xref: /openbmc/linux/arch/s390/kernel/smp.c (revision a09d2831)
1 /*
2  *  arch/s390/kernel/smp.c
3  *
4  *    Copyright IBM Corp. 1999, 2009
5  *    Author(s): Denis Joseph Barrow (djbarrow@de.ibm.com,barrow_dj@yahoo.com),
6  *		 Martin Schwidefsky (schwidefsky@de.ibm.com)
7  *		 Heiko Carstens (heiko.carstens@de.ibm.com)
8  *
9  *  based on other smp stuff by
10  *    (c) 1995 Alan Cox, CymruNET Ltd  <alan@cymru.net>
11  *    (c) 1998 Ingo Molnar
12  *
13  * We work with logical cpu numbering everywhere we can. The only
14  * functions using the real cpu address (got from STAP) are the sigp
15  * functions. For all other functions we use the identity mapping.
16  * That means that cpu_number_map[i] == i for every cpu. cpu_number_map is
17  * used e.g. to find the idle task belonging to a logical cpu. Every array
18  * in the kernel is sorted by the logical cpu number and not by the physical
19  * one which is causing all the confusion with __cpu_logical_map and
20  * cpu_number_map in other architectures.
21  */
22 
23 #define KMSG_COMPONENT "cpu"
24 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
25 
26 #include <linux/module.h>
27 #include <linux/init.h>
28 #include <linux/mm.h>
29 #include <linux/err.h>
30 #include <linux/spinlock.h>
31 #include <linux/kernel_stat.h>
32 #include <linux/delay.h>
33 #include <linux/cache.h>
34 #include <linux/interrupt.h>
35 #include <linux/irqflags.h>
36 #include <linux/cpu.h>
37 #include <linux/timex.h>
38 #include <linux/bootmem.h>
39 #include <asm/ipl.h>
40 #include <asm/setup.h>
41 #include <asm/sigp.h>
42 #include <asm/pgalloc.h>
43 #include <asm/irq.h>
44 #include <asm/s390_ext.h>
45 #include <asm/cpcmd.h>
46 #include <asm/tlbflush.h>
47 #include <asm/timer.h>
48 #include <asm/lowcore.h>
49 #include <asm/sclp.h>
50 #include <asm/cputime.h>
51 #include <asm/vdso.h>
52 #include <asm/cpu.h>
53 #include "entry.h"
54 
55 static struct task_struct *current_set[NR_CPUS];
56 
57 static u8 smp_cpu_type;
58 static int smp_use_sigp_detection;
59 
60 enum s390_cpu_state {
61 	CPU_STATE_STANDBY,
62 	CPU_STATE_CONFIGURED,
63 };
64 
65 DEFINE_MUTEX(smp_cpu_state_mutex);
66 int smp_cpu_polarization[NR_CPUS];
67 static int smp_cpu_state[NR_CPUS];
68 static int cpu_management;
69 
70 static DEFINE_PER_CPU(struct cpu, cpu_devices);
71 
72 static void smp_ext_bitcall(int, ec_bit_sig);
73 
74 static int cpu_stopped(int cpu)
75 {
76 	__u32 status;
77 
78 	switch (signal_processor_ps(&status, 0, cpu, sigp_sense)) {
79 	case sigp_status_stored:
80 		/* Check for stopped and check stop state */
81 		if (status & 0x50)
82 			return 1;
83 		break;
84 	default:
85 		break;
86 	}
87 	return 0;
88 }
89 
90 void smp_send_stop(void)
91 {
92 	int cpu, rc;
93 
94 	/* Disable all interrupts/machine checks */
95 	__load_psw_mask(psw_kernel_bits & ~PSW_MASK_MCHECK);
96 	trace_hardirqs_off();
97 
98 	/* stop all processors */
99 	for_each_online_cpu(cpu) {
100 		if (cpu == smp_processor_id())
101 			continue;
102 		do {
103 			rc = signal_processor(cpu, sigp_stop);
104 		} while (rc == sigp_busy);
105 
106 		while (!cpu_stopped(cpu))
107 			cpu_relax();
108 	}
109 }
110 
111 /*
112  * This is the main routine where commands issued by other
113  * cpus are handled.
114  */
115 
116 static void do_ext_call_interrupt(__u16 code)
117 {
118 	unsigned long bits;
119 
120 	/*
121 	 * handle bit signal external calls
122 	 *
123 	 * For the ec_schedule signal we have to do nothing. All the work
124 	 * is done automatically when we return from the interrupt.
125 	 */
126 	bits = xchg(&S390_lowcore.ext_call_fast, 0);
127 
128 	if (test_bit(ec_call_function, &bits))
129 		generic_smp_call_function_interrupt();
130 
131 	if (test_bit(ec_call_function_single, &bits))
132 		generic_smp_call_function_single_interrupt();
133 }
134 
135 /*
136  * Send an external call sigp to another cpu and return without waiting
137  * for its completion.
