xref: /openbmc/linux/arch/s390/kernel/smp.c (revision 7f2e85840871f199057e65232ebde846192ed989)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  SMP related functions
4  *
5  *    Copyright IBM Corp. 1999, 2012
6  *    Author(s): Denis Joseph Barrow,
7  *		 Martin Schwidefsky <schwidefsky@de.ibm.com>,
8  *		 Heiko Carstens <heiko.carstens@de.ibm.com>,
9  *
10  *  based on other smp stuff by
11  *    (c) 1995 Alan Cox, CymruNET Ltd  <alan@cymru.net>
12  *    (c) 1998 Ingo Molnar
13  *
14  * The code outside of smp.c uses logical cpu numbers, only smp.c does
15  * the translation of logical to physical cpu ids. All new code that
16  * operates on physical cpu numbers needs to go into smp.c.
17  */
18 
19 #define KMSG_COMPONENT "cpu"
20 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
21 
22 #include <linux/workqueue.h>
23 #include <linux/bootmem.h>
24 #include <linux/export.h>
25 #include <linux/init.h>
26 #include <linux/mm.h>
27 #include <linux/err.h>
28 #include <linux/spinlock.h>
29 #include <linux/kernel_stat.h>
30 #include <linux/kmemleak.h>
31 #include <linux/delay.h>
32 #include <linux/interrupt.h>
33 #include <linux/irqflags.h>
34 #include <linux/cpu.h>
35 #include <linux/slab.h>
36 #include <linux/sched/hotplug.h>
37 #include <linux/sched/task_stack.h>
38 #include <linux/crash_dump.h>
39 #include <linux/memblock.h>
40 #include <linux/kprobes.h>
41 #include <asm/asm-offsets.h>
42 #include <asm/diag.h>
43 #include <asm/switch_to.h>
44 #include <asm/facility.h>
45 #include <asm/ipl.h>
46 #include <asm/setup.h>
47 #include <asm/irq.h>
48 #include <asm/tlbflush.h>
49 #include <asm/vtimer.h>
50 #include <asm/lowcore.h>
51 #include <asm/sclp.h>
52 #include <asm/vdso.h>
53 #include <asm/debug.h>
54 #include <asm/os_info.h>
55 #include <asm/sigp.h>
56 #include <asm/idle.h>
57 #include <asm/nmi.h>
58 #include <asm/topology.h>
59 #include "entry.h"
60 
61 enum {
62 	ec_schedule = 0,
63 	ec_call_function_single,
64 	ec_stop_cpu,
65 };
66 
67 enum {
68 	CPU_STATE_STANDBY,
69 	CPU_STATE_CONFIGURED,
70 };
71 
72 static DEFINE_PER_CPU(struct cpu *, cpu_device);
73 
74 struct pcpu {
75 	struct lowcore *lowcore;	/* lowcore page(s) for the cpu */
76 	unsigned long ec_mask;		/* bit mask for ec_xxx functions */
77 	unsigned long ec_clk;		/* sigp timestamp for ec_xxx */
78 	signed char state;		/* physical cpu state */
79 	signed char polarization;	/* physical polarization */
80 	u16 address;			/* physical cpu address */
81 };
82 
83 static u8 boot_core_type;
84 static struct pcpu pcpu_devices[NR_CPUS];
85 
86 unsigned int smp_cpu_mt_shift;
87 EXPORT_SYMBOL(smp_cpu_mt_shift);
88 
89 unsigned int smp_cpu_mtid;
90 EXPORT_SYMBOL(smp_cpu_mtid);
91 
92 #ifdef CONFIG_CRASH_DUMP
93 __vector128 __initdata boot_cpu_vector_save_area[__NUM_VXRS];
94 #endif
95 
96 static unsigned int smp_max_threads __initdata = -1U;
97 
98 static int __init early_nosmt(char *s)
99 {
100 	smp_max_threads = 1;
101 	return 0;
102 }
103 early_param("nosmt", early_nosmt);
104 
105 static int __init early_smt(char *s)
106 {
107 	get_option(&s, &smp_max_threads);
108 	return 0;
109 }
110 early_param("smt", early_smt);
111 
112 /*
113  * The smp_cpu_state_mutex must be held when changing the state or polarization
114  * member of a pcpu data structure within the pcpu_devices arreay.
115  */
116 DEFINE_MUTEX(smp_cpu_state_mutex);
117 
118 /*
119  * Signal processor helper functions.
120  */
121 static inline int __pcpu_sigp_relax(u16 addr, u8 order, unsigned long parm)
122 {
123 	int cc;
124 
125 	while (1) {
126 		cc = __pcpu_sigp(addr, order, parm, NULL);
127 		if (cc != SIGP_CC_BUSY)
128 			return cc;
129 		cpu_relax();
130 	}
131 }
132 
133 static int pcpu_sigp_retry(struct pcpu *pcpu, u8 order, u32 parm)
134 {
135 	int cc, retry;
136 
137 	for (retry = 0; ; retry++) {
138 		cc = __pcpu_sigp(pcpu->address, order, parm, NULL);
139 		if (cc != SIGP_CC_BUSY)
140 			break;
141 		if (retry >= 3)
142 			udelay(10);
143 	}
144 	return cc;
145 }
146 
147 static inline int pcpu_stopped(struct pcpu *pcpu)
148 {
149 	u32 uninitialized_var(status);
150 
151 	if (__pcpu_sigp(pcpu->address, SIGP_SENSE,
152 			0, &status) != SIGP_CC_STATUS_STORED)
153 		return 0;
154 	return !!(status & (SIGP_STATUS_CHECK_STOP|SIGP_STATUS_STOPPED));
155 }
156 
157 static inline int pcpu_running(struct pcpu *pcpu)
158 {
159 	if (__pcpu_sigp(pcpu->address, SIGP_SENSE_RUNNING,
160 			0, NULL) != SIGP_CC_STATUS_STORED)
161 		return 1;
162 	/* Status stored condition code is equivalent to cpu not running. */
163 	return 0;
164 }
165 
166 /*
167  * Find struct pcpu by cpu address.
