1 /* 2 * arch/s390/kernel/smp.c 3 * 4 * Copyright IBM Corp. 1999, 2009 5 * Author(s): Denis Joseph Barrow (djbarrow@de.ibm.com,barrow_dj@yahoo.com), 6 * Martin Schwidefsky (schwidefsky@de.ibm.com) 7 * Heiko Carstens (heiko.carstens@de.ibm.com) 8 * 9 * based on other smp stuff by 10 * (c) 1995 Alan Cox, CymruNET Ltd <alan@cymru.net> 11 * (c) 1998 Ingo Molnar 12 * 13 * We work with logical cpu numbering everywhere we can. The only 14 * functions using the real cpu address (got from STAP) are the sigp 15 * functions. For all other functions we use the identity mapping. 16 * That means that cpu_number_map[i] == i for every cpu. cpu_number_map is 17 * used e.g. to find the idle task belonging to a logical cpu. Every array 18 * in the kernel is sorted by the logical cpu number and not by the physical 19 * one which is causing all the confusion with __cpu_logical_map and 20 * cpu_number_map in other architectures. 21 */ 22 23 #define KMSG_COMPONENT "cpu" 24 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt 25 26 #include <linux/module.h> 27 #include <linux/init.h> 28 #include <linux/mm.h> 29 #include <linux/err.h> 30 #include <linux/spinlock.h> 31 #include <linux/kernel_stat.h> 32 #include <linux/delay.h> 33 #include <linux/cache.h> 34 #include <linux/interrupt.h> 35 #include <linux/irqflags.h> 36 #include <linux/cpu.h> 37 #include <linux/timex.h> 38 #include <linux/bootmem.h> 39 #include <asm/ipl.h> 40 #include <asm/setup.h> 41 #include <asm/sigp.h> 42 #include <asm/pgalloc.h> 43 #include <asm/irq.h> 44 #include <asm/s390_ext.h> 45 #include <asm/cpcmd.h> 46 #include <asm/tlbflush.h> 47 #include <asm/timer.h> 48 #include <asm/lowcore.h> 49 #include <asm/sclp.h> 50 #include <asm/cputime.h> 51 #include <asm/vdso.h> 52 #include <asm/cpu.h> 53 #include "entry.h" 54 55 static struct task_struct *current_set[NR_CPUS]; 56 57 static u8 smp_cpu_type; 58 static int smp_use_sigp_detection; 59 60 enum s390_cpu_state { 61 CPU_STATE_STANDBY, 62 CPU_STATE_CONFIGURED, 63 }; 64 65 DEFINE_MUTEX(smp_cpu_state_mutex); 66 int smp_cpu_polarization[NR_CPUS]; 67 static int smp_cpu_state[NR_CPUS]; 68 static int cpu_management; 69 70 static DEFINE_PER_CPU(struct cpu, cpu_devices); 71 72 static void smp_ext_bitcall(int, ec_bit_sig); 73 74 static int cpu_stopped(int cpu) 75 { 76 __u32 status; 77 78 switch (signal_processor_ps(&status, 0, cpu, sigp_sense)) { 79 case sigp_status_stored: 80 /* Check for stopped and check stop state */ 81 if (status & 0x50) 82 return 1; 83 break; 84 default: 85 break; 86 } 87 return 0; 88 } 89 90 void smp_send_stop(void) 91 { 92 int cpu, rc; 93 94 /* Disable all interrupts/machine checks */ 95 __load_psw_mask(psw_kernel_bits & ~PSW_MASK_MCHECK); 96 trace_hardirqs_off(); 97 98 /* stop all processors */ 99 for_each_online_cpu(cpu) { 100 if (cpu == smp_processor_id()) 101 continue; 102 do { 103 rc = signal_processor(cpu, sigp_stop); 104 } while (rc == sigp_busy); 105 106 while (!cpu_stopped(cpu)) 107 cpu_relax(); 108 } 109 } 110 111 /* 112 * This is the main routine where commands issued by other 113 * cpus are handled. 114 */ 115 116 static void do_ext_call_interrupt(__u16 code) 117 { 118 unsigned long bits; 119 120 /* 121 * handle bit signal external calls 122 * 123 * For the ec_schedule signal we have to do nothing. All the work 124 * is done automatically when we return from the interrupt. 125 */ 126 bits = xchg(&S390_lowcore.ext_call_fast, 0); 127 128 if (test_bit(ec_call_function, &bits)) 129 generic_smp_call_function_interrupt(); 130 131 if (test_bit(ec_call_function_single, &bits)) 132 generic_smp_call_function_single_interrupt(); 133 } 134 135 /* 136 * Send an external call sigp to another cpu and return without waiting 137 * for its completion. 