138  */
139 static void smp_ext_bitcall(int cpu, ec_bit_sig sig)
140 {
141 	/*
142 	 * Set signaling bit in lowcore of target cpu and kick it
143 	 */
144 	set_bit(sig, (unsigned long *) &lowcore_ptr[cpu]->ext_call_fast);
145 	while (signal_processor(cpu, sigp_emergency_signal) == sigp_busy)
146 		udelay(10);
147 }
148 
149 void arch_send_call_function_ipi_mask(const struct cpumask *mask)
150 {
151 	int cpu;
152 
153 	for_each_cpu(cpu, mask)
154 		smp_ext_bitcall(cpu, ec_call_function);
155 }
156 
157 void arch_send_call_function_single_ipi(int cpu)
158 {
159 	smp_ext_bitcall(cpu, ec_call_function_single);
160 }
161 
162 #ifndef CONFIG_64BIT
163 /*
164  * this function sends a 'purge tlb' signal to another CPU.
165  */
166 static void smp_ptlb_callback(void *info)
167 {
168 	__tlb_flush_local();
169 }
170 
171 void smp_ptlb_all(void)
172 {
173 	on_each_cpu(smp_ptlb_callback, NULL, 1);
174 }
175 EXPORT_SYMBOL(smp_ptlb_all);
176 #endif /* ! CONFIG_64BIT */
177 
178 /*
179  * this function sends a 'reschedule' IPI to another CPU.
180  * it goes straight through and wastes no time serializing
181  * anything. Worst case is that we lose a reschedule ...
182  */
183 void smp_send_reschedule(int cpu)
184 {
185 	smp_ext_bitcall(cpu, ec_schedule);
186 }
187 
188 /*
189  * parameter area for the set/clear control bit callbacks
190  */
191 struct ec_creg_mask_parms {
192 	unsigned long orvals[16];
193 	unsigned long andvals[16];
194 };
195 
196 /*
197  * callback for setting/clearing control bits
198  */
199 static void smp_ctl_bit_callback(void *info)
200 {
201 	struct ec_creg_mask_parms *pp = info;
202 	unsigned long cregs[16];
203 	int i;
204 
205 	__ctl_store(cregs, 0, 15);
206 	for (i = 0; i <= 15; i++)
207 		cregs[i] = (cregs[i] & pp->andvals[i]) | pp->orvals[i];
208 	__ctl_load(cregs, 0, 15);
209 }
210 
211 /*
212  * Set a bit in a control register of all cpus
213  */
214 void smp_ctl_set_bit(int cr, int bit)
215 {
216 	struct ec_creg_mask_parms parms;
217 
218 	memset(&parms.orvals, 0, sizeof(parms.orvals));
219 	memset(&parms.andvals, 0xff, sizeof(parms.andvals));
220 	parms.orvals[cr] = 1 << bit;
221 	on_each_cpu(smp_ctl_bit_callback, &parms, 1);
222 }
223 EXPORT_SYMBOL(smp_ctl_set_bit);
224 
225 /*
226  * Clear a bit in a control register of all cpus
227  */
228 void smp_ctl_clear_bit(int cr, int bit)
229 {
230 	struct ec_creg_mask_parms parms;
231 
232 	memset(&parms.orvals, 0, sizeof(parms.orvals));
233 	memset(&parms.andvals, 0xff, sizeof(parms.andvals));
234 	parms.andvals[cr] = ~(1L << bit);
235 	on_each_cpu(smp_ctl_bit_callback, &parms, 1);
236 }
237 EXPORT_SYMBOL(smp_ctl_clear_bit);
238 
239 /*
240  * In early ipl state a temp. logically cpu number is needed, so the sigp
241  * functions can be used to sense other cpus. Since NR_CPUS is >= 2 on
242  * CONFIG_SMP and the ipl cpu is logical cpu 0, it must be 1.
243  */
244 #define CPU_INIT_NO	1
245 
246 #ifdef CONFIG_ZFCPDUMP
247 
248 /*
249  * zfcpdump_prefix_array holds prefix registers for the following scenario:
250  * 64 bit zfcpdump kernel and 31 bit kernel which is to be dumped. We have to
251  * save its prefix registers, since they get lost, when switching from 31 bit
252  * to 64 bit.
