xref: /openbmc/linux/arch/s390/kernel/smp.c (revision 9dbbc3b9)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  SMP related functions
4  *
5  *    Copyright IBM Corp. 1999, 2012
6  *    Author(s): Denis Joseph Barrow,
7  *		 Martin Schwidefsky <schwidefsky@de.ibm.com>,
8  *		 Heiko Carstens <heiko.carstens@de.ibm.com>,
9  *
10  *  based on other smp stuff by
11  *    (c) 1995 Alan Cox, CymruNET Ltd  <alan@cymru.net>
12  *    (c) 1998 Ingo Molnar
13  *
14  * The code outside of smp.c uses logical cpu numbers, only smp.c does
15  * the translation of logical to physical cpu ids. All new code that
16  * operates on physical cpu numbers needs to go into smp.c.
17  */
18 
19 #define KMSG_COMPONENT "cpu"
20 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
21 
22 #include <linux/workqueue.h>
23 #include <linux/memblock.h>
24 #include <linux/export.h>
25 #include <linux/init.h>
26 #include <linux/mm.h>
27 #include <linux/err.h>
28 #include <linux/spinlock.h>
29 #include <linux/kernel_stat.h>
30 #include <linux/delay.h>
31 #include <linux/interrupt.h>
32 #include <linux/irqflags.h>
33 #include <linux/irq_work.h>
34 #include <linux/cpu.h>
35 #include <linux/slab.h>
36 #include <linux/sched/hotplug.h>
37 #include <linux/sched/task_stack.h>
38 #include <linux/crash_dump.h>
39 #include <linux/kprobes.h>
40 #include <asm/asm-offsets.h>
41 #include <asm/diag.h>
42 #include <asm/switch_to.h>
43 #include <asm/facility.h>
44 #include <asm/ipl.h>
45 #include <asm/setup.h>
46 #include <asm/irq.h>
47 #include <asm/tlbflush.h>
48 #include <asm/vtimer.h>
49 #include <asm/lowcore.h>
50 #include <asm/sclp.h>
51 #include <asm/debug.h>
52 #include <asm/os_info.h>
53 #include <asm/sigp.h>
54 #include <asm/idle.h>
55 #include <asm/nmi.h>
56 #include <asm/stacktrace.h>
57 #include <asm/topology.h>
58 #include <asm/vdso.h>
59 #include "entry.h"
60 
61 enum {
62 	ec_schedule = 0,
63 	ec_call_function_single,
64 	ec_stop_cpu,
65 	ec_mcck_pending,
66 	ec_irq_work,
67 };
68 
69 enum {
70 	CPU_STATE_STANDBY,
71 	CPU_STATE_CONFIGURED,
72 };
73 
74 static DEFINE_PER_CPU(struct cpu *, cpu_device);
75 
76 struct pcpu {
77 	unsigned long ec_mask;		/* bit mask for ec_xxx functions */
78 	unsigned long ec_clk;		/* sigp timestamp for ec_xxx */
79 	signed char state;		/* physical cpu state */
80 	signed char polarization;	/* physical polarization */
81 	u16 address;			/* physical cpu address */
82 };
83 
84 static u8 boot_core_type;
85 static struct pcpu pcpu_devices[NR_CPUS];
86 
87 unsigned int smp_cpu_mt_shift;
88 EXPORT_SYMBOL(smp_cpu_mt_shift);
89 
90 unsigned int smp_cpu_mtid;
91 EXPORT_SYMBOL(smp_cpu_mtid);
92 
93 #ifdef CONFIG_CRASH_DUMP
94 __vector128 __initdata boot_cpu_vector_save_area[__NUM_VXRS];
95 #endif
96 
97 static unsigned int smp_max_threads __initdata = -1U;
98 
99 static int __init early_nosmt(char *s)
100 {
101 	smp_max_threads = 1;
102 	return 0;
103 }
104 early_param("nosmt", early_nosmt);
105 
106 static int __init early_smt(char *s)
107 {
108 	get_option(&s, &smp_max_threads);
109 	return 0;
110 }
111 early_param("smt", early_smt);
112 
113 /*
114  * The smp_cpu_state_mutex must be held when changing the state or polarization
115  * member of a pcpu data structure within the pcpu_devices arreay.
116  */
117 DEFINE_MUTEX(smp_cpu_state_mutex);
118 
119 /*
120  * Signal processor helper functions.
121  */
122 static inline int __pcpu_sigp_relax(u16 addr, u8 order, unsigned long parm)
123 {
124 	int cc;
125 
126 	while (1) {
127 		cc = __pcpu_sigp(addr, order, parm, NULL);
128 		if (cc != SIGP_CC_BUSY)
129 			return cc;
130 		cpu_relax();
131 	}
132 }
133 
134 static int pcpu_sigp_retry(struct pcpu *pcpu, u8 order, u32 parm)
135 {
136 	int cc, retry;
137 
138 	for (retry = 0; ; retry++) {
139 		cc = __pcpu_sigp(pcpu->address, order, parm, NULL);
140 		if (cc != SIGP_CC_BUSY)
141 			break;
142 		if (retry >= 3)
143 			udelay(10);
144 	}
145 	return cc;
146 }
147 
148 static inline int pcpu_stopped(struct pcpu *pcpu)
149 {
150 	u32 status;
151 
152 	if (__pcpu_sigp(pcpu->address, SIGP_SENSE,
153 			0, &status) != SIGP_CC_STATUS_STORED)
154 		return 0;
155 	return !!(status & (SIGP_STATUS_CHECK_STOP|SIGP_STATUS_STOPPED));
156 }
157 
158 static inline int pcpu_running(struct pcpu *pcpu)
159 {
160 	if (__pcpu_sigp(pcpu->address, SIGP_SENSE_RUNNING,
161 			0, NULL) != SIGP_CC_STATUS_STORED)
162 		return 1;
163 	/* Status stored condition code is equivalent to cpu not running. */
164 	return 0;
165 }
166 
167 /*
168  * Find struct pcpu by cpu address.
