xref: /openbmc/linux/arch/s390/kernel/smp.c (revision 87c2ce3b)
1 /*
2  *  arch/s390/kernel/smp.c
3  *
4  *  S390 version
5  *    Copyright (C) 1999,2000 IBM Deutschland Entwicklung GmbH, IBM Corporation
6  *    Author(s): Denis Joseph Barrow (djbarrow@de.ibm.com,barrow_dj@yahoo.com),
7  *               Martin Schwidefsky (schwidefsky@de.ibm.com)
8  *               Heiko Carstens (heiko.carstens@de.ibm.com)
9  *
10  *  based on other smp stuff by
11  *    (c) 1995 Alan Cox, CymruNET Ltd  <alan@cymru.net>
12  *    (c) 1998 Ingo Molnar
13  *
14  * We work with logical cpu numbering everywhere we can. The only
15  * functions using the real cpu address (got from STAP) are the sigp
16  * functions. For all other functions we use the identity mapping.
17  * That means that cpu_number_map[i] == i for every cpu. cpu_number_map is
18  * used e.g. to find the idle task belonging to a logical cpu. Every array
19  * in the kernel is sorted by the logical cpu number and not by the physical
20  * one which is causing all the confusion with __cpu_logical_map and
21  * cpu_number_map in other architectures.
22  */
23 
24 #include <linux/module.h>
25 #include <linux/init.h>
26 
27 #include <linux/mm.h>
28 #include <linux/spinlock.h>
29 #include <linux/kernel_stat.h>
30 #include <linux/smp_lock.h>
31 
32 #include <linux/delay.h>
33 #include <linux/cache.h>
34 #include <linux/interrupt.h>
35 #include <linux/cpu.h>
36 
37 #include <asm/sigp.h>
38 #include <asm/pgalloc.h>
39 #include <asm/irq.h>
40 #include <asm/s390_ext.h>
41 #include <asm/cpcmd.h>
42 #include <asm/tlbflush.h>
43 
44 /* prototypes */
45 
46 extern volatile int __cpu_logical_map[];
47 
48 /*
49  * An array with a pointer the lowcore of every CPU.
50  */
51 
52 struct _lowcore *lowcore_ptr[NR_CPUS];
53 
54 cpumask_t cpu_online_map;
55 cpumask_t cpu_possible_map;
56 
57 static struct task_struct *current_set[NR_CPUS];
58 
59 EXPORT_SYMBOL(cpu_online_map);
60 
61 /*
62  * Reboot, halt and power_off routines for SMP.
63  */
64 extern char vmhalt_cmd[];
65 extern char vmpoff_cmd[];
66 
67 extern void reipl(unsigned long devno);
68 extern void reipl_diag(void);
69 
70 static void smp_ext_bitcall(int, ec_bit_sig);
71 static void smp_ext_bitcall_others(ec_bit_sig);
72 
73 /*
74  * Structure and data for smp_call_function(). This is designed to minimise
75  * static memory requirements. It also looks cleaner.
76  */
77 static DEFINE_SPINLOCK(call_lock);
78 
79 struct call_data_struct {
80 	void (*func) (void *info);
81 	void *info;
82 	atomic_t started;
83 	atomic_t finished;
84 	int wait;
85 };
86 
87 static struct call_data_struct * call_data;
88 
89 /*
90  * 'Call function' interrupt callback
91  */
92 static void do_call_function(void)
93 {
94 	void (*func) (void *info) = call_data->func;
95 	void *info = call_data->info;
96 	int wait = call_data->wait;
97 
98 	atomic_inc(&call_data->started);
99 	(*func)(info);
100 	if (wait)
101 		atomic_inc(&call_data->finished);
102 }
103 
104 /*
105  * this function sends a 'generic call function' IPI to all other CPUs
106  * in the system.
107  */
108 
109 int smp_call_function (void (*func) (void *info), void *info, int nonatomic,
110 			int wait)
111 /*
112  * [SUMMARY] Run a function on all other CPUs.
113  * <func> The function to run. This must be fast and non-blocking.
114  * <info> An arbitrary pointer to pass to the function.
115  * <nonatomic> currently unused.
116  * <wait> If true, wait (atomically) until function has completed on other CPUs.
117  * [RETURNS] 0 on success, else a negative status code. Does not return until
118  * remote CPUs are nearly ready to execute <<func>> or are or have executed.