253  */
254 unsigned int zfcpdump_prefix_array[NR_CPUS + 1] \
255 	__attribute__((__section__(".data")));
256 
257 static void __init smp_get_save_area(unsigned int cpu, unsigned int phy_cpu)
258 {
259 	if (ipl_info.type != IPL_TYPE_FCP_DUMP)
260 		return;
261 	if (cpu >= NR_CPUS) {
262 		pr_warning("CPU %i exceeds the maximum %i and is excluded from "
263 			   "the dump\n", cpu, NR_CPUS - 1);
264 		return;
265 	}
266 	zfcpdump_save_areas[cpu] = kmalloc(sizeof(union save_area), GFP_KERNEL);
267 	__cpu_logical_map[CPU_INIT_NO] = (__u16) phy_cpu;
268 	while (signal_processor(CPU_INIT_NO, sigp_stop_and_store_status) ==
269 	       sigp_busy)
270 		cpu_relax();
271 	memcpy(zfcpdump_save_areas[cpu],
272 	       (void *)(unsigned long) store_prefix() + SAVE_AREA_BASE,
273 	       SAVE_AREA_SIZE);
274 #ifdef CONFIG_64BIT
275 	/* copy original prefix register */
276 	zfcpdump_save_areas[cpu]->s390x.pref_reg = zfcpdump_prefix_array[cpu];
277 #endif
278 }
279 
280 union save_area *zfcpdump_save_areas[NR_CPUS + 1];
281 EXPORT_SYMBOL_GPL(zfcpdump_save_areas);
282 
283 #else
284 
285 static inline void smp_get_save_area(unsigned int cpu, unsigned int phy_cpu) { }
286 
287 #endif /* CONFIG_ZFCPDUMP */
288 
289 static int cpu_known(int cpu_id)
290 {
291 	int cpu;
292 
293 	for_each_present_cpu(cpu) {
294 		if (__cpu_logical_map[cpu] == cpu_id)
295 			return 1;
296 	}
297 	return 0;
298 }
299 
300 static int smp_rescan_cpus_sigp(cpumask_t avail)
301 {
302 	int cpu_id, logical_cpu;
303 
304 	logical_cpu = cpumask_first(&avail);
305 	if (logical_cpu >= nr_cpu_ids)
306 		return 0;
307 	for (cpu_id = 0; cpu_id <= MAX_CPU_ADDRESS; cpu_id++) {
308 		if (cpu_known(cpu_id))
309 			continue;
310 		__cpu_logical_map[logical_cpu] = cpu_id;
311 		smp_cpu_polarization[logical_cpu] = POLARIZATION_UNKNWN;
312 		if (!cpu_stopped(logical_cpu))
313 			continue;
314 		cpu_set(logical_cpu, cpu_present_map);
315 		smp_cpu_state[logical_cpu] = CPU_STATE_CONFIGURED;
316 		logical_cpu = cpumask_next(logical_cpu, &avail);
317 		if (logical_cpu >= nr_cpu_ids)
318 			break;
319 	}
320 	return 0;
321 }
322 
323 static int smp_rescan_cpus_sclp(cpumask_t avail)
324 {
325 	struct sclp_cpu_info *info;
326 	int cpu_id, logical_cpu, cpu;
327 	int rc;
328 
329 	logical_cpu = cpumask_first(&avail);
330 	if (logical_cpu >= nr_cpu_ids)
331 		return 0;
332 	info = kmalloc(sizeof(*info), GFP_KERNEL);
333 	if (!info)
334 		return -ENOMEM;
335 	rc = sclp_get_cpu_info(info);
336 	if (rc)
337 		goto out;
338 	for (cpu = 0; cpu < info->combined; cpu++) {
339 		if (info->has_cpu_type && info->cpu[cpu].type != smp_cpu_type)
340 			continue;
341 		cpu_id = info->cpu[cpu].address;
342 		if (cpu_known(cpu_id))
343 			continue;
344 		__cpu_logical_map[logical_cpu] = cpu_id;
345 		smp_cpu_polarization[logical_cpu] = POLARIZATION_UNKNWN;
346 		cpu_set(logical_cpu, cpu_present_map);
347 		if (cpu >= info->configured)
348 			smp_cpu_state[logical_cpu] = CPU_STATE_STANDBY;
349 		else
350 			smp_cpu_state[logical_cpu] = CPU_STATE_CONFIGURED;
351 		logical_cpu = cpumask_next(logical_cpu, &avail);
352 		if (logical_cpu >= nr_cpu_ids)
353 			break;
354 	}
355 out:
356 	kfree(info);
357 	return rc;
358 }
359 
360 static int __smp_rescan_cpus(void)
361 {
362 	cpumask_t avail;
363 
364 	cpus_xor(avail, cpu_possible_map, cpu_present_map);
365 	if (smp_use_sigp_detection)
366 		return smp_rescan_cpus_sigp(avail);
367 	else
368 		return smp_rescan_cpus_sclp(avail);
369 }
370 
371 static void __init smp_detect_cpus(void)
372 {
373 	unsigned int cpu, c_cpus, s_cpus;
374 	struct sclp_cpu_info *info;
375 	u16 boot_cpu_addr, cpu_addr;
376 
377 	c_cpus = 1;
378 	s_cpus = 0;
379 	boot_cpu_addr = __cpu_logical_map[0];
380 	info = kmalloc(sizeof(*info), GFP_KERNEL);
381 	if (!info)
382 		panic("smp_detect_cpus failed to allocate memory\n");
383 	/* Use sigp detection algorithm if sclp doesn't work. */
384 	if (sclp_get_cpu_info(info)) {
385 		smp_use_sigp_detection = 1;
386 		for (cpu = 0; cpu <= MAX_CPU_ADDRESS; cpu++) {
387 			if (cpu == boot_cpu_addr)
388 				continue;
389 			__cpu_logical_map[CPU_INIT_NO] = cpu;
390 			if (!cpu_stopped(CPU_INIT_NO))
391 				continue;
392 			smp_get_save_area(c_cpus, cpu);
393 			c_cpus++;
394 		}
395 		goto out;
396 	}
397 
398 	if (info->has_cpu_type) {
399 		for (cpu = 0; cpu < info->combined; cpu++) {
400 			if (info->cpu[cpu].address == boot_cpu_addr) {
401 				smp_cpu_type = info->cpu[cpu].type;
402 				break;
403 			}
404 		}
405 	}
406 
407 	for (cpu = 0; cpu < info->combined; cpu++) {
408 		if (info->has_cpu_type && info->cpu[cpu].type != smp_cpu_type)
409 			continue;
410 		cpu_addr = info->cpu[cpu].address;
411 		if (cpu_addr == boot_cpu_addr)
412 			continue;
413 		__cpu_logical_map[CPU_INIT_NO] = cpu_addr;
414 		if (!cpu_stopped(CPU_INIT_NO)) {
415 			s_cpus++;
416 			continue;
417 		}
418 		smp_get_save_area(c_cpus, cpu_addr);
419 		c_cpus++;
420 	}
421 out:
422 	kfree(info);
423 	pr_info("%d configured CPUs, %d standby CPUs\n", c_cpus, s_cpus);
424 	get_online_cpus();
425 	__smp_rescan_cpus();
426 	put_online_cpus();
427 }
428 
429 /*
430  *	Activate a secondary processor.
