xref: /openbmc/linux/arch/s390/kernel/smp.c (revision 8dd3cdea)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  SMP related functions
4  *
5  *    Copyright IBM Corp. 1999, 2012
6  *    Author(s): Denis Joseph Barrow,
7  *		 Martin Schwidefsky <schwidefsky@de.ibm.com>,
8  *
9  *  based on other smp stuff by
10  *    (c) 1995 Alan Cox, CymruNET Ltd  <alan@cymru.net>
11  *    (c) 1998 Ingo Molnar
12  *
13  * The code outside of smp.c uses logical cpu numbers, only smp.c does
14  * the translation of logical to physical cpu ids. All new code that
15  * operates on physical cpu numbers needs to go into smp.c.
16  */
17 
18 #define KMSG_COMPONENT "cpu"
19 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
20 
21 #include <linux/workqueue.h>
22 #include <linux/memblock.h>
23 #include <linux/export.h>
24 #include <linux/init.h>
25 #include <linux/mm.h>
26 #include <linux/err.h>
27 #include <linux/spinlock.h>
28 #include <linux/kernel_stat.h>
29 #include <linux/delay.h>
30 #include <linux/interrupt.h>
31 #include <linux/irqflags.h>
32 #include <linux/irq_work.h>
33 #include <linux/cpu.h>
34 #include <linux/slab.h>
35 #include <linux/sched/hotplug.h>
36 #include <linux/sched/task_stack.h>
37 #include <linux/crash_dump.h>
38 #include <linux/kprobes.h>
39 #include <asm/asm-offsets.h>
40 #include <asm/diag.h>
41 #include <asm/switch_to.h>
42 #include <asm/facility.h>
43 #include <asm/ipl.h>
44 #include <asm/setup.h>
45 #include <asm/irq.h>
46 #include <asm/tlbflush.h>
47 #include <asm/vtimer.h>
48 #include <asm/lowcore.h>
49 #include <asm/sclp.h>
50 #include <asm/debug.h>
51 #include <asm/os_info.h>
52 #include <asm/sigp.h>
53 #include <asm/idle.h>
54 #include <asm/nmi.h>
55 #include <asm/stacktrace.h>
56 #include <asm/topology.h>
57 #include <asm/vdso.h>
58 #include "entry.h"
59 
60 enum {
61 	ec_schedule = 0,
62 	ec_call_function_single,
63 	ec_stop_cpu,
64 	ec_mcck_pending,
65 	ec_irq_work,
66 };
67 
68 enum {
69 	CPU_STATE_STANDBY,
70 	CPU_STATE_CONFIGURED,
71 };
72 
73 static DEFINE_PER_CPU(struct cpu *, cpu_device);
74 
75 struct pcpu {
76 	unsigned long ec_mask;		/* bit mask for ec_xxx functions */
77 	unsigned long ec_clk;		/* sigp timestamp for ec_xxx */
78 	signed char state;		/* physical cpu state */
79 	signed char polarization;	/* physical polarization */
80 	u16 address;			/* physical cpu address */
81 };
82 
83 static u8 boot_core_type;
84 static struct pcpu pcpu_devices[NR_CPUS];
85 
86 unsigned int smp_cpu_mt_shift;
87 EXPORT_SYMBOL(smp_cpu_mt_shift);
88 
89 unsigned int smp_cpu_mtid;
90 EXPORT_SYMBOL(smp_cpu_mtid);
91 
92 #ifdef CONFIG_CRASH_DUMP
93 __vector128 __initdata boot_cpu_vector_save_area[__NUM_VXRS];
94 #endif
95 
96 static unsigned int smp_max_threads __initdata = -1U;
97 cpumask_t cpu_setup_mask;
98 
99 static int __init early_nosmt(char *s)
100 {
101 	smp_max_threads = 1;
102 	return 0;
103 }
104 early_param("nosmt", early_nosmt);
105 
106 static int __init early_smt(char *s)
107 {
108 	get_option(&s, &smp_max_threads);
109 	return 0;
110 }
111 early_param("smt", early_smt);
112 
113 /*
114  * The smp_cpu_state_mutex must be held when changing the state or polarization
115  * member of a pcpu data structure within the pcpu_devices arreay.
116  */
117 DEFINE_MUTEX(smp_cpu_state_mutex);
118 
119 /*
120  * Signal processor helper functions.
121  */
122 static inline int __pcpu_sigp_relax(u16 addr, u8 order, unsigned long parm)
123 {
124 	int cc;
125 
126 	while (1) {
127 		cc = __pcpu_sigp(addr, order, parm, NULL);
128 		if (cc != SIGP_CC_BUSY)
129 			return cc;
130 		cpu_relax();
131 	}
132 }
133 
134 static int pcpu_sigp_retry(struct pcpu *pcpu, u8 order, u32 parm)
135 {
136 	int cc, retry;
137 
138 	for (retry = 0; ; retry++) {
139 		cc = __pcpu_sigp(pcpu->address, order, parm, NULL);
140 		if (cc != SIGP_CC_BUSY)
141 			break;
142 		if (retry >= 3)
143 			udelay(10);
144 	}
145 	return cc;
146 }
147 
148 static inline int pcpu_stopped(struct pcpu *pcpu)
149 {
150 	u32 status;
151 
152 	if (__pcpu_sigp(pcpu->address, SIGP_SENSE,
153 			0, &status) != SIGP_CC_STATUS_STORED)
154 		return 0;
155 	return !!(status & (SIGP_STATUS_CHECK_STOP|SIGP_STATUS_STOPPED));
156 }
157 
158 static inline int pcpu_running(struct pcpu *pcpu)
159 {
160 	if (__pcpu_sigp(pcpu->address, SIGP_SENSE_RUNNING,
161 			0, NULL) != SIGP_CC_STATUS_STORED)
162 		return 1;
163 	/* Status stored condition code is equivalent to cpu not running. */
164 	return 0;
165 }
166 
167 /*
168  * Find struct pcpu by cpu address.