169  */
170 static struct pcpu *pcpu_find_address(const struct cpumask *mask, u16 address)
171 {
172 	int cpu;
173 
174 	for_each_cpu(cpu, mask)
175 		if (pcpu_devices[cpu].address == address)
176 			return pcpu_devices + cpu;
177 	return NULL;
178 }
179 
180 static void pcpu_ec_call(struct pcpu *pcpu, int ec_bit)
181 {
182 	int order;
183 
184 	if (test_and_set_bit(ec_bit, &pcpu->ec_mask))
185 		return;
186 	order = pcpu_running(pcpu) ? SIGP_EXTERNAL_CALL : SIGP_EMERGENCY_SIGNAL;
187 	pcpu->ec_clk = get_tod_clock_fast();
188 	pcpu_sigp_retry(pcpu, order, 0);
189 }
190 
191 static int pcpu_alloc_lowcore(struct pcpu *pcpu, int cpu)
192 {
193 	unsigned long async_stack, nodat_stack, mcck_stack;
194 	struct lowcore *lc;
195 
196 	lc = (struct lowcore *) __get_free_pages(GFP_KERNEL | GFP_DMA, LC_ORDER);
197 	nodat_stack = __get_free_pages(GFP_KERNEL, THREAD_SIZE_ORDER);
198 	async_stack = stack_alloc();
199 	mcck_stack = stack_alloc();
200 	if (!lc || !nodat_stack || !async_stack || !mcck_stack)
201 		goto out;
202 	memcpy(lc, &S390_lowcore, 512);
203 	memset((char *) lc + 512, 0, sizeof(*lc) - 512);
204 	lc->async_stack = async_stack + STACK_INIT_OFFSET;
205 	lc->nodat_stack = nodat_stack + STACK_INIT_OFFSET;
206 	lc->mcck_stack = mcck_stack + STACK_INIT_OFFSET;
207 	lc->cpu_nr = cpu;
208 	lc->spinlock_lockval = arch_spin_lockval(cpu);
209 	lc->spinlock_index = 0;
210 	lc->br_r1_trampoline = 0x07f1;	/* br %r1 */
211 	lc->return_lpswe = gen_lpswe(__LC_RETURN_PSW);
212 	lc->return_mcck_lpswe = gen_lpswe(__LC_RETURN_MCCK_PSW);
213 	if (nmi_alloc_per_cpu(lc))
214 		goto out;
215 	lowcore_ptr[cpu] = lc;
216 	pcpu_sigp_retry(pcpu, SIGP_SET_PREFIX, (u32)(unsigned long) lc);
217 	return 0;
218 
219 out:
220 	stack_free(mcck_stack);
221 	stack_free(async_stack);
222 	free_pages(nodat_stack, THREAD_SIZE_ORDER);
223 	free_pages((unsigned long) lc, LC_ORDER);
224 	return -ENOMEM;
225 }
226 
227 static void pcpu_free_lowcore(struct pcpu *pcpu)
228 {
229 	unsigned long async_stack, nodat_stack, mcck_stack;
230 	struct lowcore *lc;
231 	int cpu;
232 
233 	cpu = pcpu - pcpu_devices;
234 	lc = lowcore_ptr[cpu];
235 	nodat_stack = lc->nodat_stack - STACK_INIT_OFFSET;
236 	async_stack = lc->async_stack - STACK_INIT_OFFSET;
237 	mcck_stack = lc->mcck_stack - STACK_INIT_OFFSET;
238 	pcpu_sigp_retry(pcpu, SIGP_SET_PREFIX, 0);
239 	lowcore_ptr[cpu] = NULL;
240 	nmi_free_per_cpu(lc);
241 	stack_free(async_stack);
242 	stack_free(mcck_stack);
243 	free_pages(nodat_stack, THREAD_SIZE_ORDER);
244 	free_pages((unsigned long) lc, LC_ORDER);
245 }
246 
247 static void pcpu_prepare_secondary(struct pcpu *pcpu, int cpu)
248 {
249 	struct lowcore *lc = lowcore_ptr[cpu];
250 
251 	cpumask_set_cpu(cpu, &init_mm.context.cpu_attach_mask);
252 	cpumask_set_cpu(cpu, mm_cpumask(&init_mm));
253 	lc->cpu_nr = cpu;
254 	lc->spinlock_lockval = arch_spin_lockval(cpu);
255 	lc->spinlock_index = 0;
256 	lc->percpu_offset = __per_cpu_offset[cpu];
257 	lc->kernel_asce = S390_lowcore.kernel_asce;
258 	lc->user_asce = s390_invalid_asce;
259 	lc->machine_flags = S390_lowcore.machine_flags;
260 	lc->user_timer = lc->system_timer =
261 		lc->steal_timer = lc->avg_steal_timer = 0;
262 	__ctl_store(lc->cregs_save_area, 0, 15);
263 	lc->cregs_save_area[1] = lc->kernel_asce;
264 	lc->cregs_save_area[7] = lc->user_asce;
265 	save_access_regs((unsigned int *) lc->access_regs_save_area);
266 	arch_spin_lock_setup(cpu);
267 }
268 
269 static void pcpu_attach_task(struct pcpu *pcpu, struct task_struct *tsk)
270 {
271 	struct lowcore *lc;
272 	int cpu;
273 
274 	cpu = pcpu - pcpu_devices;
275 	lc = lowcore_ptr[cpu];
276 	lc->kernel_stack = (unsigned long) task_stack_page(tsk)
277 		+ THREAD_SIZE - STACK_FRAME_OVERHEAD - sizeof(struct pt_regs);
278 	lc->current_task = (unsigned long) tsk;
279 	lc->lpp = LPP_MAGIC;
280 	lc->current_pid = tsk->pid;
281 	lc->user_timer = tsk->thread.user_timer;
282 	lc->guest_timer = tsk->thread.guest_timer;
283 	lc->system_timer = tsk->thread.system_timer;
284 	lc->hardirq_timer = tsk->thread.hardirq_timer;
285 	lc->softirq_timer = tsk->thread.softirq_timer;
286 	lc->steal_timer = 0;
287 }
288 
289 static void pcpu_start_fn(struct pcpu *pcpu, void (*func)(void *), void *data)
290 {
291 	struct lowcore *lc;
292 	int cpu;
293 
294 	cpu = pcpu - pcpu_devices;
295 	lc = lowcore_ptr[cpu];
296 	lc->restart_stack = lc->nodat_stack;
297 	lc->restart_fn = (unsigned long) func;
298 	lc->restart_data = (unsigned long) data;
299 	lc->restart_source = -1UL;
300 	pcpu_sigp_retry(pcpu, SIGP_RESTART, 0);
301 }
302 
303 /*
304  * Call function via PSW restart on pcpu and stop the current cpu.