431  */
432 int __cpuinit start_secondary(void *cpuvoid)
433 {
434 	/* Setup the cpu */
435 	cpu_init();
436 	preempt_disable();
437 	/* Enable TOD clock interrupts on the secondary cpu. */
438 	init_cpu_timer();
439 	/* Enable cpu timer interrupts on the secondary cpu. */
440 	init_cpu_vtimer();
441 	/* Enable pfault pseudo page faults on this cpu. */
442 	pfault_init();
443 
444 	/* call cpu notifiers */
445 	notify_cpu_starting(smp_processor_id());
446 	/* Mark this cpu as online */
447 	ipi_call_lock();
448 	cpu_set(smp_processor_id(), cpu_online_map);
449 	ipi_call_unlock();
450 	/* Switch on interrupts */
451 	local_irq_enable();
452 	/* Print info about this processor */
453 	print_cpu_info();
454 	/* cpu_idle will call schedule for us */
455 	cpu_idle();
456 	return 0;
457 }
458 
459 static void __init smp_create_idle(unsigned int cpu)
460 {
461 	struct task_struct *p;
462 
463 	/*
464 	 *  don't care about the psw and regs settings since we'll never
465 	 *  reschedule the forked task.
466 	 */
467 	p = fork_idle(cpu);
468 	if (IS_ERR(p))
469 		panic("failed fork for CPU %u: %li", cpu, PTR_ERR(p));
470 	current_set[cpu] = p;
471 }
472 
473 static int __cpuinit smp_alloc_lowcore(int cpu)
474 {
475 	unsigned long async_stack, panic_stack;
476 	struct _lowcore *lowcore;
477 
478 	lowcore = (void *) __get_free_pages(GFP_KERNEL | GFP_DMA, LC_ORDER);
479 	if (!lowcore)
480 		return -ENOMEM;
481 	async_stack = __get_free_pages(GFP_KERNEL, ASYNC_ORDER);
482 	panic_stack = __get_free_page(GFP_KERNEL);
483 	if (!panic_stack || !async_stack)
484 		goto out;
485 	memcpy(lowcore, &S390_lowcore, 512);
486 	memset((char *)lowcore + 512, 0, sizeof(*lowcore) - 512);
487 	lowcore->async_stack = async_stack + ASYNC_SIZE;
488 	lowcore->panic_stack = panic_stack + PAGE_SIZE;
489 
490 #ifndef CONFIG_64BIT
491 	if (MACHINE_HAS_IEEE) {
492 		unsigned long save_area;
493 
494 		save_area = get_zeroed_page(GFP_KERNEL);
495 		if (!save_area)
496 			goto out;
497 		lowcore->extended_save_area_addr = (u32) save_area;
498 	}
499 #else
500 	if (vdso_alloc_per_cpu(cpu, lowcore))
501 		goto out;
502 #endif
503 	lowcore_ptr[cpu] = lowcore;
504 	return 0;
505 
506 out:
507 	free_page(panic_stack);
508 	free_pages(async_stack, ASYNC_ORDER);
509 	free_pages((unsigned long) lowcore, LC_ORDER);
510 	return -ENOMEM;
511 }
512 
513 static void smp_free_lowcore(int cpu)
514 {
515 	struct _lowcore *lowcore;
516 
517 	lowcore = lowcore_ptr[cpu];
518 #ifndef CONFIG_64BIT
519 	if (MACHINE_HAS_IEEE)
520 		free_page((unsigned long) lowcore->extended_save_area_addr);
521 #else
522 	vdso_free_per_cpu(cpu, lowcore);
523 #endif
524 	free_page(lowcore->panic_stack - PAGE_SIZE);
525 	free_pages(lowcore->async_stack - ASYNC_SIZE, ASYNC_ORDER);
526 	free_pages((unsigned long) lowcore, LC_ORDER);
527 	lowcore_ptr[cpu] = NULL;
528 }
529 
530 /* Upping and downing of CPUs */
531 int __cpuinit __cpu_up(unsigned int cpu)
532 {
533 	struct task_struct *idle;
534 	struct _lowcore *cpu_lowcore;
535 	struct stack_frame *sf;
536 	sigp_ccode ccode;
537 	u32 lowcore;
538 
539 	if (smp_cpu_state[cpu] != CPU_STATE_CONFIGURED)
540 		return -EIO;
541 	if (smp_alloc_lowcore(cpu))
542 		return -ENOMEM;
543 	do {
544 		ccode = signal_processor(cpu, sigp_initial_cpu_reset);
545 		if (ccode == sigp_busy)
546 			udelay(10);
547 		if (ccode == sigp_not_operational)
548 			goto err_out;
549 	} while (ccode == sigp_busy);
550 
551 	lowcore = (u32)(unsigned long)lowcore_ptr[cpu];
552 	while (signal_processor_p(lowcore, cpu, sigp_set_prefix) == sigp_busy)
553 		udelay(10);
554 
555 	idle = current_set[cpu];