168  */
169 static struct pcpu *pcpu_find_address(const struct cpumask *mask, u16 address)
170 {
171 	int cpu;
172 
173 	for_each_cpu(cpu, mask)
174 		if (pcpu_devices[cpu].address == address)
175 			return pcpu_devices + cpu;
176 	return NULL;
177 }
178 
179 static void pcpu_ec_call(struct pcpu *pcpu, int ec_bit)
180 {
181 	int order;
182 
183 	if (test_and_set_bit(ec_bit, &pcpu->ec_mask))
184 		return;
185 	order = pcpu_running(pcpu) ? SIGP_EXTERNAL_CALL : SIGP_EMERGENCY_SIGNAL;
186 	pcpu->ec_clk = get_tod_clock_fast();
187 	pcpu_sigp_retry(pcpu, order, 0);
188 }
189 
190 #define ASYNC_FRAME_OFFSET (ASYNC_SIZE - STACK_FRAME_OVERHEAD - __PT_SIZE)
191 #define PANIC_FRAME_OFFSET (PAGE_SIZE - STACK_FRAME_OVERHEAD - __PT_SIZE)
192 
193 static int pcpu_alloc_lowcore(struct pcpu *pcpu, int cpu)
194 {
195 	unsigned long async_stack, panic_stack;
196 	struct lowcore *lc;
197 
198 	if (pcpu != &pcpu_devices[0]) {
199 		pcpu->lowcore =	(struct lowcore *)
200 			__get_free_pages(GFP_KERNEL | GFP_DMA, LC_ORDER);
201 		async_stack = __get_free_pages(GFP_KERNEL, ASYNC_ORDER);
202 		panic_stack = __get_free_page(GFP_KERNEL);
203 		if (!pcpu->lowcore || !panic_stack || !async_stack)
204 			goto out;
205 	} else {
206 		async_stack = pcpu->lowcore->async_stack - ASYNC_FRAME_OFFSET;
207 		panic_stack = pcpu->lowcore->panic_stack - PANIC_FRAME_OFFSET;
208 	}
209 	lc = pcpu->lowcore;
210 	memcpy(lc, &S390_lowcore, 512);
211 	memset((char *) lc + 512, 0, sizeof(*lc) - 512);
212 	lc->async_stack = async_stack + ASYNC_FRAME_OFFSET;
213 	lc->panic_stack = panic_stack + PANIC_FRAME_OFFSET;
214 	lc->cpu_nr = cpu;
215 	lc->spinlock_lockval = arch_spin_lockval(cpu);
216 	lc->spinlock_index = 0;
217 	lc->br_r1_trampoline = 0x07f1;	/* br %r1 */
218 	if (nmi_alloc_per_cpu(lc))
219 		goto out;
220 	if (vdso_alloc_per_cpu(lc))
221 		goto out_mcesa;
222 	lowcore_ptr[cpu] = lc;
223 	pcpu_sigp_retry(pcpu, SIGP_SET_PREFIX, (u32)(unsigned long) lc);
224 	return 0;
225 
226 out_mcesa:
227 	nmi_free_per_cpu(lc);
228 out:
229 	if (pcpu != &pcpu_devices[0]) {
230 		free_page(panic_stack);
231 		free_pages(async_stack, ASYNC_ORDER);
232 		free_pages((unsigned long) pcpu->lowcore, LC_ORDER);
233 	}
234 	return -ENOMEM;
235 }
236 
237 #ifdef CONFIG_HOTPLUG_CPU
238 
239 static void pcpu_free_lowcore(struct pcpu *pcpu)
240 {
241 	pcpu_sigp_retry(pcpu, SIGP_SET_PREFIX, 0);
242 	lowcore_ptr[pcpu - pcpu_devices] = NULL;
243 	vdso_free_per_cpu(pcpu->lowcore);
244 	nmi_free_per_cpu(pcpu->lowcore);
245 	if (pcpu == &pcpu_devices[0])
246 		return;
247 	free_page(pcpu->lowcore->panic_stack-PANIC_FRAME_OFFSET);
248 	free_pages(pcpu->lowcore->async_stack-ASYNC_FRAME_OFFSET, ASYNC_ORDER);
249 	free_pages((unsigned long) pcpu->lowcore, LC_ORDER);
250 }
251 
252 #endif /* CONFIG_HOTPLUG_CPU */
253 
254 static void pcpu_prepare_secondary(struct pcpu *pcpu, int cpu)
255 {
256 	struct lowcore *lc = pcpu->lowcore;
257 
258 	cpumask_set_cpu(cpu, &init_mm.context.cpu_attach_mask);
259 	cpumask_set_cpu(cpu, mm_cpumask(&init_mm));
260 	lc->cpu_nr = cpu;
261 	lc->spinlock_lockval = arch_spin_lockval(cpu);
262 	lc->spinlock_index = 0;
263 	lc->percpu_offset = __per_cpu_offset[cpu];
264 	lc->kernel_asce = S390_lowcore.kernel_asce;
265 	lc->machine_flags = S390_lowcore.machine_flags;
266 	lc->user_timer = lc->system_timer = lc->steal_timer = 0;
267 	__ctl_store(lc->cregs_save_area, 0, 15);
268 	save_access_regs((unsigned int *) lc->access_regs_save_area);
269 	memcpy(lc->stfle_fac_list, S390_lowcore.stfle_fac_list,
270 	       sizeof(lc->stfle_fac_list));
271 	memcpy(lc->alt_stfle_fac_list, S390_lowcore.alt_stfle_fac_list,
272 	       sizeof(lc->alt_stfle_fac_list));
273 	arch_spin_lock_setup(cpu);
274 }
275 
276 static void pcpu_attach_task(struct pcpu *pcpu, struct task_struct *tsk)
277 {
278 	struct lowcore *lc = pcpu->lowcore;
279 
280 	lc->kernel_stack = (unsigned long) task_stack_page(tsk)
281 		+ THREAD_SIZE - STACK_FRAME_OVERHEAD - sizeof(struct pt_regs);
282 	lc->current_task = (unsigned long) tsk;
283 	lc->lpp = LPP_MAGIC;
284 	lc->current_pid = tsk->pid;
285 	lc->user_timer = tsk->thread.user_timer;
286 	lc->guest_timer = tsk->thread.guest_timer;
287 	lc->system_timer = tsk->thread.system_timer;
288 	lc->hardirq_timer = tsk->thread.hardirq_timer;
289 	lc->softirq_timer = tsk->thread.softirq_timer;
290 	lc->steal_timer = 0;
291 }
292 
293 static void pcpu_start_fn(struct pcpu *pcpu, void (*func)(void *), void *data)
294 {
295 	struct lowcore *lc = pcpu->lowcore;
296 
297 	lc->restart_stack = lc->kernel_stack;
298 	lc->restart_fn = (unsigned long) func;
299 	lc->restart_data = (unsigned long) data;
300 	lc->restart_source = -1UL;
301 	pcpu_sigp_retry(pcpu, SIGP_RESTART, 0);
302 }
303 
304 /*
305  * Call function via PSW restart on pcpu and stop the current cpu.
