xref: /openbmc/linux/arch/s390/kernel/smp.c (revision 8dda2eac)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  SMP related functions
4  *
5  *    Copyright IBM Corp. 1999, 2012
6  *    Author(s): Denis Joseph Barrow,
7  *		 Martin Schwidefsky <schwidefsky@de.ibm.com>,
8  *		 Heiko Carstens <heiko.carstens@de.ibm.com>,
9  *
10  *  based on other smp stuff by
11  *    (c) 1995 Alan Cox, CymruNET Ltd  <alan@cymru.net>
12  *    (c) 1998 Ingo Molnar
13  *
14  * The code outside of smp.c uses logical cpu numbers, only smp.c does
15  * the translation of logical to physical cpu ids. All new code that
16  * operates on physical cpu numbers needs to go into smp.c.
17  */
18 
19 #define KMSG_COMPONENT "cpu"
20 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
21 
22 #include <linux/workqueue.h>
23 #include <linux/memblock.h>
24 #include <linux/export.h>
25 #include <linux/init.h>
26 #include <linux/mm.h>
27 #include <linux/err.h>
28 #include <linux/spinlock.h>
29 #include <linux/kernel_stat.h>
30 #include <linux/delay.h>
31 #include <linux/interrupt.h>
32 #include <linux/irqflags.h>
33 #include <linux/irq_work.h>
34 #include <linux/cpu.h>
35 #include <linux/slab.h>
36 #include <linux/sched/hotplug.h>
37 #include <linux/sched/task_stack.h>
38 #include <linux/crash_dump.h>
39 #include <linux/kprobes.h>
40 #include <asm/asm-offsets.h>
41 #include <asm/diag.h>
42 #include <asm/switch_to.h>
43 #include <asm/facility.h>
44 #include <asm/ipl.h>
45 #include <asm/setup.h>
46 #include <asm/irq.h>
47 #include <asm/tlbflush.h>
48 #include <asm/vtimer.h>
49 #include <asm/lowcore.h>
50 #include <asm/sclp.h>
51 #include <asm/debug.h>
52 #include <asm/os_info.h>
53 #include <asm/sigp.h>
54 #include <asm/idle.h>
55 #include <asm/nmi.h>
56 #include <asm/stacktrace.h>
57 #include <asm/topology.h>
58 #include <asm/vdso.h>
59 #include "entry.h"
60 
61 enum {
62 	ec_schedule = 0,
63 	ec_call_function_single,
64 	ec_stop_cpu,
65 	ec_mcck_pending,
66 	ec_irq_work,
67 };
68 
69 enum {
70 	CPU_STATE_STANDBY,
71 	CPU_STATE_CONFIGURED,
72 };
73 
74 static DEFINE_PER_CPU(struct cpu *, cpu_device);
75 
76 struct pcpu {
77 	unsigned long ec_mask;		/* bit mask for ec_xxx functions */
78 	unsigned long ec_clk;		/* sigp timestamp for ec_xxx */
79 	signed char state;		/* physical cpu state */
80 	signed char polarization;	/* physical polarization */
81 	u16 address;			/* physical cpu address */
82 };
83 
84 static u8 boot_core_type;
85 static struct pcpu pcpu_devices[NR_CPUS];
86 
87 unsigned int smp_cpu_mt_shift;
88 EXPORT_SYMBOL(smp_cpu_mt_shift);
89 
90 unsigned int smp_cpu_mtid;
91 EXPORT_SYMBOL(smp_cpu_mtid);
92 
93 #ifdef CONFIG_CRASH_DUMP
94 __vector128 __initdata boot_cpu_vector_save_area[__NUM_VXRS];
95 #endif
96 
97 static unsigned int smp_max_threads __initdata = -1U;
98 
99 static int __init early_nosmt(char *s)
100 {
101 	smp_max_threads = 1;
102 	return 0;
103 }
104 early_param("nosmt", early_nosmt);
105 
106 static int __init early_smt(char *s)
107 {
108 	get_option(&s, &smp_max_threads);
109 	return 0;
110 }
111 early_param("smt", early_smt);
112 
113 /*
114  * The smp_cpu_state_mutex must be held when changing the state or polarization
115  * member of a pcpu data structure within the pcpu_devices arreay.
116  */
117 DEFINE_MUTEX(smp_cpu_state_mutex);
118 
119 /*
120  * Signal processor helper functions.
121  */
122 static inline int __pcpu_sigp_relax(u16 addr, u8 order, unsigned long parm)
123 {
124 	int cc;
125 
126 	while (1) {
127 		cc = __pcpu_sigp(addr, order, parm, NULL);
128 		if (cc != SIGP_CC_BUSY)
129 			return cc;
130 		cpu_relax();
131 	}
132 }
133 
134 static int pcpu_sigp_retry(struct pcpu *pcpu, u8 order, u32 parm)
135 {
136 	int cc, retry;
137 
138 	for (retry = 0; ; retry++) {
139 		cc = __pcpu_sigp(pcpu->address, order, parm, NULL);
140 		if (cc != SIGP_CC_BUSY)
141 			break;
142 		if (retry >= 3)
143 			udelay(10);
144 	}
145 	return cc;
146 }
147 
148 static inline int pcpu_stopped(struct pcpu *pcpu)
149 {
150 	u32 status;
151 
152 	if (__pcpu_sigp(pcpu->address, SIGP_SENSE,
153 			0, &status) != SIGP_CC_STATUS_STORED)
154 		return 0;
155 	return !!(status & (SIGP_STATUS_CHECK_STOP|SIGP_STATUS_STOPPED));
156 }
157 
158 static inline int pcpu_running(struct pcpu *pcpu)
159 {
160 	if (__pcpu_sigp(pcpu->address, SIGP_SENSE_RUNNING,
161 			0, NULL) != SIGP_CC_STATUS_STORED)
162 		return 1;
163 	/* Status stored condition code is equivalent to cpu not running. */
164 	return 0;
165 }
166 
167 /*
168  * Find struct pcpu by cpu address.