169  */
170 static struct pcpu *pcpu_find_address(const struct cpumask *mask, u16 address)
171 {
172 	int cpu;
173 
174 	for_each_cpu(cpu, mask)
175 		if (pcpu_devices[cpu].address == address)
176 			return pcpu_devices + cpu;
177 	return NULL;
178 }
179 
180 static void pcpu_ec_call(struct pcpu *pcpu, int ec_bit)
181 {
182 	int order;
183 
184 	if (test_and_set_bit(ec_bit, &pcpu->ec_mask))
185 		return;
186 	order = pcpu_running(pcpu) ? SIGP_EXTERNAL_CALL : SIGP_EMERGENCY_SIGNAL;
187 	pcpu->ec_clk = get_tod_clock_fast();
188 	pcpu_sigp_retry(pcpu, order, 0);
189 }
190 
191 static int pcpu_alloc_lowcore(struct pcpu *pcpu, int cpu)
192 {
193 	unsigned long async_stack, nodat_stack, mcck_stack;
194 	struct lowcore *lc;
195 
196 	lc = (struct lowcore *) __get_free_pages(GFP_KERNEL | GFP_DMA, LC_ORDER);
197 	nodat_stack = __get_free_pages(GFP_KERNEL, THREAD_SIZE_ORDER);
198 	async_stack = stack_alloc();
199 	mcck_stack = stack_alloc();
200 	if (!lc || !nodat_stack || !async_stack || !mcck_stack)
201 		goto out;
202 	memcpy(lc, &S390_lowcore, 512);
203 	memset((char *) lc + 512, 0, sizeof(*lc) - 512);
204 	lc->async_stack = async_stack + STACK_INIT_OFFSET;
205 	lc->nodat_stack = nodat_stack + STACK_INIT_OFFSET;
206 	lc->mcck_stack = mcck_stack + STACK_INIT_OFFSET;
207 	lc->cpu_nr = cpu;
208 	lc->spinlock_lockval = arch_spin_lockval(cpu);
209 	lc->spinlock_index = 0;
210 	lc->return_lpswe = gen_lpswe(__LC_RETURN_PSW);
211 	lc->return_mcck_lpswe = gen_lpswe(__LC_RETURN_MCCK_PSW);
212 	lc->preempt_count = PREEMPT_DISABLED;
213 	if (nmi_alloc_mcesa(&lc->mcesad))
214 		goto out;
215 	lowcore_ptr[cpu] = lc;
216 	pcpu_sigp_retry(pcpu, SIGP_SET_PREFIX, __pa(lc));
217 	return 0;
218 
219 out:
220 	stack_free(mcck_stack);
221 	stack_free(async_stack);
222 	free_pages(nodat_stack, THREAD_SIZE_ORDER);
223 	free_pages((unsigned long) lc, LC_ORDER);
224 	return -ENOMEM;
225 }
226 
227 static void pcpu_free_lowcore(struct pcpu *pcpu)
228 {
229 	unsigned long async_stack, nodat_stack, mcck_stack;
230 	struct lowcore *lc;
231 	int cpu;
232 
233 	cpu = pcpu - pcpu_devices;
234 	lc = lowcore_ptr[cpu];
235 	nodat_stack = lc->nodat_stack - STACK_INIT_OFFSET;
236 	async_stack = lc->async_stack - STACK_INIT_OFFSET;
237 	mcck_stack = lc->mcck_stack - STACK_INIT_OFFSET;
238 	pcpu_sigp_retry(pcpu, SIGP_SET_PREFIX, 0);
239 	lowcore_ptr[cpu] = NULL;
240 	nmi_free_mcesa(&lc->mcesad);
241 	stack_free(async_stack);
242 	stack_free(mcck_stack);
243 	free_pages(nodat_stack, THREAD_SIZE_ORDER);
244 	free_pages((unsigned long) lc, LC_ORDER);
245 }
246 
247 static void pcpu_prepare_secondary(struct pcpu *pcpu, int cpu)
248 {
249 	struct lowcore *lc = lowcore_ptr[cpu];
250 
251 	cpumask_set_cpu(cpu, &init_mm.context.cpu_attach_mask);
252 	cpumask_set_cpu(cpu, mm_cpumask(&init_mm));
253 	lc->cpu_nr = cpu;
254 	lc->restart_flags = RESTART_FLAG_CTLREGS;
255 	lc->spinlock_lockval = arch_spin_lockval(cpu);
256 	lc->spinlock_index = 0;
257 	lc->percpu_offset = __per_cpu_offset[cpu];
258 	lc->kernel_asce = S390_lowcore.kernel_asce;
259 	lc->user_asce = s390_invalid_asce;
260 	lc->machine_flags = S390_lowcore.machine_flags;
261 	lc->user_timer = lc->system_timer =
262 		lc->steal_timer = lc->avg_steal_timer = 0;
263 	__ctl_store(lc->cregs_save_area, 0, 15);
264 	lc->cregs_save_area[1] = lc->kernel_asce;
265 	lc->cregs_save_area[7] = lc->user_asce;
266 	save_access_regs((unsigned int *) lc->access_regs_save_area);
267 	arch_spin_lock_setup(cpu);
268 }
269 
270 static void pcpu_attach_task(struct pcpu *pcpu, struct task_struct *tsk)
271 {
272 	struct lowcore *lc;
273 	int cpu;
274 
275 	cpu = pcpu - pcpu_devices;
276 	lc = lowcore_ptr[cpu];
277 	lc->kernel_stack = (unsigned long) task_stack_page(tsk)
278 		+ THREAD_SIZE - STACK_FRAME_OVERHEAD - sizeof(struct pt_regs);
279 	lc->current_task = (unsigned long) tsk;
280 	lc->lpp = LPP_MAGIC;
281 	lc->current_pid = tsk->pid;
282 	lc->user_timer = tsk->thread.user_timer;
283 	lc->guest_timer = tsk->thread.guest_timer;
284 	lc->system_timer = tsk->thread.system_timer;
285 	lc->hardirq_timer = tsk->thread.hardirq_timer;
286 	lc->softirq_timer = tsk->thread.softirq_timer;
287 	lc->steal_timer = 0;
288 }
289 
290 static void pcpu_start_fn(struct pcpu *pcpu, void (*func)(void *), void *data)
291 {
292 	struct lowcore *lc;
293 	int cpu;
294 
295 	cpu = pcpu - pcpu_devices;
296 	lc = lowcore_ptr[cpu];
297 	lc->restart_stack = lc->kernel_stack;
298 	lc->restart_fn = (unsigned long) func;
299 	lc->restart_data = (unsigned long) data;
300 	lc->restart_source = -1U;
301 	pcpu_sigp_retry(pcpu, SIGP_RESTART, 0);
302 }
303 
304 typedef void (pcpu_delegate_fn)(void *);
305 
306 /*
307  * Call function via PSW restart on pcpu and stop the current cpu.