306  */
307 static void pcpu_delegate(struct pcpu *pcpu, void (*func)(void *),
308 			  void *data, unsigned long stack)
309 {
310 	struct lowcore *lc = lowcore_ptr[pcpu - pcpu_devices];
311 	unsigned long source_cpu = stap();
312 
313 	__load_psw_mask(PSW_KERNEL_BITS);
314 	if (pcpu->address == source_cpu)
315 		func(data);	/* should not return */
316 	/* Stop target cpu (if func returns this stops the current cpu). */
317 	pcpu_sigp_retry(pcpu, SIGP_STOP, 0);
318 	/* Restart func on the target cpu and stop the current cpu. */
319 	mem_assign_absolute(lc->restart_stack, stack);
320 	mem_assign_absolute(lc->restart_fn, (unsigned long) func);
321 	mem_assign_absolute(lc->restart_data, (unsigned long) data);
322 	mem_assign_absolute(lc->restart_source, source_cpu);
323 	__bpon();
324 	asm volatile(
325 		"0:	sigp	0,%0,%2	# sigp restart to target cpu\n"
326 		"	brc	2,0b	# busy, try again\n"
327 		"1:	sigp	0,%1,%3	# sigp stop to current cpu\n"
328 		"	brc	2,1b	# busy, try again\n"
329 		: : "d" (pcpu->address), "d" (source_cpu),
330 		    "K" (SIGP_RESTART), "K" (SIGP_STOP)
331 		: "0", "1", "cc");
332 	for (;;) ;
333 }
334 
335 /*
336  * Enable additional logical cpus for multi-threading.
337  */
338 static int pcpu_set_smt(unsigned int mtid)
339 {
340 	int cc;
341 
342 	if (smp_cpu_mtid == mtid)
343 		return 0;
344 	cc = __pcpu_sigp(0, SIGP_SET_MULTI_THREADING, mtid, NULL);
345 	if (cc == 0) {
346 		smp_cpu_mtid = mtid;
347 		smp_cpu_mt_shift = 0;
348 		while (smp_cpu_mtid >= (1U << smp_cpu_mt_shift))
349 			smp_cpu_mt_shift++;
350 		pcpu_devices[0].address = stap();
351 	}
352 	return cc;
353 }
354 
355 /*
356  * Call function on an online CPU.
357  */
358 void smp_call_online_cpu(void (*func)(void *), void *data)
359 {
360 	struct pcpu *pcpu;
361 
362 	/* Use the current cpu if it is online. */
363 	pcpu = pcpu_find_address(cpu_online_mask, stap());
364 	if (!pcpu)
365 		/* Use the first online cpu. */
366 		pcpu = pcpu_devices + cpumask_first(cpu_online_mask);
367 	pcpu_delegate(pcpu, func, data, (unsigned long) restart_stack);
368 }
369 
370 /*
371  * Call function on the ipl CPU.
372  */
373 void smp_call_ipl_cpu(void (*func)(void *), void *data)
374 {
375 	pcpu_delegate(&pcpu_devices[0], func, data,
376 		      pcpu_devices->lowcore->panic_stack -
377 		      PANIC_FRAME_OFFSET + PAGE_SIZE);
378 }
379 
380 int smp_find_processor_id(u16 address)
381 {
382 	int cpu;
383 
384 	for_each_present_cpu(cpu)
385 		if (pcpu_devices[cpu].address == address)
386 			return cpu;
387 	return -1;
388 }
389 
390 bool arch_vcpu_is_preempted(int cpu)
391 {
392 	if (test_cpu_flag_of(CIF_ENABLED_WAIT, cpu))
393 		return false;
394 	if (pcpu_running(pcpu_devices + cpu))
395 		return false;
396 	return true;
397 }
398 EXPORT_SYMBOL(arch_vcpu_is_preempted);
399 
400 void smp_yield_cpu(int cpu)
401 {
402 	if (MACHINE_HAS_DIAG9C) {
403 		diag_stat_inc_norecursion(DIAG_STAT_X09C);
404 		asm volatile("diag %0,0,0x9c"
405 			     : : "d" (pcpu_devices[cpu].address));
406 	} else if (MACHINE_HAS_DIAG44) {
407 		diag_stat_inc_norecursion(DIAG_STAT_X044);
408 		asm volatile("diag 0,0,0x44");
409 	}
410 }
411 
412 /*
413  * Send cpus emergency shutdown signal. This gives the cpus the
414  * opportunity to complete outstanding interrupts.
415  */
416 void notrace smp_emergency_stop(void)
417 {
418 	cpumask_t cpumask;
419 	u64 end;
420 	int cpu;
421 
422 	cpumask_copy(&cpumask, cpu_online_mask);
423 	cpumask_clear_cpu(smp_processor_id(), &cpumask);
424 
425 	end = get_tod_clock() + (1000000UL << 12);
426 	for_each_cpu(cpu, &cpumask) {
427 		struct pcpu *pcpu = pcpu_devices + cpu;
428 		set_bit(ec_stop_cpu, &pcpu->ec_mask);
429 		while (__pcpu_sigp(pcpu->address, SIGP_EMERGENCY_SIGNAL,
430 				   0, NULL) == SIGP_CC_BUSY &&
431 		       get_tod_clock() < end)
432 			cpu_relax();
433 	}
434 	while (get_tod_clock() < end) {
435 		for_each_cpu(cpu, &cpumask)
436 			if (pcpu_stopped(pcpu_devices + cpu))
437 				cpumask_clear_cpu(cpu, &cpumask);
438 		if (cpumask_empty(&cpumask))
439 			break;
440 		cpu_relax();
441 	}
442 }
443 NOKPROBE_SYMBOL(smp_emergency_stop);
444 
445 /*
446  * Stop all cpus but the current one.
