1 /* 2 * SMP related functions 3 * 4 * Copyright IBM Corp. 1999, 2012 5 * Author(s): Denis Joseph Barrow, 6 * Martin Schwidefsky <schwidefsky@de.ibm.com>, 7 * Heiko Carstens <heiko.carstens@de.ibm.com>, 8 * 9 * based on other smp stuff by 10 * (c) 1995 Alan Cox, CymruNET Ltd <alan@cymru.net> 11 * (c) 1998 Ingo Molnar 12 * 13 * The code outside of smp.c uses logical cpu numbers, only smp.c does 14 * the translation of logical to physical cpu ids. All new code that 15 * operates on physical cpu numbers needs to go into smp.c. 16 */ 17 18 #define KMSG_COMPONENT "cpu" 19 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt 20 21 #include <linux/workqueue.h> 22 #include <linux/module.h> 23 #include <linux/init.h> 24 #include <linux/mm.h> 25 #include <linux/err.h> 26 #include <linux/spinlock.h> 27 #include <linux/kernel_stat.h> 28 #include <linux/delay.h> 29 #include <linux/interrupt.h> 30 #include <linux/irqflags.h> 31 #include <linux/cpu.h> 32 #include <linux/slab.h> 33 #include <linux/crash_dump.h> 34 #include <asm/asm-offsets.h> 35 #include <asm/switch_to.h> 36 #include <asm/facility.h> 37 #include <asm/ipl.h> 38 #include <asm/setup.h> 39 #include <asm/irq.h> 40 #include <asm/tlbflush.h> 41 #include <asm/vtimer.h> 42 #include <asm/lowcore.h> 43 #include <asm/sclp.h> 44 #include <asm/vdso.h> 45 #include <asm/debug.h> 46 #include <asm/os_info.h> 47 #include <asm/sigp.h> 48 #include "entry.h" 49 50 enum { 51 ec_schedule = 0, 52 ec_call_function, 53 ec_call_function_single, 54 ec_stop_cpu, 55 }; 56 57 enum { 58 CPU_STATE_STANDBY, 59 CPU_STATE_CONFIGURED, 60 }; 61 62 struct pcpu { 63 struct cpu cpu; 64 struct _lowcore *lowcore; /* lowcore page(s) for the cpu */ 65 unsigned long async_stack; /* async stack for the cpu */ 66 unsigned long panic_stack; /* panic stack for the cpu */ 67 unsigned long ec_mask; /* bit mask for ec_xxx functions */ 68 int state; /* physical cpu state */ 69 int polarization; /* physical polarization */ 70 u16 address; /* physical cpu address */ 71 }; 72 73 static u8 boot_cpu_type; 74 static u16 boot_cpu_address; 75 static struct pcpu pcpu_devices[NR_CPUS]; 76 77 /* 78 * The smp_cpu_state_mutex must be held when changing the state or polarization 79 * member of a pcpu data structure within the pcpu_devices arreay. 80 */ 81 DEFINE_MUTEX(smp_cpu_state_mutex); 82 83 /* 84 * Signal processor helper functions. 85 */ 86 static inline int __pcpu_sigp(u16 addr, u8 order, u32 parm, u32 *status) 87 { 88 register unsigned int reg1 asm ("1") = parm; 89 int cc; 90 91 asm volatile( 92 " sigp %1,%2,0(%3)\n" 93 " ipm %0\n" 94 " srl %0,28\n" 95 : "=d" (cc), "+d" (reg1) : "d" (addr), "a" (order) : "cc"); 96 if (status && cc == 1) 97 *status = reg1; 98 return cc; 99 } 100 101 static inline int __pcpu_sigp_relax(u16 addr, u8 order, u32 parm, u32 *status) 102 { 103 int cc; 104 105 while (1) { 106 cc = __pcpu_sigp(addr, order, parm, NULL); 107 if (cc != SIGP_CC_BUSY) 108 return cc; 109 cpu_relax(); 110 } 111 } 112 113 static int pcpu_sigp_retry(struct pcpu *pcpu, u8 order, u32 parm) 114 { 115 int cc, retry; 116 117 for (retry = 0; ; retry++) { 118 cc = __pcpu_sigp(pcpu->address, order, parm, NULL); 119 if (cc != SIGP_CC_BUSY) 120 break; 121 if (retry >= 3) 122 udelay(10); 123 } 124 return cc; 125 } 126 127 static inline int pcpu_stopped(struct pcpu *pcpu) 128 { 129 u32 uninitialized_var(status); 130 131 if (__pcpu_sigp(pcpu->address, SIGP_SENSE, 132 0, &status) != SIGP_CC_STATUS_STORED) 133 return 0; 134 return !!(status & (SIGP_STATUS_CHECK_STOP|SIGP_STATUS_STOPPED)); 135 } 136 137 static inline int pcpu_running(struct pcpu *pcpu) 138 { 139 if (__pcpu_sigp(pcpu->address, SIGP_SENSE_RUNNING, 140 0, NULL) != SIGP_CC_STATUS_STORED) 141 return 1; 142 /* Status stored condition code is equivalent to cpu not running. */ 143 return 0; 144 } 145 146 /* 147 * Find struct pcpu by cpu address. 