xref: /openbmc/linux/arch/s390/kernel/smp.c (revision a8da474e)
1 /*
2  *  SMP related functions
3  *
4  *    Copyright IBM Corp. 1999, 2012
5  *    Author(s): Denis Joseph Barrow,
6  *		 Martin Schwidefsky <schwidefsky@de.ibm.com>,
7  *		 Heiko Carstens <heiko.carstens@de.ibm.com>,
8  *
9  *  based on other smp stuff by
10  *    (c) 1995 Alan Cox, CymruNET Ltd  <alan@cymru.net>
11  *    (c) 1998 Ingo Molnar
12  *
13  * The code outside of smp.c uses logical cpu numbers, only smp.c does
14  * the translation of logical to physical cpu ids. All new code that
15  * operates on physical cpu numbers needs to go into smp.c.
16  */
17 
18 #define KMSG_COMPONENT "cpu"
19 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
20 
21 #include <linux/workqueue.h>
22 #include <linux/module.h>
23 #include <linux/init.h>
24 #include <linux/mm.h>
25 #include <linux/err.h>
26 #include <linux/spinlock.h>
27 #include <linux/kernel_stat.h>
28 #include <linux/delay.h>
29 #include <linux/interrupt.h>
30 #include <linux/irqflags.h>
31 #include <linux/cpu.h>
32 #include <linux/slab.h>
33 #include <linux/crash_dump.h>
34 #include <linux/memblock.h>
35 #include <asm/asm-offsets.h>
36 #include <asm/diag.h>
37 #include <asm/switch_to.h>
38 #include <asm/facility.h>
39 #include <asm/ipl.h>
40 #include <asm/setup.h>
41 #include <asm/irq.h>
42 #include <asm/tlbflush.h>
43 #include <asm/vtimer.h>
44 #include <asm/lowcore.h>
45 #include <asm/sclp.h>
46 #include <asm/vdso.h>
47 #include <asm/debug.h>
48 #include <asm/os_info.h>
49 #include <asm/sigp.h>
50 #include <asm/idle.h>
51 #include "entry.h"
52 
53 enum {
54 	ec_schedule = 0,
55 	ec_call_function_single,
56 	ec_stop_cpu,
57 };
58 
59 enum {
60 	CPU_STATE_STANDBY,
61 	CPU_STATE_CONFIGURED,
62 };
63 
64 static DEFINE_PER_CPU(struct cpu *, cpu_device);
65 
66 struct pcpu {
67 	struct _lowcore *lowcore;	/* lowcore page(s) for the cpu */
68 	unsigned long ec_mask;		/* bit mask for ec_xxx functions */
69 	signed char state;		/* physical cpu state */
70 	signed char polarization;	/* physical polarization */
71 	u16 address;			/* physical cpu address */
72 };
73 
74 static u8 boot_core_type;
75 static struct pcpu pcpu_devices[NR_CPUS];
76 
77 unsigned int smp_cpu_mt_shift;
78 EXPORT_SYMBOL(smp_cpu_mt_shift);
79 
80 unsigned int smp_cpu_mtid;
81 EXPORT_SYMBOL(smp_cpu_mtid);
82 
83 static unsigned int smp_max_threads __initdata = -1U;
84 
85 static int __init early_nosmt(char *s)
86 {
87 	smp_max_threads = 1;
88 	return 0;
89 }
90 early_param("nosmt", early_nosmt);
91 
92 static int __init early_smt(char *s)
93 {
94 	get_option(&s, &smp_max_threads);
95 	return 0;
96 }
97 early_param("smt", early_smt);
98 
99 /*
100  * The smp_cpu_state_mutex must be held when changing the state or polarization
101  * member of a pcpu data structure within the pcpu_devices arreay.
102  */
103 DEFINE_MUTEX(smp_cpu_state_mutex);
104 
105 /*
106  * Signal processor helper functions.
107  */
108 static inline int __pcpu_sigp_relax(u16 addr, u8 order, unsigned long parm,
109 				    u32 *status)
110 {
111 	int cc;
112 
113 	while (1) {
114 		cc = __pcpu_sigp(addr, order, parm, NULL);
115 		if (cc != SIGP_CC_BUSY)
116 			return cc;
117 		cpu_relax();
118 	}
119 }
120 
121 static int pcpu_sigp_retry(struct pcpu *pcpu, u8 order, u32 parm)
122 {
123 	int cc, retry;
124 
125 	for (retry = 0; ; retry++) {
126 		cc = __pcpu_sigp(pcpu->address, order, parm, NULL);
127 		if (cc != SIGP_CC_BUSY)
128 			break;
129 		if (retry >= 3)
130 			udelay(10);
131 	}
132 	return cc;
133 }
134 
135 static inline int pcpu_stopped(struct pcpu *pcpu)
136 {
137 	u32 uninitialized_var(status);
138 
139 	if (__pcpu_sigp(pcpu->address, SIGP_SENSE,
140 			0, &status) != SIGP_CC_STATUS_STORED)
141 		return 0;
142 	return !!(status & (SIGP_STATUS_CHECK_STOP|SIGP_STATUS_STOPPED));
143 }
144 
145 static inline int pcpu_running(struct pcpu *pcpu)
146 {
147 	if (__pcpu_sigp(pcpu->address, SIGP_SENSE_RUNNING,
148 			0, NULL) != SIGP_CC_STATUS_STORED)
149 		return 1;
150 	/* Status stored condition code is equivalent to cpu not running. */
151 	return 0;
152 }
153 
154 /*
155  * Find struct pcpu by cpu address.