447  */
448 void smp_send_stop(void)
449 {
450 	int cpu;
451 
452 	/* Disable all interrupts/machine checks */
453 	__load_psw_mask(PSW_KERNEL_BITS | PSW_MASK_DAT);
454 	trace_hardirqs_off();
455 
456 	debug_set_critical();
457 
458 	if (oops_in_progress)
459 		smp_emergency_stop();
460 
461 	/* stop all processors */
462 	for_each_online_cpu(cpu) {
463 		if (cpu == smp_processor_id())
464 			continue;
465 		pcpu_sigp_retry(pcpu_devices + cpu, SIGP_STOP, 0);
466 		while (!pcpu_stopped(pcpu_devices + cpu))
467 			cpu_relax();
468 	}
469 }
470 
471 /*
472  * This is the main routine where commands issued by other
473  * cpus are handled.
474  */
475 static void smp_handle_ext_call(void)
476 {
477 	unsigned long bits;
478 
479 	/* handle bit signal external calls */
480 	bits = xchg(&pcpu_devices[smp_processor_id()].ec_mask, 0);
481 	if (test_bit(ec_stop_cpu, &bits))
482 		smp_stop_cpu();
483 	if (test_bit(ec_schedule, &bits))
484 		scheduler_ipi();
485 	if (test_bit(ec_call_function_single, &bits))
486 		generic_smp_call_function_single_interrupt();
487 }
488 
489 static void do_ext_call_interrupt(struct ext_code ext_code,
490 				  unsigned int param32, unsigned long param64)
491 {
492 	inc_irq_stat(ext_code.code == 0x1202 ? IRQEXT_EXC : IRQEXT_EMS);
493 	smp_handle_ext_call();
494 }
495 
496 void arch_send_call_function_ipi_mask(const struct cpumask *mask)
497 {
498 	int cpu;
499 
500 	for_each_cpu(cpu, mask)
501 		pcpu_ec_call(pcpu_devices + cpu, ec_call_function_single);
502 }
503 
504 void arch_send_call_function_single_ipi(int cpu)
505 {
506 	pcpu_ec_call(pcpu_devices + cpu, ec_call_function_single);
507 }
508 
509 /*
510  * this function sends a 'reschedule' IPI to another CPU.
511  * it goes straight through and wastes no time serializing
512  * anything. Worst case is that we lose a reschedule ...
513  */
514 void smp_send_reschedule(int cpu)
515 {
516 	pcpu_ec_call(pcpu_devices + cpu, ec_schedule);
517 }
518 
519 /*
520  * parameter area for the set/clear control bit callbacks
521  */
522 struct ec_creg_mask_parms {
523 	unsigned long orval;
524 	unsigned long andval;
525 	int cr;
526 };
527 
528 /*
529  * callback for setting/clearing control bits
530  */
531 static void smp_ctl_bit_callback(void *info)
532 {
533 	struct ec_creg_mask_parms *pp = info;
534 	unsigned long cregs[16];
535 
536 	__ctl_store(cregs, 0, 15);
537 	cregs[pp->cr] = (cregs[pp->cr] & pp->andval) | pp->orval;
538 	__ctl_load(cregs, 0, 15);
539 }
540 
541 /*
542  * Set a bit in a control register of all cpus
543  */
544 void smp_ctl_set_bit(int cr, int bit)
545 {
546 	struct ec_creg_mask_parms parms = { 1UL << bit, -1UL, cr };
547 
548 	on_each_cpu(smp_ctl_bit_callback, &parms, 1);
549 }
550 EXPORT_SYMBOL(smp_ctl_set_bit);
551 
552 /*
553  * Clear a bit in a control register of all cpus
554  */
555 void smp_ctl_clear_bit(int cr, int bit)
556 {
557 	struct ec_creg_mask_parms parms = { 0, ~(1UL << bit), cr };
558 
559 	on_each_cpu(smp_ctl_bit_callback, &parms, 1);
560 }
561 EXPORT_SYMBOL(smp_ctl_clear_bit);
562 
563 #ifdef CONFIG_CRASH_DUMP
564 
565 int smp_store_status(int cpu)
566 {
567 	struct pcpu *pcpu = pcpu_devices + cpu;
568 	unsigned long pa;
569 
570 	pa = __pa(&pcpu->lowcore->floating_pt_save_area);
571 	if (__pcpu_sigp_relax(pcpu->address, SIGP_STORE_STATUS_AT_ADDRESS,
572 			      pa) != SIGP_CC_ORDER_CODE_ACCEPTED)
573 		return -EIO;
574 	if (!MACHINE_HAS_VX && !MACHINE_HAS_GS)
575 		return 0;
576 	pa = __pa(pcpu->lowcore->mcesad & MCESA_ORIGIN_MASK);
577 	if (MACHINE_HAS_GS)
578 		pa |= pcpu->lowcore->mcesad & MCESA_LC_MASK;
579 	if (__pcpu_sigp_relax(pcpu->address, SIGP_STORE_ADDITIONAL_STATUS,
580 			      pa) != SIGP_CC_ORDER_CODE_ACCEPTED)
581 		return -EIO;
582 	return 0;
583 }
584 
585 /*
586  * Collect CPU state of the previous, crashed system.
587  * There are four cases:
588  * 1) standard zfcp dump
589  *    condition: OLDMEM_BASE == NULL && ipl_info.type == IPL_TYPE_FCP_DUMP
590  *    The state for all CPUs except the boot CPU needs to be collected
591  *    with sigp stop-and-store-status. The boot CPU state is located in
592  *    the absolute lowcore of the memory stored in the HSA. The zcore code
593  *    will copy the boot CPU state from the HSA.