308  */
309 static void __pcpu_delegate(pcpu_delegate_fn *func, void *data)
310 {
311 	func(data);	/* should not return */
312 }
313 
314 static void pcpu_delegate(struct pcpu *pcpu,
315 			  pcpu_delegate_fn *func,
316 			  void *data, unsigned long stack)
317 {
318 	struct lowcore *lc = lowcore_ptr[pcpu - pcpu_devices];
319 	unsigned int source_cpu = stap();
320 
321 	__load_psw_mask(PSW_KERNEL_BITS | PSW_MASK_DAT);
322 	if (pcpu->address == source_cpu) {
323 		call_on_stack(2, stack, void, __pcpu_delegate,
324 			      pcpu_delegate_fn *, func, void *, data);
325 	}
326 	/* Stop target cpu (if func returns this stops the current cpu). */
327 	pcpu_sigp_retry(pcpu, SIGP_STOP, 0);
328 	/* Restart func on the target cpu and stop the current cpu. */
329 	if (lc) {
330 		lc->restart_stack = stack;
331 		lc->restart_fn = (unsigned long)func;
332 		lc->restart_data = (unsigned long)data;
333 		lc->restart_source = source_cpu;
334 	} else {
335 		put_abs_lowcore(restart_stack, stack);
336 		put_abs_lowcore(restart_fn, (unsigned long)func);
337 		put_abs_lowcore(restart_data, (unsigned long)data);
338 		put_abs_lowcore(restart_source, source_cpu);
339 	}
340 	__bpon();
341 	asm volatile(
342 		"0:	sigp	0,%0,%2	# sigp restart to target cpu\n"
343 		"	brc	2,0b	# busy, try again\n"
344 		"1:	sigp	0,%1,%3	# sigp stop to current cpu\n"
345 		"	brc	2,1b	# busy, try again\n"
346 		: : "d" (pcpu->address), "d" (source_cpu),
347 		    "K" (SIGP_RESTART), "K" (SIGP_STOP)
348 		: "0", "1", "cc");
349 	for (;;) ;
350 }
351 
352 /*
353  * Enable additional logical cpus for multi-threading.
354  */
355 static int pcpu_set_smt(unsigned int mtid)
356 {
357 	int cc;
358 
359 	if (smp_cpu_mtid == mtid)
360 		return 0;
361 	cc = __pcpu_sigp(0, SIGP_SET_MULTI_THREADING, mtid, NULL);
362 	if (cc == 0) {
363 		smp_cpu_mtid = mtid;
364 		smp_cpu_mt_shift = 0;
365 		while (smp_cpu_mtid >= (1U << smp_cpu_mt_shift))
366 			smp_cpu_mt_shift++;
367 		pcpu_devices[0].address = stap();
368 	}
369 	return cc;
370 }
371 
372 /*
373  * Call function on an online CPU.
374  */
375 void smp_call_online_cpu(void (*func)(void *), void *data)
376 {
377 	struct pcpu *pcpu;
378 
379 	/* Use the current cpu if it is online. */
380 	pcpu = pcpu_find_address(cpu_online_mask, stap());
381 	if (!pcpu)
382 		/* Use the first online cpu. */
383 		pcpu = pcpu_devices + cpumask_first(cpu_online_mask);
384 	pcpu_delegate(pcpu, func, data, (unsigned long) restart_stack);
385 }
386 
387 /*
388  * Call function on the ipl CPU.
389  */
390 void smp_call_ipl_cpu(void (*func)(void *), void *data)
391 {
392 	struct lowcore *lc = lowcore_ptr[0];
393 
394 	if (pcpu_devices[0].address == stap())
395 		lc = &S390_lowcore;
396 
397 	pcpu_delegate(&pcpu_devices[0], func, data,
398 		      lc->nodat_stack);
399 }
400 
401 int smp_find_processor_id(u16 address)
402 {
403 	int cpu;
404 
405 	for_each_present_cpu(cpu)
406 		if (pcpu_devices[cpu].address == address)
407 			return cpu;
408 	return -1;
409 }
410 
411 void schedule_mcck_handler(void)
412 {
413 	pcpu_ec_call(pcpu_devices + smp_processor_id(), ec_mcck_pending);
414 }
415 
416 bool notrace arch_vcpu_is_preempted(int cpu)
417 {
418 	if (test_cpu_flag_of(CIF_ENABLED_WAIT, cpu))
419 		return false;
420 	if (pcpu_running(pcpu_devices + cpu))
421 		return false;
422 	return true;
423 }
424 EXPORT_SYMBOL(arch_vcpu_is_preempted);
425 
426 void notrace smp_yield_cpu(int cpu)
427 {
428 	if (!MACHINE_HAS_DIAG9C)
429 		return;
430 	diag_stat_inc_norecursion(DIAG_STAT_X09C);
431 	asm volatile("diag %0,0,0x9c"
432 		     : : "d" (pcpu_devices[cpu].address));
433 }
434 EXPORT_SYMBOL_GPL(smp_yield_cpu);
435 
436 /*
437  * Send cpus emergency shutdown signal. This gives the cpus the
438  * opportunity to complete outstanding interrupts.
439  */
440 void notrace smp_emergency_stop(void)
441 {
442 	static arch_spinlock_t lock = __ARCH_SPIN_LOCK_UNLOCKED;
443 	static cpumask_t cpumask;
444 	u64 end;
445 	int cpu;
446 
447 	arch_spin_lock(&lock);
448 	cpumask_copy(&cpumask, cpu_online_mask);
449 	cpumask_clear_cpu(smp_processor_id(), &cpumask);
450 
451 	end = get_tod_clock() + (1000000UL << 12);
452 	for_each_cpu(cpu, &cpumask) {
453 		struct pcpu *pcpu = pcpu_devices + cpu;
454 		set_bit(ec_stop_cpu, &pcpu->ec_mask);
455 		while (__pcpu_sigp(pcpu->address, SIGP_EMERGENCY_SIGNAL,
456 				   0, NULL) == SIGP_CC_BUSY &&
457 		       get_tod_clock() < end)
458 			cpu_relax();
459 	}
460 	while (get_tod_clock() < end) {
461 		for_each_cpu(cpu, &cpumask)
462 			if (pcpu_stopped(pcpu_devices + cpu))
463 				cpumask_clear_cpu(cpu, &cpumask);
464 		if (cpumask_empty(&cpumask))
465 			break;
466 		cpu_relax();
467 	}
468 	arch_spin_unlock(&lock);
469 }
470 NOKPROBE_SYMBOL(smp_emergency_stop);
471 
472 /*
473  * Stop all cpus but the current one.
474  */
475 void smp_send_stop(void)
476 {
477 	int cpu;
478 
479 	/* Disable all interrupts/machine checks */
480 	__load_psw_mask(PSW_KERNEL_BITS | PSW_MASK_DAT);
481 	trace_hardirqs_off();
482 
483 	debug_set_critical();
484 
485 	if (oops_in_progress)
486 		smp_emergency_stop();
487 
488 	/* stop all processors */
489 	for_each_online_cpu(cpu) {
490 		if (cpu == smp_processor_id())
491 			continue;
492 		pcpu_sigp_retry(pcpu_devices + cpu, SIGP_STOP, 0);
493 		while (!pcpu_stopped(pcpu_devices + cpu))
494 			cpu_relax();
495 	}
496 }
497 
498 /*
499  * This is the main routine where commands issued by other
500  * cpus are handled.