148 */ 149 static struct pcpu *pcpu_find_address(const struct cpumask *mask, int address) 150 { 151 int cpu; 152 153 for_each_cpu(cpu, mask) 154 if (pcpu_devices[cpu].address == address) 155 return pcpu_devices + cpu; 156 return NULL; 157 } 158 159 static void pcpu_ec_call(struct pcpu *pcpu, int ec_bit) 160 { 161 int order; 162 163 set_bit(ec_bit, &pcpu->ec_mask); 164 order = pcpu_running(pcpu) ? 165 SIGP_EXTERNAL_CALL : SIGP_EMERGENCY_SIGNAL; 166 pcpu_sigp_retry(pcpu, order, 0); 167 } 168 169 static int __cpuinit pcpu_alloc_lowcore(struct pcpu *pcpu, int cpu) 170 { 171 struct _lowcore *lc; 172 173 if (pcpu != &pcpu_devices[0]) { 174 pcpu->lowcore = (struct _lowcore *) 175 __get_free_pages(GFP_KERNEL | GFP_DMA, LC_ORDER); 176 pcpu->async_stack = __get_free_pages(GFP_KERNEL, ASYNC_ORDER); 177 pcpu->panic_stack = __get_free_page(GFP_KERNEL); 178 if (!pcpu->lowcore || !pcpu->panic_stack || !pcpu->async_stack) 179 goto out; 180 } 181 lc = pcpu->lowcore; 182 memcpy(lc, &S390_lowcore, 512); 183 memset((char *) lc + 512, 0, sizeof(*lc) - 512); 184 lc->async_stack = pcpu->async_stack + ASYNC_SIZE; 185 lc->panic_stack = pcpu->panic_stack + PAGE_SIZE; 186 lc->cpu_nr = cpu; 187 #ifndef CONFIG_64BIT 188 if (MACHINE_HAS_IEEE) { 189 lc->extended_save_area_addr = get_zeroed_page(GFP_KERNEL); 190 if (!lc->extended_save_area_addr) 191 goto out; 192 } 193 #else 194 if (vdso_alloc_per_cpu(lc)) 195 goto out; 196 #endif 197 lowcore_ptr[cpu] = lc; 198 pcpu_sigp_retry(pcpu, SIGP_SET_PREFIX, (u32)(unsigned long) lc); 199 return 0; 200 out: 201 if (pcpu != &pcpu_devices[0]) { 202 free_page(pcpu->panic_stack); 203 free_pages(pcpu->async_stack, ASYNC_ORDER); 204 free_pages((unsigned long) pcpu->lowcore, LC_ORDER); 205 } 206 return -ENOMEM; 207 } 208 209 #ifdef CONFIG_HOTPLUG_CPU 210 211 static void pcpu_free_lowcore(struct pcpu *pcpu) 212 { 213 pcpu_sigp_retry(pcpu, SIGP_SET_PREFIX, 0); 214 lowcore_ptr[pcpu - pcpu_devices] = NULL; 215 #ifndef CONFIG_64BIT 216 if (MACHINE_HAS_IEEE) { 217 struct _lowcore *lc = pcpu->lowcore; 218 219 free_page((unsigned long) lc->extended_save_area_addr); 220 lc->extended_save_area_addr = 0; 221 } 222 #else 223 vdso_free_per_cpu(pcpu->lowcore); 224 #endif 225 if (pcpu != &pcpu_devices[0]) { 226 free_page(pcpu->panic_stack); 227 free_pages(pcpu->async_stack, ASYNC_ORDER); 228 free_pages((unsigned long) pcpu->lowcore, LC_ORDER); 229 } 230 } 231 232 #endif /* CONFIG_HOTPLUG_CPU */ 233 234 static void pcpu_prepare_secondary(struct pcpu *pcpu, int cpu) 235 { 236 struct _lowcore *lc = pcpu->lowcore; 237 238 atomic_inc(&init_mm.context.attach_count); 239 lc->cpu_nr = cpu; 240 lc->percpu_offset = __per_cpu_offset[cpu]; 241 lc->kernel_asce = S390_lowcore.kernel_asce; 242 lc->machine_flags = S390_lowcore.machine_flags; 243 lc->ftrace_func = S390_lowcore.ftrace_func; 244 lc->user_timer = lc->system_timer = lc->steal_timer = 0; 245 __ctl_store(lc->cregs_save_area, 0, 15); 246 save_access_regs((unsigned int *) lc->access_regs_save_area); 247 memcpy(lc->stfle_fac_list, S390_lowcore.stfle_fac_list, 248 MAX_FACILITY_BIT/8); 249 } 250 251 static void pcpu_attach_task(struct pcpu *pcpu, struct task_struct *tsk) 252 { 253 struct _lowcore *lc = pcpu->lowcore; 254 struct thread_info *ti = task_thread_info(tsk); 255 256 lc->kernel_stack = (unsigned long) task_stack_page(tsk) + THREAD_SIZE; 257 lc->thread_info = (unsigned long) task_thread_info(tsk); 258 lc->current_task = (unsigned long) tsk; 259 lc->user_timer = ti->user_timer; 260 lc->system_timer = ti->system_timer; 261 lc->steal_timer = 0; 262 } 263 264 static void pcpu_start_fn(struct pcpu *pcpu, void (*func)(void *), void *data) 265 { 266 struct _lowcore *lc = pcpu->lowcore; 267 268 lc->restart_stack = lc->kernel_stack; 269 lc->restart_fn = (unsigned long) func; 270 lc->restart_data = (unsigned long) data; 271 lc->restart_source = -1UL; 272 pcpu_sigp_retry(pcpu, SIGP_RESTART, 0); 273 } 274 275 /* 276 * Call function via PSW restart on pcpu and stop the current cpu. 277 */ 278 static void pcpu_delegate(struct pcpu *pcpu, void (*func)(void *), 279 void *data, unsigned long stack) 280 { 281 struct _lowcore *lc = lowcore_ptr[pcpu - pcpu_devices]; 282 unsigned long source_cpu = stap(); 283 284 __load_psw_mask(psw_kernel_bits); 285 if (pcpu->address == source_cpu) 286 func(data); /* should not return */ 287 /* Stop target cpu (if func returns this stops the current cpu). */ 288 pcpu_sigp_retry(pcpu, SIGP_STOP, 0); 289 /* Restart func on the target cpu and stop the current cpu. */ 290 mem_assign_absolute(lc->restart_stack, stack); 291 mem_assign_absolute(lc->restart_fn, (unsigned long) func); 292 mem_assign_absolute(lc->restart_data, (unsigned long) data); 293 mem_assign_absolute(lc->restart_source, source_cpu); 294 asm volatile( 295 "0: sigp 0,%0,%2 # sigp restart to target cpu\n" 296 " brc 2,0b # busy, try again\n" 297 "1: sigp 0,%1,%3 # sigp stop to current cpu\n" 298 " brc 2,1b # busy, try again\n" 299 : : "d" (pcpu->address), "d" (source_cpu), 300 "K" (SIGP_RESTART), "K" (SIGP_STOP) 301 : "0", "1", "cc"); 302 for (;;) ; 303 } 304 305 /* 306 * Call function on an online CPU. 307 */ 308 void smp_call_online_cpu(void (*func)(void *), void *data) 309 { 310 struct pcpu *pcpu; 311 312 /* Use the current cpu if it is online. */ 313 pcpu = pcpu_find_address(cpu_online_mask, stap()); 314 if (!pcpu) 315 /* Use the first online cpu. */ 316 pcpu = pcpu_devices + cpumask_first(cpu_online_mask); 317 pcpu_delegate(pcpu, func, data, (unsigned long) restart_stack); 318 } 319 320 /* 321 * Call function on the ipl CPU. 322 */ 323 void smp_call_ipl_cpu(void (*func)(void *), void *data) 324 { 325 pcpu_delegate(&pcpu_devices[0], func, data, 326 pcpu_devices->panic_stack + PAGE_SIZE); 327 } 328 329 int smp_find_processor_id(u16 address) 330 { 331 int cpu; 332 333 for_each_present_cpu(cpu) 334 if (pcpu_devices[cpu].address == address) 335 return cpu; 336 return -1; 337 } 338 339 int smp_vcpu_scheduled(int cpu) 340 { 341 return pcpu_running(pcpu_devices + cpu); 342 } 343 344 void smp_yield(void) 345 { 346 if (MACHINE_HAS_DIAG44) 347 asm volatile("diag 0,0,0x44"); 348 } 349 350 void smp_yield_cpu(int cpu) 351 { 352 if (MACHINE_HAS_DIAG9C) 353 asm volatile("diag %0,0,0x9c" 354 : : "d" (pcpu_devices[cpu].address)); 355 else if (MACHINE_HAS_DIAG44) 356 asm volatile("diag 0,0,0x44"); 357 } 358 359 /* 360 * Send cpus emergency shutdown signal. This gives the cpus the 361 * opportunity to complete outstanding interrupts. 362 */ 363 void smp_emergency_stop(cpumask_t *cpumask) 364 { 365 u64 end; 366 int cpu; 367 368 end = get_clock() + (1000000UL << 12); 369 for_each_cpu(cpu, cpumask) { 370 struct pcpu *pcpu = pcpu_devices + cpu; 371 set_bit(ec_stop_cpu, &pcpu->ec_mask); 372 while (__pcpu_sigp(pcpu->address, SIGP_EMERGENCY_SIGNAL, 373 0, NULL) == SIGP_CC_BUSY && 374 get_clock() < end) 375 cpu_relax(); 376 } 377 while (get_clock() < end) { 378 for_each_cpu(cpu, cpumask) 379 if (pcpu_stopped(pcpu_devices + cpu)) 380 cpumask_clear_cpu(cpu, cpumask); 381 if (cpumask_empty(cpumask)) 382 break; 383 cpu_relax(); 384 } 385 } 386 387 /* 388 * Stop all cpus but the current one. 389 */ 390 void smp_send_stop(void) 391 { 392 cpumask_t cpumask; 393 int cpu; 394 395 /* Disable all interrupts/machine checks */ 396 __load_psw_mask(psw_kernel_bits | PSW_MASK_DAT); 397 trace_hardirqs_off(); 