305  */
306 static void __pcpu_delegate(void (*func)(void*), void *data)
307 {
308 	func(data);	/* should not return */
309 }
310 
311 static void __no_sanitize_address pcpu_delegate(struct pcpu *pcpu,
312 						void (*func)(void *),
313 						void *data, unsigned long stack)
314 {
315 	struct lowcore *lc = lowcore_ptr[pcpu - pcpu_devices];
316 	unsigned long source_cpu = stap();
317 
318 	__load_psw_mask(PSW_KERNEL_BITS | PSW_MASK_DAT);
319 	if (pcpu->address == source_cpu)
320 		CALL_ON_STACK(__pcpu_delegate, stack, 2, func, data);
321 	/* Stop target cpu (if func returns this stops the current cpu). */
322 	pcpu_sigp_retry(pcpu, SIGP_STOP, 0);
323 	/* Restart func on the target cpu and stop the current cpu. */
324 	mem_assign_absolute(lc->restart_stack, stack);
325 	mem_assign_absolute(lc->restart_fn, (unsigned long) func);
326 	mem_assign_absolute(lc->restart_data, (unsigned long) data);
327 	mem_assign_absolute(lc->restart_source, source_cpu);
328 	__bpon();
329 	asm volatile(
330 		"0:	sigp	0,%0,%2	# sigp restart to target cpu\n"
331 		"	brc	2,0b	# busy, try again\n"
332 		"1:	sigp	0,%1,%3	# sigp stop to current cpu\n"
333 		"	brc	2,1b	# busy, try again\n"
334 		: : "d" (pcpu->address), "d" (source_cpu),
335 		    "K" (SIGP_RESTART), "K" (SIGP_STOP)
336 		: "0", "1", "cc");
337 	for (;;) ;
338 }
339 
340 /*
341  * Enable additional logical cpus for multi-threading.
342  */
343 static int pcpu_set_smt(unsigned int mtid)
344 {
345 	int cc;
346 
347 	if (smp_cpu_mtid == mtid)
348 		return 0;
349 	cc = __pcpu_sigp(0, SIGP_SET_MULTI_THREADING, mtid, NULL);
350 	if (cc == 0) {
351 		smp_cpu_mtid = mtid;
352 		smp_cpu_mt_shift = 0;
353 		while (smp_cpu_mtid >= (1U << smp_cpu_mt_shift))
354 			smp_cpu_mt_shift++;
355 		pcpu_devices[0].address = stap();
356 	}
357 	return cc;
358 }
359 
360 /*
361  * Call function on an online CPU.
362  */
363 void smp_call_online_cpu(void (*func)(void *), void *data)
364 {
365 	struct pcpu *pcpu;
366 
367 	/* Use the current cpu if it is online. */
368 	pcpu = pcpu_find_address(cpu_online_mask, stap());
369 	if (!pcpu)
370 		/* Use the first online cpu. */
371 		pcpu = pcpu_devices + cpumask_first(cpu_online_mask);
372 	pcpu_delegate(pcpu, func, data, (unsigned long) restart_stack);
373 }
374 
375 /*
376  * Call function on the ipl CPU.
377  */
378 void smp_call_ipl_cpu(void (*func)(void *), void *data)
379 {
380 	struct lowcore *lc = lowcore_ptr[0];
381 
382 	if (pcpu_devices[0].address == stap())
383 		lc = &S390_lowcore;
384 
385 	pcpu_delegate(&pcpu_devices[0], func, data,
386 		      lc->nodat_stack);
387 }
388 
389 int smp_find_processor_id(u16 address)
390 {
391 	int cpu;
392 
393 	for_each_present_cpu(cpu)
394 		if (pcpu_devices[cpu].address == address)
395 			return cpu;
396 	return -1;
397 }
398 
399 void schedule_mcck_handler(void)
400 {
401 	pcpu_ec_call(pcpu_devices + smp_processor_id(), ec_mcck_pending);
402 }
403 
404 bool notrace arch_vcpu_is_preempted(int cpu)
405 {
406 	if (test_cpu_flag_of(CIF_ENABLED_WAIT, cpu))
407 		return false;
408 	if (pcpu_running(pcpu_devices + cpu))
409 		return false;
410 	return true;
411 }
412 EXPORT_SYMBOL(arch_vcpu_is_preempted);
413 
414 void notrace smp_yield_cpu(int cpu)
415 {
416 	if (!MACHINE_HAS_DIAG9C)
417 		return;
418 	diag_stat_inc_norecursion(DIAG_STAT_X09C);
419 	asm volatile("diag %0,0,0x9c"
420 		     : : "d" (pcpu_devices[cpu].address));
421 }
422 EXPORT_SYMBOL_GPL(smp_yield_cpu);
423 
424 /*
425  * Send cpus emergency shutdown signal. This gives the cpus the
426  * opportunity to complete outstanding interrupts.
427  */
428 void notrace smp_emergency_stop(void)
429 {
430 	static arch_spinlock_t lock = __ARCH_SPIN_LOCK_UNLOCKED;
431 	static cpumask_t cpumask;
432 	u64 end;
433 	int cpu;
434 
435 	arch_spin_lock(&lock);
436 	cpumask_copy(&cpumask, cpu_online_mask);
437 	cpumask_clear_cpu(smp_processor_id(), &cpumask);
438 
439 	end = get_tod_clock() + (1000000UL << 12);
440 	for_each_cpu(cpu, &cpumask) {
441 		struct pcpu *pcpu = pcpu_devices + cpu;
442 		set_bit(ec_stop_cpu, &pcpu->ec_mask);
443 		while (__pcpu_sigp(pcpu->address, SIGP_EMERGENCY_SIGNAL,
444 				   0, NULL) == SIGP_CC_BUSY &&
445 		       get_tod_clock() < end)
446 			cpu_relax();
447 	}
448 	while (get_tod_clock() < end) {
449 		for_each_cpu(cpu, &cpumask)
450 			if (pcpu_stopped(pcpu_devices + cpu))
451 				cpumask_clear_cpu(cpu, &cpumask);
452 		if (cpumask_empty(&cpumask))
453 			break;
454 		cpu_relax();
455 	}
456 	arch_spin_unlock(&lock);
457 }
458 NOKPROBE_SYMBOL(smp_emergency_stop);
459 
460 /*
461  * Stop all cpus but the current one.
462  */
463 void smp_send_stop(void)
464 {
465 	int cpu;
466 
467 	/* Disable all interrupts/machine checks */
468 	__load_psw_mask(PSW_KERNEL_BITS | PSW_MASK_DAT);
469 	trace_hardirqs_off();
470 
471 	debug_set_critical();
472 
473 	if (oops_in_progress)
474 		smp_emergency_stop();
475 
476 	/* stop all processors */
477 	for_each_online_cpu(cpu) {
478 		if (cpu == smp_processor_id())
479 			continue;
480 		pcpu_sigp_retry(pcpu_devices + cpu, SIGP_STOP, 0);
481 		while (!pcpu_stopped(pcpu_devices + cpu))
482 			cpu_relax();
483 	}
484 }
485 
486 /*
487  * This is the main routine where commands issued by other
488  * cpus are handled.