556 	cpu_lowcore = lowcore_ptr[cpu];
557 	cpu_lowcore->kernel_stack = (unsigned long)
558 		task_stack_page(idle) + THREAD_SIZE;
559 	cpu_lowcore->thread_info = (unsigned long) task_thread_info(idle);
560 	sf = (struct stack_frame *) (cpu_lowcore->kernel_stack
561 				     - sizeof(struct pt_regs)
562 				     - sizeof(struct stack_frame));
563 	memset(sf, 0, sizeof(struct stack_frame));
564 	sf->gprs[9] = (unsigned long) sf;
565 	cpu_lowcore->save_area[15] = (unsigned long) sf;
566 	__ctl_store(cpu_lowcore->cregs_save_area, 0, 15);
567 	asm volatile(
568 		"	stam	0,15,0(%0)"
569 		: : "a" (&cpu_lowcore->access_regs_save_area) : "memory");
570 	cpu_lowcore->percpu_offset = __per_cpu_offset[cpu];
571 	cpu_lowcore->current_task = (unsigned long) idle;
572 	cpu_lowcore->cpu_nr = cpu;
573 	cpu_lowcore->kernel_asce = S390_lowcore.kernel_asce;
574 	cpu_lowcore->machine_flags = S390_lowcore.machine_flags;
575 	cpu_lowcore->ftrace_func = S390_lowcore.ftrace_func;
576 	eieio();
577 
578 	while (signal_processor(cpu, sigp_restart) == sigp_busy)
579 		udelay(10);
580 
581 	while (!cpu_online(cpu))
582 		cpu_relax();
583 	return 0;
584 
585 err_out:
586 	smp_free_lowcore(cpu);
587 	return -EIO;
588 }
589 
590 static int __init setup_possible_cpus(char *s)
591 {
592 	int pcpus, cpu;
593 
594 	pcpus = simple_strtoul(s, NULL, 0);
595 	init_cpu_possible(cpumask_of(0));
596 	for (cpu = 1; cpu < pcpus && cpu < nr_cpu_ids; cpu++)
597 		set_cpu_possible(cpu, true);
598 	return 0;
599 }
600 early_param("possible_cpus", setup_possible_cpus);
601 
602 #ifdef CONFIG_HOTPLUG_CPU
603 
604 int __cpu_disable(void)
605 {
606 	struct ec_creg_mask_parms cr_parms;
607 	int cpu = smp_processor_id();
608 
609 	cpu_clear(cpu, cpu_online_map);
610 
611 	/* Disable pfault pseudo page faults on this cpu. */
612 	pfault_fini();
613 
614 	memset(&cr_parms.orvals, 0, sizeof(cr_parms.orvals));
615 	memset(&cr_parms.andvals, 0xff, sizeof(cr_parms.andvals));
616 
617 	/* disable all external interrupts */
618 	cr_parms.orvals[0] = 0;
619 	cr_parms.andvals[0] = ~(1 << 15 | 1 << 14 | 1 << 13 | 1 << 12 |
620 				1 << 11 | 1 << 10 | 1 <<  6 | 1 <<  4);
621 	/* disable all I/O interrupts */
622 	cr_parms.orvals[6] = 0;
623 	cr_parms.andvals[6] = ~(1 << 31 | 1 << 30 | 1 << 29 | 1 << 28 |
624 				1 << 27 | 1 << 26 | 1 << 25 | 1 << 24);
625 	/* disable most machine checks */
626 	cr_parms.orvals[14] = 0;
627 	cr_parms.andvals[14] = ~(1 << 28 | 1 << 27 | 1 << 26 |
628 				 1 << 25 | 1 << 24);
629 
630 	smp_ctl_bit_callback(&cr_parms);
631 
632 	return 0;
633 }
634 
635 void __cpu_die(unsigned int cpu)
636 {
637 	/* Wait until target cpu is down */
638 	while (!cpu_stopped(cpu))
639 		cpu_relax();
640 	while (signal_processor_p(0, cpu, sigp_set_prefix) == sigp_busy)
641 		udelay(10);
642 	smp_free_lowcore(cpu);
643 	pr_info("Processor %d stopped\n", cpu);
644 }
645 
646 void cpu_die(void)
647 {
648 	idle_task_exit();
649 	while (signal_processor(smp_processor_id(), sigp_stop) == sigp_busy)
650 		cpu_relax();
651 	for (;;);
652 }
653 
654 #endif /* CONFIG_HOTPLUG_CPU */
655 
656 void __init smp_prepare_cpus(unsigned int max_cpus)
657 {
658 #ifndef CONFIG_64BIT
659 	unsigned long save_area = 0;
660 #endif
661 	unsigned long async_stack, panic_stack;
662 	struct _lowcore *lowcore;
663 	unsigned int cpu;
664 
665 	smp_detect_cpus();
666 
667 	/* request the 0x1201 emergency signal external interrupt */
668 	if (register_external_interrupt(0x1201, do_ext_call_interrupt) != 0)
669 		panic("Couldn't request external interrupt 0x1201");
670 	print_cpu_info();
671 
672 	/* Reallocate current lowcore, but keep its contents. */