398 399 debug_set_critical(); 400 cpumask_copy(&cpumask, cpu_online_mask); 401 cpumask_clear_cpu(smp_processor_id(), &cpumask); 402 403 if (oops_in_progress) 404 smp_emergency_stop(&cpumask); 405 406 /* stop all processors */ 407 for_each_cpu(cpu, &cpumask) { 408 struct pcpu *pcpu = pcpu_devices + cpu; 409 pcpu_sigp_retry(pcpu, SIGP_STOP, 0); 410 while (!pcpu_stopped(pcpu)) 411 cpu_relax(); 412 } 413 } 414 415 /* 416 * Stop the current cpu. 417 */ 418 void smp_stop_cpu(void) 419 { 420 pcpu_sigp_retry(pcpu_devices + smp_processor_id(), SIGP_STOP, 0); 421 for (;;) ; 422 } 423 424 /* 425 * This is the main routine where commands issued by other 426 * cpus are handled. 427 */ 428 static void do_ext_call_interrupt(struct ext_code ext_code, 429 unsigned int param32, unsigned long param64) 430 { 431 unsigned long bits; 432 int cpu; 433 434 cpu = smp_processor_id(); 435 if (ext_code.code == 0x1202) 436 inc_irq_stat(IRQEXT_EXC); 437 else 438 inc_irq_stat(IRQEXT_EMS); 439 /* 440 * handle bit signal external calls 441 */ 442 bits = xchg(&pcpu_devices[cpu].ec_mask, 0); 443 444 if (test_bit(ec_stop_cpu, &bits)) 445 smp_stop_cpu(); 446 447 if (test_bit(ec_schedule, &bits)) 448 scheduler_ipi(); 449 450 if (test_bit(ec_call_function, &bits)) 451 generic_smp_call_function_interrupt(); 452 453 if (test_bit(ec_call_function_single, &bits)) 454 generic_smp_call_function_single_interrupt(); 455 456 } 457 458 void arch_send_call_function_ipi_mask(const struct cpumask *mask) 459 { 460 int cpu; 461 462 for_each_cpu(cpu, mask) 463 pcpu_ec_call(pcpu_devices + cpu, ec_call_function); 464 } 465 466 void arch_send_call_function_single_ipi(int cpu) 467 { 468 pcpu_ec_call(pcpu_devices + cpu, ec_call_function_single); 469 } 470 471 #ifndef CONFIG_64BIT 472 /* 473 * this function sends a 'purge tlb' signal to another CPU. 474 */ 475 static void smp_ptlb_callback(void *info) 476 { 477 __tlb_flush_local(); 478 } 479 480 void smp_ptlb_all(void) 481 { 482 on_each_cpu(smp_ptlb_callback, NULL, 1); 483 } 484 EXPORT_SYMBOL(smp_ptlb_all); 485 #endif /* ! CONFIG_64BIT */ 486 487 /* 488 * this function sends a 'reschedule' IPI to another CPU. 489 * it goes straight through and wastes no time serializing 490 * anything. Worst case is that we lose a reschedule ... 491 */ 492 void smp_send_reschedule(int cpu) 493 { 494 pcpu_ec_call(pcpu_devices + cpu, ec_schedule); 495 } 496 497 /* 498 * parameter area for the set/clear control bit callbacks 499 */ 500 struct ec_creg_mask_parms { 501 unsigned long orval; 502 unsigned long andval; 503 int cr; 504 }; 505 506 /* 507 * callback for setting/clearing control bits 508 */ 509 static void smp_ctl_bit_callback(void *info) 510 { 511 struct ec_creg_mask_parms *pp = info; 512 unsigned long cregs[16]; 513 514 __ctl_store(cregs, 0, 15); 515 cregs[pp->cr] = (cregs[pp->cr] & pp->andval) | pp->orval; 516 __ctl_load(cregs, 0, 15); 517 } 518 519 /* 520 * Set a bit in a control register of all cpus 521 */ 522 void smp_ctl_set_bit(int cr, int bit) 523 { 524 struct ec_creg_mask_parms parms = { 1UL << bit, -1UL, cr }; 525 526 on_each_cpu(smp_ctl_bit_callback, &parms, 1); 527 } 528 EXPORT_SYMBOL(smp_ctl_set_bit); 529 530 /* 531 * Clear a bit in a control register of all cpus 532 */ 533 void smp_ctl_clear_bit(int cr, int bit) 534 { 535 struct ec_creg_mask_parms parms = { 0, ~(1UL << bit), cr }; 536 537 on_each_cpu(smp_ctl_bit_callback, &parms, 1); 538 } 539 EXPORT_SYMBOL(smp_ctl_clear_bit); 540 541 #if defined(CONFIG_ZFCPDUMP) || defined(CONFIG_CRASH_DUMP) 542 543 struct save_area *zfcpdump_save_areas[NR_CPUS + 1]; 544 EXPORT_SYMBOL_GPL(zfcpdump_save_areas); 545 546 static void __init smp_get_save_area(int cpu, u16 address) 547 { 548 void *lc = pcpu_devices[0].lowcore; 549 