169  */
170 static struct pcpu *pcpu_find_address(const struct cpumask *mask, u16 address)
171 {
172 	int cpu;
173 
174 	for_each_cpu(cpu, mask)
175 		if (pcpu_devices[cpu].address == address)
176 			return pcpu_devices + cpu;
177 	return NULL;
178 }
179 
180 static void pcpu_ec_call(struct pcpu *pcpu, int ec_bit)
181 {
182 	int order;
183 
184 	if (test_and_set_bit(ec_bit, &pcpu->ec_mask))
185 		return;
186 	order = pcpu_running(pcpu) ? SIGP_EXTERNAL_CALL : SIGP_EMERGENCY_SIGNAL;
187 	pcpu->ec_clk = get_tod_clock_fast();
188 	pcpu_sigp_retry(pcpu, order, 0);
189 }
190 
191 static int pcpu_alloc_lowcore(struct pcpu *pcpu, int cpu)
192 {
193 	unsigned long async_stack, nodat_stack, mcck_stack;
194 	struct lowcore *lc;
195 
196 	lc = (struct lowcore *) __get_free_pages(GFP_KERNEL | GFP_DMA, LC_ORDER);
197 	nodat_stack = __get_free_pages(GFP_KERNEL, THREAD_SIZE_ORDER);
198 	async_stack = stack_alloc();
199 	mcck_stack = stack_alloc();
200 	if (!lc || !nodat_stack || !async_stack || !mcck_stack)
201 		goto out;
202 	memcpy(lc, &S390_lowcore, 512);
203 	memset((char *) lc + 512, 0, sizeof(*lc) - 512);
204 	lc->async_stack = async_stack + STACK_INIT_OFFSET;
205 	lc->nodat_stack = nodat_stack + STACK_INIT_OFFSET;
206 	lc->mcck_stack = mcck_stack + STACK_INIT_OFFSET;
207 	lc->cpu_nr = cpu;
208 	lc->spinlock_lockval = arch_spin_lockval(cpu);
209 	lc->spinlock_index = 0;
210 	lc->br_r1_trampoline = 0x07f1;	/* br %r1 */
211 	lc->return_lpswe = gen_lpswe(__LC_RETURN_PSW);
212 	lc->return_mcck_lpswe = gen_lpswe(__LC_RETURN_MCCK_PSW);
213 	lc->preempt_count = PREEMPT_DISABLED;
214 	if (nmi_alloc_per_cpu(lc))
215 		goto out;
216 	lowcore_ptr[cpu] = lc;
217 	pcpu_sigp_retry(pcpu, SIGP_SET_PREFIX, (u32)(unsigned long) lc);
218 	return 0;
219 
220 out:
221 	stack_free(mcck_stack);
222 	stack_free(async_stack);
223 	free_pages(nodat_stack, THREAD_SIZE_ORDER);
224 	free_pages((unsigned long) lc, LC_ORDER);
225 	return -ENOMEM;
226 }
227 
228 static void pcpu_free_lowcore(struct pcpu *pcpu)
229 {
230 	unsigned long async_stack, nodat_stack, mcck_stack;
231 	struct lowcore *lc;
232 	int cpu;
233 
234 	cpu = pcpu - pcpu_devices;
235 	lc = lowcore_ptr[cpu];
236 	nodat_stack = lc->nodat_stack - STACK_INIT_OFFSET;
237 	async_stack = lc->async_stack - STACK_INIT_OFFSET;
238 	mcck_stack = lc->mcck_stack - STACK_INIT_OFFSET;
239 	pcpu_sigp_retry(pcpu, SIGP_SET_PREFIX, 0);
240 	lowcore_ptr[cpu] = NULL;
241 	nmi_free_per_cpu(lc);
242 	stack_free(async_stack);
243 	stack_free(mcck_stack);
244 	free_pages(nodat_stack, THREAD_SIZE_ORDER);
245 	free_pages((unsigned long) lc, LC_ORDER);
246 }
247 
248 static void pcpu_prepare_secondary(struct pcpu *pcpu, int cpu)
249 {
250 	struct lowcore *lc = lowcore_ptr[cpu];
251 
252 	cpumask_set_cpu(cpu, &init_mm.context.cpu_attach_mask);
253 	cpumask_set_cpu(cpu, mm_cpumask(&init_mm));
254 	lc->cpu_nr = cpu;
255 	lc->spinlock_lockval = arch_spin_lockval(cpu);
256 	lc->spinlock_index = 0;
257 	lc->percpu_offset = __per_cpu_offset[cpu];
258 	lc->kernel_asce = S390_lowcore.kernel_asce;
259 	lc->user_asce = s390_invalid_asce;
260 	lc->machine_flags = S390_lowcore.machine_flags;
261 	lc->user_timer = lc->system_timer =
262 		lc->steal_timer = lc->avg_steal_timer = 0;
263 	__ctl_store(lc->cregs_save_area, 0, 15);
264 	lc->cregs_save_area[1] = lc->kernel_asce;
265 	lc->cregs_save_area[7] = lc->user_asce;
266 	save_access_regs((unsigned int *) lc->access_regs_save_area);
267 	arch_spin_lock_setup(cpu);
268 }
269 
270 static void pcpu_attach_task(struct pcpu *pcpu, struct task_struct *tsk)
271 {
272 	struct lowcore *lc;
273 	int cpu;
274 
275 	cpu = pcpu - pcpu_devices;
276 	lc = lowcore_ptr[cpu];
277 	lc->kernel_stack = (unsigned long) task_stack_page(tsk)
278 		+ THREAD_SIZE - STACK_FRAME_OVERHEAD - sizeof(struct pt_regs);
279 	lc->current_task = (unsigned long) tsk;
280 	lc->lpp = LPP_MAGIC;
281 	lc->current_pid = tsk->pid;
282 	lc->user_timer = tsk->thread.user_timer;
283 	lc->guest_timer = tsk->thread.guest_timer;
284 	lc->system_timer = tsk->thread.system_timer;
285 	lc->hardirq_timer = tsk->thread.hardirq_timer;
286 	lc->softirq_timer = tsk->thread.softirq_timer;
287 	lc->steal_timer = 0;
288 }
289 
290 static void pcpu_start_fn(struct pcpu *pcpu, void (*func)(void *), void *data)
291 {
292 	struct lowcore *lc;
293 	int cpu;
294 
295 	cpu = pcpu - pcpu_devices;
296 	lc = lowcore_ptr[cpu];
297 	lc->restart_stack = lc->nodat_stack;
298 	lc->restart_fn = (unsigned long) func;
299 	lc->restart_data = (unsigned long) data;
300 	lc->restart_source = -1UL;
301 	pcpu_sigp_retry(pcpu, SIGP_RESTART, 0);
302 }
303 
304 typedef void (pcpu_delegate_fn)(void *);
305 
306 /*
307  * Call function via PSW restart on pcpu and stop the current cpu.