673 	lowcore = (void *) __get_free_pages(GFP_KERNEL | GFP_DMA, LC_ORDER);
674 	panic_stack = __get_free_page(GFP_KERNEL);
675 	async_stack = __get_free_pages(GFP_KERNEL, ASYNC_ORDER);
676 	BUG_ON(!lowcore || !panic_stack || !async_stack);
677 #ifndef CONFIG_64BIT
678 	if (MACHINE_HAS_IEEE)
679 		save_area = get_zeroed_page(GFP_KERNEL);
680 #endif
681 	local_irq_disable();
682 	local_mcck_disable();
683 	lowcore_ptr[smp_processor_id()] = lowcore;
684 	*lowcore = S390_lowcore;
685 	lowcore->panic_stack = panic_stack + PAGE_SIZE;
686 	lowcore->async_stack = async_stack + ASYNC_SIZE;
687 #ifndef CONFIG_64BIT
688 	if (MACHINE_HAS_IEEE)
689 		lowcore->extended_save_area_addr = (u32) save_area;
690 #endif
691 	set_prefix((u32)(unsigned long) lowcore);
692 	local_mcck_enable();
693 	local_irq_enable();
694 #ifdef CONFIG_64BIT
695 	if (vdso_alloc_per_cpu(smp_processor_id(), &S390_lowcore))
696 		BUG();
697 #endif
698 	for_each_possible_cpu(cpu)
699 		if (cpu != smp_processor_id())
700 			smp_create_idle(cpu);
701 }
702 
703 void __init smp_prepare_boot_cpu(void)
704 {
705 	BUG_ON(smp_processor_id() != 0);
706 
707 	current_thread_info()->cpu = 0;
708 	cpu_set(0, cpu_present_map);
709 	cpu_set(0, cpu_online_map);
710 	S390_lowcore.percpu_offset = __per_cpu_offset[0];
711 	current_set[0] = current;
712 	smp_cpu_state[0] = CPU_STATE_CONFIGURED;
713 	smp_cpu_polarization[0] = POLARIZATION_UNKNWN;
714 }
715 
716 void __init smp_cpus_done(unsigned int max_cpus)
717 {
718 }
719 
720 /*
721  * the frequency of the profiling timer can be changed
722  * by writing a multiplier value into /proc/profile.
723  *
724  * usually you want to run this on all CPUs ;)
725  */
726 int setup_profiling_timer(unsigned int multiplier)
727 {
728 	return 0;
729 }
730 
731 #ifdef CONFIG_HOTPLUG_CPU
732 static ssize_t cpu_configure_show(struct sys_device *dev,
733 				struct sysdev_attribute *attr, char *buf)
734 {
735 	ssize_t count;
736 
737 	mutex_lock(&smp_cpu_state_mutex);
738 	count = sprintf(buf, "%d\n", smp_cpu_state[dev->id]);
739 	mutex_unlock(&smp_cpu_state_mutex);
740 	return count;
741 }
742 
743 static ssize_t cpu_configure_store(struct sys_device *dev,
744 				  struct sysdev_attribute *attr,
745 				  const char *buf, size_t count)
746 {
747 	int cpu = dev->id;
748 	int val, rc;
749 	char delim;
750 
751 	if (sscanf(buf, "%d %c", &val, &delim) != 1)
752 		return -EINVAL;
753 	if (val != 0 && val != 1)
754 		return -EINVAL;
755 
756 	get_online_cpus();
757 	mutex_lock(&smp_cpu_state_mutex);
758 	rc = -EBUSY;
759 	if (cpu_online(cpu))
760 		goto out;
761 	rc = 0;
762 	switch (val) {
763 	case 0:
764 		if (smp_cpu_state[cpu] == CPU_STATE_CONFIGURED) {
765 			rc = sclp_cpu_deconfigure(__cpu_logical_map[cpu]);
766 			if (!rc) {
767 				smp_cpu_state[cpu] = CPU_STATE_STANDBY;
768 				smp_cpu_polarization[cpu] = POLARIZATION_UNKNWN;
769 			}
770 		}
771 		break;
772 	case 1:
773 		if (smp_cpu_state[cpu] == CPU_STATE_STANDBY) {
774 			rc = sclp_cpu_configure(__cpu_logical_map[cpu]);
775 			if (!rc) {
776 				smp_cpu_state[cpu] = CPU_STATE_CONFIGURED;
777 				smp_cpu_polarization[cpu] = POLARIZATION_UNKNWN;
778 			}
779 		}
780 		break;
781 	default:
782 		break;
783 	}
784 out:
785 	mutex_unlock(&smp_cpu_state_mutex);
786 	put_online_cpus();
787 	return rc ? rc : count;
788 }
789 static SYSDEV_ATTR(configure, 0644, cpu_configure_show, cpu_configure_store);
790 #endif /* CONFIG_HOTPLUG_CPU */
791 
792 static ssize_t cpu_polarization_show(struct sys_device *dev,
793 				     struct sysdev_attribute *attr, char *buf)
794 {
795 	int cpu = dev->id;
796 	ssize_t count;
797 