138 */ 139 static void smp_ext_bitcall(int cpu, ec_bit_sig sig) 140 { 141 /* 142 * Set signaling bit in lowcore of target cpu and kick it 143 */ 144 set_bit(sig, (unsigned long *) &lowcore_ptr[cpu]->ext_call_fast); 145 while (signal_processor(cpu, sigp_emergency_signal) == sigp_busy) 146 udelay(10); 147 } 148 149 void arch_send_call_function_ipi_mask(const struct cpumask *mask) 150 { 151 int cpu; 152 153 for_each_cpu(cpu, mask) 154 smp_ext_bitcall(cpu, ec_call_function); 155 } 156 157 void arch_send_call_function_single_ipi(int cpu) 158 { 159 smp_ext_bitcall(cpu, ec_call_function_single); 160 } 161 162 #ifndef CONFIG_64BIT 163 /* 164 * this function sends a 'purge tlb' signal to another CPU. 165 */ 166 static void smp_ptlb_callback(void *info) 167 { 168 __tlb_flush_local(); 169 } 170 171 void smp_ptlb_all(void) 172 { 173 on_each_cpu(smp_ptlb_callback, NULL, 1); 174 } 175 EXPORT_SYMBOL(smp_ptlb_all); 176 #endif /* ! CONFIG_64BIT */ 177 178 /* 179 * this function sends a 'reschedule' IPI to another CPU. 180 * it goes straight through and wastes no time serializing 181 * anything. Worst case is that we lose a reschedule ... 182 */ 183 void smp_send_reschedule(int cpu) 184 { 185 smp_ext_bitcall(cpu, ec_schedule); 186 } 187 188 /* 189 * parameter area for the set/clear control bit callbacks 190 */ 191 struct ec_creg_mask_parms { 192 unsigned long orvals[16]; 193 unsigned long andvals[16]; 194 }; 195 196 /* 197 * callback for setting/clearing control bits 198 */ 199 static void smp_ctl_bit_callback(void *info) 200 { 201 struct ec_creg_mask_parms *pp = info; 202 unsigned long cregs[16]; 203 int i; 204 205 __ctl_store(cregs, 0, 15); 206 for (i = 0; i <= 15; i++) 207 cregs[i] = (cregs[i] & pp->andvals[i]) | pp->orvals[i]; 208 __ctl_load(cregs, 0, 15); 209 } 210 211 /* 212 * Set a bit in a control register of all cpus 213 */ 214 void smp_ctl_set_bit(int cr, int bit) 215 { 216 struct ec_creg_mask_parms parms; 217 218 memset(&parms.orvals, 0, sizeof(parms.orvals)); 219 memset(&parms.andvals, 0xff, sizeof(parms.andvals)); 220 parms.orvals[cr] = 1 << bit; 221 on_each_cpu(smp_ctl_bit_callback, &parms, 1); 222 } 223 EXPORT_SYMBOL(smp_ctl_set_bit); 224 225 /* 226 * Clear a bit in a control register of all cpus 227 */ 228 void smp_ctl_clear_bit(int cr, int bit) 229 { 230 struct ec_creg_mask_parms parms; 231 232 memset(&parms.orvals, 0, sizeof(parms.orvals)); 233 memset(&parms.andvals, 0xff, sizeof(parms.andvals)); 234 parms.andvals[cr] = ~(1L << bit); 235 on_each_cpu(smp_ctl_bit_callback, &parms, 1); 236 } 237 EXPORT_SYMBOL(smp_ctl_clear_bit); 238 239 /* 240 * In early ipl state a temp. logically cpu number is needed, so the sigp 241 * functions can be used to sense other cpus. Since NR_CPUS is >= 2 on 242 * CONFIG_SMP and the ipl cpu is logical cpu 0, it must be 1. 243 */ 244 #define CPU_INIT_NO 1 245 246 #ifdef CONFIG_ZFCPDUMP 247 248 /* 249 * zfcpdump_prefix_array holds prefix registers for the following scenario: 250 * 64 bit zfcpdump kernel and 31 bit kernel which is to be dumped. We have to 251 * save its prefix registers, since they get lost, when switching from 31 bit 252 * to 64 bit. 253 */ 254 unsigned int zfcpdump_prefix_array[NR_CPUS + 1] \ 255 __attribute__((__section__(".data"))); 256 257 static void __init smp_get_save_area(unsigned int cpu, unsigned int phy_cpu) 258 { 259 if (ipl_info.type != IPL_TYPE_FCP_DUMP) 260 return; 261 if (cpu >= NR_CPUS) { 262 pr_warning("CPU %i exceeds the maximum %i and is excluded from " 263 "the dump\n", cpu, NR_CPUS - 1); 264 return; 265 } 266 