501  */
502 static void smp_handle_ext_call(void)
503 {
504 	unsigned long bits;
505 
506 	/* handle bit signal external calls */
507 	bits = xchg(&pcpu_devices[smp_processor_id()].ec_mask, 0);
508 	if (test_bit(ec_stop_cpu, &bits))
509 		smp_stop_cpu();
510 	if (test_bit(ec_schedule, &bits))
511 		scheduler_ipi();
512 	if (test_bit(ec_call_function_single, &bits))
513 		generic_smp_call_function_single_interrupt();
514 	if (test_bit(ec_mcck_pending, &bits))
515 		__s390_handle_mcck();
516 	if (test_bit(ec_irq_work, &bits))
517 		irq_work_run();
518 }
519 
520 static void do_ext_call_interrupt(struct ext_code ext_code,
521 				  unsigned int param32, unsigned long param64)
522 {
523 	inc_irq_stat(ext_code.code == 0x1202 ? IRQEXT_EXC : IRQEXT_EMS);
524 	smp_handle_ext_call();
525 }
526 
527 void arch_send_call_function_ipi_mask(const struct cpumask *mask)
528 {
529 	int cpu;
530 
531 	for_each_cpu(cpu, mask)
532 		pcpu_ec_call(pcpu_devices + cpu, ec_call_function_single);
533 }
534 
535 void arch_send_call_function_single_ipi(int cpu)
536 {
537 	pcpu_ec_call(pcpu_devices + cpu, ec_call_function_single);
538 }
539 
540 /*
541  * this function sends a 'reschedule' IPI to another CPU.
542  * it goes straight through and wastes no time serializing
543  * anything. Worst case is that we lose a reschedule ...
544  */
545 void smp_send_reschedule(int cpu)
546 {
547 	pcpu_ec_call(pcpu_devices + cpu, ec_schedule);
548 }
549 
550 #ifdef CONFIG_IRQ_WORK
551 void arch_irq_work_raise(void)
552 {
553 	pcpu_ec_call(pcpu_devices + smp_processor_id(), ec_irq_work);
554 }
555 #endif
556 
557 /*
558  * parameter area for the set/clear control bit callbacks
559  */
560 struct ec_creg_mask_parms {
561 	unsigned long orval;
562 	unsigned long andval;
563 	int cr;
564 };
565 
566 /*
567  * callback for setting/clearing control bits
568  */
569 static void smp_ctl_bit_callback(void *info)
570 {
571 	struct ec_creg_mask_parms *pp = info;
572 	unsigned long cregs[16];
573 
574 	__ctl_store(cregs, 0, 15);
575 	cregs[pp->cr] = (cregs[pp->cr] & pp->andval) | pp->orval;
576 	__ctl_load(cregs, 0, 15);
577 }
578 
579 static DEFINE_SPINLOCK(ctl_lock);
580 
581 void smp_ctl_set_clear_bit(int cr, int bit, bool set)
582 {
583 	struct ec_creg_mask_parms parms = { .cr = cr, };
584 	u64 ctlreg;
585 
586 	if (set) {
587 		parms.orval = 1UL << bit;
588 		parms.andval = -1UL;
589 	} else {
590 		parms.orval = 0;
591 		parms.andval = ~(1UL << bit);
592 	}
593 	spin_lock(&ctl_lock);
594 	get_abs_lowcore(ctlreg, cregs_save_area[cr]);
595 	ctlreg = (ctlreg & parms.andval) | parms.orval;
596 	put_abs_lowcore(cregs_save_area[cr], ctlreg);
597 	spin_unlock(&ctl_lock);
598 	on_each_cpu(smp_ctl_bit_callback, &parms, 1);
599 }
600 EXPORT_SYMBOL(smp_ctl_set_clear_bit);
601 
602 #ifdef CONFIG_CRASH_DUMP
603 
604 int smp_store_status(int cpu)
605 {
606 	struct lowcore *lc;
607 	struct pcpu *pcpu;
608 	unsigned long pa;
609 
610 	pcpu = pcpu_devices + cpu;
611 	lc = lowcore_ptr[cpu];
612 	pa = __pa(&lc->floating_pt_save_area);
613 	if (__pcpu_sigp_relax(pcpu->address, SIGP_STORE_STATUS_AT_ADDRESS,
614 			      pa) != SIGP_CC_ORDER_CODE_ACCEPTED)
615 		return -EIO;
616 	if (!MACHINE_HAS_VX && !MACHINE_HAS_GS)
617 		return 0;
618 	pa = lc->mcesad & MCESA_ORIGIN_MASK;
619 	if (MACHINE_HAS_GS)
620 		pa |= lc->mcesad & MCESA_LC_MASK;
621 	if (__pcpu_sigp_relax(pcpu->address, SIGP_STORE_ADDITIONAL_STATUS,
622 			      pa) != SIGP_CC_ORDER_CODE_ACCEPTED)
623 		return -EIO;
624 	return 0;
625 }
626 
627 /*
628  * Collect CPU state of the previous, crashed system.
629  * There are four cases:
630  * 1) standard zfcp/nvme dump
631  *    condition: OLDMEM_BASE == NULL && is_ipl_type_dump() == true
632  *    The state for all CPUs except the boot CPU needs to be collected
633  *    with sigp stop-and-store-status. The boot CPU state is located in
634  *    the absolute lowcore of the memory stored in the HSA. The zcore code
635  *    will copy the boot CPU state from the HSA.
636  * 2) stand-alone kdump for SCSI/NVMe (zfcp/nvme dump with swapped memory)
637  *    condition: OLDMEM_BASE != NULL && is_ipl_type_dump() == true
638  *    The state for all CPUs except the boot CPU needs to be collected
639  *    with sigp stop-and-store-status. The firmware or the boot-loader
640  *    stored the registers of the boot CPU in the absolute lowcore in the
641  *    memory of the old system.
642  * 3) kdump and the old kernel did not store the CPU state,
643  *    or stand-alone kdump for DASD
644  *    condition: OLDMEM_BASE != NULL && !is_kdump_kernel()
645  *    The state for all CPUs except the boot CPU needs to be collected
646  *    with sigp stop-and-store-status. The kexec code or the boot-loader
647  *    stored the registers of the boot CPU in the memory of the old system.