308  */
309 static void __pcpu_delegate(pcpu_delegate_fn *func, void *data)
310 {
311 	func(data);	/* should not return */
312 }
313 
314 static void __no_sanitize_address pcpu_delegate(struct pcpu *pcpu,
315 						pcpu_delegate_fn *func,
316 						void *data, unsigned long stack)
317 {
318 	struct lowcore *lc = lowcore_ptr[pcpu - pcpu_devices];
319 	unsigned long source_cpu = stap();
320 
321 	__load_psw_mask(PSW_KERNEL_BITS | PSW_MASK_DAT);
322 	if (pcpu->address == source_cpu) {
323 		call_on_stack(2, stack, void, __pcpu_delegate,
324 			      pcpu_delegate_fn *, func, void *, data);
325 	}
326 	/* Stop target cpu (if func returns this stops the current cpu). */
327 	pcpu_sigp_retry(pcpu, SIGP_STOP, 0);
328 	/* Restart func on the target cpu and stop the current cpu. */
329 	mem_assign_absolute(lc->restart_stack, stack);
330 	mem_assign_absolute(lc->restart_fn, (unsigned long) func);
331 	mem_assign_absolute(lc->restart_data, (unsigned long) data);
332 	mem_assign_absolute(lc->restart_source, source_cpu);
333 	__bpon();
334 	asm volatile(
335 		"0:	sigp	0,%0,%2	# sigp restart to target cpu\n"
336 		"	brc	2,0b	# busy, try again\n"
337 		"1:	sigp	0,%1,%3	# sigp stop to current cpu\n"
338 		"	brc	2,1b	# busy, try again\n"
339 		: : "d" (pcpu->address), "d" (source_cpu),
340 		    "K" (SIGP_RESTART), "K" (SIGP_STOP)
341 		: "0", "1", "cc");
342 	for (;;) ;
343 }
344 
345 /*
346  * Enable additional logical cpus for multi-threading.
347  */
348 static int pcpu_set_smt(unsigned int mtid)
349 {
350 	int cc;
351 
352 	if (smp_cpu_mtid == mtid)
353 		return 0;
354 	cc = __pcpu_sigp(0, SIGP_SET_MULTI_THREADING, mtid, NULL);
355 	if (cc == 0) {
356 		smp_cpu_mtid = mtid;
357 		smp_cpu_mt_shift = 0;
358 		while (smp_cpu_mtid >= (1U << smp_cpu_mt_shift))
359 			smp_cpu_mt_shift++;
360 		pcpu_devices[0].address = stap();
361 	}
362 	return cc;
363 }
364 
365 /*
366  * Call function on an online CPU.
367  */
368 void smp_call_online_cpu(void (*func)(void *), void *data)
369 {
370 	struct pcpu *pcpu;
371 
372 	/* Use the current cpu if it is online. */
373 	pcpu = pcpu_find_address(cpu_online_mask, stap());
374 	if (!pcpu)
375 		/* Use the first online cpu. */
376 		pcpu = pcpu_devices + cpumask_first(cpu_online_mask);
377 	pcpu_delegate(pcpu, func, data, (unsigned long) restart_stack);
378 }
379 
380 /*
381  * Call function on the ipl CPU.
382  */
383 void smp_call_ipl_cpu(void (*func)(void *), void *data)
384 {
385 	struct lowcore *lc = lowcore_ptr[0];
386 
387 	if (pcpu_devices[0].address == stap())
388 		lc = &S390_lowcore;
389 
390 	pcpu_delegate(&pcpu_devices[0], func, data,
391 		      lc->nodat_stack);
392 }
393 
394 int smp_find_processor_id(u16 address)
395 {
396 	int cpu;
397 
398 	for_each_present_cpu(cpu)
399 		if (pcpu_devices[cpu].address == address)
400 			return cpu;
401 	return -1;
402 }
403 
404 void schedule_mcck_handler(void)
405 {
406 	pcpu_ec_call(pcpu_devices + smp_processor_id(), ec_mcck_pending);
407 }
408 
409 bool notrace arch_vcpu_is_preempted(int cpu)
410 {
411 	if (test_cpu_flag_of(CIF_ENABLED_WAIT, cpu))
412 		return false;
413 	if (pcpu_running(pcpu_devices + cpu))
414 		return false;
415 	return true;
416 }
417 EXPORT_SYMBOL(arch_vcpu_is_preempted);
418 
419 void notrace smp_yield_cpu(int cpu)
420 {
421 	if (!MACHINE_HAS_DIAG9C)
422 		return;
423 	diag_stat_inc_norecursion(DIAG_STAT_X09C);
424 	asm volatile("diag %0,0,0x9c"
425 		     : : "d" (pcpu_devices[cpu].address));
426 }
427 EXPORT_SYMBOL_GPL(smp_yield_cpu);
428 
429 /*
430  * Send cpus emergency shutdown signal. This gives the cpus the
431  * opportunity to complete outstanding interrupts.
432  */
433 void notrace smp_emergency_stop(void)
434 {
435 	static arch_spinlock_t lock = __ARCH_SPIN_LOCK_UNLOCKED;
436 	static cpumask_t cpumask;
437 	u64 end;
438 	int cpu;
439 
440 	arch_spin_lock(&lock);
441 	cpumask_copy(&cpumask, cpu_online_mask);
442 	cpumask_clear_cpu(smp_processor_id(), &cpumask);
443 
444 	end = get_tod_clock() + (1000000UL << 12);
445 	for_each_cpu(cpu, &cpumask) {
446 		struct pcpu *pcpu = pcpu_devices + cpu;
447 		set_bit(ec_stop_cpu, &pcpu->ec_mask);
448 		while (__pcpu_sigp(pcpu->address, SIGP_EMERGENCY_SIGNAL,
449 				   0, NULL) == SIGP_CC_BUSY &&
450 		       get_tod_clock() < end)
451 			cpu_relax();
452 	}
453 	while (get_tod_clock() < end) {
454 		for_each_cpu(cpu, &cpumask)
455 			if (pcpu_stopped(pcpu_devices + cpu))
456 				cpumask_clear_cpu(cpu, &cpumask);
457 		if (cpumask_empty(&cpumask))
458 			break;
459 		cpu_relax();
460 	}
461 	arch_spin_unlock(&lock);
462 }
463 NOKPROBE_SYMBOL(smp_emergency_stop);
464 
465 /*
466  * Stop all cpus but the current one.
467  */
468 void smp_send_stop(void)
469 {
470 	int cpu;
471 
472 	/* Disable all interrupts/machine checks */
473 	__load_psw_mask(PSW_KERNEL_BITS | PSW_MASK_DAT);
474 	trace_hardirqs_off();
475 
476 	debug_set_critical();
477 
478 	if (oops_in_progress)
479 		smp_emergency_stop();
480 
481 	/* stop all processors */
482 	for_each_online_cpu(cpu) {
483 		if (cpu == smp_processor_id())
484 			continue;
485 		pcpu_sigp_retry(pcpu_devices + cpu, SIGP_STOP, 0);
486 		while (!pcpu_stopped(pcpu_devices + cpu))
487 			cpu_relax();
488 	}
489 }
490 
491 /*
492  * This is the main routine where commands issued by other
493  * cpus are handled.