zfcpdump_save_areas[cpu] = kmalloc(sizeof(union save_area), GFP_KERNEL); 267 __cpu_logical_map[CPU_INIT_NO] = (__u16) phy_cpu; 268 while (signal_processor(CPU_INIT_NO, sigp_stop_and_store_status) == 269 sigp_busy) 270 cpu_relax(); 271 memcpy(zfcpdump_save_areas[cpu], 272 (void *)(unsigned long) store_prefix() + SAVE_AREA_BASE, 273 SAVE_AREA_SIZE); 274 #ifdef CONFIG_64BIT 275 /* copy original prefix register */ 276 zfcpdump_save_areas[cpu]->s390x.pref_reg = zfcpdump_prefix_array[cpu]; 277 #endif 278 } 279 280 union save_area *zfcpdump_save_areas[NR_CPUS + 1]; 281 EXPORT_SYMBOL_GPL(zfcpdump_save_areas); 282 283 #else 284 285 static inline void smp_get_save_area(unsigned int cpu, unsigned int phy_cpu) { } 286 287 #endif /* CONFIG_ZFCPDUMP */ 288 289 static int cpu_known(int cpu_id) 290 { 291 int cpu; 292 293 for_each_present_cpu(cpu) { 294 if (__cpu_logical_map[cpu] == cpu_id) 295 return 1; 296 } 297 return 0; 298 } 299 300 static int smp_rescan_cpus_sigp(cpumask_t avail) 301 { 302 int cpu_id, logical_cpu; 303 304 logical_cpu = cpumask_first(&avail); 305 if (logical_cpu >= nr_cpu_ids) 306 return 0; 307 for (cpu_id = 0; cpu_id <= MAX_CPU_ADDRESS; cpu_id++) { 308 if (cpu_known(cpu_id)) 309 continue; 310 __cpu_logical_map[logical_cpu] = cpu_id; 311 smp_cpu_polarization[logical_cpu] = POLARIZATION_UNKNWN; 312 if (!cpu_stopped(logical_cpu)) 313 continue; 314 cpu_set(logical_cpu, cpu_present_map); 315 smp_cpu_state[logical_cpu] = CPU_STATE_CONFIGURED; 316 logical_cpu = cpumask_next(logical_cpu, &avail); 317 if (logical_cpu >= nr_cpu_ids) 318 break; 319 } 320 return 0; 321 } 322 323 static int smp_rescan_cpus_sclp(cpumask_t avail) 324 { 325 struct sclp_cpu_info *info; 326 int cpu_id, logical_cpu, cpu; 327 int rc; 328 329 logical_cpu = cpumask_first(&avail); 330 if (logical_cpu >= nr_cpu_ids) 331 return 0; 332 info = kmalloc(sizeof(*info), GFP_KERNEL); 333 if (!info) 334 return -ENOMEM; 335 rc = sclp_get_cpu_info(info); 336 if (rc) 337 goto out; 338 for (cpu = 0; cpu < info->combined; cpu++) { 339 if (info->has_cpu_type && info->cpu[cpu].type != smp_cpu_type) 340 continue; 341 cpu_id = info->cpu[cpu].address; 342 if (cpu_known(cpu_id)) 343 continue; 344 __cpu_logical_map[logical_cpu] = cpu_id; 345 smp_cpu_polarization[logical_cpu] = POLARIZATION_UNKNWN; 346 cpu_set(logical_cpu, cpu_present_map); 347 if (cpu >= info->configured) 348 smp_cpu_state[logical_cpu] = CPU_STATE_STANDBY; 349 else 350 smp_cpu_state[logical_cpu] = CPU_STATE_CONFIGURED; 351 logical_cpu = cpumask_next(logical_cpu, &avail); 352 if (logical_cpu >= nr_cpu_ids) 353 break; 354 } 355 out: 356 kfree(info); 357 return rc; 358 } 359 360 static int __smp_rescan_cpus(void) 361 { 362 cpumask_t avail; 363 364 cpus_xor(avail, cpu_possible_map, cpu_present_map); 365 if (smp_use_sigp_detection) 366 return smp_rescan_cpus_sigp(avail); 367 else 368 return smp_rescan_cpus_sclp(avail); 369 } 370 371 static void __init smp_detect_cpus(void) 372 { 373 unsigned int cpu, c_cpus, s_cpus; 374 struct sclp_cpu_info *info; 375 u16 boot_cpu_addr, cpu_addr; 376 377 c_cpus = 1; 378 s_cpus = 0; 379 boot_cpu_addr = __cpu_logical_map[0]; 380 info = kmalloc(sizeof(*info), GFP_KERNEL); 381 if (!info) 382 panic("smp_detect_cpus failed to allocate memory\n"); 383 /* Use sigp detection algorithm if sclp doesn't work. */ 384 if (sclp_get_cpu_info(info)) { 385 smp_use_sigp_detection = 1; 386 for (cpu = 0; cpu <= MAX_CPU_ADDRESS; cpu++) { 387 if (cpu == boot_cpu_addr) 388 continue; 389 __cpu_logical_map[CPU_INIT_NO] = cpu; 390 if (!cpu_stopped(CPU_INIT_NO)) 391 continue; 392 smp_get_save_area(c_cpus, cpu); 393 c_cpus++; 394 } 395 goto out; 396 } 397 398 if (info->has_cpu_type) { 