648  * 4) kdump and the old kernel stored the CPU state
649  *    condition: OLDMEM_BASE != NULL && is_kdump_kernel()
650  *    This case does not exist for s390 anymore, setup_arch explicitly
651  *    deactivates the elfcorehdr= kernel parameter
652  */
653 static __init void smp_save_cpu_vxrs(struct save_area *sa, u16 addr,
654 				     bool is_boot_cpu, __vector128 *vxrs)
655 {
656 	if (is_boot_cpu)
657 		vxrs = boot_cpu_vector_save_area;
658 	else
659 		__pcpu_sigp_relax(addr, SIGP_STORE_ADDITIONAL_STATUS, __pa(vxrs));
660 	save_area_add_vxrs(sa, vxrs);
661 }
662 
663 static __init void smp_save_cpu_regs(struct save_area *sa, u16 addr,
664 				     bool is_boot_cpu, void *regs)
665 {
666 	if (is_boot_cpu)
667 		copy_oldmem_kernel(regs, __LC_FPREGS_SAVE_AREA, 512);
668 	else
669 		__pcpu_sigp_relax(addr, SIGP_STORE_STATUS_AT_ADDRESS, __pa(regs));
670 	save_area_add_regs(sa, regs);
671 }
672 
673 void __init smp_save_dump_cpus(void)
674 {
675 	int addr, boot_cpu_addr, max_cpu_addr;
676 	struct save_area *sa;
677 	bool is_boot_cpu;
678 	void *page;
679 
680 	if (!(oldmem_data.start || is_ipl_type_dump()))
681 		/* No previous system present, normal boot. */
682 		return;
683 	/* Allocate a page as dumping area for the store status sigps */
684 	page = memblock_alloc_low(PAGE_SIZE, PAGE_SIZE);
685 	if (!page)
686 		panic("ERROR: Failed to allocate %lx bytes below %lx\n",
687 		      PAGE_SIZE, 1UL << 31);
688 
689 	/* Set multi-threading state to the previous system. */
690 	pcpu_set_smt(sclp.mtid_prev);
691 	boot_cpu_addr = stap();
692 	max_cpu_addr = SCLP_MAX_CORES << sclp.mtid_prev;
693 	for (addr = 0; addr <= max_cpu_addr; addr++) {
694 		if (__pcpu_sigp_relax(addr, SIGP_SENSE, 0) ==
695 		    SIGP_CC_NOT_OPERATIONAL)
696 			continue;
697 		is_boot_cpu = (addr == boot_cpu_addr);
698 		/* Allocate save area */
699 		sa = save_area_alloc(is_boot_cpu);
700 		if (!sa)
701 			panic("could not allocate memory for save area\n");
702 		if (MACHINE_HAS_VX)
703 			/* Get the vector registers */
704 			smp_save_cpu_vxrs(sa, addr, is_boot_cpu, page);
705 		/*
706 		 * For a zfcp/nvme dump OLDMEM_BASE == NULL and the registers
707 		 * of the boot CPU are stored in the HSA. To retrieve
708 		 * these registers an SCLP request is required which is
709 		 * done by drivers/s390/char/zcore.c:init_cpu_info()
710 		 */
711 		if (!is_boot_cpu || oldmem_data.start)
712 			/* Get the CPU registers */
713 			smp_save_cpu_regs(sa, addr, is_boot_cpu, page);
714 	}
715 	memblock_free(page, PAGE_SIZE);
716 	diag_amode31_ops.diag308_reset();
717 	pcpu_set_smt(0);
718 }
719 #endif /* CONFIG_CRASH_DUMP */
720 
721 void smp_cpu_set_polarization(int cpu, int val)
722 {
723 	pcpu_devices[cpu].polarization = val;
724 }
725 
726 int smp_cpu_get_polarization(int cpu)
727 {
728 	return pcpu_devices[cpu].polarization;
729 }
730 
731 int smp_cpu_get_cpu_address(int cpu)
732 {
733 	return pcpu_devices[cpu].address;
734 }
735 
736 static void __ref smp_get_core_info(struct sclp_core_info *info, int early)
737 {
738 	static int use_sigp_detection;
739 	int address;
740 
741 	if (use_sigp_detection || sclp_get_core_info(info, early)) {
742 		use_sigp_detection = 1;
743 		for (address = 0;
744 		     address < (SCLP_MAX_CORES << smp_cpu_mt_shift);
745 		     address += (1U << smp_cpu_mt_shift)) {
746 			if (__pcpu_sigp_relax(address, SIGP_SENSE, 0) ==
747 			    SIGP_CC_NOT_OPERATIONAL)
748 				continue;
749 			info->core[info->configured].core_id =
750 				address >> smp_cpu_mt_shift;
751 			info->configured++;
752 		}
753 		info->combined = info->configured;
754 	}
755 }
756 
757 static int smp_add_present_cpu(int cpu);
758 
759 static int smp_add_core(struct sclp_core_entry *core, cpumask_t *avail,
760 			bool configured, bool early)
761 {
762 	struct pcpu *pcpu;
763 	int cpu, nr, i;
764 	u16 address;
765 
766 	nr = 0;
767 	if (sclp.has_core_type && core->type != boot_core_type)
768 		return nr;
769 	cpu = cpumask_first(avail);
770 	address = core->core_id << smp_cpu_mt_shift;
771 	for (i = 0; (i <= smp_cpu_mtid) && (cpu < nr_cpu_ids); i++) {
772 		if (pcpu_find_address(cpu_present_mask, address + i))
773 			continue;
774 		pcpu = pcpu_devices + cpu;
775 		pcpu->address = address + i;
776 		if (configured)
777 			pcpu->state = CPU_STATE_CONFIGURED;
778 		else
779 			pcpu->state = CPU_STATE_STANDBY;
780 		smp_cpu_set_polarization(cpu, POLARIZATION_UNKNOWN);
781 		set_cpu_present(cpu, true);
782 		if (!early && smp_add_present_cpu(cpu) != 0)
783 			set_cpu_present(cpu, false);
784 		else
785 			nr++;
786 		cpumask_clear_cpu(cpu, avail);
787 		cpu = cpumask_next(cpu, avail);
788 	}
789 	return nr;
790 }
791 
792 static int __smp_rescan_cpus(struct sclp_core_info *info, bool early)
793 {
794 	struct sclp_core_entry *core;
795 	static cpumask_t avail;
796 	bool configured;
797 	u16 core_id;
798 	int nr, i;
799 
800 	cpus_read_lock();
801 	mutex_lock(&smp_cpu_state_mutex);
802 	nr = 0;
803 	cpumask_xor(&avail, cpu_possible_mask, cpu_present_mask);
804 	/*
805 	 * Add IPL core first (which got logical CPU number 0) to make sure
806 	 * that all SMT threads get subsequent logical CPU numbers.