119  *
120  * You must not call this function with disabled interrupts or from a
121  * hardware interrupt handler or from a bottom half handler.
122  */
123 {
124 	struct call_data_struct data;
125 	int cpus = num_online_cpus()-1;
126 
127 	if (cpus <= 0)
128 		return 0;
129 
130 	/* Can deadlock when called with interrupts disabled */
131 	WARN_ON(irqs_disabled());
132 
133 	data.func = func;
134 	data.info = info;
135 	atomic_set(&data.started, 0);
136 	data.wait = wait;
137 	if (wait)
138 		atomic_set(&data.finished, 0);
139 
140 	spin_lock(&call_lock);
141 	call_data = &data;
142 	/* Send a message to all other CPUs and wait for them to respond */
143         smp_ext_bitcall_others(ec_call_function);
144 
145 	/* Wait for response */
146 	while (atomic_read(&data.started) != cpus)
147 		cpu_relax();
148 
149 	if (wait)
150 		while (atomic_read(&data.finished) != cpus)
151 			cpu_relax();
152 	spin_unlock(&call_lock);
153 
154 	return 0;
155 }
156 
157 /*
158  * Call a function on one CPU
159  * cpu : the CPU the function should be executed on
160  *
161  * You must not call this function with disabled interrupts or from a
162  * hardware interrupt handler. You may call it from a bottom half.
163  *
164  * It is guaranteed that the called function runs on the specified CPU,
165  * preemption is disabled.
166  */
167 int smp_call_function_on(void (*func) (void *info), void *info,
168 			 int nonatomic, int wait, int cpu)
169 {
170 	struct call_data_struct data;
171 	int curr_cpu;
172 
173 	if (!cpu_online(cpu))
174 		return -EINVAL;
175 
176 	/* disable preemption for local function call */
177 	curr_cpu = get_cpu();
178 
179 	if (curr_cpu == cpu) {
180 		/* direct call to function */
181 		func(info);
182 		put_cpu();
183 		return 0;
184 	}
185 
186 	data.func = func;
187 	data.info = info;
188 	atomic_set(&data.started, 0);
189 	data.wait = wait;
190 	if (wait)
191 		atomic_set(&data.finished, 0);
192 
193 	spin_lock_bh(&call_lock);
194 	call_data = &data;
195 	smp_ext_bitcall(cpu, ec_call_function);
196 
197 	/* Wait for response */
198 	while (atomic_read(&data.started) != 1)
199 		cpu_relax();
200 
201 	if (wait)
202 		while (atomic_read(&data.finished) != 1)
203 			cpu_relax();
204 
205 	spin_unlock_bh(&call_lock);
206 	put_cpu();
207 	return 0;
208 }
209 EXPORT_SYMBOL(smp_call_function_on);
210 
211 static inline void do_send_stop(void)
212 {
213         int cpu, rc;
214 
215         /* stop all processors */
216 	for_each_online_cpu(cpu) {
217 		if (cpu == smp_processor_id())
218 			continue;
219 		do {
220 			rc = signal_processor(cpu, sigp_stop);
221 		} while (rc == sigp_busy);
222 	}
223 }
224 
225 static inline void do_store_status(void)
226 {
227         int cpu, rc;
228 
229         /* store status of all processors in their lowcores (real 0) */
230 	for_each_online_cpu(cpu) {
231 		if (cpu == smp_processor_id())
232 			continue;
233 		do {
234 			rc = signal_processor_p(
235 				(__u32)(unsigned long) lowcore_ptr[cpu], cpu,
236 				sigp_store_status_at_address);
237 		} while(rc == sigp_busy);
238         }
239 }
240 
241 /*
242  * this function sends a 'stop' sigp to all other CPUs in the system.
243  * it goes straight through.
244  */
245 void smp_send_stop(void)
246 {
247         /* write magic number to zero page (absolute 0) */
248 	lowcore_ptr[smp_processor_id()]->panic_magic = __PANIC_MAGIC;
249 
250 	/* stop other processors. */
251 	do_send_stop();
252 
253 	/* store status of other processors. */
254 	do_store_status();
255 }
256 
257 /*
258  * Reboot, halt and power_off routines for SMP.