489  */
490 static void smp_handle_ext_call(void)
491 {
492 	unsigned long bits;
493 
494 	/* handle bit signal external calls */
495 	bits = xchg(&pcpu_devices[smp_processor_id()].ec_mask, 0);
496 	if (test_bit(ec_stop_cpu, &bits))
497 		smp_stop_cpu();
498 	if (test_bit(ec_schedule, &bits))
499 		scheduler_ipi();
500 	if (test_bit(ec_call_function_single, &bits))
501 		generic_smp_call_function_single_interrupt();
502 	if (test_bit(ec_mcck_pending, &bits))
503 		__s390_handle_mcck();
504 	if (test_bit(ec_irq_work, &bits))
505 		irq_work_run();
506 }
507 
508 static void do_ext_call_interrupt(struct ext_code ext_code,
509 				  unsigned int param32, unsigned long param64)
510 {
511 	inc_irq_stat(ext_code.code == 0x1202 ? IRQEXT_EXC : IRQEXT_EMS);
512 	smp_handle_ext_call();
513 }
514 
515 void arch_send_call_function_ipi_mask(const struct cpumask *mask)
516 {
517 	int cpu;
518 
519 	for_each_cpu(cpu, mask)
520 		pcpu_ec_call(pcpu_devices + cpu, ec_call_function_single);
521 }
522 
523 void arch_send_call_function_single_ipi(int cpu)
524 {
525 	pcpu_ec_call(pcpu_devices + cpu, ec_call_function_single);
526 }
527 
528 /*
529  * this function sends a 'reschedule' IPI to another CPU.
530  * it goes straight through and wastes no time serializing
531  * anything. Worst case is that we lose a reschedule ...
532  */
533 void smp_send_reschedule(int cpu)
534 {
535 	pcpu_ec_call(pcpu_devices + cpu, ec_schedule);
536 }
537 
538 #ifdef CONFIG_IRQ_WORK
539 void arch_irq_work_raise(void)
540 {
541 	pcpu_ec_call(pcpu_devices + smp_processor_id(), ec_irq_work);
542 }
543 #endif
544 
545 /*
546  * parameter area for the set/clear control bit callbacks
547  */
548 struct ec_creg_mask_parms {
549 	unsigned long orval;
550 	unsigned long andval;
551 	int cr;
552 };
553 
554 /*
555  * callback for setting/clearing control bits
556  */
557 static void smp_ctl_bit_callback(void *info)
558 {
559 	struct ec_creg_mask_parms *pp = info;
560 	unsigned long cregs[16];
561 
562 	__ctl_store(cregs, 0, 15);
563 	cregs[pp->cr] = (cregs[pp->cr] & pp->andval) | pp->orval;
564 	__ctl_load(cregs, 0, 15);
565 }
566 
567 /*
568  * Set a bit in a control register of all cpus
569  */
570 void smp_ctl_set_bit(int cr, int bit)
571 {
572 	struct ec_creg_mask_parms parms = { 1UL << bit, -1UL, cr };
573 
574 	on_each_cpu(smp_ctl_bit_callback, &parms, 1);
575 }
576 EXPORT_SYMBOL(smp_ctl_set_bit);
577 
578 /*
579  * Clear a bit in a control register of all cpus
580  */
581 void smp_ctl_clear_bit(int cr, int bit)
582 {
583 	struct ec_creg_mask_parms parms = { 0, ~(1UL << bit), cr };
584 
585 	on_each_cpu(smp_ctl_bit_callback, &parms, 1);
586 }
587 EXPORT_SYMBOL(smp_ctl_clear_bit);
588 
589 #ifdef CONFIG_CRASH_DUMP
590 
591 int smp_store_status(int cpu)
592 {
593 	struct lowcore *lc;
594 	struct pcpu *pcpu;
595 	unsigned long pa;
596 
597 	pcpu = pcpu_devices + cpu;
598 	lc = lowcore_ptr[cpu];
599 	pa = __pa(&lc->floating_pt_save_area);
600 	if (__pcpu_sigp_relax(pcpu->address, SIGP_STORE_STATUS_AT_ADDRESS,
601 			      pa) != SIGP_CC_ORDER_CODE_ACCEPTED)
602 		return -EIO;
603 	if (!MACHINE_HAS_VX && !MACHINE_HAS_GS)
604 		return 0;
605 	pa = __pa(lc->mcesad & MCESA_ORIGIN_MASK);
606 	if (MACHINE_HAS_GS)
607 		pa |= lc->mcesad & MCESA_LC_MASK;
608 	if (__pcpu_sigp_relax(pcpu->address, SIGP_STORE_ADDITIONAL_STATUS,
609 			      pa) != SIGP_CC_ORDER_CODE_ACCEPTED)
610 		return -EIO;
611 	return 0;
612 }
613 
614 /*
615  * Collect CPU state of the previous, crashed system.
616  * There are four cases:
617  * 1) standard zfcp/nvme dump
618  *    condition: OLDMEM_BASE == NULL && is_ipl_type_dump() == true
619  *    The state for all CPUs except the boot CPU needs to be collected
620  *    with sigp stop-and-store-status. The boot CPU state is located in
621  *    the absolute lowcore of the memory stored in the HSA. The zcore code
622  *    will copy the boot CPU state from the HSA.
623  * 2) stand-alone kdump for SCSI/NVMe (zfcp/nvme dump with swapped memory)
624  *    condition: OLDMEM_BASE != NULL && is_ipl_type_dump() == true
625  *    The state for all CPUs except the boot CPU needs to be collected
626  *    with sigp stop-and-store-status. The firmware or the boot-loader
627  *    stored the registers of the boot CPU in the absolute lowcore in the
628  *    memory of the old system.
629  * 3) kdump and the old kernel did not store the CPU state,
630  *    or stand-alone kdump for DASD
631  *    condition: OLDMEM_BASE != NULL && !is_kdump_kernel()
632  *    The state for all CPUs except the boot CPU needs to be collected
633  *    with sigp stop-and-store-status. The kexec code or the boot-loader
634  *    stored the registers of the boot CPU in the memory of the old system.