807 	 */
808 	if (early) {
809 		core_id = pcpu_devices[0].address >> smp_cpu_mt_shift;
810 		for (i = 0; i < info->configured; i++) {
811 			core = &info->core[i];
812 			if (core->core_id == core_id) {
813 				nr += smp_add_core(core, &avail, true, early);
814 				break;
815 			}
816 		}
817 	}
818 	for (i = 0; i < info->combined; i++) {
819 		configured = i < info->configured;
820 		nr += smp_add_core(&info->core[i], &avail, configured, early);
821 	}
822 	mutex_unlock(&smp_cpu_state_mutex);
823 	cpus_read_unlock();
824 	return nr;
825 }
826 
827 void __init smp_detect_cpus(void)
828 {
829 	unsigned int cpu, mtid, c_cpus, s_cpus;
830 	struct sclp_core_info *info;
831 	u16 address;
832 
833 	/* Get CPU information */
834 	info = memblock_alloc(sizeof(*info), 8);
835 	if (!info)
836 		panic("%s: Failed to allocate %zu bytes align=0x%x\n",
837 		      __func__, sizeof(*info), 8);
838 	smp_get_core_info(info, 1);
839 	/* Find boot CPU type */
840 	if (sclp.has_core_type) {
841 		address = stap();
842 		for (cpu = 0; cpu < info->combined; cpu++)
843 			if (info->core[cpu].core_id == address) {
844 				/* The boot cpu dictates the cpu type. */
845 				boot_core_type = info->core[cpu].type;
846 				break;
847 			}
848 		if (cpu >= info->combined)
849 			panic("Could not find boot CPU type");
850 	}
851 
852 	/* Set multi-threading state for the current system */
853 	mtid = boot_core_type ? sclp.mtid : sclp.mtid_cp;
854 	mtid = (mtid < smp_max_threads) ? mtid : smp_max_threads - 1;
855 	pcpu_set_smt(mtid);
856 
857 	/* Print number of CPUs */
858 	c_cpus = s_cpus = 0;
859 	for (cpu = 0; cpu < info->combined; cpu++) {
860 		if (sclp.has_core_type &&
861 		    info->core[cpu].type != boot_core_type)
862 			continue;
863 		if (cpu < info->configured)
864 			c_cpus += smp_cpu_mtid + 1;
865 		else
866 			s_cpus += smp_cpu_mtid + 1;
867 	}
868 	pr_info("%d configured CPUs, %d standby CPUs\n", c_cpus, s_cpus);
869 
870 	/* Add CPUs present at boot */
871 	__smp_rescan_cpus(info, true);
872 	memblock_free(info, sizeof(*info));
873 }
874 
875 /*
876  *	Activate a secondary processor.
877  */
878 static void smp_start_secondary(void *cpuvoid)
879 {
880 	int cpu = raw_smp_processor_id();
881 
882 	S390_lowcore.last_update_clock = get_tod_clock();
883 	S390_lowcore.restart_stack = (unsigned long)restart_stack;
884 	S390_lowcore.restart_fn = (unsigned long)do_restart;
885 	S390_lowcore.restart_data = 0;
886 	S390_lowcore.restart_source = -1U;
887 	S390_lowcore.restart_flags = 0;
888 	restore_access_regs(S390_lowcore.access_regs_save_area);
889 	cpu_init();
890 	rcu_cpu_starting(cpu);
891 	init_cpu_timer();
892 	vtime_init();
893 	vdso_getcpu_init();
894 	pfault_init();
895 	cpumask_set_cpu(cpu, &cpu_setup_mask);
896 	update_cpu_masks();
897 	notify_cpu_starting(cpu);
898 	if (topology_cpu_dedicated(cpu))
899 		set_cpu_flag(CIF_DEDICATED_CPU);
900 	else
901 		clear_cpu_flag(CIF_DEDICATED_CPU);
902 	set_cpu_online(cpu, true);
903 	inc_irq_stat(CPU_RST);
904 	local_irq_enable();
905 	cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
906 }
907 
908 /* Upping and downing of CPUs */
909 int __cpu_up(unsigned int cpu, struct task_struct *tidle)
910 {
911 	struct pcpu *pcpu = pcpu_devices + cpu;
912 	int rc;
913 
914 	if (pcpu->state != CPU_STATE_CONFIGURED)
915 		return -EIO;
916 	if (pcpu_sigp_retry(pcpu, SIGP_INITIAL_CPU_RESET, 0) !=
917 	    SIGP_CC_ORDER_CODE_ACCEPTED)
918 		return -EIO;
919 
920 	rc = pcpu_alloc_lowcore(pcpu, cpu);
921 	if (rc)
922 		return rc;
923 	pcpu_prepare_secondary(pcpu, cpu);
924 	pcpu_attach_task(pcpu, tidle);
925 	pcpu_start_fn(pcpu, smp_start_secondary, NULL);
926 	/* Wait until cpu puts itself in the online & active maps */
927 	while (!cpu_online(cpu))
928 		cpu_relax();
929 	return 0;
930 }
931 
932 static unsigned int setup_possible_cpus __initdata;
933 
934 static int __init _setup_possible_cpus(char *s)
935 {
936 	get_option(&s, &setup_possible_cpus);
937 	return 0;
938 }
939 early_param("possible_cpus", _setup_possible_cpus);
940 
941 int __cpu_disable(void)
942 {
943 	unsigned long cregs[16];
944 	int cpu;
945 
946 	/* Handle possible pending IPIs */
947 	smp_handle_ext_call();
948 	cpu = smp_processor_id();
949 	set_cpu_online(cpu, false);
950 	cpumask_clear_cpu(cpu, &cpu_setup_mask);
951 	update_cpu_masks();
952 	/* Disable pseudo page faults on this cpu. */
953 	pfault_fini();
954 	/* Disable interrupt sources via control register. */
955 	__ctl_store(cregs, 0, 15);
956 	cregs[0]  &= ~0x0000ee70UL;	/* disable all external interrupts */
957 	cregs[6]  &= ~0xff000000UL;	/* disable all I/O interrupts */
958 	cregs[14] &= ~0x1f000000UL;	/* disable most machine checks */
959 	__ctl_load(cregs, 0, 15);
960 	clear_cpu_flag(CIF_NOHZ_DELAY);
961 	return 0;
962 }
963 
964 void __cpu_die(unsigned int cpu)
965 {