259  */
260 
261 static void do_machine_restart(void * __unused)
262 {
263 	int cpu;
264 	static atomic_t cpuid = ATOMIC_INIT(-1);
265 
266 	if (atomic_cmpxchg(&cpuid, -1, smp_processor_id()) != -1)
267 		signal_processor(smp_processor_id(), sigp_stop);
268 
269 	/* Wait for all other cpus to enter stopped state */
270 	for_each_online_cpu(cpu) {
271 		if (cpu == smp_processor_id())
272 			continue;
273 		while(!smp_cpu_not_running(cpu))
274 			cpu_relax();
275 	}
276 
277 	/* Store status of other cpus. */
278 	do_store_status();
279 
280 	/*
281 	 * Finally call reipl. Because we waited for all other
282 	 * cpus to enter this function we know that they do
283 	 * not hold any s390irq-locks (the cpus have been
284 	 * interrupted by an external interrupt and s390irq
285 	 * locks are always held disabled).
286 	 */
287 	reipl_diag();
288 
289 	if (MACHINE_IS_VM)
290 		cpcmd ("IPL", NULL, 0, NULL);
291 	else
292 		reipl (0x10000 | S390_lowcore.ipl_device);
293 }
294 
295 void machine_restart_smp(char * __unused)
296 {
297         on_each_cpu(do_machine_restart, NULL, 0, 0);
298 }
299 
300 static void do_wait_for_stop(void)
301 {
302 	unsigned long cr[16];
303 
304 	__ctl_store(cr, 0, 15);
305 	cr[0] &= ~0xffff;
306 	cr[6] = 0;
307 	__ctl_load(cr, 0, 15);
308 	for (;;)
309 		enabled_wait();
310 }
311 
312 static void do_machine_halt(void * __unused)
313 {
314 	static atomic_t cpuid = ATOMIC_INIT(-1);
315 
316 	if (atomic_cmpxchg(&cpuid, -1, smp_processor_id()) == -1) {
317 		smp_send_stop();
318 		if (MACHINE_IS_VM && strlen(vmhalt_cmd) > 0)
319 			cpcmd(vmhalt_cmd, NULL, 0, NULL);
320 		signal_processor(smp_processor_id(),
321 				 sigp_stop_and_store_status);
322 	}
323 	do_wait_for_stop();
324 }
325 
326 void machine_halt_smp(void)
327 {
328         on_each_cpu(do_machine_halt, NULL, 0, 0);
329 }
330 
331 static void do_machine_power_off(void * __unused)
332 {
333 	static atomic_t cpuid = ATOMIC_INIT(-1);
334 
335 	if (atomic_cmpxchg(&cpuid, -1, smp_processor_id()) == -1) {
336 		smp_send_stop();
337 		if (MACHINE_IS_VM && strlen(vmpoff_cmd) > 0)
338 			cpcmd(vmpoff_cmd, NULL, 0, NULL);
339 		signal_processor(smp_processor_id(),
340 				 sigp_stop_and_store_status);
341 	}
342 	do_wait_for_stop();
343 }
344 
345 void machine_power_off_smp(void)
346 {
347         on_each_cpu(do_machine_power_off, NULL, 0, 0);
348 }
349 
350 /*
351  * This is the main routine where commands issued by other
352  * cpus are handled.
353  */
354 
355 void do_ext_call_interrupt(struct pt_regs *regs, __u16 code)
356 {
357         unsigned long bits;
358 
359         /*
360          * handle bit signal external calls
361          *
362          * For the ec_schedule signal we have to do nothing. All the work
363          * is done automatically when we return from the interrupt.
364          */
365 	bits = xchg(&S390_lowcore.ext_call_fast, 0);
366 
367 	if (test_bit(ec_call_function, &bits))
368 		do_call_function();
369 }
370 
371 /*
372  * Send an external call sigp to another cpu and return without waiting
373  * for its completion.
374  */
375 static void smp_ext_bitcall(int cpu, ec_bit_sig sig)
376 {
377         /*
378          * Set signaling bit in lowcore of target cpu and kick it
379          */
380 	set_bit(sig, (unsigned long *) &lowcore_ptr[cpu]->ext_call_fast);
381 	while(signal_processor(cpu, sigp_emergency_signal) == sigp_busy)
382 		udelay(10);
383 }
384 
385 /*
386  * Send an external call sigp to every other cpu in the system and
387  * return without waiting for its completion.