635  * 4) kdump and the old kernel stored the CPU state
636  *    condition: OLDMEM_BASE != NULL && is_kdump_kernel()
637  *    This case does not exist for s390 anymore, setup_arch explicitly
638  *    deactivates the elfcorehdr= kernel parameter
639  */
640 static __init void smp_save_cpu_vxrs(struct save_area *sa, u16 addr,
641 				     bool is_boot_cpu, unsigned long page)
642 {
643 	__vector128 *vxrs = (__vector128 *) page;
644 
645 	if (is_boot_cpu)
646 		vxrs = boot_cpu_vector_save_area;
647 	else
648 		__pcpu_sigp_relax(addr, SIGP_STORE_ADDITIONAL_STATUS, page);
649 	save_area_add_vxrs(sa, vxrs);
650 }
651 
652 static __init void smp_save_cpu_regs(struct save_area *sa, u16 addr,
653 				     bool is_boot_cpu, unsigned long page)
654 {
655 	void *regs = (void *) page;
656 
657 	if (is_boot_cpu)
658 		copy_oldmem_kernel(regs, (void *) __LC_FPREGS_SAVE_AREA, 512);
659 	else
660 		__pcpu_sigp_relax(addr, SIGP_STORE_STATUS_AT_ADDRESS, page);
661 	save_area_add_regs(sa, regs);
662 }
663 
664 void __init smp_save_dump_cpus(void)
665 {
666 	int addr, boot_cpu_addr, max_cpu_addr;
667 	struct save_area *sa;
668 	unsigned long page;
669 	bool is_boot_cpu;
670 
671 	if (!(OLDMEM_BASE || is_ipl_type_dump()))
672 		/* No previous system present, normal boot. */
673 		return;
674 	/* Allocate a page as dumping area for the store status sigps */
675 	page = memblock_phys_alloc_range(PAGE_SIZE, PAGE_SIZE, 0, 1UL << 31);
676 	if (!page)
677 		panic("ERROR: Failed to allocate %lx bytes below %lx\n",
678 		      PAGE_SIZE, 1UL << 31);
679 
680 	/* Set multi-threading state to the previous system. */
681 	pcpu_set_smt(sclp.mtid_prev);
682 	boot_cpu_addr = stap();
683 	max_cpu_addr = SCLP_MAX_CORES << sclp.mtid_prev;
684 	for (addr = 0; addr <= max_cpu_addr; addr++) {
685 		if (__pcpu_sigp_relax(addr, SIGP_SENSE, 0) ==
686 		    SIGP_CC_NOT_OPERATIONAL)
687 			continue;
688 		is_boot_cpu = (addr == boot_cpu_addr);
689 		/* Allocate save area */
690 		sa = save_area_alloc(is_boot_cpu);
691 		if (!sa)
692 			panic("could not allocate memory for save area\n");
693 		if (MACHINE_HAS_VX)
694 			/* Get the vector registers */
695 			smp_save_cpu_vxrs(sa, addr, is_boot_cpu, page);
696 		/*
697 		 * For a zfcp/nvme dump OLDMEM_BASE == NULL and the registers
698 		 * of the boot CPU are stored in the HSA. To retrieve
699 		 * these registers an SCLP request is required which is
700 		 * done by drivers/s390/char/zcore.c:init_cpu_info()
701 		 */
702 		if (!is_boot_cpu || OLDMEM_BASE)
703 			/* Get the CPU registers */
704 			smp_save_cpu_regs(sa, addr, is_boot_cpu, page);
705 	}
706 	memblock_free(page, PAGE_SIZE);
707 	diag_dma_ops.diag308_reset();
708 	pcpu_set_smt(0);
709 }
710 #endif /* CONFIG_CRASH_DUMP */
711 
712 void smp_cpu_set_polarization(int cpu, int val)
713 {
714 	pcpu_devices[cpu].polarization = val;
715 }
716 
717 int smp_cpu_get_polarization(int cpu)
718 {
719 	return pcpu_devices[cpu].polarization;
720 }
721 
722 int smp_cpu_get_cpu_address(int cpu)
723 {
724 	return pcpu_devices[cpu].address;
725 }
726 
727 static void __ref smp_get_core_info(struct sclp_core_info *info, int early)
728 {
729 	static int use_sigp_detection;
730 	int address;
731 
732 	if (use_sigp_detection || sclp_get_core_info(info, early)) {
733 		use_sigp_detection = 1;
734 		for (address = 0;
735 		     address < (SCLP_MAX_CORES << smp_cpu_mt_shift);
736 		     address += (1U << smp_cpu_mt_shift)) {
737 			if (__pcpu_sigp_relax(address, SIGP_SENSE, 0) ==
738 			    SIGP_CC_NOT_OPERATIONAL)
739 				continue;
740 			info->core[info->configured].core_id =
741 				address >> smp_cpu_mt_shift;
742 			info->configured++;
743 		}
744 		info->combined = info->configured;
745 	}
746 }
747 
748 static int smp_add_present_cpu(int cpu);
749 
750 static int smp_add_core(struct sclp_core_entry *core, cpumask_t *avail,
751 			bool configured, bool early)
752 {
753 	struct pcpu *pcpu;
754 	int cpu, nr, i;
755 	u16 address;
756 
757 	nr = 0;
758 	if (sclp.has_core_type && core->type != boot_core_type)
759 		return nr;
760 	cpu = cpumask_first(avail);
761 	address = core->core_id << smp_cpu_mt_shift;
762 	for (i = 0; (i <= smp_cpu_mtid) && (cpu < nr_cpu_ids); i++) {
763 		if (pcpu_find_address(cpu_present_mask, address + i))
764 			continue;
765 		pcpu = pcpu_devices + cpu;
766 		pcpu->address = address + i;
767 		if (configured)
768 			pcpu->state = CPU_STATE_CONFIGURED;
769 		else
770 			pcpu->state = CPU_STATE_STANDBY;
771 		smp_cpu_set_polarization(cpu, POLARIZATION_UNKNOWN);
772 		set_cpu_present(cpu, true);
773 		if (!early && smp_add_present_cpu(cpu) != 0)
774 			set_cpu_present(cpu, false);
775 		else
776 			nr++;
777 		cpumask_clear_cpu(cpu, avail);
778 		cpu = cpumask_next(cpu, avail);
779 	}
780 	return nr;
781 }
782 
783 static int __smp_rescan_cpus(struct sclp_core_info *info, bool early)
784 {
785 	struct sclp_core_entry *core;
786 	static cpumask_t avail;
787 	bool configured;
788 	u16 core_id;
789 	int nr, i;
790 
791 	get_online_cpus();
792 	mutex_lock(&smp_cpu_state_mutex);
793 	nr = 0;
794 	cpumask_xor(&avail, cpu_possible_mask, cpu_present_mask);
795 	/*
796 	 * Add IPL core first (which got logical CPU number 0) to make sure
797 	 * that all SMT threads get subsequent logical CPU numbers.