156  */
157 static struct pcpu *pcpu_find_address(const struct cpumask *mask, u16 address)
158 {
159 	int cpu;
160 
161 	for_each_cpu(cpu, mask)
162 		if (pcpu_devices[cpu].address == address)
163 			return pcpu_devices + cpu;
164 	return NULL;
165 }
166 
167 static void pcpu_ec_call(struct pcpu *pcpu, int ec_bit)
168 {
169 	int order;
170 
171 	if (test_and_set_bit(ec_bit, &pcpu->ec_mask))
172 		return;
173 	order = pcpu_running(pcpu) ? SIGP_EXTERNAL_CALL : SIGP_EMERGENCY_SIGNAL;
174 	pcpu_sigp_retry(pcpu, order, 0);
175 }
176 
177 #define ASYNC_FRAME_OFFSET (ASYNC_SIZE - STACK_FRAME_OVERHEAD - __PT_SIZE)
178 #define PANIC_FRAME_OFFSET (PAGE_SIZE - STACK_FRAME_OVERHEAD - __PT_SIZE)
179 
180 static int pcpu_alloc_lowcore(struct pcpu *pcpu, int cpu)
181 {
182 	unsigned long async_stack, panic_stack;
183 	struct _lowcore *lc;
184 
185 	if (pcpu != &pcpu_devices[0]) {
186 		pcpu->lowcore =	(struct _lowcore *)
187 			__get_free_pages(GFP_KERNEL | GFP_DMA, LC_ORDER);
188 		async_stack = __get_free_pages(GFP_KERNEL, ASYNC_ORDER);
189 		panic_stack = __get_free_page(GFP_KERNEL);
190 		if (!pcpu->lowcore || !panic_stack || !async_stack)
191 			goto out;
192 	} else {
193 		async_stack = pcpu->lowcore->async_stack - ASYNC_FRAME_OFFSET;
194 		panic_stack = pcpu->lowcore->panic_stack - PANIC_FRAME_OFFSET;
195 	}
196 	lc = pcpu->lowcore;
197 	memcpy(lc, &S390_lowcore, 512);
198 	memset((char *) lc + 512, 0, sizeof(*lc) - 512);
199 	lc->async_stack = async_stack + ASYNC_FRAME_OFFSET;
200 	lc->panic_stack = panic_stack + PANIC_FRAME_OFFSET;
201 	lc->cpu_nr = cpu;
202 	lc->spinlock_lockval = arch_spin_lockval(cpu);
203 	if (MACHINE_HAS_VX)
204 		lc->vector_save_area_addr =
205 			(unsigned long) &lc->vector_save_area;
206 	if (vdso_alloc_per_cpu(lc))
207 		goto out;
208 	lowcore_ptr[cpu] = lc;
209 	pcpu_sigp_retry(pcpu, SIGP_SET_PREFIX, (u32)(unsigned long) lc);
210 	return 0;
211 out:
212 	if (pcpu != &pcpu_devices[0]) {
213 		free_page(panic_stack);
214 		free_pages(async_stack, ASYNC_ORDER);
215 		free_pages((unsigned long) pcpu->lowcore, LC_ORDER);
216 	}
217 	return -ENOMEM;
218 }
219 
220 #ifdef CONFIG_HOTPLUG_CPU
221 
222 static void pcpu_free_lowcore(struct pcpu *pcpu)
223 {
224 	pcpu_sigp_retry(pcpu, SIGP_SET_PREFIX, 0);
225 	lowcore_ptr[pcpu - pcpu_devices] = NULL;
226 	vdso_free_per_cpu(pcpu->lowcore);
227 	if (pcpu == &pcpu_devices[0])
228 		return;
229 	free_page(pcpu->lowcore->panic_stack-PANIC_FRAME_OFFSET);
230 	free_pages(pcpu->lowcore->async_stack-ASYNC_FRAME_OFFSET, ASYNC_ORDER);
231 	free_pages((unsigned long) pcpu->lowcore, LC_ORDER);
232 }
233 
234 #endif /* CONFIG_HOTPLUG_CPU */
235 
236 static void pcpu_prepare_secondary(struct pcpu *pcpu, int cpu)
237 {
238 	struct _lowcore *lc = pcpu->lowcore;
239 
240 	if (MACHINE_HAS_TLB_LC)
241 		cpumask_set_cpu(cpu, &init_mm.context.cpu_attach_mask);
242 	cpumask_set_cpu(cpu, mm_cpumask(&init_mm));
243 	atomic_inc(&init_mm.context.attach_count);
244 	lc->cpu_nr = cpu;
245 	lc->spinlock_lockval = arch_spin_lockval(cpu);
246 	lc->percpu_offset = __per_cpu_offset[cpu];
247 	lc->kernel_asce = S390_lowcore.kernel_asce;
248 	lc->machine_flags = S390_lowcore.machine_flags;
249 	lc->user_timer = lc->system_timer = lc->steal_timer = 0;
250 	__ctl_store(lc->cregs_save_area, 0, 15);
251 	save_access_regs((unsigned int *) lc->access_regs_save_area);
252 	memcpy(lc->stfle_fac_list, S390_lowcore.stfle_fac_list,
253 	       MAX_FACILITY_BIT/8);
254 }
255 
256 static void pcpu_attach_task(struct pcpu *pcpu, struct task_struct *tsk)
257 {
258 	struct _lowcore *lc = pcpu->lowcore;
259 	struct thread_info *ti = task_thread_info(tsk);
260 
261 	lc->kernel_stack = (unsigned long) task_stack_page(tsk)
262 		+ THREAD_SIZE - STACK_FRAME_OVERHEAD - sizeof(struct pt_regs);
263 	lc->thread_info = (unsigned long) task_thread_info(tsk);
264 	lc->current_task = (unsigned long) tsk;
265 	lc->lpp = LPP_MAGIC;
266 	lc->current_pid = tsk->pid;
267 	lc->user_timer = ti->user_timer;
268 	lc->system_timer = ti->system_timer;
269 	lc->steal_timer = 0;
270 }
271 
272 static void pcpu_start_fn(struct pcpu *pcpu, void (*func)(void *), void *data)
273 {
274 	struct _lowcore *lc = pcpu->lowcore;
275 
276 	lc->restart_stack = lc->kernel_stack;
277 	lc->restart_fn = (unsigned long) func;
278 	lc->restart_data = (unsigned long) data;
279 	lc->restart_source = -1UL;
280 	pcpu_sigp_retry(pcpu, SIGP_RESTART, 0);
281 }
282 
283 /*
284  * Call function via PSW restart on pcpu and stop the current cpu.