388  */
389 static void smp_ext_bitcall_others(ec_bit_sig sig)
390 {
391         int cpu;
392 
393 	for_each_online_cpu(cpu) {
394 		if (cpu == smp_processor_id())
395                         continue;
396                 /*
397                  * Set signaling bit in lowcore of target cpu and kick it
398                  */
399 		set_bit(sig, (unsigned long *) &lowcore_ptr[cpu]->ext_call_fast);
400 		while (signal_processor(cpu, sigp_emergency_signal) == sigp_busy)
401 			udelay(10);
402         }
403 }
404 
405 #ifndef CONFIG_64BIT
406 /*
407  * this function sends a 'purge tlb' signal to another CPU.
408  */
409 void smp_ptlb_callback(void *info)
410 {
411 	local_flush_tlb();
412 }
413 
414 void smp_ptlb_all(void)
415 {
416         on_each_cpu(smp_ptlb_callback, NULL, 0, 1);
417 }
418 EXPORT_SYMBOL(smp_ptlb_all);
419 #endif /* ! CONFIG_64BIT */
420 
421 /*
422  * this function sends a 'reschedule' IPI to another CPU.
423  * it goes straight through and wastes no time serializing
424  * anything. Worst case is that we lose a reschedule ...
425  */
426 void smp_send_reschedule(int cpu)
427 {
428         smp_ext_bitcall(cpu, ec_schedule);
429 }
430 
431 /*
432  * parameter area for the set/clear control bit callbacks
433  */
434 typedef struct
435 {
436 	__u16 start_ctl;
437 	__u16 end_ctl;
438 	unsigned long orvals[16];
439 	unsigned long andvals[16];
440 } ec_creg_mask_parms;
441 
442 /*
443  * callback for setting/clearing control bits
444  */
445 void smp_ctl_bit_callback(void *info) {
446 	ec_creg_mask_parms *pp;
447 	unsigned long cregs[16];
448 	int i;
449 
450 	pp = (ec_creg_mask_parms *) info;
451 	__ctl_store(cregs[pp->start_ctl], pp->start_ctl, pp->end_ctl);
452 	for (i = pp->start_ctl; i <= pp->end_ctl; i++)
453 		cregs[i] = (cregs[i] & pp->andvals[i]) | pp->orvals[i];
454 	__ctl_load(cregs[pp->start_ctl], pp->start_ctl, pp->end_ctl);
455 }
456 
457 /*
458  * Set a bit in a control register of all cpus
459  */
460 void smp_ctl_set_bit(int cr, int bit) {
461         ec_creg_mask_parms parms;
462 
463 	parms.start_ctl = cr;
464 	parms.end_ctl = cr;
465 	parms.orvals[cr] = 1 << bit;
466 	parms.andvals[cr] = -1L;
467 	preempt_disable();
468 	smp_call_function(smp_ctl_bit_callback, &parms, 0, 1);
469         __ctl_set_bit(cr, bit);
470 	preempt_enable();
471 }
472 
473 /*
474  * Clear a bit in a control register of all cpus
475  */
476 void smp_ctl_clear_bit(int cr, int bit) {
477         ec_creg_mask_parms parms;
478 
479 	parms.start_ctl = cr;
480 	parms.end_ctl = cr;
481 	parms.orvals[cr] = 0;
482 	parms.andvals[cr] = ~(1L << bit);
483 	preempt_disable();
484 	smp_call_function(smp_ctl_bit_callback, &parms, 0, 1);
485         __ctl_clear_bit(cr, bit);
486 	preempt_enable();
487 }
488 
489 /*
490  * Lets check how many CPUs we have.
491  */
492 
493 void
494 __init smp_check_cpus(unsigned int max_cpus)
495 {
496 	int cpu, num_cpus;
497 	__u16 boot_cpu_addr;
498 
499 	/*
500 	 * cpu 0 is the boot cpu. See smp_prepare_boot_cpu.
501 	 */
502 
503 	boot_cpu_addr = S390_lowcore.cpu_data.cpu_addr;
504 	current_thread_info()->cpu = 0;
505 	num_cpus = 1;
506 	for (cpu = 0; cpu <= 65535 && num_cpus < max_cpus; cpu++) {
507 		if ((__u16) cpu == boot_cpu_addr)
508 			continue;
509 		__cpu_logical_map[num_cpus] = (__u16) cpu;
510 		if (signal_processor(num_cpus, sigp_sense) ==
511 		    sigp_not_operational)
512 			continue;
513 		cpu_set(num_cpus, cpu_present_map);
514 		num_cpus++;
515 	}
516 
517 	for (cpu = 1; cpu < max_cpus; cpu++)
518 		cpu_set(cpu, cpu_possible_map);
519 
520 	printk("Detected %d CPU's\n",(int) num_cpus);
521 	printk("Boot cpu address %2X\n", boot_cpu_addr);
522 }
523 
524 /*
525  *      Activate a secondary processor.