494  */
495 static void smp_handle_ext_call(void)
496 {
497 	unsigned long bits;
498 
499 	/* handle bit signal external calls */
500 	bits = xchg(&pcpu_devices[smp_processor_id()].ec_mask, 0);
501 	if (test_bit(ec_stop_cpu, &bits))
502 		smp_stop_cpu();
503 	if (test_bit(ec_schedule, &bits))
504 		scheduler_ipi();
505 	if (test_bit(ec_call_function_single, &bits))
506 		generic_smp_call_function_single_interrupt();
507 	if (test_bit(ec_mcck_pending, &bits))
508 		__s390_handle_mcck();
509 	if (test_bit(ec_irq_work, &bits))
510 		irq_work_run();
511 }
512 
513 static void do_ext_call_interrupt(struct ext_code ext_code,
514 				  unsigned int param32, unsigned long param64)
515 {
516 	inc_irq_stat(ext_code.code == 0x1202 ? IRQEXT_EXC : IRQEXT_EMS);
517 	smp_handle_ext_call();
518 }
519 
520 void arch_send_call_function_ipi_mask(const struct cpumask *mask)
521 {
522 	int cpu;
523 
524 	for_each_cpu(cpu, mask)
525 		pcpu_ec_call(pcpu_devices + cpu, ec_call_function_single);
526 }
527 
528 void arch_send_call_function_single_ipi(int cpu)
529 {
530 	pcpu_ec_call(pcpu_devices + cpu, ec_call_function_single);
531 }
532 
533 /*
534  * this function sends a 'reschedule' IPI to another CPU.
535  * it goes straight through and wastes no time serializing
536  * anything. Worst case is that we lose a reschedule ...
537  */
538 void smp_send_reschedule(int cpu)
539 {
540 	pcpu_ec_call(pcpu_devices + cpu, ec_schedule);
541 }
542 
543 #ifdef CONFIG_IRQ_WORK
544 void arch_irq_work_raise(void)
545 {
546 	pcpu_ec_call(pcpu_devices + smp_processor_id(), ec_irq_work);
547 }
548 #endif
549 
550 /*
551  * parameter area for the set/clear control bit callbacks
552  */
553 struct ec_creg_mask_parms {
554 	unsigned long orval;
555 	unsigned long andval;
556 	int cr;
557 };
558 
559 /*
560  * callback for setting/clearing control bits
561  */
562 static void smp_ctl_bit_callback(void *info)
563 {
564 	struct ec_creg_mask_parms *pp = info;
565 	unsigned long cregs[16];
566 
567 	__ctl_store(cregs, 0, 15);
568 	cregs[pp->cr] = (cregs[pp->cr] & pp->andval) | pp->orval;
569 	__ctl_load(cregs, 0, 15);
570 }
571 
572 /*
573  * Set a bit in a control register of all cpus
574  */
575 void smp_ctl_set_bit(int cr, int bit)
576 {
577 	struct ec_creg_mask_parms parms = { 1UL << bit, -1UL, cr };
578 
579 	on_each_cpu(smp_ctl_bit_callback, &parms, 1);
580 }
581 EXPORT_SYMBOL(smp_ctl_set_bit);
582 
583 /*
584  * Clear a bit in a control register of all cpus
585  */
586 void smp_ctl_clear_bit(int cr, int bit)
587 {
588 	struct ec_creg_mask_parms parms = { 0, ~(1UL << bit), cr };
589 
590 	on_each_cpu(smp_ctl_bit_callback, &parms, 1);
591 }
592 EXPORT_SYMBOL(smp_ctl_clear_bit);
593 
594 #ifdef CONFIG_CRASH_DUMP
595 
596 int smp_store_status(int cpu)
597 {
598 	struct lowcore *lc;
599 	struct pcpu *pcpu;
600 	unsigned long pa;
601 
602 	pcpu = pcpu_devices + cpu;
603 	lc = lowcore_ptr[cpu];
604 	pa = __pa(&lc->floating_pt_save_area);
605 	if (__pcpu_sigp_relax(pcpu->address, SIGP_STORE_STATUS_AT_ADDRESS,
606 			      pa) != SIGP_CC_ORDER_CODE_ACCEPTED)
607 		return -EIO;
608 	if (!MACHINE_HAS_VX && !MACHINE_HAS_GS)
609 		return 0;
610 	pa = __pa(lc->mcesad & MCESA_ORIGIN_MASK);
611 	if (MACHINE_HAS_GS)
612 		pa |= lc->mcesad & MCESA_LC_MASK;
613 	if (__pcpu_sigp_relax(pcpu->address, SIGP_STORE_ADDITIONAL_STATUS,
614 			      pa) != SIGP_CC_ORDER_CODE_ACCEPTED)
615 		return -EIO;
616 	return 0;
617 }
618 
619 /*
620  * Collect CPU state of the previous, crashed system.
621  * There are four cases:
622  * 1) standard zfcp/nvme dump
623  *    condition: OLDMEM_BASE == NULL && is_ipl_type_dump() == true
624  *    The state for all CPUs except the boot CPU needs to be collected
625  *    with sigp stop-and-store-status. The boot CPU state is located in
626  *    the absolute lowcore of the memory stored in the HSA. The zcore code
627  *    will copy the boot CPU state from the HSA.
628  * 2) stand-alone kdump for SCSI/NVMe (zfcp/nvme dump with swapped memory)
629  *    condition: OLDMEM_BASE != NULL && is_ipl_type_dump() == true
630  *    The state for all CPUs except the boot CPU needs to be collected
631  *    with sigp stop-and-store-status. The firmware or the boot-loader
632  *    stored the registers of the boot CPU in the absolute lowcore in the
633  *    memory of the old system.
634  * 3) kdump and the old kernel did not store the CPU state,
635  *    or stand-alone kdump for DASD
636  *    condition: OLDMEM_BASE != NULL && !is_kdump_kernel()
637  *    The state for all CPUs except the boot CPU needs to be collected
638  *    with sigp stop-and-store-status. The kexec code or the boot-loader
639  *    stored the registers of the boot CPU in the memory of the old system.