285  */
286 static void pcpu_delegate(struct pcpu *pcpu, void (*func)(void *),
287 			  void *data, unsigned long stack)
288 {
289 	struct _lowcore *lc = lowcore_ptr[pcpu - pcpu_devices];
290 	unsigned long source_cpu = stap();
291 
292 	__load_psw_mask(PSW_KERNEL_BITS);
293 	if (pcpu->address == source_cpu)
294 		func(data);	/* should not return */
295 	/* Stop target cpu (if func returns this stops the current cpu). */
296 	pcpu_sigp_retry(pcpu, SIGP_STOP, 0);
297 	/* Restart func on the target cpu and stop the current cpu. */
298 	mem_assign_absolute(lc->restart_stack, stack);
299 	mem_assign_absolute(lc->restart_fn, (unsigned long) func);
300 	mem_assign_absolute(lc->restart_data, (unsigned long) data);
301 	mem_assign_absolute(lc->restart_source, source_cpu);
302 	asm volatile(
303 		"0:	sigp	0,%0,%2	# sigp restart to target cpu\n"
304 		"	brc	2,0b	# busy, try again\n"
305 		"1:	sigp	0,%1,%3	# sigp stop to current cpu\n"
306 		"	brc	2,1b	# busy, try again\n"
307 		: : "d" (pcpu->address), "d" (source_cpu),
308 		    "K" (SIGP_RESTART), "K" (SIGP_STOP)
309 		: "0", "1", "cc");
310 	for (;;) ;
311 }
312 
313 /*
314  * Enable additional logical cpus for multi-threading.
315  */
316 static int pcpu_set_smt(unsigned int mtid)
317 {
318 	register unsigned long reg1 asm ("1") = (unsigned long) mtid;
319 	int cc;
320 
321 	if (smp_cpu_mtid == mtid)
322 		return 0;
323 	asm volatile(
324 		"	sigp	%1,0,%2	# sigp set multi-threading\n"
325 		"	ipm	%0\n"
326 		"	srl	%0,28\n"
327 		: "=d" (cc) : "d" (reg1), "K" (SIGP_SET_MULTI_THREADING)
328 		: "cc");
329 	if (cc == 0) {
330 		smp_cpu_mtid = mtid;
331 		smp_cpu_mt_shift = 0;
332 		while (smp_cpu_mtid >= (1U << smp_cpu_mt_shift))
333 			smp_cpu_mt_shift++;
334 		pcpu_devices[0].address = stap();
335 	}
336 	return cc;
337 }
338 
339 /*
340  * Call function on an online CPU.
341  */
342 void smp_call_online_cpu(void (*func)(void *), void *data)
343 {
344 	struct pcpu *pcpu;
345 
346 	/* Use the current cpu if it is online. */
347 	pcpu = pcpu_find_address(cpu_online_mask, stap());
348 	if (!pcpu)
349 		/* Use the first online cpu. */
350 		pcpu = pcpu_devices + cpumask_first(cpu_online_mask);
351 	pcpu_delegate(pcpu, func, data, (unsigned long) restart_stack);
352 }
353 
354 /*
355  * Call function on the ipl CPU.
356  */
357 void smp_call_ipl_cpu(void (*func)(void *), void *data)
358 {
359 	pcpu_delegate(&pcpu_devices[0], func, data,
360 		      pcpu_devices->lowcore->panic_stack -
361 		      PANIC_FRAME_OFFSET + PAGE_SIZE);
362 }
363 
364 int smp_find_processor_id(u16 address)
365 {
366 	int cpu;
367 
368 	for_each_present_cpu(cpu)
369 		if (pcpu_devices[cpu].address == address)
370 			return cpu;
371 	return -1;
372 }
373 
374 int smp_vcpu_scheduled(int cpu)
375 {
376 	return pcpu_running(pcpu_devices + cpu);
377 }
378 
379 void smp_yield_cpu(int cpu)
380 {
381 	if (MACHINE_HAS_DIAG9C) {
382 		diag_stat_inc_norecursion(DIAG_STAT_X09C);
383 		asm volatile("diag %0,0,0x9c"
384 			     : : "d" (pcpu_devices[cpu].address));
385 	} else if (MACHINE_HAS_DIAG44) {
386 		diag_stat_inc_norecursion(DIAG_STAT_X044);
387 		asm volatile("diag 0,0,0x44");
388 	}
389 }
390 
391 /*
392  * Send cpus emergency shutdown signal. This gives the cpus the
393  * opportunity to complete outstanding interrupts.
394  */
395 static void smp_emergency_stop(cpumask_t *cpumask)
396 {
397 	u64 end;
398 	int cpu;
399 
400 	end = get_tod_clock() + (1000000UL << 12);
401 	for_each_cpu(cpu, cpumask) {
402 		struct pcpu *pcpu = pcpu_devices + cpu;
403 		set_bit(ec_stop_cpu, &pcpu->ec_mask);
404 		while (__pcpu_sigp(pcpu->address, SIGP_EMERGENCY_SIGNAL,
405 				   0, NULL) == SIGP_CC_BUSY &&
406 		       get_tod_clock() < end)
407 			cpu_relax();
408 	}
409 	while (get_tod_clock() < end) {
410 		for_each_cpu(cpu, cpumask)
411 			if (pcpu_stopped(pcpu_devices + cpu))
412 				cpumask_clear_cpu(cpu, cpumask);
413 		if (cpumask_empty(cpumask))
414 			break;
415 		cpu_relax();
416 	}
417 }
418 
419 /*
420  * Stop all cpus but the current one.
421  */
422 void smp_send_stop(void)
423 {
424 	cpumask_t cpumask;
425 	int cpu;
426 
427 	/* Disable all interrupts/machine checks */
428 	__load_psw_mask(PSW_KERNEL_BITS | PSW_MASK_DAT);
429 	trace_hardirqs_off();
430 
431 	debug_set_critical();
432 	cpumask_copy(&cpumask, cpu_online_mask);
433 	cpumask_clear_cpu(smp_processor_id(), &cpumask);
434 
435 	if (oops_in_progress)
436 		smp_emergency_stop(&cpumask);
437 
438 	/* stop all processors */
439 	for_each_cpu(cpu, &cpumask) {
440 		struct pcpu *pcpu = pcpu_devices + cpu;
441 		pcpu_sigp_retry(pcpu, SIGP_STOP, 0);
442 		while (!pcpu_stopped(pcpu))
443 			cpu_relax();
444 	}
445 }
446 
447 /*
448  * This is the main routine where commands issued by other
449  * cpus are handled.