798 	mutex_lock(&smp_cpu_state_mutex);
799 	switch (smp_cpu_polarization[cpu]) {
800 	case POLARIZATION_HRZ:
801 		count = sprintf(buf, "horizontal\n");
802 		break;
803 	case POLARIZATION_VL:
804 		count = sprintf(buf, "vertical:low\n");
805 		break;
806 	case POLARIZATION_VM:
807 		count = sprintf(buf, "vertical:medium\n");
808 		break;
809 	case POLARIZATION_VH:
810 		count = sprintf(buf, "vertical:high\n");
811 		break;
812 	default:
813 		count = sprintf(buf, "unknown\n");
814 		break;
815 	}
816 	mutex_unlock(&smp_cpu_state_mutex);
817 	return count;
818 }
819 static SYSDEV_ATTR(polarization, 0444, cpu_polarization_show, NULL);
820 
821 static ssize_t show_cpu_address(struct sys_device *dev,
822 				struct sysdev_attribute *attr, char *buf)
823 {
824 	return sprintf(buf, "%d\n", __cpu_logical_map[dev->id]);
825 }
826 static SYSDEV_ATTR(address, 0444, show_cpu_address, NULL);
827 
828 
829 static struct attribute *cpu_common_attrs[] = {
830 #ifdef CONFIG_HOTPLUG_CPU
831 	&attr_configure.attr,
832 #endif
833 	&attr_address.attr,
834 	&attr_polarization.attr,
835 	NULL,
836 };
837 
838 static struct attribute_group cpu_common_attr_group = {
839 	.attrs = cpu_common_attrs,
840 };
841 
842 static ssize_t show_capability(struct sys_device *dev,
843 				struct sysdev_attribute *attr, char *buf)
844 {
845 	unsigned int capability;
846 	int rc;
847 
848 	rc = get_cpu_capability(&capability);
849 	if (rc)
850 		return rc;
851 	return sprintf(buf, "%u\n", capability);
852 }
853 static SYSDEV_ATTR(capability, 0444, show_capability, NULL);
854 
855 static ssize_t show_idle_count(struct sys_device *dev,
856 				struct sysdev_attribute *attr, char *buf)
857 {
858 	struct s390_idle_data *idle;
859 	unsigned long long idle_count;
860 	unsigned int sequence;
861 
862 	idle = &per_cpu(s390_idle, dev->id);
863 repeat:
864 	sequence = idle->sequence;
865 	smp_rmb();
866 	if (sequence & 1)
867 		goto repeat;
868 	idle_count = idle->idle_count;
869 	if (idle->idle_enter)
870 		idle_count++;
871 	smp_rmb();
872 	if (idle->sequence != sequence)
873 		goto repeat;
874 	return sprintf(buf, "%llu\n", idle_count);
875 }
876 static SYSDEV_ATTR(idle_count, 0444, show_idle_count, NULL);
877 
878 static ssize_t show_idle_time(struct sys_device *dev,
879 				struct sysdev_attribute *attr, char *buf)
880 {
881 	struct s390_idle_data *idle;
882 	unsigned long long now, idle_time, idle_enter;
883 	unsigned int sequence;
884 
885 	idle = &per_cpu(s390_idle, dev->id);
886 	now = get_clock();
887 repeat:
888 	sequence = idle->sequence;
889 	smp_rmb();
890 	if (sequence & 1)
891 		goto repeat;
892 	idle_time = idle->idle_time;
893 	idle_enter = idle->idle_enter;
894 	if (idle_enter != 0ULL && idle_enter < now)
895 		idle_time += now - idle_enter;
896 	smp_rmb();
897 	if (idle->sequence != sequence)
898 		goto repeat;
899 	return sprintf(buf, "%llu\n", idle_time >> 12);
900 }
901 static SYSDEV_ATTR(idle_time_us, 0444, show_idle_time, NULL);
902 
903 static struct attribute *cpu_online_attrs[] = {
904 	&attr_capability.attr,
905 	&attr_idle_count.attr,
906 	&attr_idle_time_us.attr,
907 	NULL,
908 };
909 
910 static struct attribute_group cpu_online_attr_group = {
911 	.attrs = cpu_online_attrs,
912 };
913 
914 static int __cpuinit smp_cpu_notify(struct notifier_block *self,
915 				    unsigned long action, void *hcpu)
916 {
917 	unsigned int cpu = (unsigned int)(long)hcpu;
918 	struct cpu *c = &per_cpu(cpu_devices, cpu);
919 	struct sys_device *s = &c->sysdev;
920 	struct s390_idle_data *idle;
921 
922 	switch (action) {
923 	case CPU_ONLINE:
924 	case CPU_ONLINE_FROZEN:
925 		idle = &per_cpu(s390_idle, cpu);