526  */
527 extern void init_cpu_timer(void);
528 extern void init_cpu_vtimer(void);
529 extern int pfault_init(void);
530 extern void pfault_fini(void);
531 
532 int __devinit start_secondary(void *cpuvoid)
533 {
534         /* Setup the cpu */
535         cpu_init();
536 	preempt_disable();
537         /* init per CPU timer */
538         init_cpu_timer();
539 #ifdef CONFIG_VIRT_TIMER
540         init_cpu_vtimer();
541 #endif
542 #ifdef CONFIG_PFAULT
543 	/* Enable pfault pseudo page faults on this cpu. */
544 	if (MACHINE_IS_VM)
545 		pfault_init();
546 #endif
547 	/* Mark this cpu as online */
548 	cpu_set(smp_processor_id(), cpu_online_map);
549 	/* Switch on interrupts */
550 	local_irq_enable();
551         /* Print info about this processor */
552         print_cpu_info(&S390_lowcore.cpu_data);
553         /* cpu_idle will call schedule for us */
554         cpu_idle();
555         return 0;
556 }
557 
558 static void __init smp_create_idle(unsigned int cpu)
559 {
560 	struct task_struct *p;
561 
562 	/*
563 	 *  don't care about the psw and regs settings since we'll never
564 	 *  reschedule the forked task.
565 	 */
566 	p = fork_idle(cpu);
567 	if (IS_ERR(p))
568 		panic("failed fork for CPU %u: %li", cpu, PTR_ERR(p));
569 	current_set[cpu] = p;
570 }
571 
572 /* Reserving and releasing of CPUs */
573 
574 static DEFINE_SPINLOCK(smp_reserve_lock);
575 static int smp_cpu_reserved[NR_CPUS];
576 
577 int
578 smp_get_cpu(cpumask_t cpu_mask)
579 {
580 	unsigned long flags;
581 	int cpu;
582 
583 	spin_lock_irqsave(&smp_reserve_lock, flags);
584 	/* Try to find an already reserved cpu. */
585 	for_each_cpu_mask(cpu, cpu_mask) {
586 		if (smp_cpu_reserved[cpu] != 0) {
587 			smp_cpu_reserved[cpu]++;
588 			/* Found one. */
589 			goto out;
590 		}
591 	}
592 	/* Reserve a new cpu from cpu_mask. */
593 	for_each_cpu_mask(cpu, cpu_mask) {
594 		if (cpu_online(cpu)) {
595 			smp_cpu_reserved[cpu]++;
596 			goto out;
597 		}
598 	}
599 	cpu = -ENODEV;
600 out:
601 	spin_unlock_irqrestore(&smp_reserve_lock, flags);
602 	return cpu;
603 }
604 
605 void
606 smp_put_cpu(int cpu)
607 {
608 	unsigned long flags;
609 
610 	spin_lock_irqsave(&smp_reserve_lock, flags);
611 	smp_cpu_reserved[cpu]--;
612 	spin_unlock_irqrestore(&smp_reserve_lock, flags);
613 }
614 
615 static inline int
616 cpu_stopped(int cpu)
617 {
618 	__u32 status;
619 
620 	/* Check for stopped state */
621 	if (signal_processor_ps(&status, 0, cpu, sigp_sense) == sigp_status_stored) {
622 		if (status & 0x40)
623 			return 1;
624 	}
625 	return 0;
626 }
627 
628 /* Upping and downing of CPUs */
629 
630 int
631 __cpu_up(unsigned int cpu)
632 {
633 	struct task_struct *idle;
634         struct _lowcore    *cpu_lowcore;
635 	struct stack_frame *sf;
636         sigp_ccode          ccode;
637 	int                 curr_cpu;
638 
639 	for (curr_cpu = 0; curr_cpu <= 65535; curr_cpu++) {
640 		__cpu_logical_map[cpu] = (__u16) curr_cpu;
641 		if (cpu_stopped(cpu))
642 			break;
643 	}
644 
645 	if (!cpu_stopped(cpu))