450  */
451 static void smp_handle_ext_call(void)
452 {
453 	unsigned long bits;
454 
455 	/* handle bit signal external calls */
456 	bits = xchg(&pcpu_devices[smp_processor_id()].ec_mask, 0);
457 	if (test_bit(ec_stop_cpu, &bits))
458 		smp_stop_cpu();
459 	if (test_bit(ec_schedule, &bits))
460 		scheduler_ipi();
461 	if (test_bit(ec_call_function_single, &bits))
462 		generic_smp_call_function_single_interrupt();
463 }
464 
465 static void do_ext_call_interrupt(struct ext_code ext_code,
466 				  unsigned int param32, unsigned long param64)
467 {
468 	inc_irq_stat(ext_code.code == 0x1202 ? IRQEXT_EXC : IRQEXT_EMS);
469 	smp_handle_ext_call();
470 }
471 
472 void arch_send_call_function_ipi_mask(const struct cpumask *mask)
473 {
474 	int cpu;
475 
476 	for_each_cpu(cpu, mask)
477 		pcpu_ec_call(pcpu_devices + cpu, ec_call_function_single);
478 }
479 
480 void arch_send_call_function_single_ipi(int cpu)
481 {
482 	pcpu_ec_call(pcpu_devices + cpu, ec_call_function_single);
483 }
484 
485 /*
486  * this function sends a 'reschedule' IPI to another CPU.
487  * it goes straight through and wastes no time serializing
488  * anything. Worst case is that we lose a reschedule ...
489  */
490 void smp_send_reschedule(int cpu)
491 {
492 	pcpu_ec_call(pcpu_devices + cpu, ec_schedule);
493 }
494 
495 /*
496  * parameter area for the set/clear control bit callbacks
497  */
498 struct ec_creg_mask_parms {
499 	unsigned long orval;
500 	unsigned long andval;
501 	int cr;
502 };
503 
504 /*
505  * callback for setting/clearing control bits
506  */
507 static void smp_ctl_bit_callback(void *info)
508 {
509 	struct ec_creg_mask_parms *pp = info;
510 	unsigned long cregs[16];
511 
512 	__ctl_store(cregs, 0, 15);
513 	cregs[pp->cr] = (cregs[pp->cr] & pp->andval) | pp->orval;
514 	__ctl_load(cregs, 0, 15);
515 }
516 
517 /*
518  * Set a bit in a control register of all cpus
519  */
520 void smp_ctl_set_bit(int cr, int bit)
521 {
522 	struct ec_creg_mask_parms parms = { 1UL << bit, -1UL, cr };
523 
524 	on_each_cpu(smp_ctl_bit_callback, &parms, 1);
525 }
526 EXPORT_SYMBOL(smp_ctl_set_bit);
527 
528 /*
529  * Clear a bit in a control register of all cpus
530  */
531 void smp_ctl_clear_bit(int cr, int bit)
532 {
533 	struct ec_creg_mask_parms parms = { 0, ~(1UL << bit), cr };
534 
535 	on_each_cpu(smp_ctl_bit_callback, &parms, 1);
536 }
537 EXPORT_SYMBOL(smp_ctl_clear_bit);
538 
539 #ifdef CONFIG_CRASH_DUMP
540 
541 static void __init __smp_store_cpu_state(struct save_area_ext *sa_ext,
542 					 u16 address, int is_boot_cpu)
543 {
544 	void *lc = (void *)(unsigned long) store_prefix();
545 	unsigned long vx_sa;
546 
547 	if (is_boot_cpu) {
548 		/* Copy the registers of the boot CPU. */
549 		copy_oldmem_page(1, (void *) &sa_ext->sa, sizeof(sa_ext->sa),
550 				 SAVE_AREA_BASE - PAGE_SIZE, 0);
551 		if (MACHINE_HAS_VX)
552 			save_vx_regs_safe(sa_ext->vx_regs);
553 		return;
554 	}
555 	/* Get the registers of a non-boot cpu. */
556 	__pcpu_sigp_relax(address, SIGP_STOP_AND_STORE_STATUS, 0, NULL);
557 	memcpy_real(&sa_ext->sa, lc + SAVE_AREA_BASE, sizeof(sa_ext->sa));
558 	if (!MACHINE_HAS_VX)
559 		return;
560 	/* Get the VX registers */
561 	vx_sa = memblock_alloc(PAGE_SIZE, PAGE_SIZE);
562 	if (!vx_sa)
563 		panic("could not allocate memory for VX save area\n");
564 	__pcpu_sigp_relax(address, SIGP_STORE_ADDITIONAL_STATUS, vx_sa, NULL);
565 	memcpy(sa_ext->vx_regs, (void *) vx_sa, sizeof(sa_ext->vx_regs));
566 	memblock_free(vx_sa, PAGE_SIZE);
567 }
568 
569 int smp_store_status(int cpu)
570 {
571 	unsigned long vx_sa;
572 	struct pcpu *pcpu;
573 
574 	pcpu = pcpu_devices + cpu;
575 	if (__pcpu_sigp_relax(pcpu->address, SIGP_STOP_AND_STORE_STATUS,
576 			      0, NULL) != SIGP_CC_ORDER_CODE_ACCEPTED)
577 		return -EIO;
578 	if (!MACHINE_HAS_VX)
579 		return 0;
580 	vx_sa = __pa(pcpu->lowcore->vector_save_area_addr);
581 	__pcpu_sigp_relax(pcpu->address, SIGP_STORE_ADDITIONAL_STATUS,
582 			  vx_sa, NULL);
583 	return 0;
584 }
585 
586 #endif /* CONFIG_CRASH_DUMP */
587 
588 /*
589  * Collect CPU state of the previous, crashed system.