399 for (cpu = 0; cpu < info->combined; cpu++) { 400 if (info->cpu[cpu].address == boot_cpu_addr) { 401 smp_cpu_type = info->cpu[cpu].type; 402 break; 403 } 404 } 405 } 406 407 for (cpu = 0; cpu < info->combined; cpu++) { 408 if (info->has_cpu_type && info->cpu[cpu].type != smp_cpu_type) 409 continue; 410 cpu_addr = info->cpu[cpu].address; 411 if (cpu_addr == boot_cpu_addr) 412 continue; 413 __cpu_logical_map[CPU_INIT_NO] = cpu_addr; 414 if (!cpu_stopped(CPU_INIT_NO)) { 415 s_cpus++; 416 continue; 417 } 418 smp_get_save_area(c_cpus, cpu_addr); 419 c_cpus++; 420 } 421 out: 422 kfree(info); 423 pr_info("%d configured CPUs, %d standby CPUs\n", c_cpus, s_cpus); 424 get_online_cpus(); 425 __smp_rescan_cpus(); 426 put_online_cpus(); 427 } 428 429 /* 430 * Activate a secondary processor. 431 */ 432 int __cpuinit start_secondary(void *cpuvoid) 433 { 434 /* Setup the cpu */ 435 cpu_init(); 436 preempt_disable(); 437 /* Enable TOD clock interrupts on the secondary cpu. */ 438 init_cpu_timer(); 439 /* Enable cpu timer interrupts on the secondary cpu. */ 440 init_cpu_vtimer(); 441 /* Enable pfault pseudo page faults on this cpu. */ 442 pfault_init(); 443 444 /* call cpu notifiers */ 445 notify_cpu_starting(smp_processor_id()); 446 /* Mark this cpu as online */ 447 ipi_call_lock(); 448 cpu_set(smp_processor_id(), cpu_online_map); 449 ipi_call_unlock(); 450 /* Switch on interrupts */ 451 local_irq_enable(); 452 /* Print info about this processor */ 453 print_cpu_info(); 454 /* cpu_idle will call schedule for us */ 455 cpu_idle(); 456 return 0; 457 } 458 459 static void __init smp_create_idle(unsigned int cpu) 460 { 461 struct task_struct *p; 462 463 /* 464 * don't care about the psw and regs settings since we'll never 465 * reschedule the forked task. 466 */ 467 p = fork_idle(cpu); 468 if (IS_ERR(p)) 469 panic("failed fork for CPU %u: %li", cpu, PTR_ERR(p)); 470 current_set[cpu] = p; 471 } 472 473 static int __cpuinit smp_alloc_lowcore(int cpu) 474 { 475 unsigned long async_stack, panic_stack; 476 struct _lowcore *lowcore; 477 478 lowcore = (void *) __get_free_pages(GFP_KERNEL | GFP_DMA, LC_ORDER); 479 if (!lowcore) 480 return -ENOMEM; 481 async_stack = __get_free_pages(GFP_KERNEL, ASYNC_ORDER); 482 panic_stack = __get_free_page(GFP_KERNEL); 483 if (!panic_stack || !async_stack) 484 goto out; 485 memcpy(lowcore, &S390_lowcore, 512); 486 memset((char *)lowcore + 512, 0, sizeof(*lowcore) - 512); 487 lowcore->async_stack = async_stack + ASYNC_SIZE; 488 lowcore->panic_stack = panic_stack + PAGE_SIZE; 489 490 #ifndef CONFIG_64BIT 491 if (MACHINE_HAS_IEEE) { 492 unsigned long save_area; 493 494 save_area = get_zeroed_page(GFP_KERNEL); 495 if (!save_area) 496 goto out; 497 lowcore->extended_save_area_addr = (u32) save_area; 498 } 499 #else 500 if (vdso_alloc_per_cpu(cpu, lowcore)) 501 goto out; 502 #endif 503 lowcore_ptr[cpu] = lowcore; 504 return 0; 505 506 out: 507 free_page(panic_stack); 508 free_pages(async_stack, ASYNC_ORDER); 509 free_pages((unsigned long) lowcore, LC_ORDER); 510 return -ENOMEM; 511 } 512 513 static void smp_free_lowcore(int cpu) 514 { 515 struct _lowcore *lowcore; 516 517 lowcore = lowcore_ptr[cpu]; 518 #ifndef CONFIG_64BIT 519 if (MACHINE_HAS_IEEE) 520 free_page((unsigned long) lowcore->extended_save_area_addr); 521 #else 522 vdso_free_per_cpu(cpu, lowcore); 523 #endif 524 free_page(lowcore->panic_stack - PAGE_SIZE); 525 free_pages(lowcore->async_stack - ASYNC_SIZE, ASYNC_ORDER); 526 free_pages((unsigned long) lowcore, LC_ORDER); 527 lowcore_ptr[cpu] = NULL; 528 } 529 530 /* Upping and downing of CPUs */ 531 int __cpuinit __cpu_up(unsigned int cpu) 532 { 533 