594  * 2) stand-alone kdump for SCSI (zfcp dump with swapped memory)
595  *    condition: OLDMEM_BASE != NULL && ipl_info.type == IPL_TYPE_FCP_DUMP
596  *    The state for all CPUs except the boot CPU needs to be collected
597  *    with sigp stop-and-store-status. The firmware or the boot-loader
598  *    stored the registers of the boot CPU in the absolute lowcore in the
599  *    memory of the old system.
600  * 3) kdump and the old kernel did not store the CPU state,
601  *    or stand-alone kdump for DASD
602  *    condition: OLDMEM_BASE != NULL && !is_kdump_kernel()
603  *    The state for all CPUs except the boot CPU needs to be collected
604  *    with sigp stop-and-store-status. The kexec code or the boot-loader
605  *    stored the registers of the boot CPU in the memory of the old system.
606  * 4) kdump and the old kernel stored the CPU state
607  *    condition: OLDMEM_BASE != NULL && is_kdump_kernel()
608  *    This case does not exist for s390 anymore, setup_arch explicitly
609  *    deactivates the elfcorehdr= kernel parameter
610  */
611 static __init void smp_save_cpu_vxrs(struct save_area *sa, u16 addr,
612 				     bool is_boot_cpu, unsigned long page)
613 {
614 	__vector128 *vxrs = (__vector128 *) page;
615 
616 	if (is_boot_cpu)
617 		vxrs = boot_cpu_vector_save_area;
618 	else
619 		__pcpu_sigp_relax(addr, SIGP_STORE_ADDITIONAL_STATUS, page);
620 	save_area_add_vxrs(sa, vxrs);
621 }
622 
623 static __init void smp_save_cpu_regs(struct save_area *sa, u16 addr,
624 				     bool is_boot_cpu, unsigned long page)
625 {
626 	void *regs = (void *) page;
627 
628 	if (is_boot_cpu)
629 		copy_oldmem_kernel(regs, (void *) __LC_FPREGS_SAVE_AREA, 512);
630 	else
631 		__pcpu_sigp_relax(addr, SIGP_STORE_STATUS_AT_ADDRESS, page);
632 	save_area_add_regs(sa, regs);
633 }
634 
635 void __init smp_save_dump_cpus(void)
636 {
637 	int addr, boot_cpu_addr, max_cpu_addr;
638 	struct save_area *sa;
639 	unsigned long page;
640 	bool is_boot_cpu;
641 
642 	if (!(OLDMEM_BASE || ipl_info.type == IPL_TYPE_FCP_DUMP))
643 		/* No previous system present, normal boot. */
644 		return;
645 	/* Allocate a page as dumping area for the store status sigps */
646 	page = memblock_alloc_base(PAGE_SIZE, PAGE_SIZE, 1UL << 31);
647 	/* Set multi-threading state to the previous system. */
648 	pcpu_set_smt(sclp.mtid_prev);
649 	boot_cpu_addr = stap();
650 	max_cpu_addr = SCLP_MAX_CORES << sclp.mtid_prev;
651 	for (addr = 0; addr <= max_cpu_addr; addr++) {
652 		if (__pcpu_sigp_relax(addr, SIGP_SENSE, 0) ==
653 		    SIGP_CC_NOT_OPERATIONAL)
654 			continue;
655 		is_boot_cpu = (addr == boot_cpu_addr);
656 		/* Allocate save area */
657 		sa = save_area_alloc(is_boot_cpu);
658 		if (!sa)
659 			panic("could not allocate memory for save area\n");
660 		if (MACHINE_HAS_VX)
661 			/* Get the vector registers */
662 			smp_save_cpu_vxrs(sa, addr, is_boot_cpu, page);
663 		/*
664 		 * For a zfcp dump OLDMEM_BASE == NULL and the registers
665 		 * of the boot CPU are stored in the HSA. To retrieve
666 		 * these registers an SCLP request is required which is
667 		 * done by drivers/s390/char/zcore.c:init_cpu_info()
668 		 */
669 		if (!is_boot_cpu || OLDMEM_BASE)
670 			/* Get the CPU registers */
671 			smp_save_cpu_regs(sa, addr, is_boot_cpu, page);
672 	}
673 	memblock_free(page, PAGE_SIZE);
674 	diag308_reset();
675 	pcpu_set_smt(0);
676 }
677 #endif /* CONFIG_CRASH_DUMP */
678 
679 void smp_cpu_set_polarization(int cpu, int val)
680 {
681 	pcpu_devices[cpu].polarization = val;
682 }
683 
684 int smp_cpu_get_polarization(int cpu)
685 {
686 	return pcpu_devices[cpu].polarization;
687 }
688 
689 static void __ref smp_get_core_info(struct sclp_core_info *info, int early)
690 {
691 	static int use_sigp_detection;
692 	int address;
693 
694 	if (use_sigp_detection || sclp_get_core_info(info, early)) {
695 		use_sigp_detection = 1;
696 		for (address = 0;
697 		     address < (SCLP_MAX_CORES << smp_cpu_mt_shift);
698 		     address += (1U << smp_cpu_mt_shift)) {
699 			if (__pcpu_sigp_relax(address, SIGP_SENSE, 0) ==
700 			    SIGP_CC_NOT_OPERATIONAL)
701 				continue;
702 			info->core[info->configured].core_id =
703 				address >> smp_cpu_mt_shift;
704 			info->configured++;
705 		}
706 		info->combined = info->configured;
707 	}
708 }
709 
710 static int smp_add_present_cpu(int cpu);
711 
712 static int __smp_rescan_cpus(struct sclp_core_info *info, int sysfs_add)
713 {
714 	struct pcpu *pcpu;
715 	cpumask_t avail;
716 	int cpu, nr, i, j;
717 	u16 address;
718 
719 	nr = 0;
720 	cpumask_xor(&avail, cpu_possible_mask, cpu_present_mask);
721 	cpu = cpumask_first(&avail);
722 	for (i = 0; (i < info->combined) && (cpu < nr_cpu_ids); i++) {
723 		if (sclp.has_core_type && info->core[i].type != boot_core_type)
724 			continue;
725 		address = info->core[i].core_id << smp_cpu_mt_shift;
726 		for (j = 0; j <= smp_cpu_mtid; j++) {
727 			if (pcpu_find_address(cpu_present_mask, address + j))
728 				continue;
729 			pcpu = pcpu_devices + cpu;
730 			pcpu->address = address + j;
731 			pcpu->state =
732 				(cpu >= info->configured*(smp_cpu_mtid + 1)) ?