590  * There are four cases:
591  * 1) standard zfcp dump
592  *    condition: OLDMEM_BASE == NULL && ipl_info.type == IPL_TYPE_FCP_DUMP
593  *    The state for all CPUs except the boot CPU needs to be collected
594  *    with sigp stop-and-store-status. The boot CPU state is located in
595  *    the absolute lowcore of the memory stored in the HSA. The zcore code
596  *    will allocate the save area and copy the boot CPU state from the HSA.
597  * 2) stand-alone kdump for SCSI (zfcp dump with swapped memory)
598  *    condition: OLDMEM_BASE != NULL && ipl_info.type == IPL_TYPE_FCP_DUMP
599  *    The state for all CPUs except the boot CPU needs to be collected
600  *    with sigp stop-and-store-status. The firmware or the boot-loader
601  *    stored the registers of the boot CPU in the absolute lowcore in the
602  *    memory of the old system.
603  * 3) kdump and the old kernel did not store the CPU state,
604  *    or stand-alone kdump for DASD
605  *    condition: OLDMEM_BASE != NULL && !is_kdump_kernel()
606  *    The state for all CPUs except the boot CPU needs to be collected
607  *    with sigp stop-and-store-status. The kexec code or the boot-loader
608  *    stored the registers of the boot CPU in the memory of the old system.
609  * 4) kdump and the old kernel stored the CPU state
610  *    condition: OLDMEM_BASE != NULL && is_kdump_kernel()
611  *    The state of all CPUs is stored in ELF sections in the memory of the
612  *    old system. The ELF sections are picked up by the crash_dump code
613  *    via elfcorehdr_addr.
614  */
615 void __init smp_save_dump_cpus(void)
616 {
617 #ifdef CONFIG_CRASH_DUMP
618 	int addr, cpu, boot_cpu_addr, max_cpu_addr;
619 	struct save_area_ext *sa_ext;
620 	bool is_boot_cpu;
621 
622 	if (is_kdump_kernel())
623 		/* Previous system stored the CPU states. Nothing to do. */
624 		return;
625 	if (!(OLDMEM_BASE || ipl_info.type == IPL_TYPE_FCP_DUMP))
626 		/* No previous system present, normal boot. */
627 		return;
628 	/* Set multi-threading state to the previous system. */
629 	pcpu_set_smt(sclp.mtid_prev);
630 	max_cpu_addr = SCLP_MAX_CORES << sclp.mtid_prev;
631 	for (cpu = 0, addr = 0; addr <= max_cpu_addr; addr++) {
632 		if (__pcpu_sigp_relax(addr, SIGP_SENSE, 0, NULL) ==
633 		    SIGP_CC_NOT_OPERATIONAL)
634 			continue;
635 		cpu += 1;
636 	}
637 	dump_save_areas.areas = (void *)memblock_alloc(sizeof(void *) * cpu, 8);
638 	dump_save_areas.count = cpu;
639 	boot_cpu_addr = stap();
640 	for (cpu = 0, addr = 0; addr <= max_cpu_addr; addr++) {
641 		if (__pcpu_sigp_relax(addr, SIGP_SENSE, 0, NULL) ==
642 		    SIGP_CC_NOT_OPERATIONAL)
643 			continue;
644 		sa_ext = (void *) memblock_alloc(sizeof(*sa_ext), 8);
645 		dump_save_areas.areas[cpu] = sa_ext;
646 		if (!sa_ext)
647 			panic("could not allocate memory for save area\n");
648 		is_boot_cpu = (addr == boot_cpu_addr);
649 		cpu += 1;
650 		if (is_boot_cpu && !OLDMEM_BASE)
651 			/* Skip boot CPU for standard zfcp dump. */
652 			continue;
653 		/* Get state for this CPU. */
654 		__smp_store_cpu_state(sa_ext, addr, is_boot_cpu);
655 	}
656 	diag308_reset();
657 	pcpu_set_smt(0);
658 #endif /* CONFIG_CRASH_DUMP */
659 }
660 
661 void smp_cpu_set_polarization(int cpu, int val)
662 {
663 	pcpu_devices[cpu].polarization = val;
664 }
665 
666 int smp_cpu_get_polarization(int cpu)
667 {
668 	return pcpu_devices[cpu].polarization;
669 }
670 
671 static struct sclp_core_info *smp_get_core_info(void)
672 {
673 	static int use_sigp_detection;
674 	struct sclp_core_info *info;
675 	int address;
676 
677 	info = kzalloc(sizeof(*info), GFP_KERNEL);
678 	if (info && (use_sigp_detection || sclp_get_core_info(info))) {
679 		use_sigp_detection = 1;
680 		for (address = 0;
681 		     address < (SCLP_MAX_CORES << smp_cpu_mt_shift);
682 		     address += (1U << smp_cpu_mt_shift)) {
683 			if (__pcpu_sigp_relax(address, SIGP_SENSE, 0, NULL) ==
684 			    SIGP_CC_NOT_OPERATIONAL)
685 				continue;
686 			info->core[info->configured].core_id =
687 				address >> smp_cpu_mt_shift;
688 			info->configured++;
689 		}
690 		info->combined = info->configured;
691 	}
692 	return info;
693 }
694 
695 static int smp_add_present_cpu(int cpu);
696 
697 static int __smp_rescan_cpus(struct sclp_core_info *info, int sysfs_add)
698 {
699 	struct pcpu *pcpu;
700 	cpumask_t avail;
701 	int cpu, nr, i, j;
702 	u16 address;
703 
704 	nr = 0;
705 	cpumask_xor(&avail, cpu_possible_mask, cpu_present_mask);
706 	cpu = cpumask_first(&avail);
707 	for (i = 0; (i < info->combined) && (cpu < nr_cpu_ids); i++) {
708 		if (sclp.has_core_type && info->core[i].type != boot_core_type)
709 			continue;
710 		address = info->core[i].core_id << smp_cpu_mt_shift;
711 		for (j = 0; j <= smp_cpu_mtid; j++) {
712 			if (pcpu_find_address(cpu_present_mask, address + j))
713 				continue;
714 			pcpu = pcpu_devices + cpu;
715 			pcpu->address = address + j;
716 			pcpu->state =
717 				(cpu >= info->configured*(smp_cpu_mtid + 1)) ?