struct task_struct *idle; 534 struct _lowcore *cpu_lowcore; 535 struct stack_frame *sf; 536 sigp_ccode ccode; 537 u32 lowcore; 538 539 if (smp_cpu_state[cpu] != CPU_STATE_CONFIGURED) 540 return -EIO; 541 if (smp_alloc_lowcore(cpu)) 542 return -ENOMEM; 543 do { 544 ccode = signal_processor(cpu, sigp_initial_cpu_reset); 545 if (ccode == sigp_busy) 546 udelay(10); 547 if (ccode == sigp_not_operational) 548 goto err_out; 549 } while (ccode == sigp_busy); 550 551 lowcore = (u32)(unsigned long)lowcore_ptr[cpu]; 552 while (signal_processor_p(lowcore, cpu, sigp_set_prefix) == sigp_busy) 553 udelay(10); 554 555 idle = current_set[cpu]; 556 cpu_lowcore = lowcore_ptr[cpu]; 557 cpu_lowcore->kernel_stack = (unsigned long) 558 task_stack_page(idle) + THREAD_SIZE; 559 cpu_lowcore->thread_info = (unsigned long) task_thread_info(idle); 560 sf = (struct stack_frame *) (cpu_lowcore->kernel_stack 561 - sizeof(struct pt_regs) 562 - sizeof(struct stack_frame)); 563 memset(sf, 0, sizeof(struct stack_frame)); 564 sf->gprs[9] = (unsigned long) sf; 565 cpu_lowcore->save_area[15] = (unsigned long) sf; 566 __ctl_store(cpu_lowcore->cregs_save_area, 0, 15); 567 asm volatile( 568 " stam 0,15,0(%0)" 569 : : "a" (&cpu_lowcore->access_regs_save_area) : "memory"); 570 cpu_lowcore->percpu_offset = __per_cpu_offset[cpu]; 571 cpu_lowcore->current_task = (unsigned long) idle; 572 cpu_lowcore->cpu_nr = cpu; 573 cpu_lowcore->kernel_asce = S390_lowcore.kernel_asce; 574 cpu_lowcore->machine_flags = S390_lowcore.machine_flags; 575 cpu_lowcore->ftrace_func = S390_lowcore.ftrace_func; 576 eieio(); 577 578 while (signal_processor(cpu, sigp_restart) == sigp_busy) 579 udelay(10); 580 581 while (!cpu_online(cpu)) 582 cpu_relax(); 583 return 0; 584 585 err_out: 586 smp_free_lowcore(cpu); 587 return -EIO; 588 } 589 590 static int __init setup_possible_cpus(char *s) 591 { 592 int pcpus, cpu; 593 594 pcpus = simple_strtoul(s, NULL, 0); 595 init_cpu_possible(cpumask_of(0)); 596 for (cpu = 1; cpu < pcpus && cpu < nr_cpu_ids; cpu++) 597 set_cpu_possible(cpu, true); 598 return 0; 599 } 600 early_param("possible_cpus", setup_possible_cpus); 601 602 #ifdef CONFIG_HOTPLUG_CPU 603 604 int __cpu_disable(void) 605 { 606 struct ec_creg_mask_parms cr_parms; 607 int cpu = smp_processor_id(); 608 609 cpu_clear(cpu, cpu_online_map); 610 611 /* Disable pfault pseudo page faults on this cpu. */ 612 pfault_fini(); 613 614 memset(&cr_parms.orvals, 0, sizeof(cr_parms.orvals)); 615 memset(&cr_parms.andvals, 0xff, sizeof(cr_parms.andvals)); 616 617 /* disable all external interrupts */ 618 cr_parms.orvals[0] = 0; 619 cr_parms.andvals[0] = ~(1 << 15 | 1 << 14 | 1 << 13 | 1 << 12 | 620 1 << 11 | 1 << 10 | 1 << 6 | 1 << 4); 621 /* disable all I/O interrupts */ 622 cr_parms.orvals[6] = 0; 623 cr_parms.andvals[6] = ~(1 << 31 | 1 << 30 | 1 << 29 | 1 << 28 | 624 1 << 27 | 1 << 26 | 1 << 25 | 1 << 24); 625 /* disable most machine checks */ 626 cr_parms.orvals[14] = 0; 627 cr_parms.andvals[14] = ~(1 << 28 | 1 << 27 | 1 << 26 | 628 1 << 25 | 1 << 24); 629 630 smp_ctl_bit_callback(&cr_parms); 631 632 return 0; 633 } 634 635 void __cpu_die(unsigned int cpu) 636 { 637 /* Wait until target cpu is down */ 638 while (!cpu_stopped(cpu)) 639 cpu_relax(); 640 while (signal_processor_p(0, cpu, sigp_set_prefix) == sigp_busy) 641 udelay(10); 642 smp_free_lowcore(cpu); 643 pr_info("Processor %d stopped\n", cpu); 644 } 645 646 void cpu_die(void) 647 { 648 idle_task_exit(); 649 while (signal_processor(smp_processor_id(), sigp_stop) == sigp_busy) 650 cpu_relax(); 651 for (;;); 652 } 653 654 #endif /* CONFIG_HOTPLUG_CPU */ 655 656 void __init smp_prepare_cpus(unsigned int