733 				CPU_STATE_STANDBY : CPU_STATE_CONFIGURED;
734 			smp_cpu_set_polarization(cpu, POLARIZATION_UNKNOWN);
735 			set_cpu_present(cpu, true);
736 			if (sysfs_add && smp_add_present_cpu(cpu) != 0)
737 				set_cpu_present(cpu, false);
738 			else
739 				nr++;
740 			cpu = cpumask_next(cpu, &avail);
741 			if (cpu >= nr_cpu_ids)
742 				break;
743 		}
744 	}
745 	return nr;
746 }
747 
748 void __init smp_detect_cpus(void)
749 {
750 	unsigned int cpu, mtid, c_cpus, s_cpus;
751 	struct sclp_core_info *info;
752 	u16 address;
753 
754 	/* Get CPU information */
755 	info = memblock_virt_alloc(sizeof(*info), 8);
756 	smp_get_core_info(info, 1);
757 	/* Find boot CPU type */
758 	if (sclp.has_core_type) {
759 		address = stap();
760 		for (cpu = 0; cpu < info->combined; cpu++)
761 			if (info->core[cpu].core_id == address) {
762 				/* The boot cpu dictates the cpu type. */
763 				boot_core_type = info->core[cpu].type;
764 				break;
765 			}
766 		if (cpu >= info->combined)
767 			panic("Could not find boot CPU type");
768 	}
769 
770 	/* Set multi-threading state for the current system */
771 	mtid = boot_core_type ? sclp.mtid : sclp.mtid_cp;
772 	mtid = (mtid < smp_max_threads) ? mtid : smp_max_threads - 1;
773 	pcpu_set_smt(mtid);
774 
775 	/* Print number of CPUs */
776 	c_cpus = s_cpus = 0;
777 	for (cpu = 0; cpu < info->combined; cpu++) {
778 		if (sclp.has_core_type &&
779 		    info->core[cpu].type != boot_core_type)
780 			continue;
781 		if (cpu < info->configured)
782 			c_cpus += smp_cpu_mtid + 1;
783 		else
784 			s_cpus += smp_cpu_mtid + 1;
785 	}
786 	pr_info("%d configured CPUs, %d standby CPUs\n", c_cpus, s_cpus);
787 
788 	/* Add CPUs present at boot */
789 	get_online_cpus();
790 	__smp_rescan_cpus(info, 0);
791 	put_online_cpus();
792 	memblock_free_early((unsigned long)info, sizeof(*info));
793 }
794 
795 /*
796  *	Activate a secondary processor.
797  */
798 static void smp_start_secondary(void *cpuvoid)
799 {
800 	int cpu = smp_processor_id();
801 
802 	S390_lowcore.last_update_clock = get_tod_clock();
803 	S390_lowcore.restart_stack = (unsigned long) restart_stack;
804 	S390_lowcore.restart_fn = (unsigned long) do_restart;
805 	S390_lowcore.restart_data = 0;
806 	S390_lowcore.restart_source = -1UL;
807 	restore_access_regs(S390_lowcore.access_regs_save_area);
808 	__ctl_load(S390_lowcore.cregs_save_area, 0, 15);
809 	__load_psw_mask(PSW_KERNEL_BITS | PSW_MASK_DAT);
810 	cpu_init();
811 	preempt_disable();
812 	init_cpu_timer();
813 	vtime_init();
814 	pfault_init();
815 	notify_cpu_starting(cpu);
816 	if (topology_cpu_dedicated(cpu))
817 		set_cpu_flag(CIF_DEDICATED_CPU);
818 	else
819 		clear_cpu_flag(CIF_DEDICATED_CPU);
820 	set_cpu_online(cpu, true);
821 	inc_irq_stat(CPU_RST);
822 	local_irq_enable();
823 	cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
824 }
825 
826 /* Upping and downing of CPUs */
827 int __cpu_up(unsigned int cpu, struct task_struct *tidle)
828 {
829 	struct pcpu *pcpu;
830 	int base, i, rc;
831 
832 	pcpu = pcpu_devices + cpu;
833 	if (pcpu->state != CPU_STATE_CONFIGURED)
834 		return -EIO;
835 	base = smp_get_base_cpu(cpu);
836 	for (i = 0; i <= smp_cpu_mtid; i++) {
837 		if (base + i < nr_cpu_ids)
838 			if (cpu_online(base + i))
839 				break;
840 	}
841 	/*
842 	 * If this is the first CPU of the core to get online
843 	 * do an initial CPU reset.