718 				CPU_STATE_STANDBY : CPU_STATE_CONFIGURED;
719 			smp_cpu_set_polarization(cpu, POLARIZATION_UNKNOWN);
720 			set_cpu_present(cpu, true);
721 			if (sysfs_add && smp_add_present_cpu(cpu) != 0)
722 				set_cpu_present(cpu, false);
723 			else
724 				nr++;
725 			cpu = cpumask_next(cpu, &avail);
726 			if (cpu >= nr_cpu_ids)
727 				break;
728 		}
729 	}
730 	return nr;
731 }
732 
733 static void __init smp_detect_cpus(void)
734 {
735 	unsigned int cpu, mtid, c_cpus, s_cpus;
736 	struct sclp_core_info *info;
737 	u16 address;
738 
739 	/* Get CPU information */
740 	info = smp_get_core_info();
741 	if (!info)
742 		panic("smp_detect_cpus failed to allocate memory\n");
743 
744 	/* Find boot CPU type */
745 	if (sclp.has_core_type) {
746 		address = stap();
747 		for (cpu = 0; cpu < info->combined; cpu++)
748 			if (info->core[cpu].core_id == address) {
749 				/* The boot cpu dictates the cpu type. */
750 				boot_core_type = info->core[cpu].type;
751 				break;
752 			}
753 		if (cpu >= info->combined)
754 			panic("Could not find boot CPU type");
755 	}
756 
757 	/* Set multi-threading state for the current system */
758 	mtid = boot_core_type ? sclp.mtid : sclp.mtid_cp;
759 	mtid = (mtid < smp_max_threads) ? mtid : smp_max_threads - 1;
760 	pcpu_set_smt(mtid);
761 
762 	/* Print number of CPUs */
763 	c_cpus = s_cpus = 0;
764 	for (cpu = 0; cpu < info->combined; cpu++) {
765 		if (sclp.has_core_type &&
766 		    info->core[cpu].type != boot_core_type)
767 			continue;
768 		if (cpu < info->configured)
769 			c_cpus += smp_cpu_mtid + 1;
770 		else
771 			s_cpus += smp_cpu_mtid + 1;
772 	}
773 	pr_info("%d configured CPUs, %d standby CPUs\n", c_cpus, s_cpus);
774 
775 	/* Add CPUs present at boot */
776 	get_online_cpus();
777 	__smp_rescan_cpus(info, 0);
778 	put_online_cpus();
779 	kfree(info);
780 }
781 
782 /*
783  *	Activate a secondary processor.
784  */
785 static void smp_start_secondary(void *cpuvoid)
786 {
787 	S390_lowcore.last_update_clock = get_tod_clock();
788 	S390_lowcore.restart_stack = (unsigned long) restart_stack;
789 	S390_lowcore.restart_fn = (unsigned long) do_restart;
790 	S390_lowcore.restart_data = 0;
791 	S390_lowcore.restart_source = -1UL;
792 	restore_access_regs(S390_lowcore.access_regs_save_area);
793 	__ctl_load(S390_lowcore.cregs_save_area, 0, 15);
794 	__load_psw_mask(PSW_KERNEL_BITS | PSW_MASK_DAT);
795 	cpu_init();
796 	preempt_disable();
797 	init_cpu_timer();
798 	vtime_init();
799 	pfault_init();
800 	notify_cpu_starting(smp_processor_id());
801 	set_cpu_online(smp_processor_id(), true);
802 	inc_irq_stat(CPU_RST);
803 	local_irq_enable();
804 	cpu_startup_entry(CPUHP_ONLINE);
805 }
806 
807 /* Upping and downing of CPUs */
808 int __cpu_up(unsigned int cpu, struct task_struct *tidle)
809 {
810 	struct pcpu *pcpu;
811 	int base, i, rc;
812 
813 	pcpu = pcpu_devices + cpu;
814 	if (pcpu->state != CPU_STATE_CONFIGURED)
815 		return -EIO;
816 	base = cpu - (cpu % (smp_cpu_mtid + 1));
817 	for (i = 0; i <= smp_cpu_mtid; i++) {
818 		if (base + i < nr_cpu_ids)
819 			if (cpu_online(base + i))
820 				break;
821 	}
822 	/*
823 	 * If this is the first CPU of the core to get online
824 	 * do an initial CPU reset.