646 		return -ENODEV;
647 
648 	ccode = signal_processor_p((__u32)(unsigned long)(lowcore_ptr[cpu]),
649 				   cpu, sigp_set_prefix);
650 	if (ccode){
651 		printk("sigp_set_prefix failed for cpu %d "
652 		       "with condition code %d\n",
653 		       (int) cpu, (int) ccode);
654 		return -EIO;
655 	}
656 
657 	idle = current_set[cpu];
658         cpu_lowcore = lowcore_ptr[cpu];
659 	cpu_lowcore->kernel_stack = (unsigned long)
660 		idle->thread_info + (THREAD_SIZE);
661 	sf = (struct stack_frame *) (cpu_lowcore->kernel_stack
662 				     - sizeof(struct pt_regs)
663 				     - sizeof(struct stack_frame));
664 	memset(sf, 0, sizeof(struct stack_frame));
665 	sf->gprs[9] = (unsigned long) sf;
666 	cpu_lowcore->save_area[15] = (unsigned long) sf;
667 	__ctl_store(cpu_lowcore->cregs_save_area[0], 0, 15);
668 	__asm__ __volatile__("stam  0,15,0(%0)"
669 			     : : "a" (&cpu_lowcore->access_regs_save_area)
670 			     : "memory");
671 	cpu_lowcore->percpu_offset = __per_cpu_offset[cpu];
672         cpu_lowcore->current_task = (unsigned long) idle;
673         cpu_lowcore->cpu_data.cpu_nr = cpu;
674 	eieio();
675 	signal_processor(cpu,sigp_restart);
676 
677 	while (!cpu_online(cpu))
678 		cpu_relax();
679 	return 0;
680 }
681 
682 int
683 __cpu_disable(void)
684 {
685 	unsigned long flags;
686 	ec_creg_mask_parms cr_parms;
687 	int cpu = smp_processor_id();
688 
689 	spin_lock_irqsave(&smp_reserve_lock, flags);
690 	if (smp_cpu_reserved[cpu] != 0) {
691 		spin_unlock_irqrestore(&smp_reserve_lock, flags);
692 		return -EBUSY;
693 	}
694 	cpu_clear(cpu, cpu_online_map);
695 
696 #ifdef CONFIG_PFAULT
697 	/* Disable pfault pseudo page faults on this cpu. */
698 	if (MACHINE_IS_VM)
699 		pfault_fini();
700 #endif
701 
702 	/* disable all external interrupts */
703 
704 	cr_parms.start_ctl = 0;
705 	cr_parms.end_ctl = 0;
706 	cr_parms.orvals[0] = 0;
707 	cr_parms.andvals[0] = ~(1<<15 | 1<<14 | 1<<13 | 1<<12 |
708 				1<<11 | 1<<10 | 1<< 6 | 1<< 4);
709 	smp_ctl_bit_callback(&cr_parms);
710 
711 	/* disable all I/O interrupts */
712 
713 	cr_parms.start_ctl = 6;
714 	cr_parms.end_ctl = 6;
715 	cr_parms.orvals[6] = 0;
716 	cr_parms.andvals[6] = ~(1<<31 | 1<<30 | 1<<29 | 1<<28 |
717 				1<<27 | 1<<26 | 1<<25 | 1<<24);
718 	smp_ctl_bit_callback(&cr_parms);
719 
720 	/* disable most machine checks */
721 
722 	cr_parms.start_ctl = 14;
723 	cr_parms.end_ctl = 14;
724 	cr_parms.orvals[14] = 0;
725 	cr_parms.andvals[14] = ~(1<<28 | 1<<27 | 1<<26 | 1<<25 | 1<<24);
726 	smp_ctl_bit_callback(&cr_parms);
727 
728 	spin_unlock_irqrestore(&smp_reserve_lock, flags);
729 	return 0;
730 }
731 
732 void
733 __cpu_die(unsigned int cpu)
734 {
735 	/* Wait until target cpu is down */
736 	while (!smp_cpu_not_running(cpu))
737 		cpu_relax();
738 	printk("Processor %d spun down\n", cpu);
739 }
740 
741 void
742 cpu_die(void)
743 {
744 	idle_task_exit();
745 	signal_processor(smp_processor_id(), sigp_stop);
746 	BUG();
747 	for(;;);
748 }
749 
750 /*
751  *	Cycle through the processors and setup structures.