struct save_area *save_area; 550 551 if (is_kdump_kernel()) 552 return; 553 if (!OLDMEM_BASE && (address == boot_cpu_address || 554 ipl_info.type != IPL_TYPE_FCP_DUMP)) 555 return; 556 if (cpu >= NR_CPUS) { 557 pr_warning("CPU %i exceeds the maximum %i and is excluded " 558 "from the dump\n", cpu, NR_CPUS - 1); 559 return; 560 } 561 save_area = kmalloc(sizeof(struct save_area), GFP_KERNEL); 562 if (!save_area) 563 panic("could not allocate memory for save area\n"); 564 zfcpdump_save_areas[cpu] = save_area; 565 #ifdef CONFIG_CRASH_DUMP 566 if (address == boot_cpu_address) { 567 /* Copy the registers of the boot cpu. */ 568 copy_oldmem_page(1, (void *) save_area, sizeof(*save_area), 569 SAVE_AREA_BASE - PAGE_SIZE, 0); 570 return; 571 } 572 #endif 573 /* Get the registers of a non-boot cpu. */ 574 __pcpu_sigp_relax(address, SIGP_STOP_AND_STORE_STATUS, 0, NULL); 575 memcpy_real(save_area, lc + SAVE_AREA_BASE, sizeof(*save_area)); 576 } 577 578 int smp_store_status(int cpu) 579 { 580 struct pcpu *pcpu; 581 582 pcpu = pcpu_devices + cpu; 583 if (__pcpu_sigp_relax(pcpu->address, SIGP_STOP_AND_STORE_STATUS, 584 0, NULL) != SIGP_CC_ORDER_CODE_ACCEPTED) 585 return -EIO; 586 return 0; 587 } 588 589 #else /* CONFIG_ZFCPDUMP || CONFIG_CRASH_DUMP */ 590 591 static inline void smp_get_save_area(int cpu, u16 address) { } 592 593 #endif /* CONFIG_ZFCPDUMP || CONFIG_CRASH_DUMP */ 594 595 void smp_cpu_set_polarization(int cpu, int val) 596 { 597 pcpu_devices[cpu].polarization = val; 598 } 599 600 int smp_cpu_get_polarization(int cpu) 601 { 602 return pcpu_devices[cpu].polarization; 603 } 604 605 static struct sclp_cpu_info *smp_get_cpu_info(void) 606 { 607 static int use_sigp_detection; 608 struct sclp_cpu_info *info; 609 int address; 610 611 info = kzalloc(sizeof(*info), GFP_KERNEL); 612 if (info && (use_sigp_detection || sclp_get_cpu_info(info))) { 613 use_sigp_detection = 1; 614 for (address = 0; address <= MAX_CPU_ADDRESS; address++) { 615 if (__pcpu_sigp_relax(address, SIGP_SENSE, 0, NULL) == 616 SIGP_CC_NOT_OPERATIONAL) 617 continue; 618 info->cpu[info->configured].address = address; 619 info->configured++; 620 } 621 info->combined = info->configured; 622 } 623 return info; 624 } 625 626 static int __cpuinit smp_add_present_cpu(int cpu); 627 628 static int __cpuinit __smp_rescan_cpus(struct sclp_cpu_info *info, 629 int sysfs_add) 630 { 631 struct pcpu *pcpu; 632 cpumask_t avail; 633 int cpu, nr, i; 634 635 nr = 0; 636 cpumask_xor(&avail, cpu_possible_mask, cpu_present_mask); 637 cpu = cpumask_first(&avail); 638 for (i = 0; (i < info->combined) && (cpu < nr_cpu_ids); i++) { 639 if (info->has_cpu_type && info->cpu[i].type != boot_cpu_type) 640 continue; 641 if (pcpu_find_address(cpu_present_mask, info->cpu[i].address)) 642 continue; 643 pcpu = pcpu_devices + cpu; 644 pcpu->address = info->cpu[i].address; 645 pcpu->state = (cpu >= info->configured) ? 646 CPU_STATE_STANDBY : CPU_STATE_CONFIGURED; 647 smp_cpu_set_polarization(cpu, POLARIZATION_UNKNOWN); 648 set_cpu_present(cpu, true); 649 if (sysfs_add && smp_add_present_cpu(cpu) != 0) 650 set_cpu_present(cpu, false); 651 else 652 nr++; 653 cpu = cpumask_next(cpu, &avail); 654 } 655 return nr; 656 } 657 658 static void __init smp_detect_cpus(void) 659 { 660 unsigned int cpu, c_cpus, s_cpus; 661 struct sclp_cpu_info *info; 662 663 info = smp_get_cpu_info(); 664 if (!info) 665 panic("smp_detect_cpus failed to allocate memory\n"); 666 if (info->has_cpu_type) { 667 for (cpu = 0; cpu < info->combined; cpu++) { 668 if (info->cpu[cpu].address != boot_cpu_address) 669 continue; 670 /* The boot cpu dictates the cpu type. */ 671 boot_cpu_type = info->cpu[cpu].type; 672 break; 673 } 674 } 675 c_cpus = s_cpus = 0; 676 for (cpu = 0; cpu < info->combined; cpu++) { 677 if (info->has_cpu_type && info->cpu[cpu].type != boot_cpu_type) 678 continue; 679 if (cpu < info->configured) { 680 smp_get_save_area(c_cpus, info->cpu[cpu].address); 681 c_cpus++; 682 } else 683 s_cpus++; 684 } 685 pr_info("%d configured CPUs, %d standby CPUs\n", c_cpus, s_cpus); 686 get_online_cpus(); 687 __smp_rescan_cpus(info, 0); 688 put_online_cpus(); 689 kfree(info); 690 } 691 692 /* 693 * Activate a secondary processor. 