825 	 */
826 	if (i > smp_cpu_mtid &&
827 	    pcpu_sigp_retry(pcpu_devices + base, SIGP_INITIAL_CPU_RESET, 0) !=
828 	    SIGP_CC_ORDER_CODE_ACCEPTED)
829 		return -EIO;
830 
831 	rc = pcpu_alloc_lowcore(pcpu, cpu);
832 	if (rc)
833 		return rc;
834 	pcpu_prepare_secondary(pcpu, cpu);
835 	pcpu_attach_task(pcpu, tidle);
836 	pcpu_start_fn(pcpu, smp_start_secondary, NULL);
837 	/* Wait until cpu puts itself in the online & active maps */
838 	while (!cpu_online(cpu) || !cpu_active(cpu))
839 		cpu_relax();
840 	return 0;
841 }
842 
843 static unsigned int setup_possible_cpus __initdata;
844 
845 static int __init _setup_possible_cpus(char *s)
846 {
847 	get_option(&s, &setup_possible_cpus);
848 	return 0;
849 }
850 early_param("possible_cpus", _setup_possible_cpus);
851 
852 #ifdef CONFIG_HOTPLUG_CPU
853 
854 int __cpu_disable(void)
855 {
856 	unsigned long cregs[16];
857 
858 	/* Handle possible pending IPIs */
859 	smp_handle_ext_call();
860 	set_cpu_online(smp_processor_id(), false);
861 	/* Disable pseudo page faults on this cpu. */
862 	pfault_fini();
863 	/* Disable interrupt sources via control register. */
864 	__ctl_store(cregs, 0, 15);
865 	cregs[0]  &= ~0x0000ee70UL;	/* disable all external interrupts */
866 	cregs[6]  &= ~0xff000000UL;	/* disable all I/O interrupts */
867 	cregs[14] &= ~0x1f000000UL;	/* disable most machine checks */
868 	__ctl_load(cregs, 0, 15);
869 	clear_cpu_flag(CIF_NOHZ_DELAY);
870 	return 0;
871 }
872 
873 void __cpu_die(unsigned int cpu)
874 {
875 	struct pcpu *pcpu;
876 
877 	/* Wait until target cpu is down */
878 	pcpu = pcpu_devices + cpu;
879 	while (!pcpu_stopped(pcpu))
880 		cpu_relax();
881 	pcpu_free_lowcore(pcpu);
882 	atomic_dec(&init_mm.context.attach_count);
883 	cpumask_clear_cpu(cpu, mm_cpumask(&init_mm));
884 	if (MACHINE_HAS_TLB_LC)
885 		cpumask_clear_cpu(cpu, &init_mm.context.cpu_attach_mask);
886 }
887 
888 void __noreturn cpu_die(void)
889 {
890 	idle_task_exit();
891 	pcpu_sigp_retry(pcpu_devices + smp_processor_id(), SIGP_STOP, 0);
892 	for (;;) ;
893 }
894 
895 #endif /* CONFIG_HOTPLUG_CPU */
896 
897 void __init smp_fill_possible_mask(void)
898 {
899 	unsigned int possible, sclp_max, cpu;
900 
901 	sclp_max = max(sclp.mtid, sclp.mtid_cp) + 1;
902 	sclp_max = min(smp_max_threads, sclp_max);
903 	sclp_max = sclp.max_cores * sclp_max ?: nr_cpu_ids;
904 	possible = setup_possible_cpus ?: nr_cpu_ids;
905 	possible = min(possible, sclp_max);
906 	for (cpu = 0; cpu < possible && cpu < nr_cpu_ids; cpu++)
907 		set_cpu_possible(cpu, true);
908 }
909 
910 void __init smp_prepare_cpus(unsigned int max_cpus)
911 {
912 	/* request the 0x1201 emergency signal external interrupt */
913 	if (register_external_irq(EXT_IRQ_EMERGENCY_SIG, do_ext_call_interrupt))
914 		panic("Couldn't request external interrupt 0x1201");
915 	/* request the 0x1202 external call external interrupt */
916 	if (register_external_irq(EXT_IRQ_EXTERNAL_CALL, do_ext_call_interrupt))
917 		panic("Couldn't request external interrupt 0x1202");
918 	smp_detect_cpus();
919 }
920 
921 void __init smp_prepare_boot_cpu(void)
922 {
923 	struct pcpu *pcpu = pcpu_devices;
924 
925 	pcpu->state = CPU_STATE_CONFIGURED;
926 	pcpu->address = stap();
927 	pcpu->lowcore = (struct _lowcore *)(unsigned long) store_prefix();
928 	S390_lowcore.percpu_offset = __per_cpu_offset[0];
929 	smp_cpu_set_polarization(0, POLARIZATION_UNKNOWN);
930 	set_cpu_present(0, true);
931 	set_cpu_online(0, true);
932 }
933 
934 void __init smp_cpus_done(unsigned int max_cpus)
935 {
936 }
937 
938 void __init smp_setup_processor_id(void)
939 {
940 	S390_lowcore.cpu_nr = 0;
941 	S390_lowcore.spinlock_lockval = arch_spin_lockval(0);
942 }
943 
944 /*
945  * the frequency of the profiling timer can be changed
946  * by writing a multiplier value into /proc/profile.
947  *
948  * usually you want to run this on all CPUs ;)
949  */
950 int setup_profiling_timer(unsigned int multiplier)
951 {
952 	return 0;
953 }
954 
955 #ifdef CONFIG_HOTPLUG_CPU
956 static ssize_t cpu_configure_show(struct device *dev,
957 				  struct device_attribute *attr, char *buf)
958 {
959 	ssize_t count;
960 
961 	mutex_lock(&smp_cpu_state_mutex);
962 	count = sprintf(buf, "%d\n", pcpu_devices[dev->id].state);
963 	mutex_unlock(&smp_cpu_state_mutex);
964 	return count;
965 }
966 
967 static ssize_t cpu_configure_store(struct device *dev,
968 				   struct device_attribute *attr,
969 				   const char *buf, size_t count)
970 {
971 	struct pcpu *pcpu;
972 	int cpu, val, rc, i;
973 	char delim;
974 
975 	if (sscanf(buf, "%d %c", &val, &delim) != 1)
976 		return -EINVAL;
977 	if (val != 0 && val != 1)
978 		return -EINVAL;
979 	get_online_cpus();
980 	mutex_lock(&smp_cpu_state_mutex);
981 	rc = -EBUSY;
982 	/* disallow configuration changes of online cpus and cpu 0 */
983 	cpu = dev->id;
984 	cpu -= cpu % (smp_cpu_mtid + 1);
985 	if (cpu == 0)
986 		goto out;
987 	for (i = 0; i <= smp_cpu_mtid; i++)
988 		if (cpu_online(cpu + i))
989 			goto out;