844 	 */
845 	if (i > smp_cpu_mtid &&
846 	    pcpu_sigp_retry(pcpu_devices + base, SIGP_INITIAL_CPU_RESET, 0) !=
847 	    SIGP_CC_ORDER_CODE_ACCEPTED)
848 		return -EIO;
849 
850 	rc = pcpu_alloc_lowcore(pcpu, cpu);
851 	if (rc)
852 		return rc;
853 	pcpu_prepare_secondary(pcpu, cpu);
854 	pcpu_attach_task(pcpu, tidle);
855 	pcpu_start_fn(pcpu, smp_start_secondary, NULL);
856 	/* Wait until cpu puts itself in the online & active maps */
857 	while (!cpu_online(cpu))
858 		cpu_relax();
859 	return 0;
860 }
861 
862 static unsigned int setup_possible_cpus __initdata;
863 
864 static int __init _setup_possible_cpus(char *s)
865 {
866 	get_option(&s, &setup_possible_cpus);
867 	return 0;
868 }
869 early_param("possible_cpus", _setup_possible_cpus);
870 
871 #ifdef CONFIG_HOTPLUG_CPU
872 
873 int __cpu_disable(void)
874 {
875 	unsigned long cregs[16];
876 
877 	/* Handle possible pending IPIs */
878 	smp_handle_ext_call();
879 	set_cpu_online(smp_processor_id(), false);
880 	/* Disable pseudo page faults on this cpu. */
881 	pfault_fini();
882 	/* Disable interrupt sources via control register. */
883 	__ctl_store(cregs, 0, 15);
884 	cregs[0]  &= ~0x0000ee70UL;	/* disable all external interrupts */
885 	cregs[6]  &= ~0xff000000UL;	/* disable all I/O interrupts */
886 	cregs[14] &= ~0x1f000000UL;	/* disable most machine checks */
887 	__ctl_load(cregs, 0, 15);
888 	clear_cpu_flag(CIF_NOHZ_DELAY);
889 	return 0;
890 }
891 
892 void __cpu_die(unsigned int cpu)
893 {
894 	struct pcpu *pcpu;
895 
896 	/* Wait until target cpu is down */
897 	pcpu = pcpu_devices + cpu;
898 	while (!pcpu_stopped(pcpu))
899 		cpu_relax();
900 	pcpu_free_lowcore(pcpu);
901 	cpumask_clear_cpu(cpu, mm_cpumask(&init_mm));
902 	cpumask_clear_cpu(cpu, &init_mm.context.cpu_attach_mask);
903 }
904 
905 void __noreturn cpu_die(void)
906 {
907 	idle_task_exit();
908 	__bpon();
909 	pcpu_sigp_retry(pcpu_devices + smp_processor_id(), SIGP_STOP, 0);
910 	for (;;) ;
911 }
912 
913 #endif /* CONFIG_HOTPLUG_CPU */
914 
915 void __init smp_fill_possible_mask(void)
916 {
917 	unsigned int possible, sclp_max, cpu;
918 
919 	sclp_max = max(sclp.mtid, sclp.mtid_cp) + 1;
920 	sclp_max = min(smp_max_threads, sclp_max);
921 	sclp_max = (sclp.max_cores * sclp_max) ?: nr_cpu_ids;
922 	possible = setup_possible_cpus ?: nr_cpu_ids;
923 	possible = min(possible, sclp_max);
924 	for (cpu = 0; cpu < possible && cpu < nr_cpu_ids; cpu++)
925 		set_cpu_possible(cpu, true);
926 }
927 
928 void __init smp_prepare_cpus(unsigned int max_cpus)
929 {
930 	/* request the 0x1201 emergency signal external interrupt */
931 	if (register_external_irq(EXT_IRQ_EMERGENCY_SIG, do_ext_call_interrupt))
932 		panic("Couldn't request external interrupt 0x1201");
933 	/* request the 0x1202 external call external interrupt */
934 	if (register_external_irq(EXT_IRQ_EXTERNAL_CALL, do_ext_call_interrupt))
935 		panic("Couldn't request external interrupt 0x1202");
936 }
937 
938 void __init smp_prepare_boot_cpu(void)
939 {
940 	struct pcpu *pcpu = pcpu_devices;
941 
942 	WARN_ON(!cpu_present(0) || !cpu_online(0));
943 	pcpu->state = CPU_STATE_CONFIGURED;
944 	pcpu->lowcore = (struct lowcore *)(unsigned long) store_prefix();
945 	S390_lowcore.percpu_offset = __per_cpu_offset[0];
946 	smp_cpu_set_polarization(0, POLARIZATION_UNKNOWN);
947 }
948 
949 void __init smp_cpus_done(unsigned int max_cpus)
950 {
951 }
952 
953 void __init smp_setup_processor_id(void)
954 {
955 	pcpu_devices[0].address = stap();
956 	S390_lowcore.cpu_nr = 0;
957 	S390_lowcore.spinlock_lockval = arch_spin_lockval(0);
958 	S390_lowcore.spinlock_index = 0;
959 }
960 
961 /*
962  * the frequency of the profiling timer can be changed
963  * by writing a multiplier value into /proc/profile.
964  *
965  * usually you want to run this on all CPUs ;)
966  */
967 int setup_profiling_timer(unsigned int multiplier)
968 {
969 	return 0;
970 }
971 
972 #ifdef CONFIG_HOTPLUG_CPU
973 static ssize_t cpu_configure_show(struct device *dev,
974 				  struct device_attribute *attr, char *buf)
975 {
976 	ssize_t count;
977 
978 	mutex_lock(&smp_cpu_state_mutex);
979 	count = sprintf(buf, "%d\n", pcpu_devices[dev->id].state);
980 	mutex_unlock(&smp_cpu_state_mutex);
981 	return count;
982 }
983 
984 static ssize_t cpu_configure_store(struct device *dev,
985 				   struct device_attribute *attr,
986 				   const char *buf, size_t count)
987 {
988 	struct pcpu *pcpu;
989 	int cpu, val, rc, i;
990 	char delim;
991 
992 	if (sscanf(buf, "%d %c", &val, &delim) != 1)
993 		return -EINVAL;
994 	if (val != 0 && val != 1)
995 		return -EINVAL;
996 	get_online_cpus();
997 	mutex_lock(&smp_cpu_state_mutex);
998 	rc = -EBUSY;
999 	/* disallow configuration changes of online cpus and cpu 0 */
1000 	cpu = dev->id;
1001 	cpu = smp_get_base_cpu(cpu);