798 	 */
799 	if (early) {
800 		core_id = pcpu_devices[0].address >> smp_cpu_mt_shift;
801 		for (i = 0; i < info->configured; i++) {
802 			core = &info->core[i];
803 			if (core->core_id == core_id) {
804 				nr += smp_add_core(core, &avail, true, early);
805 				break;
806 			}
807 		}
808 	}
809 	for (i = 0; i < info->combined; i++) {
810 		configured = i < info->configured;
811 		nr += smp_add_core(&info->core[i], &avail, configured, early);
812 	}
813 	mutex_unlock(&smp_cpu_state_mutex);
814 	put_online_cpus();
815 	return nr;
816 }
817 
818 void __init smp_detect_cpus(void)
819 {
820 	unsigned int cpu, mtid, c_cpus, s_cpus;
821 	struct sclp_core_info *info;
822 	u16 address;
823 
824 	/* Get CPU information */
825 	info = memblock_alloc(sizeof(*info), 8);
826 	if (!info)
827 		panic("%s: Failed to allocate %zu bytes align=0x%x\n",
828 		      __func__, sizeof(*info), 8);
829 	smp_get_core_info(info, 1);
830 	/* Find boot CPU type */
831 	if (sclp.has_core_type) {
832 		address = stap();
833 		for (cpu = 0; cpu < info->combined; cpu++)
834 			if (info->core[cpu].core_id == address) {
835 				/* The boot cpu dictates the cpu type. */
836 				boot_core_type = info->core[cpu].type;
837 				break;
838 			}
839 		if (cpu >= info->combined)
840 			panic("Could not find boot CPU type");
841 	}
842 
843 	/* Set multi-threading state for the current system */
844 	mtid = boot_core_type ? sclp.mtid : sclp.mtid_cp;
845 	mtid = (mtid < smp_max_threads) ? mtid : smp_max_threads - 1;
846 	pcpu_set_smt(mtid);
847 
848 	/* Print number of CPUs */
849 	c_cpus = s_cpus = 0;
850 	for (cpu = 0; cpu < info->combined; cpu++) {
851 		if (sclp.has_core_type &&
852 		    info->core[cpu].type != boot_core_type)
853 			continue;
854 		if (cpu < info->configured)
855 			c_cpus += smp_cpu_mtid + 1;
856 		else
857 			s_cpus += smp_cpu_mtid + 1;
858 	}
859 	pr_info("%d configured CPUs, %d standby CPUs\n", c_cpus, s_cpus);
860 
861 	/* Add CPUs present at boot */
862 	__smp_rescan_cpus(info, true);
863 	memblock_free_early((unsigned long)info, sizeof(*info));
864 }
865 
866 static void smp_init_secondary(void)
867 {
868 	int cpu = raw_smp_processor_id();
869 
870 	S390_lowcore.last_update_clock = get_tod_clock();
871 	restore_access_regs(S390_lowcore.access_regs_save_area);
872 	cpu_init();
873 	rcu_cpu_starting(cpu);
874 	init_cpu_timer();
875 	vtime_init();
876 	vdso_getcpu_init();
877 	pfault_init();
878 	notify_cpu_starting(cpu);
879 	if (topology_cpu_dedicated(cpu))
880 		set_cpu_flag(CIF_DEDICATED_CPU);
881 	else
882 		clear_cpu_flag(CIF_DEDICATED_CPU);
883 	set_cpu_online(cpu, true);
884 	update_cpu_masks();
885 	inc_irq_stat(CPU_RST);
886 	local_irq_enable();
887 	cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
888 }
889 
890 /*
891  *	Activate a secondary processor.
892  */
893 static void __no_sanitize_address smp_start_secondary(void *cpuvoid)
894 {
895 	S390_lowcore.restart_stack = (unsigned long) restart_stack;
896 	S390_lowcore.restart_fn = (unsigned long) do_restart;
897 	S390_lowcore.restart_data = 0;
898 	S390_lowcore.restart_source = -1UL;
899 	__ctl_load(S390_lowcore.cregs_save_area, 0, 15);
900 	__load_psw_mask(PSW_KERNEL_BITS | PSW_MASK_DAT);
901 	CALL_ON_STACK_NORETURN(smp_init_secondary, S390_lowcore.kernel_stack);
902 }
903 
904 /* Upping and downing of CPUs */
905 int __cpu_up(unsigned int cpu, struct task_struct *tidle)
906 {
907 	struct pcpu *pcpu = pcpu_devices + cpu;
908 	int rc;
909 
910 	if (pcpu->state != CPU_STATE_CONFIGURED)
911 		return -EIO;
912 	if (pcpu_sigp_retry(pcpu, SIGP_INITIAL_CPU_RESET, 0) !=
913 	    SIGP_CC_ORDER_CODE_ACCEPTED)
914 		return -EIO;
915 
916 	rc = pcpu_alloc_lowcore(pcpu, cpu);
917 	if (rc)
918 		return rc;
919 	pcpu_prepare_secondary(pcpu, cpu);
920 	pcpu_attach_task(pcpu, tidle);
921 	pcpu_start_fn(pcpu, smp_start_secondary, NULL);
922 	/* Wait until cpu puts itself in the online & active maps */
923 	while (!cpu_online(cpu))
924 		cpu_relax();
925 	return 0;
926 }
927 
928 static unsigned int setup_possible_cpus __initdata;
929 
930 static int __init _setup_possible_cpus(char *s)
931 {
932 	get_option(&s, &setup_possible_cpus);
933 	return 0;
934 }
935 early_param("possible_cpus", _setup_possible_cpus);
936 
937 int __cpu_disable(void)
938 {
939 	unsigned long cregs[16];
940 
941 	/* Handle possible pending IPIs */
942 	smp_handle_ext_call();
943 	set_cpu_online(smp_processor_id(), false);
944 	update_cpu_masks();
945 	/* Disable pseudo page faults on this cpu. */
946 	pfault_fini();
947 	/* Disable interrupt sources via control register. */
948 	__ctl_store(cregs, 0, 15);
949 	cregs[0]  &= ~0x0000ee70UL;	/* disable all external interrupts */
950 	cregs[6]  &= ~0xff000000UL;	/* disable all I/O interrupts */
951 	cregs[14] &= ~0x1f000000UL;	/* disable most machine checks */