752  */
753 
754 void __init smp_prepare_cpus(unsigned int max_cpus)
755 {
756 	unsigned long stack;
757 	unsigned int cpu;
758         int i;
759 
760         /* request the 0x1201 emergency signal external interrupt */
761         if (register_external_interrupt(0x1201, do_ext_call_interrupt) != 0)
762                 panic("Couldn't request external interrupt 0x1201");
763         smp_check_cpus(max_cpus);
764         memset(lowcore_ptr,0,sizeof(lowcore_ptr));
765         /*
766          *  Initialize prefix pages and stacks for all possible cpus
767          */
768 	print_cpu_info(&S390_lowcore.cpu_data);
769 
770         for(i = 0; i < NR_CPUS; i++) {
771 		if (!cpu_possible(i))
772 			continue;
773 		lowcore_ptr[i] = (struct _lowcore *)
774 			__get_free_pages(GFP_KERNEL|GFP_DMA,
775 					sizeof(void*) == 8 ? 1 : 0);
776 		stack = __get_free_pages(GFP_KERNEL,ASYNC_ORDER);
777 		if (lowcore_ptr[i] == NULL || stack == 0ULL)
778 			panic("smp_boot_cpus failed to allocate memory\n");
779 
780 		*(lowcore_ptr[i]) = S390_lowcore;
781 		lowcore_ptr[i]->async_stack = stack + (ASYNC_SIZE);
782 		stack = __get_free_pages(GFP_KERNEL,0);
783 		if (stack == 0ULL)
784 			panic("smp_boot_cpus failed to allocate memory\n");
785 		lowcore_ptr[i]->panic_stack = stack + (PAGE_SIZE);
786 #ifndef CONFIG_64BIT
787 		if (MACHINE_HAS_IEEE) {
788 			lowcore_ptr[i]->extended_save_area_addr =
789 				(__u32) __get_free_pages(GFP_KERNEL,0);
790 			if (lowcore_ptr[i]->extended_save_area_addr == 0)
791 				panic("smp_boot_cpus failed to "
792 				      "allocate memory\n");
793 		}
794 #endif
795 	}
796 #ifndef CONFIG_64BIT
797 	if (MACHINE_HAS_IEEE)
798 		ctl_set_bit(14, 29); /* enable extended save area */
799 #endif
800 	set_prefix((u32)(unsigned long) lowcore_ptr[smp_processor_id()]);
801 
802 	for_each_cpu(cpu)
803 		if (cpu != smp_processor_id())
804 			smp_create_idle(cpu);
805 }
806 
807 void __devinit smp_prepare_boot_cpu(void)
808 {
809 	BUG_ON(smp_processor_id() != 0);
810 
811 	cpu_set(0, cpu_online_map);
812 	cpu_set(0, cpu_present_map);
813 	cpu_set(0, cpu_possible_map);
814 	S390_lowcore.percpu_offset = __per_cpu_offset[0];
815 	current_set[0] = current;
816 }
817 
818 void smp_cpus_done(unsigned int max_cpus)
819 {
820 	cpu_present_map = cpu_possible_map;
821 }
822 
823 /*
824  * the frequency of the profiling timer can be changed
825  * by writing a multiplier value into /proc/profile.
826  *
827  * usually you want to run this on all CPUs ;)
828  */
829 int setup_profiling_timer(unsigned int multiplier)
830 {
831         return 0;
832 }
833 
834 static DEFINE_PER_CPU(struct cpu, cpu_devices);
835 
836 static int __init topology_init(void)
837 {
838 	int cpu;
839 	int ret;
840 
841 	for_each_cpu(cpu) {
842 		ret = register_cpu(&per_cpu(cpu_devices, cpu), cpu, NULL);
843 		if (ret)
844 			printk(KERN_WARNING "topology_init: register_cpu %d "
845 			       "failed (%d)\n", cpu, ret);
846 	}
847 	return 0;
848 }
849 
850 subsys_initcall(topology_init);
851 
852 EXPORT_SYMBOL(cpu_possible_map);
853 EXPORT_SYMBOL(lowcore_ptr);
854 EXPORT_SYMBOL(smp_ctl_set_bit);
855 EXPORT_SYMBOL(smp_ctl_clear_bit);
856 EXPORT_SYMBOL(smp_call_function);
857 EXPORT_SYMBOL(smp_get_cpu);
858 EXPORT_SYMBOL(smp_put_cpu);
859 
860