926 		memset(idle, 0, sizeof(struct s390_idle_data));
927 		if (sysfs_create_group(&s->kobj, &cpu_online_attr_group))
928 			return NOTIFY_BAD;
929 		break;
930 	case CPU_DEAD:
931 	case CPU_DEAD_FROZEN:
932 		sysfs_remove_group(&s->kobj, &cpu_online_attr_group);
933 		break;
934 	}
935 	return NOTIFY_OK;
936 }
937 
938 static struct notifier_block __cpuinitdata smp_cpu_nb = {
939 	.notifier_call = smp_cpu_notify,
940 };
941 
942 static int __devinit smp_add_present_cpu(int cpu)
943 {
944 	struct cpu *c = &per_cpu(cpu_devices, cpu);
945 	struct sys_device *s = &c->sysdev;
946 	int rc;
947 
948 	c->hotpluggable = 1;
949 	rc = register_cpu(c, cpu);
950 	if (rc)
951 		goto out;
952 	rc = sysfs_create_group(&s->kobj, &cpu_common_attr_group);
953 	if (rc)
954 		goto out_cpu;
955 	if (!cpu_online(cpu))
956 		goto out;
957 	rc = sysfs_create_group(&s->kobj, &cpu_online_attr_group);
958 	if (!rc)
959 		return 0;
960 	sysfs_remove_group(&s->kobj, &cpu_common_attr_group);
961 out_cpu:
962 #ifdef CONFIG_HOTPLUG_CPU
963 	unregister_cpu(c);
964 #endif
965 out:
966 	return rc;
967 }
968 
969 #ifdef CONFIG_HOTPLUG_CPU
970 
971 int __ref smp_rescan_cpus(void)
972 {
973 	cpumask_t newcpus;
974 	int cpu;
975 	int rc;
976 
977 	get_online_cpus();
978 	mutex_lock(&smp_cpu_state_mutex);
979 	newcpus = cpu_present_map;
980 	rc = __smp_rescan_cpus();
981 	if (rc)
982 		goto out;
983 	cpus_andnot(newcpus, cpu_present_map, newcpus);
984 	for_each_cpu_mask(cpu, newcpus) {
985 		rc = smp_add_present_cpu(cpu);
986 		if (rc)
987 			cpu_clear(cpu, cpu_present_map);
988 	}
989 	rc = 0;
990 out:
991 	mutex_unlock(&smp_cpu_state_mutex);
992 	put_online_cpus();
993 	if (!cpus_empty(newcpus))
994 		topology_schedule_update();
995 	return rc;
996 }
997 
998 static ssize_t __ref rescan_store(struct sysdev_class *class, const char *buf,
999 				  size_t count)
1000 {
1001 	int rc;
1002 
1003 	rc = smp_rescan_cpus();
1004 	return rc ? rc : count;
1005 }
1006 static SYSDEV_CLASS_ATTR(rescan, 0200, NULL, rescan_store);
1007 #endif /* CONFIG_HOTPLUG_CPU */
1008 
1009 static ssize_t dispatching_show(struct sysdev_class *class, char *buf)
1010 {
1011 	ssize_t count;
1012 
1013 	mutex_lock(&smp_cpu_state_mutex);
1014 	count = sprintf(buf, "%d\n", cpu_management);
1015 	mutex_unlock(&smp_cpu_state_mutex);
1016 	return count;
1017 }
1018 
1019 static ssize_t dispatching_store(struct sysdev_class *dev, const char *buf,
1020 				 size_t count)
1021 {
1022 	int val, rc;
1023 	char delim;
1024 
1025 	if (sscanf(buf, "%d %c", &val, &delim) != 1)
1026 		return -EINVAL;
1027 	if (val != 0 && val != 1)
1028 		return -EINVAL;
1029 	rc = 0;
1030 	get_online_cpus();
1031 	mutex_lock(&smp_cpu_state_mutex);
1032 	if (cpu_management == val)
1033 		goto out;
1034 	rc = topology_set_cpu_management(val);
1035 	if (!rc)
1036 		cpu_management = val;
1037 out:
1038 	mutex_unlock(&smp_cpu_state_mutex);
1039 	put_online_cpus();
1040 	return rc ? rc : count;
1041 }
1042 static SYSDEV_CLASS_ATTR(dispatching, 0644, dispatching_show,
1043 			 dispatching_store);
1044 
1045 static int __init topology_init(void)
1046 {
1047 	int cpu;
1048 	int rc;
1049 
1050 	register_cpu_notifier(&smp_cpu_nb);
1051 
1052 #ifdef CONFIG_HOTPLUG_CPU
1053 	rc = sysdev_class_create_file(&cpu_sysdev_class, &attr_rescan);
1054 	if (rc)
1055 		return rc;
1056 #endif
1057 	rc = sysdev_class_create_file(&cpu_sysdev_class, &attr_dispatching);
1058 	if (rc)
1059 		return rc;
1060 	for_each_present_cpu(cpu) {
1061 		rc = smp_add_present_cpu(cpu);
1062 		if (rc)
1063 			return rc;
1064 	}
1065 	return 0;
1066 }
1067 subsys_initcall(topology_init);
1068