640  * 4) kdump and the old kernel stored the CPU state
641  *    condition: OLDMEM_BASE != NULL && is_kdump_kernel()
642  *    This case does not exist for s390 anymore, setup_arch explicitly
643  *    deactivates the elfcorehdr= kernel parameter
644  */
645 static __init void smp_save_cpu_vxrs(struct save_area *sa, u16 addr,
646 				     bool is_boot_cpu, unsigned long page)
647 {
648 	__vector128 *vxrs = (__vector128 *) page;
649 
650 	if (is_boot_cpu)
651 		vxrs = boot_cpu_vector_save_area;
652 	else
653 		__pcpu_sigp_relax(addr, SIGP_STORE_ADDITIONAL_STATUS, page);
654 	save_area_add_vxrs(sa, vxrs);
655 }
656 
657 static __init void smp_save_cpu_regs(struct save_area *sa, u16 addr,
658 				     bool is_boot_cpu, unsigned long page)
659 {
660 	void *regs = (void *) page;
661 
662 	if (is_boot_cpu)
663 		copy_oldmem_kernel(regs, (void *) __LC_FPREGS_SAVE_AREA, 512);
664 	else
665 		__pcpu_sigp_relax(addr, SIGP_STORE_STATUS_AT_ADDRESS, page);
666 	save_area_add_regs(sa, regs);
667 }
668 
669 void __init smp_save_dump_cpus(void)
670 {
671 	int addr, boot_cpu_addr, max_cpu_addr;
672 	struct save_area *sa;
673 	unsigned long page;
674 	bool is_boot_cpu;
675 
676 	if (!(OLDMEM_BASE || is_ipl_type_dump()))
677 		/* No previous system present, normal boot. */
678 		return;
679 	/* Allocate a page as dumping area for the store status sigps */
680 	page = memblock_phys_alloc_range(PAGE_SIZE, PAGE_SIZE, 0, 1UL << 31);
681 	if (!page)
682 		panic("ERROR: Failed to allocate %lx bytes below %lx\n",
683 		      PAGE_SIZE, 1UL << 31);
684 
685 	/* Set multi-threading state to the previous system. */
686 	pcpu_set_smt(sclp.mtid_prev);
687 	boot_cpu_addr = stap();
688 	max_cpu_addr = SCLP_MAX_CORES << sclp.mtid_prev;
689 	for (addr = 0; addr <= max_cpu_addr; addr++) {
690 		if (__pcpu_sigp_relax(addr, SIGP_SENSE, 0) ==
691 		    SIGP_CC_NOT_OPERATIONAL)
692 			continue;
693 		is_boot_cpu = (addr == boot_cpu_addr);
694 		/* Allocate save area */
695 		sa = save_area_alloc(is_boot_cpu);
696 		if (!sa)
697 			panic("could not allocate memory for save area\n");
698 		if (MACHINE_HAS_VX)
699 			/* Get the vector registers */
700 			smp_save_cpu_vxrs(sa, addr, is_boot_cpu, page);
701 		/*
702 		 * For a zfcp/nvme dump OLDMEM_BASE == NULL and the registers
703 		 * of the boot CPU are stored in the HSA. To retrieve
704 		 * these registers an SCLP request is required which is
705 		 * done by drivers/s390/char/zcore.c:init_cpu_info()
706 		 */
707 		if (!is_boot_cpu || OLDMEM_BASE)
708 			/* Get the CPU registers */
709 			smp_save_cpu_regs(sa, addr, is_boot_cpu, page);
710 	}
711 	memblock_free(page, PAGE_SIZE);
712 	diag_dma_ops.diag308_reset();
713 	pcpu_set_smt(0);
714 }
715 #endif /* CONFIG_CRASH_DUMP */
716 
717 void smp_cpu_set_polarization(int cpu, int val)
718 {
719 	pcpu_devices[cpu].polarization = val;
720 }
721 
722 int smp_cpu_get_polarization(int cpu)
723 {
724 	return pcpu_devices[cpu].polarization;
725 }
726 
727 int smp_cpu_get_cpu_address(int cpu)
728 {
729 	return pcpu_devices[cpu].address;
730 }
731 
732 static void __ref smp_get_core_info(struct sclp_core_info *info, int early)
733 {
734 	static int use_sigp_detection;
735 	int address;
736 
737 	if (use_sigp_detection || sclp_get_core_info(info, early)) {
738 		use_sigp_detection = 1;
739 		for (address = 0;
740 		     address < (SCLP_MAX_CORES << smp_cpu_mt_shift);
741 		     address += (1U << smp_cpu_mt_shift)) {
742 			if (__pcpu_sigp_relax(address, SIGP_SENSE, 0) ==
743 			    SIGP_CC_NOT_OPERATIONAL)
744 				continue;
745 			info->core[info->configured].core_id =
746 				address >> smp_cpu_mt_shift;
747 			info->configured++;
748 		}
749 		info->combined = info->configured;
750 	}
751 }
752 
753 static int smp_add_present_cpu(int cpu);
754 
755 static int smp_add_core(struct sclp_core_entry *core, cpumask_t *avail,
756 			bool configured, bool early)
757 {
758 	struct pcpu *pcpu;
759 	int cpu, nr, i;
760 	u16 address;
761 
762 	nr = 0;
763 	if (sclp.has_core_type && core->type != boot_core_type)
764 		return nr;
765 	cpu = cpumask_first(avail);
766 	address = core->core_id << smp_cpu_mt_shift;
767 	for (i = 0; (i <= smp_cpu_mtid) && (cpu < nr_cpu_ids); i++) {
768 		if (pcpu_find_address(cpu_present_mask, address + i))
769 			continue;
770 		pcpu = pcpu_devices + cpu;
771 		pcpu->address = address + i;
772 		if (configured)
773 			pcpu->state = CPU_STATE_CONFIGURED;
774 		else
775 			pcpu->state = CPU_STATE_STANDBY;
776 		smp_cpu_set_polarization(cpu, POLARIZATION_UNKNOWN);
777 		set_cpu_present(cpu, true);
778 		if (!early && smp_add_present_cpu(cpu) != 0)
779 			set_cpu_present(cpu, false);
780 		else
781 			nr++;
782 		cpumask_clear_cpu(cpu, avail);
783 		cpu = cpumask_next(cpu, avail);
784 	}
785 	return nr;
786 }
787 
788 static int __smp_rescan_cpus(struct sclp_core_info *info, bool early)
789 {
790 	struct sclp_core_entry *core;
791 	static cpumask_t avail;
792 	bool configured;
793 	u16 core_id;
794 	int nr, i;
795 
796 	get_online_cpus();
797 	mutex_lock(&smp_cpu_state_mutex);
798 	nr = 0;
799 	cpumask_xor(&avail, cpu_possible_mask, cpu_present_mask);
800 	/*
801 	 * Add IPL core first (which got logical CPU number 0) to make sure
802 	 * that all SMT threads get subsequent logical CPU numbers.