966 	struct pcpu *pcpu;
967 
968 	/* Wait until target cpu is down */
969 	pcpu = pcpu_devices + cpu;
970 	while (!pcpu_stopped(pcpu))
971 		cpu_relax();
972 	pcpu_free_lowcore(pcpu);
973 	cpumask_clear_cpu(cpu, mm_cpumask(&init_mm));
974 	cpumask_clear_cpu(cpu, &init_mm.context.cpu_attach_mask);
975 }
976 
977 void __noreturn cpu_die(void)
978 {
979 	idle_task_exit();
980 	__bpon();
981 	pcpu_sigp_retry(pcpu_devices + smp_processor_id(), SIGP_STOP, 0);
982 	for (;;) ;
983 }
984 
985 void __init smp_fill_possible_mask(void)
986 {
987 	unsigned int possible, sclp_max, cpu;
988 
989 	sclp_max = max(sclp.mtid, sclp.mtid_cp) + 1;
990 	sclp_max = min(smp_max_threads, sclp_max);
991 	sclp_max = (sclp.max_cores * sclp_max) ?: nr_cpu_ids;
992 	possible = setup_possible_cpus ?: nr_cpu_ids;
993 	possible = min(possible, sclp_max);
994 	for (cpu = 0; cpu < possible && cpu < nr_cpu_ids; cpu++)
995 		set_cpu_possible(cpu, true);
996 }
997 
998 void __init smp_prepare_cpus(unsigned int max_cpus)
999 {
1000 	/* request the 0x1201 emergency signal external interrupt */
1001 	if (register_external_irq(EXT_IRQ_EMERGENCY_SIG, do_ext_call_interrupt))
1002 		panic("Couldn't request external interrupt 0x1201");
1003 	/* request the 0x1202 external call external interrupt */
1004 	if (register_external_irq(EXT_IRQ_EXTERNAL_CALL, do_ext_call_interrupt))
1005 		panic("Couldn't request external interrupt 0x1202");
1006 }
1007 
1008 void __init smp_prepare_boot_cpu(void)
1009 {
1010 	struct pcpu *pcpu = pcpu_devices;
1011 
1012 	WARN_ON(!cpu_present(0) || !cpu_online(0));
1013 	pcpu->state = CPU_STATE_CONFIGURED;
1014 	S390_lowcore.percpu_offset = __per_cpu_offset[0];
1015 	smp_cpu_set_polarization(0, POLARIZATION_UNKNOWN);
1016 }
1017 
1018 void __init smp_setup_processor_id(void)
1019 {
1020 	pcpu_devices[0].address = stap();
1021 	S390_lowcore.cpu_nr = 0;
1022 	S390_lowcore.spinlock_lockval = arch_spin_lockval(0);
1023 	S390_lowcore.spinlock_index = 0;
1024 }
1025 
1026 /*
1027  * the frequency of the profiling timer can be changed
1028  * by writing a multiplier value into /proc/profile.
1029  *
1030  * usually you want to run this on all CPUs ;)
1031  */
1032 int setup_profiling_timer(unsigned int multiplier)
1033 {
1034 	return 0;
1035 }
1036 
1037 static ssize_t cpu_configure_show(struct device *dev,
1038 				  struct device_attribute *attr, char *buf)
1039 {
1040 	ssize_t count;
1041 
1042 	mutex_lock(&smp_cpu_state_mutex);
1043 	count = sprintf(buf, "%d\n", pcpu_devices[dev->id].state);
1044 	mutex_unlock(&smp_cpu_state_mutex);
1045 	return count;
1046 }
1047 
1048 static ssize_t cpu_configure_store(struct device *dev,
1049 				   struct device_attribute *attr,
1050 				   const char *buf, size_t count)
1051 {
1052 	struct pcpu *pcpu;
1053 	int cpu, val, rc, i;
1054 	char delim;
1055 
1056 	if (sscanf(buf, "%d %c", &val, &delim) != 1)
1057 		return -EINVAL;
1058 	if (val != 0 && val != 1)
1059 		return -EINVAL;
1060 	cpus_read_lock();
1061 	mutex_lock(&smp_cpu_state_mutex);
1062 	rc = -EBUSY;
1063 	/* disallow configuration changes of online cpus and cpu 0 */
1064 	cpu = dev->id;
1065 	cpu = smp_get_base_cpu(cpu);
1066 	if (cpu == 0)
1067 		goto out;
1068 	for (i = 0; i <= smp_cpu_mtid; i++)
1069 		if (cpu_online(cpu + i))
1070 			goto out;
1071 	pcpu = pcpu_devices + cpu;
1072 	rc = 0;
1073 	switch (val) {
1074 	case 0:
1075 		if (pcpu->state != CPU_STATE_CONFIGURED)
1076 			break;
1077 		rc = sclp_core_deconfigure(pcpu->address >> smp_cpu_mt_shift);
1078 		if (rc)
1079 			break;
1080 		for (i = 0; i <= smp_cpu_mtid; i++) {
1081 			if (cpu + i >= nr_cpu_ids || !cpu_present(cpu + i))
1082 				continue;
1083 			pcpu[i].state = CPU_STATE_STANDBY;
1084 			smp_cpu_set_polarization(cpu + i,
1085 						 POLARIZATION_UNKNOWN);
1086 		}
1087 		topology_expect_change();
1088 		break;
1089 	case 1:
1090 		if (pcpu->state != CPU_STATE_STANDBY)
1091 			break;
1092 		rc = sclp_core_configure(pcpu->address >> smp_cpu_mt_shift);
1093 		if (rc)
1094 			break;
1095 		for (i = 0; i <= smp_cpu_mtid; i++) {
1096 			if (cpu + i >= nr_cpu_ids || !cpu_present(cpu + i))
1097 				continue;
1098 			pcpu[i].state = CPU_STATE_CONFIGURED;
1099 			smp_cpu_set_polarization(cpu + i,
1100 						 POLARIZATION_UNKNOWN);
1101 		}
1102 		topology_expect_change();
1103 		break;
1104 	default:
1105 		break;
1106 	}
1107 out:
1108 	mutex_unlock(&smp_cpu_state_mutex);
1109 	cpus_read_unlock();
1110 	return rc ? rc : count;
1111 }
1112 static DEVICE_ATTR(configure, 0644, cpu_configure_show, cpu_configure_store);
1113 
1114 static ssize_t show_cpu_address(struct device *dev,
1115 				struct device_attribute *attr, char *buf)
1116 {
1117 	return sprintf(buf, "%d\n", pcpu_devices[dev->id].address);
1118 }
1119 static DEVICE_ATTR(address, 0444, show_cpu_address, NULL);
1120 