max_cpus) 657 { 658 #ifndef CONFIG_64BIT 659 unsigned long save_area = 0; 660 #endif 661 unsigned long async_stack, panic_stack; 662 struct _lowcore *lowcore; 663 unsigned int cpu; 664 665 smp_detect_cpus(); 666 667 /* request the 0x1201 emergency signal external interrupt */ 668 if (register_external_interrupt(0x1201, do_ext_call_interrupt) != 0) 669 panic("Couldn't request external interrupt 0x1201"); 670 print_cpu_info(); 671 672 /* Reallocate current lowcore, but keep its contents. */ 673 lowcore = (void *) __get_free_pages(GFP_KERNEL | GFP_DMA, LC_ORDER); 674 panic_stack = __get_free_page(GFP_KERNEL); 675 async_stack = __get_free_pages(GFP_KERNEL, ASYNC_ORDER); 676 BUG_ON(!lowcore || !panic_stack || !async_stack); 677 #ifndef CONFIG_64BIT 678 if (MACHINE_HAS_IEEE) 679 save_area = get_zeroed_page(GFP_KERNEL); 680 #endif 681 local_irq_disable(); 682 local_mcck_disable(); 683 lowcore_ptr[smp_processor_id()] = lowcore; 684 *lowcore = S390_lowcore; 685 lowcore->panic_stack = panic_stack + PAGE_SIZE; 686 lowcore->async_stack = async_stack + ASYNC_SIZE; 687 #ifndef CONFIG_64BIT 688 if (MACHINE_HAS_IEEE) 689 lowcore->extended_save_area_addr = (u32) save_area; 690 #endif 691 set_prefix((u32)(unsigned long) lowcore); 692 local_mcck_enable(); 693 local_irq_enable(); 694 #ifdef CONFIG_64BIT 695 if (vdso_alloc_per_cpu(smp_processor_id(), &S390_lowcore)) 696 BUG(); 697 #endif 698 for_each_possible_cpu(cpu) 699 if (cpu != smp_processor_id()) 700 smp_create_idle(cpu); 701 } 702 703 void __init smp_prepare_boot_cpu(void) 704 { 705 BUG_ON(smp_processor_id() != 0); 706 707 current_thread_info()->cpu = 0; 708 cpu_set(0, cpu_present_map); 709 cpu_set(0, cpu_online_map); 710 S390_lowcore.percpu_offset = __per_cpu_offset[0]; 711 current_set[0] = current; 712 smp_cpu_state[0] = CPU_STATE_CONFIGURED; 713 smp_cpu_polarization[0] = POLARIZATION_UNKNWN; 714 } 715 716 void __init smp_cpus_done(unsigned int max_cpus) 717 { 718 } 719 720 /* 721 * the frequency of the profiling timer can be changed 722 * by writing a multiplier value into /proc/profile. 723 * 724 * usually you want to run this on all CPUs ;) 725 */ 726 int setup_profiling_timer(unsigned int multiplier) 727 { 728 return 0; 729 } 730 731 #ifdef CONFIG_HOTPLUG_CPU 732 static ssize_t cpu_configure_show(struct sys_device *dev, 733 struct sysdev_attribute *attr, char *buf) 734 { 735 ssize_t count; 736 737 mutex_lock(&smp_cpu_state_mutex); 738 count = sprintf(buf, "%d\n", smp_cpu_state[dev->id]); 739 mutex_unlock(&smp_cpu_state_mutex); 740 return count; 741 } 742 743 static ssize_t cpu_configure_store(struct sys_device *dev, 744 struct sysdev_attribute *attr, 745 const char *buf, size_t count) 746 { 747 int cpu = dev->id; 748 int val, rc; 749 char delim; 750 751 if (sscanf(buf, "%d %c", &val, &delim) != 1) 752 return -EINVAL; 753 if (val != 0 && val != 1) 754 return -EINVAL; 755 756 get_online_cpus(); 757 mutex_lock(&smp_cpu_state_mutex); 758 rc = -EBUSY; 759 if (cpu_online(cpu)) 760 goto out; 761 rc = 0; 762 switch (val) { 763 case 0: 764 if (smp_cpu_state[cpu] == CPU_STATE_CONFIGURED) { 765 rc = sclp_cpu_deconfigure(__cpu_logical_map[cpu]); 766 if (!rc) { 767 smp_cpu_state[cpu] = CPU_STATE_STANDBY; 768 smp_cpu_polarization[cpu] = POLARIZATION_UNKNWN; 769 } 770 } 771 break; 772 case 1: 773 if (smp_cpu_state[cpu] == CPU_STATE_STANDBY) { 774 rc = sclp_cpu_configure(__cpu_logical_map[cpu]); 775 if (!rc) { 776 smp_cpu_state[cpu] = CPU_STATE_CONFIGURED; 777 smp_cpu_polarization[cpu] = POLARIZATION_UNKNWN; 778 } 779 } 780 break; 781 default: 782 break; 783 } 784 out: 785 mutex_unlock(&smp_cpu_state_mutex); 786 put_online_cpus(); 787 return rc ? rc : count; 788 } 789 static SYSDEV_ATTR(configure, 0644, cpu_configure_show, cpu_configure_store); 790 #endif /* CONFIG_HOTPLUG_CPU */ 791 792 static ssize_t cpu_polarization_show(struct sys_device *dev, 793 struct sysdev_attribute *attr, char *buf) 794 { 795 int cpu = dev->id; 796 ssize_t count; 797 798 mutex_lock(&smp_cpu_state_mutex); 799 switch (smp_cpu_polarization[cpu]) { 800 case POLARIZATION_HRZ: 801 count = sprintf(buf, "horizontal\n"); 802 break; 803 case POLARIZATION_VL: 804 count = sprintf(buf, "vertical:low\n"); 805 break; 806 case POLARIZATION_VM: 807 count = sprintf(buf, "vertical:medium\n"); 808 break; 809 case POLARIZATION_VH: 810 count = sprintf(buf, "vertical:high\n"); 811 break; 812 default: 813 count = sprintf(buf, "unknown\n"); 814 break; 815 } 816 mutex_unlock(&smp_cpu_state_mutex); 817 return count; 818 } 819 static SYSDEV_ATTR(polarization, 0444, cpu_polarization_show, NULL); 820 821 static ssize_t show_cpu_address(struct sys_device *dev, 822 struct sysdev_attribute *attr, char *buf) 823 { 824 return sprintf(buf, "%d\n", __cpu_logical_map[dev->id]); 825 } 826 static SYSDEV_ATTR(address, 0444, show_cpu_address, NULL); 827 828 829 static struct attribute *cpu_common_attrs[] = { 830 #ifdef CONFIG_HOTPLUG_CPU 831 &attr_configure.attr, 832 #endif 833 &attr_address.attr, 834 &attr_polarization.attr, 835 NULL, 836 }; 837 838 static struct attribute_group cpu_common_attr_group = { 839 .attrs = cpu_common_attrs, 840 }; 841 842 static ssize_t show_capability(struct sys_device *dev, 843 struct sysdev_attribute *attr, char *buf) 844 { 845 unsigned int capability; 846 int rc; 847 848 rc = get_cpu_capability(&capability); 849 if (rc) 850 return rc; 851 return sprintf(buf, "%u\n", capability); 852 } 853 static SYSDEV_ATTR(capability, 0444, show_capability, NULL); 854 855 static ssize_t show_idle_count(struct sys_device *dev, 856 struct sysdev_attribute *attr, char *buf) 857 { 858 struct s390_idle_data *idle; 859 unsigned long long idle_count; 860 unsigned int sequence; 861 862 idle = &per_cpu(s390_idle, dev->id); 863 repeat: 864 sequence = idle->sequence; 865 smp_rmb(); 866 if (sequence & 1) 867 goto repeat; 868 idle_count = idle->idle_count; 869 if (idle->idle_enter) 870 idle_count++; 871 smp_rmb(); 872 if (idle->sequence != sequence) 873 goto repeat; 874 return sprintf(buf, "%llu\n", idle_count); 875 } 876 static SYSDEV_ATTR(idle_count, 0444, show_idle_count, NULL); 877 878 static ssize_t show_idle_time(struct sys_device *dev, 879 struct sysdev_attribute *attr, char *buf) 880 { 881 struct s390_idle_data *idle; 882 unsigned long long now, idle_time, idle_enter; 883 unsigned int sequence; 884 885 idle = &per_cpu(s390_idle, dev->id); 886 now = get_clock(); 887 repeat: 888 sequence = idle->sequence; 889 smp_rmb(); 890 if (sequence & 1) 891 goto repeat; 892 idle_time = idle->idle_time; 893 idle_enter = idle->idle_enter; 894 if (idle_enter != 0ULL && idle_enter < now) 895 idle_time += now - idle_enter; 896 smp_rmb(); 897 if (idle->sequence != sequence) 898 goto repeat; 899 return sprintf(buf, "%llu\n", idle_time >> 12); 900 } 901 static SYSDEV_ATTR(idle_time_us, 0444, show_idle_time, NULL); 902 903 static struct attribute *cpu_online_attrs[] = { 904 &attr_capability.attr, 905 &attr_idle_count.attr, 906 &attr_idle_time_us.attr, 907 NULL, 908 }; 909 910 static struct attribute_group cpu_online_attr_group = { 911 .attrs = cpu_online_attrs, 912 }; 913 914 static int __cpuinit smp_cpu_notify(struct notifier_block *self, 915 unsigned long action, void *hcpu) 916 { 917 unsigned int cpu = (unsigned int)(long)hcpu; 918 struct cpu *c = &per_cpu(cpu_devices, cpu); 919 struct