694 */ 695 static void __cpuinit smp_start_secondary(void *cpuvoid) 696 { 697 S390_lowcore.last_update_clock = get_clock(); 698 S390_lowcore.restart_stack = (unsigned long) restart_stack; 699 S390_lowcore.restart_fn = (unsigned long) do_restart; 700 S390_lowcore.restart_data = 0; 701 S390_lowcore.restart_source = -1UL; 702 restore_access_regs(S390_lowcore.access_regs_save_area); 703 __ctl_load(S390_lowcore.cregs_save_area, 0, 15); 704 __load_psw_mask(psw_kernel_bits | PSW_MASK_DAT); 705 cpu_init(); 706 preempt_disable(); 707 init_cpu_timer(); 708 init_cpu_vtimer(); 709 pfault_init(); 710 notify_cpu_starting(smp_processor_id()); 711 set_cpu_online(smp_processor_id(), true); 712 inc_irq_stat(CPU_RST); 713 local_irq_enable(); 714 /* cpu_idle will call schedule for us */ 715 cpu_idle(); 716 } 717 718 /* Upping and downing of CPUs */ 719 int __cpuinit __cpu_up(unsigned int cpu, struct task_struct *tidle) 720 { 721 struct pcpu *pcpu; 722 int rc; 723 724 pcpu = pcpu_devices + cpu; 725 if (pcpu->state != CPU_STATE_CONFIGURED) 726 return -EIO; 727 if (pcpu_sigp_retry(pcpu, SIGP_INITIAL_CPU_RESET, 0) != 728 SIGP_CC_ORDER_CODE_ACCEPTED) 729 return -EIO; 730 731 rc = pcpu_alloc_lowcore(pcpu, cpu); 732 if (rc) 733 return rc; 734 pcpu_prepare_secondary(pcpu, cpu); 735 pcpu_attach_task(pcpu, tidle); 736 pcpu_start_fn(pcpu, smp_start_secondary, NULL); 737 while (!cpu_online(cpu)) 738 cpu_relax(); 739 return 0; 740 } 741 742 static int __init setup_possible_cpus(char *s) 743 { 744 int max, cpu; 745 746 if (kstrtoint(s, 0, &max) < 0) 747 return 0; 748 init_cpu_possible(cpumask_of(0)); 749 for (cpu = 1; cpu < max && cpu < nr_cpu_ids; cpu++) 750 set_cpu_possible(cpu, true); 751 return 0; 752 } 753 early_param("possible_cpus", setup_possible_cpus); 754 755 #ifdef CONFIG_HOTPLUG_CPU 756 757 int __cpu_disable(void) 758 { 759 unsigned long cregs[16]; 760 761 set_cpu_online(smp_processor_id(), false); 762 /* Disable pseudo page faults on this cpu. */ 763 pfault_fini(); 764 /* Disable interrupt sources via control register. */ 765 __ctl_store(cregs, 0, 15); 766 cregs[0] &= ~0x0000ee70UL; /* disable all external interrupts */ 767 cregs[6] &= ~0xff000000UL; /* disable all I/O interrupts */ 768 cregs[14] &= ~0x1f000000UL; /* disable most machine checks */ 769 __ctl_load(cregs, 0, 15); 770 return 0; 771 } 772 773 void __cpu_die(unsigned int cpu) 774 { 775 struct pcpu *pcpu; 776 777 /* Wait until target cpu is down */ 778 pcpu = pcpu_devices + cpu; 779 while (!pcpu_stopped(pcpu)) 780 cpu_relax(); 781 pcpu_free_lowcore(pcpu); 782 atomic_dec(&init_mm.context.attach_count); 783 } 784 785 void __noreturn cpu_die(void) 786 { 787 idle_task_exit(); 788 pcpu_sigp_retry(pcpu_devices + smp_processor_id(), SIGP_STOP, 0); 789 for (;;) ; 790 } 791 792 #endif /* CONFIG_HOTPLUG_CPU */ 793 794 void __init smp_prepare_cpus(unsigned int max_cpus) 795 { 796 /* request the 0x1201 emergency signal external interrupt */ 797 if (register_external_interrupt(0x1201, do_ext_call_interrupt) != 0) 798 panic("Couldn't request external interrupt 0x1201"); 799 /* request the 0x1202 external call external interrupt */ 800 if (register_external_interrupt(0x1202, do_ext_call_interrupt) != 0) 801 panic("Couldn't request external interrupt 0x1202"); 802 