count++; 921 } while ((sequence & 1) || (ACCESS_ONCE(idle->sequence) != sequence)); 922 return sprintf(buf, "%llu\n", idle_count); 923 } 924 static DEVICE_ATTR(idle_count, 0444, show_idle_count, NULL); 925 926 static ssize_t show_idle_time(struct device *dev, 927 struct device_attribute *attr, char *buf) 928 { 929 struct s390_idle_data *idle = &per_cpu(s390_idle, dev->id); 930 unsigned long long now, idle_time, idle_enter, idle_exit; 931 unsigned int sequence; 932 933 do { 934 now = get_tod_clock(); 935 sequence = ACCESS_ONCE(idle->sequence); 936 idle_time = ACCESS_ONCE(idle->idle_time); 937 idle_enter = ACCESS_ONCE(idle->clock_idle_enter); 938 idle_exit = ACCESS_ONCE(idle->clock_idle_exit); 939 } while ((sequence & 1) || (ACCESS_ONCE(idle->sequence) != sequence)); 940 idle_time += idle_enter ? ((idle_exit ? : now) - idle_enter) : 0; 941 return sprintf(buf, "%llu\n", idle_time >> 12); 942 } 943 static DEVICE_ATTR(idle_time_us, 0444, show_idle_time, NULL); 944 945 static struct attribute *cpu_online_attrs[] = { 946 &dev_attr_idle_count.attr, 947 &dev_attr_idle_time_us.attr, 948 NULL, 949 }; 950 951 static struct attribute_group cpu_online_attr_group = { 952 .attrs = cpu_online_attrs, 953 }; 954 955 static int smp_cpu_notify(struct notifier_block *self, unsigned long action, 956 void *hcpu) 957 { 958 unsigned int cpu = (unsigned int)(long)hcpu; 959 struct cpu *c = pcpu_devices[cpu].cpu; 960 struct device *s = &c->dev; 961 int err = 0; 962 963 switch (action & ~CPU_TASKS_FROZEN) { 964 case CPU_ONLINE: 965 err = sysfs_create_group(&s->kobj, &cpu_online_attr_group); 966 break; 967 case CPU_DEAD: 968 sysfs_remove_group(&s->kobj, &cpu_online_attr_group); 969 break; 970 } 971 return notifier_from_errno(err); 972 } 973 974 static int smp_add_present_cpu(int cpu) 975 { 976 struct device *s; 977 struct cpu *c; 978 int rc; 979 980 c = kzalloc(sizeof(*c), GFP_KERNEL); 981 if (!c) 982 return -ENOMEM; 983 pcpu_devices[cpu].cpu = c; 984 s = &c->dev; 985 c->hotpluggable = 1; 986 rc = register_cpu(c, cpu); 987 if (rc) 988 goto out; 989 rc = sysfs_create_group(&s->kobj, &cpu_common_attr_group); 990 if (rc) 991 goto out_cpu; 992 if (cpu_online(cpu)) { 993 rc = sysfs_create_group(&s->kobj, &cpu_online_attr_group); 994 if (rc) 995 goto out_online; 996 } 997 rc = topology_cpu_init(c); 998 if (rc) 999 goto out_topology; 1000 return 0; 1001 1002 out_topology: 1003 if (cpu_online(cpu)) 1004 sysfs_remove_group(&s->kobj, &cpu_online_attr_group); 1005 out_online: 1006 sysfs_remove_group(&s->kobj, &cpu_common_attr_group); 1007 out_cpu: 1008 #ifdef CONFIG_HOTPLUG_CPU 1009 unregister_cpu(c); 1010 #endif 1011 out: 1012 return rc; 1013 } 1014 1015 #ifdef CONFIG_HOTPLUG_CPU 1016 1017 int __ref smp_rescan_cpus(void) 1018 { 1019 struct sclp_cpu_info *info; 1020 int nr; 1021 1022 info = smp_get_cpu_info(); 1023 if (!info) 1024 return -ENOMEM; 1025 get_online_cpus(); 1026 mutex_lock(&smp_cpu_state_mutex); 1027 nr = __smp_rescan_cpus(info, 1); 1028 mutex_unlock(&smp_cpu_state_mutex); 1029 put_online_cpus(); 1030 kfree(info); 1031 if (nr) 1032 topology_schedule_update(); 1033 return 0; 1034 } 1035 1036 static ssize_t __ref rescan_store(struct device *dev, 1037 struct device_attribute *attr, 1038 const char *buf, 1039 size_t count) 1040 { 1041 int rc; 1042 1043 rc = smp_rescan_cpus(); 1044 return rc ? rc : count; 1045 } 1046 static DEVICE_ATTR(rescan, 0200, NULL, rescan_store); 1047 #endif /* CONFIG_HOTPLUG_CPU */ 1048 1049 static int __init s390_smp_init(void) 1050 { 1051 int cpu, rc = 0; 1052 1053 #ifdef CONFIG_HOTPLUG_CPU 1054 rc = device_create_file(cpu_subsys.dev_root, &dev_attr_rescan); 1055 if (rc) 1056 return rc; 1057 #endif 1058 cpu_notifier_register_begin(); 1059 for_each_present_cpu(cpu) { 1060 rc = smp_add_present_cpu(cpu); 1061 if (rc) 1062 goto out; 1063 } 1064 1065 __hotcpu_notifier(smp_cpu_notify, 0); 1066 1067 out: 1068 cpu_notifier_register_done(); 1069 return rc; 1070 } 1071 subsys_initcall(s390_smp_init); 1072