1121 static struct attribute *cpu_common_attrs[] = {
1122 	&dev_attr_configure.attr,
1123 	&dev_attr_address.attr,
1124 	NULL,
1125 };
1126 
1127 static struct attribute_group cpu_common_attr_group = {
1128 	.attrs = cpu_common_attrs,
1129 };
1130 
1131 static struct attribute *cpu_online_attrs[] = {
1132 	&dev_attr_idle_count.attr,
1133 	&dev_attr_idle_time_us.attr,
1134 	NULL,
1135 };
1136 
1137 static struct attribute_group cpu_online_attr_group = {
1138 	.attrs = cpu_online_attrs,
1139 };
1140 
1141 static int smp_cpu_online(unsigned int cpu)
1142 {
1143 	struct device *s = &per_cpu(cpu_device, cpu)->dev;
1144 
1145 	return sysfs_create_group(&s->kobj, &cpu_online_attr_group);
1146 }
1147 
1148 static int smp_cpu_pre_down(unsigned int cpu)
1149 {
1150 	struct device *s = &per_cpu(cpu_device, cpu)->dev;
1151 
1152 	sysfs_remove_group(&s->kobj, &cpu_online_attr_group);
1153 	return 0;
1154 }
1155 
1156 static int smp_add_present_cpu(int cpu)
1157 {
1158 	struct device *s;
1159 	struct cpu *c;
1160 	int rc;
1161 
1162 	c = kzalloc(sizeof(*c), GFP_KERNEL);
1163 	if (!c)
1164 		return -ENOMEM;
1165 	per_cpu(cpu_device, cpu) = c;
1166 	s = &c->dev;
1167 	c->hotpluggable = 1;
1168 	rc = register_cpu(c, cpu);
1169 	if (rc)
1170 		goto out;
1171 	rc = sysfs_create_group(&s->kobj, &cpu_common_attr_group);
1172 	if (rc)
1173 		goto out_cpu;
1174 	rc = topology_cpu_init(c);
1175 	if (rc)
1176 		goto out_topology;
1177 	return 0;
1178 
1179 out_topology:
1180 	sysfs_remove_group(&s->kobj, &cpu_common_attr_group);
1181 out_cpu:
1182 	unregister_cpu(c);
1183 out:
1184 	return rc;
1185 }
1186 
1187 int __ref smp_rescan_cpus(void)
1188 {
1189 	struct sclp_core_info *info;
1190 	int nr;
1191 
1192 	info = kzalloc(sizeof(*info), GFP_KERNEL);
1193 	if (!info)
1194 		return -ENOMEM;
1195 	smp_get_core_info(info, 0);
1196 	nr = __smp_rescan_cpus(info, false);
1197 	kfree(info);
1198 	if (nr)
1199 		topology_schedule_update();
1200 	return 0;
1201 }
1202 
1203 static ssize_t __ref rescan_store(struct device *dev,
1204 				  struct device_attribute *attr,
1205 				  const char *buf,
1206 				  size_t count)
1207 {
1208 	int rc;
1209 
1210 	rc = lock_device_hotplug_sysfs();
1211 	if (rc)
1212 		return rc;
1213 	rc = smp_rescan_cpus();
1214 	unlock_device_hotplug();
1215 	return rc ? rc : count;
1216 }
1217 static DEVICE_ATTR_WO(rescan);
1218 
1219 static int __init s390_smp_init(void)
1220 {
1221 	int cpu, rc = 0;
1222 
1223 	rc = device_create_file(cpu_subsys.dev_root, &dev_attr_rescan);
1224 	if (rc)
1225 		return rc;
1226 	for_each_present_cpu(cpu) {
1227 		rc = smp_add_present_cpu(cpu);
1228 		if (rc)
1229 			goto out;
1230 	}
1231 
1232 	rc = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "s390/smp:online",
1233 			       smp_cpu_online, smp_cpu_pre_down);
1234 	rc = rc <= 0 ? rc : 0;
1235 out:
1236 	return rc;
1237 }
1238 subsys_initcall(s390_smp_init);
1239 
1240 static __always_inline void set_new_lowcore(struct lowcore *lc)
1241 {
1242 	union register_pair dst, src;
1243 	u32 pfx;
1244 
1245 	src.even = (unsigned long) &S390_lowcore;
1246 	src.odd  = sizeof(S390_lowcore);
1247 	dst.even = (unsigned long) lc;
1248 	dst.odd  = sizeof(*lc);
1249 	pfx = __pa(lc);
1250 
1251 	asm volatile(
1252 		"	mvcl	%[dst],%[src]\n"
1253 		"	spx	%[pfx]\n"
1254 		: [dst] "+&d" (dst.pair), [src] "+&d" (src.pair)
1255 		: [pfx] "Q" (pfx)
1256 		: "memory", "cc");
1257 }
1258 
1259 static int __init smp_reinit_ipl_cpu(void)
1260 {
1261 	unsigned long async_stack, nodat_stack, mcck_stack;
1262 	struct lowcore *lc, *lc_ipl;
1263 	unsigned long flags, cr0;
1264 	u64 mcesad;
1265 
1266 	lc_ipl = lowcore_ptr[0];
1267 	lc = (struct lowcore *)	__get_free_pages(GFP_KERNEL | GFP_DMA, LC_ORDER);
1268 	nodat_stack = __get_free_pages(GFP_KERNEL, THREAD_SIZE_ORDER);
1269 	async_stack = stack_alloc();
1270 	mcck_stack = stack_alloc();
1271 	if (!lc || !nodat_stack || !async_stack || !mcck_stack || nmi_alloc_mcesa(&mcesad))
1272 		panic("Couldn't allocate memory");
1273 
1274 	local_irq_save(flags);
1275 	local_mcck_disable();
1276 	set_new_lowcore(lc);
1277 	S390_lowcore.nodat_stack = nodat_stack + STACK_INIT_OFFSET;
1278 	S390_lowcore.async_stack = async_stack + STACK_INIT_OFFSET;
1279 	S390_lowcore.mcck_stack = mcck_stack + STACK_INIT_OFFSET;
1280 	__ctl_store(cr0, 0, 0);
1281 	__ctl_clear_bit(0, 28); /* disable lowcore protection */
1282 	S390_lowcore.mcesad = mcesad;
1283 	__ctl_load(cr0, 0, 0);
1284 	lowcore_ptr[0] = lc;
1285 	local_mcck_enable();
1286 	local_irq_restore(flags);
1287 
1288 	free_pages(lc_ipl->async_stack - STACK_INIT_OFFSET, THREAD_SIZE_ORDER);
1289 	memblock_free_late(__pa(lc_ipl->mcck_stack - STACK_INIT_OFFSET), THREAD_SIZE);
1290 	memblock_free_late(__pa(lc_ipl), sizeof(*lc_ipl));
1291 
1292 	return 0;
1293 }
1294 early_initcall(smp_reinit_ipl_cpu);
1295