1002 	if (cpu == 0)
1003 		goto out;
1004 	for (i = 0; i <= smp_cpu_mtid; i++)
1005 		if (cpu_online(cpu + i))
1006 			goto out;
1007 	pcpu = pcpu_devices + cpu;
1008 	rc = 0;
1009 	switch (val) {
1010 	case 0:
1011 		if (pcpu->state != CPU_STATE_CONFIGURED)
1012 			break;
1013 		rc = sclp_core_deconfigure(pcpu->address >> smp_cpu_mt_shift);
1014 		if (rc)
1015 			break;
1016 		for (i = 0; i <= smp_cpu_mtid; i++) {
1017 			if (cpu + i >= nr_cpu_ids || !cpu_present(cpu + i))
1018 				continue;
1019 			pcpu[i].state = CPU_STATE_STANDBY;
1020 			smp_cpu_set_polarization(cpu + i,
1021 						 POLARIZATION_UNKNOWN);
1022 		}
1023 		topology_expect_change();
1024 		break;
1025 	case 1:
1026 		if (pcpu->state != CPU_STATE_STANDBY)
1027 			break;
1028 		rc = sclp_core_configure(pcpu->address >> smp_cpu_mt_shift);
1029 		if (rc)
1030 			break;
1031 		for (i = 0; i <= smp_cpu_mtid; i++) {
1032 			if (cpu + i >= nr_cpu_ids || !cpu_present(cpu + i))
1033 				continue;
1034 			pcpu[i].state = CPU_STATE_CONFIGURED;
1035 			smp_cpu_set_polarization(cpu + i,
1036 						 POLARIZATION_UNKNOWN);
1037 		}
1038 		topology_expect_change();
1039 		break;
1040 	default:
1041 		break;
1042 	}
1043 out:
1044 	mutex_unlock(&smp_cpu_state_mutex);
1045 	put_online_cpus();
1046 	return rc ? rc : count;
1047 }
1048 static DEVICE_ATTR(configure, 0644, cpu_configure_show, cpu_configure_store);
1049 #endif /* CONFIG_HOTPLUG_CPU */
1050 
1051 static ssize_t show_cpu_address(struct device *dev,
1052 				struct device_attribute *attr, char *buf)
1053 {
1054 	return sprintf(buf, "%d\n", pcpu_devices[dev->id].address);
1055 }
1056 static DEVICE_ATTR(address, 0444, show_cpu_address, NULL);
1057 
1058 static struct attribute *cpu_common_attrs[] = {
1059 #ifdef CONFIG_HOTPLUG_CPU
1060 	&dev_attr_configure.attr,
1061 #endif
1062 	&dev_attr_address.attr,
1063 	NULL,
1064 };
1065 
1066 static struct attribute_group cpu_common_attr_group = {
1067 	.attrs = cpu_common_attrs,
1068 };
1069 
1070 static struct attribute *cpu_online_attrs[] = {
1071 	&dev_attr_idle_count.attr,
1072 	&dev_attr_idle_time_us.attr,
1073 	NULL,
1074 };
1075 
1076 static struct attribute_group cpu_online_attr_group = {
1077 	.attrs = cpu_online_attrs,
1078 };
1079 
1080 static int smp_cpu_online(unsigned int cpu)
1081 {
1082 	struct device *s = &per_cpu(cpu_device, cpu)->dev;
1083 
1084 	return sysfs_create_group(&s->kobj, &cpu_online_attr_group);
1085 }
1086 static int smp_cpu_pre_down(unsigned int cpu)
1087 {
1088 	struct device *s = &per_cpu(cpu_device, cpu)->dev;
1089 
1090 	sysfs_remove_group(&s->kobj, &cpu_online_attr_group);
1091 	return 0;
1092 }
1093 
1094 static int smp_add_present_cpu(int cpu)
1095 {
1096 	struct device *s;
1097 	struct cpu *c;
1098 	int rc;
1099 
1100 	c = kzalloc(sizeof(*c), GFP_KERNEL);
1101 	if (!c)
1102 		return -ENOMEM;
1103 	per_cpu(cpu_device, cpu) = c;
1104 	s = &c->dev;
1105 	c->hotpluggable = 1;
1106 	rc = register_cpu(c, cpu);
1107 	if (rc)
1108 		goto out;
1109 	rc = sysfs_create_group(&s->kobj, &cpu_common_attr_group);
1110 	if (rc)
1111 		goto out_cpu;
1112 	rc = topology_cpu_init(c);
1113 	if (rc)
1114 		goto out_topology;
1115 	return 0;
1116 
1117 out_topology:
1118 	sysfs_remove_group(&s->kobj, &cpu_common_attr_group);
1119 out_cpu:
1120 #ifdef CONFIG_HOTPLUG_CPU
1121 	unregister_cpu(c);
1122 #endif
1123 out:
1124 	return rc;
1125 }
1126 
1127 #ifdef CONFIG_HOTPLUG_CPU
1128 
1129 int __ref smp_rescan_cpus(void)
1130 {
1131 	struct sclp_core_info *info;
1132 	int nr;
1133 
1134 	info = kzalloc(sizeof(*info), GFP_KERNEL);
1135 	if (!info)
1136 		return -ENOMEM;
1137 	smp_get_core_info(info, 0);
1138 	get_online_cpus();
1139 	mutex_lock(&smp_cpu_state_mutex);
1140 	nr = __smp_rescan_cpus(info, 1);
1141 	mutex_unlock(&smp_cpu_state_mutex);
1142 	put_online_cpus();
1143 	kfree(info);
1144 	if (nr)
1145 		topology_schedule_update();
1146 	return 0;
1147 }
1148 
1149 static ssize_t __ref rescan_store(struct device *dev,
1150 				  struct device_attribute *attr,
1151 				  const char *buf,
1152 				  size_t count)
1153 {
1154 	int rc;
1155 
1156 	rc = smp_rescan_cpus();
1157 	return rc ? rc : count;
1158 }
1159 static DEVICE_ATTR_WO(rescan);
1160 #endif /* CONFIG_HOTPLUG_CPU */
1161 
1162 static int __init s390_smp_init(void)
1163 {
1164 	int cpu, rc = 0;
1165 
1166 #ifdef CONFIG_HOTPLUG_CPU
1167 	rc = device_create_file(cpu_subsys.dev_root, &dev_attr_rescan);
1168 	if (rc)
1169 		return rc;
1170 #endif
1171 	for_each_present_cpu(cpu) {
1172 		rc = smp_add_present_cpu(cpu);
1173 		if (rc)
1174 			goto out;
1175 	}
1176 
1177 	rc = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "s390/smp:online",
1178 			       smp_cpu_online, smp_cpu_pre_down);
1179 	rc = rc <= 0 ? rc : 0;
1180 out:
1181 	return rc;
1182 }
1183 subsys_initcall(s390_smp_init);
1184