smp_detect_cpus(); 803 } 804 805 void __init smp_prepare_boot_cpu(void) 806 { 807 struct pcpu *pcpu = pcpu_devices; 808 809 boot_cpu_address = stap(); 810 pcpu->state = CPU_STATE_CONFIGURED; 811 pcpu->address = boot_cpu_address; 812 pcpu->lowcore = (struct _lowcore *)(unsigned long) store_prefix(); 813 pcpu->async_stack = S390_lowcore.async_stack - ASYNC_SIZE; 814 pcpu->panic_stack = S390_lowcore.panic_stack - PAGE_SIZE; 815 S390_lowcore.percpu_offset = __per_cpu_offset[0]; 816 smp_cpu_set_polarization(0, POLARIZATION_UNKNOWN); 817 set_cpu_present(0, true); 818 set_cpu_online(0, true); 819 } 820 821 void __init smp_cpus_done(unsigned int max_cpus) 822 { 823 } 824 825 void __init smp_setup_processor_id(void) 826 { 827 S390_lowcore.cpu_nr = 0; 828 } 829 830 /* 831 * the frequency of the profiling timer can be changed 832 * by writing a multiplier value into /proc/profile. 833 * 834 * usually you want to run this on all CPUs ;) 835 */ 836 int setup_profiling_timer(unsigned int multiplier) 837 { 838 return 0; 839 } 840 841 #ifdef CONFIG_HOTPLUG_CPU 842 static ssize_t cpu_configure_show(struct device *dev, 843 struct device_attribute *attr, char *buf) 844 { 845 ssize_t count; 846 847 mutex_lock(&smp_cpu_state_mutex); 848 count = sprintf(buf, "%d\n", pcpu_devices[dev->id].state); 849 mutex_unlock(&smp_cpu_state_mutex); 850 return count; 851 } 852 853 static ssize_t cpu_configure_store(struct device *dev, 854 struct device_attribute *attr, 855 const char *buf, size_t count) 856 { 857 struct pcpu *pcpu; 858 int cpu, val, rc; 859 char delim; 860 861 if (sscanf(buf, "%d %c", &val, &delim) != 1) 862 return -EINVAL; 863 if (val != 0 && val != 1) 864 return -EINVAL; 865 get_online_cpus(); 866 mutex_lock(&smp_cpu_state_mutex); 867 rc = -EBUSY; 868 /* disallow configuration changes of online cpus and cpu 0 */ 869 cpu = dev->id; 870 if (cpu_online(cpu) || cpu == 0) 871 goto out; 872 pcpu = pcpu_devices + cpu; 873 rc = 0; 874 switch (val) { 875 case 0: 876 if (pcpu->state != CPU_STATE_CONFIGURED) 877 break; 878 rc = sclp_cpu_deconfigure(pcpu->address); 879 if (rc) 880 break; 881 pcpu->state = CPU_STATE_STANDBY; 882 smp_cpu_set_polarization(cpu, POLARIZATION_UNKNOWN); 883 topology_expect_change(); 884 break; 885 case 1: 886 if (pcpu->state != CPU_STATE_STANDBY) 887 break; 888 rc = sclp_cpu_configure(pcpu->address); 889 if (rc) 890 break; 891 pcpu->state = CPU_STATE_CONFIGURED; 892 smp_cpu_set_polarization(cpu, POLARIZATION_UNKNOWN); 893 topology_expect_change(); 894 break; 895 default: 896 break; 897 } 898 out: 899 mutex_unlock(&smp_cpu_state_mutex); 900 put_online_cpus(); 901 return rc ? rc : count; 902 } 903 static DEVICE_ATTR(configure, 0644, cpu_configure_show, cpu_configure_store); 904 #endif /* CONFIG_HOTPLUG_CPU */ 905 906 static ssize_t show_cpu_address(struct device *dev, 907 struct device_attribute *attr, char *buf) 908 { 909 return sprintf(buf, "%d\n", pcpu_devices[dev->id].address); 910 } 911 static DEVICE_ATTR(address, 0444, show_cpu_address, NULL); 912 913 static struct attribute *cpu_common_attrs[] = { 914 #ifdef CONFIG_HOTPLUG_CPU 915 &dev_attr_configure.attr, 916 #endif 917 &dev_attr_address.attr, 918 NULL, 919 }; 920 921 static struct attribute_group cpu_common_attr_group = { 922 .attrs = cpu_common_attrs, 923 }; 924 925 static ssize_t show_idle_count(struct device *dev, 926 struct device_attribute *attr, char *buf) 927 { 928 struct s390_idle_data *idle = &per_cpu(s390_idle, dev->id); 929 unsigned long long idle_count; 930 unsigned int sequence; 931 932 do { 933 sequence = ACCESS_ONCE(idle->sequence); 934 idle_count = ACCESS_ONCE(idle->idle_count); 935 if (ACCESS_ONCE(idle->clock_idle_enter)) 936 idle_count++; 937 } while ((sequence & 1) || (idle->sequence != sequence)); 938 return sprintf(buf, "%llu\n", idle_count); 939 } 940 static DEVICE_ATTR(idle_count, 0444, show_idle_count, NULL); 941 942 static ssize_t show_idle_time(struct device *dev, 943 struct device_attribute *attr, char *buf) 944 { 945 struct s390_idle_data *idle = &per_cpu(s390_idle, dev->id); 946 unsigned long long now, idle_time, idle_enter, idle_exit; 947 unsigned int sequence; 948 949 do { 950 now = get_clock(); 951 sequence = ACCESS_ONCE(idle->sequence); 952 idle_time = ACCESS_ONCE(idle->idle_time); 953 idle_enter = ACCESS_ONCE(idle->clock_idle_enter); 954 idle_exit = ACCESS_ONCE(idle->clock_idle_exit); 955 } while ((sequence & 1) || (idle->sequence != sequence)); 956 idle_time += idle_enter ? ((idle_exit ? : now) - idle_enter) : 0; 957 return sprintf(buf, "%llu\n", idle_time >> 12); 958 } 959 static DEVICE_ATTR(idle_time_us, 0444, show_idle_time, NULL); 960 961 static struct attribute *cpu_online_attrs[] = { 962 &dev_attr_idle_count.attr, 963 &dev_attr_idle_time_us.attr, 964 NULL, 965 }; 966 967 static struct attribute_group cpu_online_attr_group = { 968 .attrs = cpu_online_attrs, 969 }; 970 971 static int __cpuinit smp_cpu_notify(struct notifier_block *self, 972 unsigned long action, void *hcpu) 973 { 974 unsigned int cpu = (unsigned int)(long)hcpu; 975 struct cpu *c = &pcpu_devices[cpu].cpu; 976 struct device *s = &c->dev; 977 int err = 0; 978 979 switch (action & ~CPU_TASKS_FROZEN) { 980 case CPU_ONLINE: 981 err = sysfs_create_group(&s->kobj, &cpu_online_attr_group); 982 break; 983 case CPU_DEAD: 984 sysfs_remove_group(&s->kobj, &cpu_online_attr_group); 985 break; 986 } 987 return notifier_from_errno(err); 988 } 989 990 static int __cpuinit smp_add_present_cpu(int cpu) 991 { 992 struct cpu *c = &pcpu_devices[cpu].cpu; 993 struct device *s = &c->dev; 994 int rc; 995 996 c->hotpluggable = 1; 997 rc = register_cpu(c, cpu); 998 if (rc) 999 goto out; 1000 rc = sysfs_create_group(&s->kobj, &cpu_common_attr_group); 1001 if (rc) 1002 goto out_cpu; 1003 if (cpu_online(cpu)) { 1004 rc = sysfs_create_group(&s->kobj, &cpu_online_attr_group); 1005 if (rc) 1006 goto out_online; 1007 } 1008 rc = topology_cpu_init(c); 1009 if (rc) 1010 goto out_topology; 1011 return 0; 1012 1013 out_topology: 1014 if (cpu_online(cpu)) 1015 sysfs_remove_group(&s->kobj, &cpu_online_attr_group); 1016 out_online: 1017 sysfs_remove_group(&s->kobj, &cpu_common_attr_group); 1018 out_cpu: 1019 #ifdef CONFIG_HOTPLUG_CPU 1020 unregister_cpu(c); 1021 #endif 1022 out: 1023 return rc; 1024 } 1025 1026 #ifdef CONFIG_HOTPLUG_CPU 1027 1028 int __ref smp_rescan_cpus(void) 1029 { 1030 struct sclp_cpu_info *info; 1031 int nr; 1032 1033 info = smp_get_cpu_info(); 1034 if (!info) 1035 return -ENOMEM; 1036 get_online_cpus(); 1037 mutex_lock(&smp_cpu_state_mutex); 1038 nr = __smp_rescan_cpus(info, 1); 1039 mutex_unlock(&smp_cpu_state_mutex); 1040 put_online_cpus(); 1041 kfree(info); 1042 if (nr) 1043 topology_schedule_update(); 1044 return 0; 1045 } 1046 1047 static ssize_t __ref rescan_store(struct device *dev, 1048 struct device_attribute *attr, 1049 const char *buf, 1050 size_t count) 1051 { 1052 int rc; 1053 1054 rc = smp_rescan_cpus(); 1055 return rc ? rc : count; 1056 } 1057 static DEVICE_ATTR(rescan, 0200, NULL, rescan_store); 1058 #endif /* CONFIG_HOTPLUG_CPU */ 1059 1060 static int __init s390_smp_init(void) 1061 { 1062 int cpu, rc; 1063 1064 hotcpu_notifier(smp_cpu_notify, 0); 1065 #ifdef CONFIG_HOTPLUG_CPU 1066 rc = device_create_file(cpu_subsys.dev_root, &dev_attr_rescan); 1067 if (rc) 1068 return rc; 1069 #endif 1070 for_each_present_cpu(cpu) { 1071 rc = smp_add_present_cpu(cpu); 1072 if (rc) 1073 return rc; 1074 } 1075 return 0; 1076 } 1077 subsys_initcall(s390_smp_init); 1078