952 	__ctl_load(cregs, 0, 15);
953 	clear_cpu_flag(CIF_NOHZ_DELAY);
954 	return 0;
955 }
956 
957 void __cpu_die(unsigned int cpu)
958 {
959 	struct pcpu *pcpu;
960 
961 	/* Wait until target cpu is down */
962 	pcpu = pcpu_devices + cpu;
963 	while (!pcpu_stopped(pcpu))
964 		cpu_relax();
965 	pcpu_free_lowcore(pcpu);
966 	cpumask_clear_cpu(cpu, mm_cpumask(&init_mm));
967 	cpumask_clear_cpu(cpu, &init_mm.context.cpu_attach_mask);
968 }
969 
970 void __noreturn cpu_die(void)
971 {
972 	idle_task_exit();
973 	__bpon();
974 	pcpu_sigp_retry(pcpu_devices + smp_processor_id(), SIGP_STOP, 0);
975 	for (;;) ;
976 }
977 
978 void __init smp_fill_possible_mask(void)
979 {
980 	unsigned int possible, sclp_max, cpu;
981 
982 	sclp_max = max(sclp.mtid, sclp.mtid_cp) + 1;
983 	sclp_max = min(smp_max_threads, sclp_max);
984 	sclp_max = (sclp.max_cores * sclp_max) ?: nr_cpu_ids;
985 	possible = setup_possible_cpus ?: nr_cpu_ids;
986 	possible = min(possible, sclp_max);
987 	for (cpu = 0; cpu < possible && cpu < nr_cpu_ids; cpu++)
988 		set_cpu_possible(cpu, true);
989 }
990 
991 void __init smp_prepare_cpus(unsigned int max_cpus)
992 {
993 	/* request the 0x1201 emergency signal external interrupt */
994 	if (register_external_irq(EXT_IRQ_EMERGENCY_SIG, do_ext_call_interrupt))
995 		panic("Couldn't request external interrupt 0x1201");
996 	/* request the 0x1202 external call external interrupt */
997 	if (register_external_irq(EXT_IRQ_EXTERNAL_CALL, do_ext_call_interrupt))
998 		panic("Couldn't request external interrupt 0x1202");
999 }
1000 
1001 void __init smp_prepare_boot_cpu(void)
1002 {
1003 	struct pcpu *pcpu = pcpu_devices;
1004 
1005 	WARN_ON(!cpu_present(0) || !cpu_online(0));
1006 	pcpu->state = CPU_STATE_CONFIGURED;
1007 	S390_lowcore.percpu_offset = __per_cpu_offset[0];
1008 	smp_cpu_set_polarization(0, POLARIZATION_UNKNOWN);
1009 }
1010 
1011 void __init smp_setup_processor_id(void)
1012 {
1013 	pcpu_devices[0].address = stap();
1014 	S390_lowcore.cpu_nr = 0;
1015 	S390_lowcore.spinlock_lockval = arch_spin_lockval(0);
1016 	S390_lowcore.spinlock_index = 0;
1017 }
1018 
1019 /*
1020  * the frequency of the profiling timer can be changed
1021  * by writing a multiplier value into /proc/profile.
1022  *
1023  * usually you want to run this on all CPUs ;)
1024  */
1025 int setup_profiling_timer(unsigned int multiplier)
1026 {
1027 	return 0;
1028 }
1029 
1030 static ssize_t cpu_configure_show(struct device *dev,
1031 				  struct device_attribute *attr, char *buf)
1032 {
1033 	ssize_t count;
1034 
1035 	mutex_lock(&smp_cpu_state_mutex);
1036 	count = sprintf(buf, "%d\n", pcpu_devices[dev->id].state);
1037 	mutex_unlock(&smp_cpu_state_mutex);
1038 	return count;
1039 }
1040 
1041 static ssize_t cpu_configure_store(struct device *dev,
1042 				   struct device_attribute *attr,
1043 				   const char *buf, size_t count)
1044 {
1045 	struct pcpu *pcpu;
1046 	int cpu, val, rc, i;
1047 	char delim;
1048 
1049 	if (sscanf(buf, "%d %c", &val, &delim) != 1)
1050 		return -EINVAL;
1051 	if (val != 0 && val != 1)
1052 		return -EINVAL;
1053 	get_online_cpus();
1054 	mutex_lock(&smp_cpu_state_mutex);
1055 	rc = -EBUSY;
1056 	/* disallow configuration changes of online cpus and cpu 0 */
1057 	cpu = dev->id;
1058 	cpu = smp_get_base_cpu(cpu);
1059 	if (cpu == 0)
1060 		goto out;
1061 	for (i = 0; i <= smp_cpu_mtid; i++)
1062 		if (cpu_online(cpu + i))
1063 			goto out;
1064 	pcpu = pcpu_devices + cpu;
1065 	rc = 0;
1066 	switch (val) {
1067 	case 0:
1068 		if (pcpu->state != CPU_STATE_CONFIGURED)
1069 			break;
1070 		rc = sclp_core_deconfigure(pcpu->address >> smp_cpu_mt_shift);
1071 		if (rc)
1072 			break;
1073 		for (i = 0; i <= smp_cpu_mtid; i++) {
1074 			if (cpu + i >= nr_cpu_ids || !cpu_present(cpu + i))
1075 				continue;
1076 			pcpu[i].state = CPU_STATE_STANDBY;
1077 			smp_cpu_set_polarization(cpu + i,
1078 						 POLARIZATION_UNKNOWN);
1079 		}
1080 		topology_expect_change();
1081 		break;
1082 	case 1:
1083 		if (pcpu->state != CPU_STATE_STANDBY)
1084 			break;
1085 		rc = sclp_core_configure(pcpu->address >> smp_cpu_mt_shift);
1086 		if (rc)
1087 			break;
1088 		for (i = 0; i <= smp_cpu_mtid; i++) {
1089 			if (cpu + i >= nr_cpu_ids || !cpu_present(cpu + i))
1090 				continue;
1091 			pcpu[i].state = CPU_STATE_CONFIGURED;
1092 			smp_cpu_set_polarization(cpu + i,
1093 						 POLARIZATION_UNKNOWN);
1094 		}
1095 		topology_expect_change();
1096 		break;
1097 	default:
1098 		break;
1099 	}
1100 out:
1101 	mutex_unlock(&smp_cpu_state_mutex);
1102 	put_online_cpus();
1103 	return rc ? rc : count;
1104 }
1105 static DEVICE_ATTR(configure, 0644, cpu_configure_show, cpu_configure_store);
1106 
1107 static ssize_t show_cpu_address(struct device *dev,
1108 				struct device_attribute *attr, char *buf)