990 	pcpu = pcpu_devices + cpu;
991 	rc = 0;
992 	switch (val) {
993 	case 0:
994 		if (pcpu->state != CPU_STATE_CONFIGURED)
995 			break;
996 		rc = sclp_core_deconfigure(pcpu->address >> smp_cpu_mt_shift);
997 		if (rc)
998 			break;
999 		for (i = 0; i <= smp_cpu_mtid; i++) {
1000 			if (cpu + i >= nr_cpu_ids || !cpu_present(cpu + i))
1001 				continue;
1002 			pcpu[i].state = CPU_STATE_STANDBY;
1003 			smp_cpu_set_polarization(cpu + i,
1004 						 POLARIZATION_UNKNOWN);
1005 		}
1006 		topology_expect_change();
1007 		break;
1008 	case 1:
1009 		if (pcpu->state != CPU_STATE_STANDBY)
1010 			break;
1011 		rc = sclp_core_configure(pcpu->address >> smp_cpu_mt_shift);
1012 		if (rc)
1013 			break;
1014 		for (i = 0; i <= smp_cpu_mtid; i++) {
1015 			if (cpu + i >= nr_cpu_ids || !cpu_present(cpu + i))
1016 				continue;
1017 			pcpu[i].state = CPU_STATE_CONFIGURED;
1018 			smp_cpu_set_polarization(cpu + i,
1019 						 POLARIZATION_UNKNOWN);
1020 		}
1021 		topology_expect_change();
1022 		break;
1023 	default:
1024 		break;
1025 	}
1026 out:
1027 	mutex_unlock(&smp_cpu_state_mutex);
1028 	put_online_cpus();
1029 	return rc ? rc : count;
1030 }
1031 static DEVICE_ATTR(configure, 0644, cpu_configure_show, cpu_configure_store);
1032 #endif /* CONFIG_HOTPLUG_CPU */
1033 
1034 static ssize_t show_cpu_address(struct device *dev,
1035 				struct device_attribute *attr, char *buf)
1036 {
1037 	return sprintf(buf, "%d\n", pcpu_devices[dev->id].address);
1038 }
1039 static DEVICE_ATTR(address, 0444, show_cpu_address, NULL);
1040 
1041 static struct attribute *cpu_common_attrs[] = {
1042 #ifdef CONFIG_HOTPLUG_CPU
1043 	&dev_attr_configure.attr,
1044 #endif
1045 	&dev_attr_address.attr,
1046 	NULL,
1047 };
1048 
1049 static struct attribute_group cpu_common_attr_group = {
1050 	.attrs = cpu_common_attrs,
1051 };
1052 
1053 static struct attribute *cpu_online_attrs[] = {
1054 	&dev_attr_idle_count.attr,
1055 	&dev_attr_idle_time_us.attr,
1056 	NULL,
1057 };
1058 
1059 static struct attribute_group cpu_online_attr_group = {
1060 	.attrs = cpu_online_attrs,
1061 };
1062 
1063 static int smp_cpu_notify(struct notifier_block *self, unsigned long action,
1064 			  void *hcpu)
1065 {
1066 	unsigned int cpu = (unsigned int)(long)hcpu;
1067 	struct device *s = &per_cpu(cpu_device, cpu)->dev;
1068 	int err = 0;
1069 
1070 	switch (action & ~CPU_TASKS_FROZEN) {
1071 	case CPU_ONLINE:
1072 		err = sysfs_create_group(&s->kobj, &cpu_online_attr_group);
1073 		break;
1074 	case CPU_DEAD:
1075 		sysfs_remove_group(&s->kobj, &cpu_online_attr_group);
1076 		break;
1077 	}
1078 	return notifier_from_errno(err);
1079 }
1080 
1081 static int smp_add_present_cpu(int cpu)
1082 {
1083 	struct device *s;
1084 	struct cpu *c;
1085 	int rc;
1086 
1087 	c = kzalloc(sizeof(*c), GFP_KERNEL);
1088 	if (!c)
1089 		return -ENOMEM;
1090 	per_cpu(cpu_device, cpu) = c;
1091 	s = &c->dev;
1092 	c->hotpluggable = 1;
1093 	rc = register_cpu(c, cpu);
1094 	if (rc)
1095 		goto out;
1096 	rc = sysfs_create_group(&s->kobj, &cpu_common_attr_group);
1097 	if (rc)
1098 		goto out_cpu;
1099 	if (cpu_online(cpu)) {
1100 		rc = sysfs_create_group(&s->kobj, &cpu_online_attr_group);
1101 		if (rc)
1102 			goto out_online;
1103 	}
1104 	rc = topology_cpu_init(c);
1105 	if (rc)
1106 		goto out_topology;
1107 	return 0;
1108 
1109 out_topology:
1110 	if (cpu_online(cpu))
1111 		sysfs_remove_group(&s->kobj, &cpu_online_attr_group);
1112 out_online:
1113 	sysfs_remove_group(&s->kobj, &cpu_common_attr_group);
1114 out_cpu:
1115 #ifdef CONFIG_HOTPLUG_CPU
1116 	unregister_cpu(c);
1117 #endif
1118 out:
1119 	return rc;
1120 }
1121 
1122 #ifdef CONFIG_HOTPLUG_CPU
1123 
1124 int __ref smp_rescan_cpus(void)
1125 {
1126 	struct sclp_core_info *info;
1127 	int nr;
1128 
1129 	info = smp_get_core_info();
1130 	if (!info)
1131 		return -ENOMEM;
1132 	get_online_cpus();
1133 	mutex_lock(&smp_cpu_state_mutex);
1134 	nr = __smp_rescan_cpus(info, 1);
1135 	mutex_unlock(&smp_cpu_state_mutex);
1136 	put_online_cpus();
1137 	kfree(info);
1138 	if (nr)
1139 		topology_schedule_update();
1140 	return 0;
1141 }
1142 
1143 static ssize_t __ref rescan_store(struct device *dev,
1144 				  struct device_attribute *attr,
1145 				  const char *buf,
1146 				  size_t count)
1147 {
1148 	int rc;
1149 
1150 	rc = smp_rescan_cpus();
1151 	return rc ? rc : count;
1152 }
1153 static DEVICE_ATTR(rescan, 0200, NULL, rescan_store);
1154 #endif /* CONFIG_HOTPLUG_CPU */
1155 
1156 static int __init s390_smp_init(void)
1157 {
1158 	int cpu, rc = 0;
1159 
1160 #ifdef CONFIG_HOTPLUG_CPU
1161 	rc = device_create_file(cpu_subsys.dev_root, &dev_attr_rescan);
1162 	if (rc)
1163 		return rc;
1164 #endif
1165 	cpu_notifier_register_begin();
1166 	for_each_present_cpu(cpu) {
1167 		rc = smp_add_present_cpu(cpu);
1168 		if (rc)
1169 			goto out;
1170 	}
1171 
1172 	__hotcpu_notifier(smp_cpu_notify, 0);
1173 
1174 out:
1175 	cpu_notifier_register_done();
1176 	return rc;
1177 }
1178 subsys_initcall(s390_smp_init);
1179