803 	 */
804 	if (early) {
805 		core_id = pcpu_devices[0].address >> smp_cpu_mt_shift;
806 		for (i = 0; i < info->configured; i++) {
807 			core = &info->core[i];
808 			if (core->core_id == core_id) {
809 				nr += smp_add_core(core, &avail, true, early);
810 				break;
811 			}
812 		}
813 	}
814 	for (i = 0; i < info->combined; i++) {
815 		configured = i < info->configured;
816 		nr += smp_add_core(&info->core[i], &avail, configured, early);
817 	}
818 	mutex_unlock(&smp_cpu_state_mutex);
819 	put_online_cpus();
820 	return nr;
821 }
822 
823 void __init smp_detect_cpus(void)
824 {
825 	unsigned int cpu, mtid, c_cpus, s_cpus;
826 	struct sclp_core_info *info;
827 	u16 address;
828 
829 	/* Get CPU information */
830 	info = memblock_alloc(sizeof(*info), 8);
831 	if (!info)
832 		panic("%s: Failed to allocate %zu bytes align=0x%x\n",
833 		      __func__, sizeof(*info), 8);
834 	smp_get_core_info(info, 1);
835 	/* Find boot CPU type */
836 	if (sclp.has_core_type) {
837 		address = stap();
838 		for (cpu = 0; cpu < info->combined; cpu++)
839 			if (info->core[cpu].core_id == address) {
840 				/* The boot cpu dictates the cpu type. */
841 				boot_core_type = info->core[cpu].type;
842 				break;
843 			}
844 		if (cpu >= info->combined)
845 			panic("Could not find boot CPU type");
846 	}
847 
848 	/* Set multi-threading state for the current system */
849 	mtid = boot_core_type ? sclp.mtid : sclp.mtid_cp;
850 	mtid = (mtid < smp_max_threads) ? mtid : smp_max_threads - 1;
851 	pcpu_set_smt(mtid);
852 
853 	/* Print number of CPUs */
854 	c_cpus = s_cpus = 0;
855 	for (cpu = 0; cpu < info->combined; cpu++) {
856 		if (sclp.has_core_type &&
857 		    info->core[cpu].type != boot_core_type)
858 			continue;
859 		if (cpu < info->configured)
860 			c_cpus += smp_cpu_mtid + 1;
861 		else
862 			s_cpus += smp_cpu_mtid + 1;
863 	}
864 	pr_info("%d configured CPUs, %d standby CPUs\n", c_cpus, s_cpus);
865 
866 	/* Add CPUs present at boot */
867 	__smp_rescan_cpus(info, true);
868 	memblock_free_early((unsigned long)info, sizeof(*info));
869 }
870 
871 static void smp_init_secondary(void)
872 {
873 	int cpu = raw_smp_processor_id();
874 
875 	S390_lowcore.last_update_clock = get_tod_clock();
876 	restore_access_regs(S390_lowcore.access_regs_save_area);
877 	cpu_init();
878 	rcu_cpu_starting(cpu);
879 	init_cpu_timer();
880 	vtime_init();
881 	vdso_getcpu_init();
882 	pfault_init();
883 	notify_cpu_starting(cpu);
884 	if (topology_cpu_dedicated(cpu))
885 		set_cpu_flag(CIF_DEDICATED_CPU);
886 	else
887 		clear_cpu_flag(CIF_DEDICATED_CPU);
888 	set_cpu_online(cpu, true);
889 	update_cpu_masks();
890 	inc_irq_stat(CPU_RST);
891 	local_irq_enable();
892 	cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
893 }
894 
895 /*
896  *	Activate a secondary processor.
897  */
898 static void __no_sanitize_address smp_start_secondary(void *cpuvoid)
899 {
900 	S390_lowcore.restart_stack = (unsigned long) restart_stack;
901 	S390_lowcore.restart_fn = (unsigned long) do_restart;
902 	S390_lowcore.restart_data = 0;
903 	S390_lowcore.restart_source = -1UL;
904 	__ctl_load(S390_lowcore.cregs_save_area, 0, 15);
905 	__load_psw_mask(PSW_KERNEL_BITS | PSW_MASK_DAT);
906 	call_on_stack_noreturn(smp_init_secondary, S390_lowcore.kernel_stack);
907 }
908 
909 /* Upping and downing of CPUs */
910 int __cpu_up(unsigned int cpu, struct task_struct *tidle)
911 {
912 	struct pcpu *pcpu = pcpu_devices + cpu;
913 	int rc;
914 
915 	if (pcpu->state != CPU_STATE_CONFIGURED)
916 		return -EIO;
917 	if (pcpu_sigp_retry(pcpu, SIGP_INITIAL_CPU_RESET, 0) !=
918 	    SIGP_CC_ORDER_CODE_ACCEPTED)
919 		return -EIO;
920 
921 	rc = pcpu_alloc_lowcore(pcpu, cpu);
922 	if (rc)
923 		return rc;
924 	pcpu_prepare_secondary(pcpu, cpu);
925 	pcpu_attach_task(pcpu, tidle);
926 	pcpu_start_fn(pcpu, smp_start_secondary, NULL);
927 	/* Wait until cpu puts itself in the online & active maps */
928 	while (!cpu_online(cpu))
929 		cpu_relax();
930 	return 0;
931 }
932 
933 static unsigned int setup_possible_cpus __initdata;
934 
935 static int __init _setup_possible_cpus(char *s)
936 {
937 	get_option(&s, &setup_possible_cpus);
938 	return 0;
939 }
940 early_param("possible_cpus", _setup_possible_cpus);
941 
942 int __cpu_disable(void)
943 {
944 	unsigned long cregs[16];
945 
946 	/* Handle possible pending IPIs */
947 	smp_handle_ext_call();
948 	set_cpu_online(smp_processor_id(), false);
949 	update_cpu_masks();
950 	/* Disable pseudo page faults on this cpu. */
951 	pfault_fini();
952 	/* Disable interrupt sources via control register. */
953 	__ctl_store(cregs, 0, 15);
954 	cregs[0]  &= ~0x0000ee70UL;	/* disable all external interrupts */
955 	cregs[6]  &= ~0xff000000UL;	/* disable all I/O interrupts */
956 	cregs[14] &= ~0x1f000000UL;	/* disable most machine checks */