1109 {
1110 	return sprintf(buf, "%d\n", pcpu_devices[dev->id].address);
1111 }
1112 static DEVICE_ATTR(address, 0444, show_cpu_address, NULL);
1113 
1114 static struct attribute *cpu_common_attrs[] = {
1115 	&dev_attr_configure.attr,
1116 	&dev_attr_address.attr,
1117 	NULL,
1118 };
1119 
1120 static struct attribute_group cpu_common_attr_group = {
1121 	.attrs = cpu_common_attrs,
1122 };
1123 
1124 static struct attribute *cpu_online_attrs[] = {
1125 	&dev_attr_idle_count.attr,
1126 	&dev_attr_idle_time_us.attr,
1127 	NULL,
1128 };
1129 
1130 static struct attribute_group cpu_online_attr_group = {
1131 	.attrs = cpu_online_attrs,
1132 };
1133 
1134 static int smp_cpu_online(unsigned int cpu)
1135 {
1136 	struct device *s = &per_cpu(cpu_device, cpu)->dev;
1137 
1138 	return sysfs_create_group(&s->kobj, &cpu_online_attr_group);
1139 }
1140 
1141 static int smp_cpu_pre_down(unsigned int cpu)
1142 {
1143 	struct device *s = &per_cpu(cpu_device, cpu)->dev;
1144 
1145 	sysfs_remove_group(&s->kobj, &cpu_online_attr_group);
1146 	return 0;
1147 }
1148 
1149 static int smp_add_present_cpu(int cpu)
1150 {
1151 	struct device *s;
1152 	struct cpu *c;
1153 	int rc;
1154 
1155 	c = kzalloc(sizeof(*c), GFP_KERNEL);
1156 	if (!c)
1157 		return -ENOMEM;
1158 	per_cpu(cpu_device, cpu) = c;
1159 	s = &c->dev;
1160 	c->hotpluggable = 1;
1161 	rc = register_cpu(c, cpu);
1162 	if (rc)
1163 		goto out;
1164 	rc = sysfs_create_group(&s->kobj, &cpu_common_attr_group);
1165 	if (rc)
1166 		goto out_cpu;
1167 	rc = topology_cpu_init(c);
1168 	if (rc)
1169 		goto out_topology;
1170 	return 0;
1171 
1172 out_topology:
1173 	sysfs_remove_group(&s->kobj, &cpu_common_attr_group);
1174 out_cpu:
1175 	unregister_cpu(c);
1176 out:
1177 	return rc;
1178 }
1179 
1180 int __ref smp_rescan_cpus(void)
1181 {
1182 	struct sclp_core_info *info;
1183 	int nr;
1184 
1185 	info = kzalloc(sizeof(*info), GFP_KERNEL);
1186 	if (!info)
1187 		return -ENOMEM;
1188 	smp_get_core_info(info, 0);
1189 	nr = __smp_rescan_cpus(info, false);
1190 	kfree(info);
1191 	if (nr)
1192 		topology_schedule_update();
1193 	return 0;
1194 }
1195 
1196 static ssize_t __ref rescan_store(struct device *dev,
1197 				  struct device_attribute *attr,
1198 				  const char *buf,
1199 				  size_t count)
1200 {
1201 	int rc;
1202 
1203 	rc = lock_device_hotplug_sysfs();
1204 	if (rc)
1205 		return rc;
1206 	rc = smp_rescan_cpus();
1207 	unlock_device_hotplug();
1208 	return rc ? rc : count;
1209 }
1210 static DEVICE_ATTR_WO(rescan);
1211 
1212 static int __init s390_smp_init(void)
1213 {
1214 	int cpu, rc = 0;
1215 
1216 	rc = device_create_file(cpu_subsys.dev_root, &dev_attr_rescan);
1217 	if (rc)
1218 		return rc;
1219 	for_each_present_cpu(cpu) {
1220 		rc = smp_add_present_cpu(cpu);
1221 		if (rc)
1222 			goto out;
1223 	}
1224 
1225 	rc = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "s390/smp:online",
1226 			       smp_cpu_online, smp_cpu_pre_down);
1227 	rc = rc <= 0 ? rc : 0;
1228 out:
1229 	return rc;
1230 }
1231 subsys_initcall(s390_smp_init);
1232 
1233 static __always_inline void set_new_lowcore(struct lowcore *lc)
1234 {
1235 	union register_pair dst, src;
1236 	u32 pfx;
1237 
1238 	src.even = (unsigned long) &S390_lowcore;
1239 	src.odd  = sizeof(S390_lowcore);
1240 	dst.even = (unsigned long) lc;
1241 	dst.odd  = sizeof(*lc);
1242 	pfx = (unsigned long) lc;
1243 
1244 	asm volatile(
1245 		"	mvcl	%[dst],%[src]\n"
1246 		"	spx	%[pfx]\n"
1247 		: [dst] "+&d" (dst.pair), [src] "+&d" (src.pair)
1248 		: [pfx] "Q" (pfx)
1249 		: "memory", "cc");
1250 }
1251 
1252 static int __init smp_reinit_ipl_cpu(void)
1253 {
1254 	unsigned long async_stack, nodat_stack, mcck_stack;
1255 	struct lowcore *lc, *lc_ipl;
1256 	unsigned long flags;
1257 
1258 	lc_ipl = lowcore_ptr[0];
1259 	lc = (struct lowcore *)	__get_free_pages(GFP_KERNEL | GFP_DMA, LC_ORDER);
1260 	nodat_stack = __get_free_pages(GFP_KERNEL, THREAD_SIZE_ORDER);
1261 	async_stack = stack_alloc();
1262 	mcck_stack = stack_alloc();
1263 	if (!lc || !nodat_stack || !async_stack || !mcck_stack)
1264 		panic("Couldn't allocate memory");
1265 
1266 	local_irq_save(flags);
1267 	local_mcck_disable();
1268 	set_new_lowcore(lc);
1269 	S390_lowcore.nodat_stack = nodat_stack + STACK_INIT_OFFSET;
1270 	S390_lowcore.async_stack = async_stack + STACK_INIT_OFFSET;
1271 	S390_lowcore.mcck_stack = mcck_stack + STACK_INIT_OFFSET;
1272 	lowcore_ptr[0] = lc;
1273 	local_mcck_enable();
1274 	local_irq_restore(flags);
1275 
1276 	free_pages(lc_ipl->async_stack - STACK_INIT_OFFSET, THREAD_SIZE_ORDER);
1277 	memblock_free_late(lc_ipl->mcck_stack - STACK_INIT_OFFSET, THREAD_SIZE);
1278 	memblock_free_late((unsigned long) lc_ipl, sizeof(*lc_ipl));
1279 
1280 	return 0;
1281 }
1282 early_initcall(smp_reinit_ipl_cpu);
1283