sys_device *s = &c->sysdev; 920 struct s390_idle_data *idle; 921 922 switch (action) { 923 case CPU_ONLINE: 924 case CPU_ONLINE_FROZEN: 925 idle = &per_cpu(s390_idle, cpu); 926 memset(idle, 0, sizeof(struct s390_idle_data)); 927 if (sysfs_create_group(&s->kobj, &cpu_online_attr_group)) 928 return NOTIFY_BAD; 929 break; 930 case CPU_DEAD: 931 case CPU_DEAD_FROZEN: 932 sysfs_remove_group(&s->kobj, &cpu_online_attr_group); 933 break; 934 } 935 return NOTIFY_OK; 936 } 937 938 static struct notifier_block __cpuinitdata smp_cpu_nb = { 939 .notifier_call = smp_cpu_notify, 940 }; 941 942 static int __devinit smp_add_present_cpu(int cpu) 943 { 944 struct cpu *c = &per_cpu(cpu_devices, cpu); 945 struct sys_device *s = &c->sysdev; 946 int rc; 947 948 c->hotpluggable = 1; 949 rc = register_cpu(c, cpu); 950 if (rc) 951 goto out; 952 rc = sysfs_create_group(&s->kobj, &cpu_common_attr_group); 953 if (rc) 954 goto out_cpu; 955 if (!cpu_online(cpu)) 956 goto out; 957 rc = sysfs_create_group(&s->kobj, &cpu_online_attr_group); 958 if (!rc) 959 return 0; 960 sysfs_remove_group(&s->kobj, &cpu_common_attr_group); 961 out_cpu: 962 #ifdef CONFIG_HOTPLUG_CPU 963 unregister_cpu(c); 964 #endif 965 out: 966 return rc; 967 } 968 969 #ifdef CONFIG_HOTPLUG_CPU 970 971 int __ref smp_rescan_cpus(void) 972 { 973 cpumask_t newcpus; 974 int cpu; 975 int rc; 976 977 get_online_cpus(); 978 mutex_lock(&smp_cpu_state_mutex); 979 newcpus = cpu_present_map; 980 rc = __smp_rescan_cpus(); 981 if (rc) 982 goto out; 983 cpus_andnot(newcpus, cpu_present_map, newcpus); 984 for_each_cpu_mask(cpu, newcpus) { 985 rc = smp_add_present_cpu(cpu); 986 if (rc) 987 cpu_clear(cpu, cpu_present_map); 988 } 989 rc = 0; 990 out: 991 mutex_unlock(&smp_cpu_state_mutex); 992 put_online_cpus(); 993 if (!cpus_empty(newcpus)) 994 topology_schedule_update(); 995 return rc; 996 } 997 998 static ssize_t __ref rescan_store(struct sysdev_class *class, const char *buf, 999 size_t count) 1000 { 1001 int rc; 1002 1003 rc = smp_rescan_cpus(); 1004 return rc ? rc : count; 1005 } 1006 static SYSDEV_CLASS_ATTR(rescan, 0200, NULL, rescan_store); 1007 #endif /* CONFIG_HOTPLUG_CPU */ 1008 1009 static ssize_t dispatching_show(struct sysdev_class *class, char *buf) 1010 { 1011 ssize_t count; 1012 1013 mutex_lock(&smp_cpu_state_mutex); 1014 count = sprintf(buf, "%d\n", cpu_management); 1015 mutex_unlock(&smp_cpu_state_mutex); 1016 return count; 1017 } 1018 1019 static ssize_t dispatching_store(struct sysdev_class *dev, const char *buf, 1020 size_t count) 1021 { 1022 int val, rc; 1023 char delim; 1024 1025 if (sscanf(buf, "%d %c", &val, &delim) != 1) 1026 return -EINVAL; 1027 if (val != 0 && val != 1) 1028 return -EINVAL; 1029 rc = 0; 1030 get_online_cpus(); 1031 mutex_lock(&smp_cpu_state_mutex); 1032 if (cpu_management == val) 1033 goto out; 1034 rc = topology_set_cpu_management(val); 1035 if (!rc) 1036 cpu_management = val; 1037 out: 1038 mutex_unlock(&smp_cpu_state_mutex); 1039 put_online_cpus(); 1040 return rc ? rc : count; 1041 } 1042 static SYSDEV_CLASS_ATTR(dispatching, 0644, dispatching_show, 1043 dispatching_store); 1044 1045 static int __init topology_init(void) 1046 { 1047 int cpu; 1048 int rc; 1049 1050 register_cpu_notifier(&smp_cpu_nb); 1051 1052 #ifdef CONFIG_HOTPLUG_CPU 1053 rc = sysdev_class_create_file(&cpu_sysdev_class, &attr_rescan); 1054 if (rc) 1055 return rc; 1056 #endif 1057 rc = sysdev_class_create_file(&cpu_sysdev_class, &attr_dispatching); 1058 if (rc) 1059 return rc; 1060 for_each_present_cpu(cpu) { 1061 rc = smp_add_present_cpu(cpu); 1062 if (rc) 1063 return rc; 1064 } 1065 return 0; 1066 } 1067 subsys_initcall(topology_init); 1068