957 	__ctl_load(cregs, 0, 15);
958 	clear_cpu_flag(CIF_NOHZ_DELAY);
959 	return 0;
960 }
961 
962 void __cpu_die(unsigned int cpu)
963 {
964 	struct pcpu *pcpu;
965 
966 	/* Wait until target cpu is down */
967 	pcpu = pcpu_devices + cpu;
968 	while (!pcpu_stopped(pcpu))
969 		cpu_relax();
970 	pcpu_free_lowcore(pcpu);
971 	cpumask_clear_cpu(cpu, mm_cpumask(&init_mm));
972 	cpumask_clear_cpu(cpu, &init_mm.context.cpu_attach_mask);
973 }
974 
975 void __noreturn cpu_die(void)
976 {
977 	idle_task_exit();
978 	__bpon();
979 	pcpu_sigp_retry(pcpu_devices + smp_processor_id(), SIGP_STOP, 0);
980 	for (;;) ;
981 }
982 
983 void __init smp_fill_possible_mask(void)
984 {
985 	unsigned int possible, sclp_max, cpu;
986 
987 	sclp_max = max(sclp.mtid, sclp.mtid_cp) + 1;
988 	sclp_max = min(smp_max_threads, sclp_max);
989 	sclp_max = (sclp.max_cores * sclp_max) ?: nr_cpu_ids;
990 	possible = setup_possible_cpus ?: nr_cpu_ids;
991 	possible = min(possible, sclp_max);
992 	for (cpu = 0; cpu < possible && cpu < nr_cpu_ids; cpu++)
993 		set_cpu_possible(cpu, true);
994 }
995 
996 void __init smp_prepare_cpus(unsigned int max_cpus)
997 {
998 	/* request the 0x1201 emergency signal external interrupt */
999 	if (register_external_irq(EXT_IRQ_EMERGENCY_SIG, do_ext_call_interrupt))
1000 		panic("Couldn't request external interrupt 0x1201");
1001 	/* request the 0x1202 external call external interrupt */
1002 	if (register_external_irq(EXT_IRQ_EXTERNAL_CALL, do_ext_call_interrupt))
1003 		panic("Couldn't request external interrupt 0x1202");
1004 }
1005 
1006 void __init smp_prepare_boot_cpu(void)
1007 {
1008 	struct pcpu *pcpu = pcpu_devices;
1009 
1010 	WARN_ON(!cpu_present(0) || !cpu_online(0));
1011 	pcpu->state = CPU_STATE_CONFIGURED;
1012 	S390_lowcore.percpu_offset = __per_cpu_offset[0];
1013 	smp_cpu_set_polarization(0, POLARIZATION_UNKNOWN);
1014 }
1015 
1016 void __init smp_setup_processor_id(void)
1017 {
1018 	pcpu_devices[0].address = stap();
1019 	S390_lowcore.cpu_nr = 0;
1020 	S390_lowcore.spinlock_lockval = arch_spin_lockval(0);
1021 	S390_lowcore.spinlock_index = 0;
1022 }
1023 
1024 /*
1025  * the frequency of the profiling timer can be changed
1026  * by writing a multiplier value into /proc/profile.
1027  *
1028  * usually you want to run this on all CPUs ;)
1029  */
1030 int setup_profiling_timer(unsigned int multiplier)
1031 {
1032 	return 0;
1033 }
1034 
1035 static ssize_t cpu_configure_show(struct device *dev,
1036 				  struct device_attribute *attr, char *buf)
1037 {
1038 	ssize_t count;
1039 
1040 	mutex_lock(&smp_cpu_state_mutex);
1041 	count = sprintf(buf, "%d\n", pcpu_devices[dev->id].state);
1042 	mutex_unlock(&smp_cpu_state_mutex);
1043 	return count;
1044 }
1045 
1046 static ssize_t cpu_configure_store(struct device *dev,
1047 				   struct device_attribute *attr,
1048 				   const char *buf, size_t count)
1049 {
1050 	struct pcpu *pcpu;
1051 	int cpu, val, rc, i;
1052 	char delim;
1053 
1054 	if (sscanf(buf, "%d %c", &val, &delim) != 1)
1055 		return -EINVAL;
1056 	if (val != 0 && val != 1)
1057 		return -EINVAL;
1058 	get_online_cpus();
1059 	mutex_lock(&smp_cpu_state_mutex);
1060 	rc = -EBUSY;
1061 	/* disallow configuration changes of online cpus and cpu 0 */
1062 	cpu = dev->id;
1063 	cpu = smp_get_base_cpu(cpu);
1064 	if (cpu == 0)
1065 		goto out;
1066 	for (i = 0; i <= smp_cpu_mtid; i++)
1067 		if (cpu_online(cpu + i))
1068 			goto out;
1069 	pcpu = pcpu_devices + cpu;
1070 	rc = 0;
1071 	switch (val) {
1072 	case 0:
1073 		if (pcpu->state != CPU_STATE_CONFIGURED)
1074 			break;
1075 		rc = sclp_core_deconfigure(pcpu->address >> smp_cpu_mt_shift);
1076 		if (rc)
1077 			break;
1078 		for (i = 0; i <= smp_cpu_mtid; i++) {
1079 			if (cpu + i >= nr_cpu_ids || !cpu_present(cpu + i))
1080 				continue;
1081 			pcpu[i].state = CPU_STATE_STANDBY;
1082 			smp_cpu_set_polarization(cpu + i,
1083 						 POLARIZATION_UNKNOWN);
1084 		}
1085 		topology_expect_change();
1086 		break;
1087 	case 1:
1088 		if (pcpu->state != CPU_STATE_STANDBY)
1089 			break;
1090 		rc = sclp_core_configure(pcpu->address >> smp_cpu_mt_shift);
1091 		if (rc)
1092 			break;
1093 		for (i = 0; i <= smp_cpu_mtid; i++) {
1094 			if (cpu + i >= nr_cpu_ids || !cpu_present(cpu + i))
1095 				continue;
1096 			pcpu[i].state = CPU_STATE_CONFIGURED;
1097 			smp_cpu_set_polarization(cpu + i,
1098 						 POLARIZATION_UNKNOWN);
1099 		}
1100 		topology_expect_change();
1101 		break;
1102 	default:
1103 		break;
1104 	}
1105 out:
1106 	mutex_unlock(&smp_cpu_state_mutex);
1107 	put_online_cpus();
1108 	return rc ? rc : count;
1109 }
1110 static DEVICE_ATTR(configure, 0644, cpu_configure_show, cpu_configure_store);
1111 
1112 static ssize_t show_cpu_address(struct device *dev,
1113 				struct device_attribute *attr, char *buf)
1114 {
1115 	return sprintf(buf, "%d\n", pcpu_devices[dev->id].address);
1116 }
1117 static DEVICE_ATTR(address, 0444, show_cpu_address, NULL);
1118 
1119 static struct attribute *cpu_common_attrs[] = {
1120 	&dev_attr_configure.attr,
1121 	&dev_attr_address.attr,
1122 	NULL,
1123 };
1124 
1125 static struct attribute_group cpu_common_attr_group = {
1126 	.attrs = cpu_common_attrs,
1127 };
1128 
1129 static struct attribute *cpu_online_attrs[] = {
1130 	&dev_attr_idle_count.attr,
1131 	&dev_attr_idle_time_us.attr,
1132 	NULL,
1133 };
1134 
1135 static struct attribute_group cpu_online_attr_group = {
1136 	.attrs = cpu_online_attrs,
1137 };
1138 
1139 static int smp_cpu_online(unsigned int cpu)
1140 {
1141 	struct device *s = &per_cpu(cpu_device, cpu)->dev;
1142 
1143 	return sysfs_create_group(&s->kobj, &cpu_online_attr_group);
1144 }
1145 
1146 static int smp_cpu_pre_down(unsigned int cpu)
1147 {
1148 	struct device *s = &per_cpu(cpu_device, cpu)->dev;
1149 
1150 	sysfs_remove_group(&s->kobj, &cpu_online_attr_group);
1151 	return 0;
1152 }
1153 
1154 static int smp_add_present_cpu(int cpu)
1155 {
1156 	struct device *s;
1157 	struct cpu *c;
1158 	int rc;
1159 
1160 	c = kzalloc(sizeof(*c), GFP_KERNEL);
1161 	if (!c)
1162 		return -ENOMEM;
1163 	per_cpu(cpu_device, cpu) = c;
1164 	s = &c->dev;
1165 	c->hotpluggable = 1;
1166 	rc = register_cpu(c, cpu);
1167 	if (rc)
1168 		goto out;
1169 	rc = sysfs_create_group(&s->kobj, &cpu_common_attr_group);
1170 	if (rc)
1171 		goto out_cpu;
1172 	rc = topology_cpu_init(c);
1173 	if (rc)
1174 		goto out_topology;
1175 	return 0;
1176 
1177 out_topology:
1178 	sysfs_remove_group(&s->kobj, &cpu_common_attr_group);
1179 out_cpu:
1180 	unregister_cpu(c);
1181 out:
1182 	return rc;
1183 }
1184 
1185 int __ref smp_rescan_cpus(void)
1186 {
1187 	struct sclp_core_info *info;
1188 	int nr;
1189 
1190 	info = kzalloc(sizeof(*info), GFP_KERNEL);
1191 	if (!info)
1192 		return -ENOMEM;
1193 	smp_get_core_info(info, 0);
1194 	nr = __smp_rescan_cpus(info, false);
1195 	kfree(info);
1196 	if (nr)
1197 		topology_schedule_update();
1198 	return 0;
1199 }
1200 
1201 static ssize_t __ref rescan_store(struct device *dev,
1202 				  struct device_attribute *attr,
1203 				  const char *buf,
1204 				  size_t count)
1205 {
1206 	int rc;
1207 
1208 	rc = lock_device_hotplug_sysfs();
1209 	if (rc)
1210 		return rc;
1211 	rc = smp_rescan_cpus();
1212 	unlock_device_hotplug();
1213 	return rc ? rc : count;
1214 }
1215 static DEVICE_ATTR_WO(rescan);
1216 
1217 static int __init s390_smp_init(void)
1218 {
1219 	int cpu, rc = 0;
1220 
1221 	rc = device_create_file(cpu_subsys.dev_root, &dev_attr_rescan);
1222 	if (rc)
1223 		return rc;
1224 	for_each_present_cpu(cpu) {
1225 		rc = smp_add_present_cpu(cpu);
1226 		if (rc)
1227 			goto out;
1228 	}
1229 
1230 	rc = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "s390/smp:online",
1231 			       smp_cpu_online, smp_cpu_pre_down);
1232 	rc = rc <= 0 ? rc : 0;
1233 out:
1234 	return rc;
1235 }
1236 subsys_initcall(s390_smp_init);
1237 
1238 static __always_inline void set_new_lowcore(struct lowcore *lc)
1239 {
1240 	union register_pair dst, src;
1241 	u32 pfx;
1242 
1243 	src.even = (unsigned long) &S390_lowcore;
1244 	src.odd  = sizeof(S390_lowcore);
1245 	dst.even = (unsigned long) lc;
1246 	dst.odd  = sizeof(*lc);
1247 	pfx = (unsigned long) lc;
1248 
1249 	asm volatile(
1250 		"	mvcl	%[dst],%[src]\n"
1251 		"	spx	%[pfx]\n"
1252 		: [dst] "+&d" (dst.pair), [src] "+&d" (src.pair)
1253 		: [pfx] "Q" (pfx)
1254 		: "memory", "cc");
1255 }
1256 
1257 static int __init smp_reinit_ipl_cpu(void)
1258 {
1259 	unsigned long async_stack, nodat_stack, mcck_stack;
1260 	struct lowcore *lc, *lc_ipl;
1261 	unsigned long flags;
1262 
1263 	lc_ipl = lowcore_ptr[0];
1264 	lc = (struct lowcore *)	__get_free_pages(GFP_KERNEL | GFP_DMA, LC_ORDER);
1265 	nodat_stack = __get_free_pages(GFP_KERNEL, THREAD_SIZE_ORDER);
1266 	async_stack = stack_alloc();
1267 	mcck_stack = stack_alloc();
1268 	if (!lc || !nodat_stack || !async_stack || !mcck_stack)
1269 		panic("Couldn't allocate memory");
1270 
1271 	local_irq_save(flags);
1272 	local_mcck_disable();
1273 	set_new_lowcore(lc);
1274 	S390_lowcore.nodat_stack = nodat_stack + STACK_INIT_OFFSET;
1275 	S390_lowcore.async_stack = async_stack + STACK_INIT_OFFSET;
1276 	S390_lowcore.mcck_stack = mcck_stack + STACK_INIT_OFFSET;
1277 	lowcore_ptr[0] = lc;
1278 	local_mcck_enable();
1279 	local_irq_restore(flags);
1280 
1281 	free_pages(lc_ipl->async_stack - STACK_INIT_OFFSET, THREAD_SIZE_ORDER);
1282 	memblock_free_late(lc_ipl->mcck_stack - STACK_INIT_OFFSET, THREAD_SIZE);
1283 	memblock_free_late((unsigned long) lc_ipl, sizeof(*lc_ipl));
1284 
1285 	return 0;
1286 }
1287 early_initcall(smp_reinit_ipl_cpu);
1288