xref: /openbmc/linux/arch/s390/kernel/smp.c (revision 7ec6b431)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  SMP related functions
4  *
5  *    Copyright IBM Corp. 1999, 2012
6  *    Author(s): Denis Joseph Barrow,
7  *		 Martin Schwidefsky <schwidefsky@de.ibm.com>,
8  *		 Heiko Carstens <heiko.carstens@de.ibm.com>,
9  *
10  *  based on other smp stuff by
11  *    (c) 1995 Alan Cox, CymruNET Ltd  <alan@cymru.net>
12  *    (c) 1998 Ingo Molnar
13  *
14  * The code outside of smp.c uses logical cpu numbers, only smp.c does
15  * the translation of logical to physical cpu ids. All new code that
16  * operates on physical cpu numbers needs to go into smp.c.
17  */
18 
19 #define KMSG_COMPONENT "cpu"
20 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
21 
22 #include <linux/workqueue.h>
23 #include <linux/memblock.h>
24 #include <linux/export.h>
25 #include <linux/init.h>
26 #include <linux/mm.h>
27 #include <linux/err.h>
28 #include <linux/spinlock.h>
29 #include <linux/kernel_stat.h>
30 #include <linux/delay.h>
31 #include <linux/interrupt.h>
32 #include <linux/irqflags.h>
33 #include <linux/cpu.h>
34 #include <linux/slab.h>
35 #include <linux/sched/hotplug.h>
36 #include <linux/sched/task_stack.h>
37 #include <linux/crash_dump.h>
38 #include <linux/kprobes.h>
39 #include <asm/asm-offsets.h>
40 #include <asm/diag.h>
41 #include <asm/switch_to.h>
42 #include <asm/facility.h>
43 #include <asm/ipl.h>
44 #include <asm/setup.h>
45 #include <asm/irq.h>
46 #include <asm/tlbflush.h>
47 #include <asm/vtimer.h>
48 #include <asm/lowcore.h>
49 #include <asm/sclp.h>
50 #include <asm/vdso.h>
51 #include <asm/debug.h>
52 #include <asm/os_info.h>
53 #include <asm/sigp.h>
54 #include <asm/idle.h>
55 #include <asm/nmi.h>
56 #include <asm/stacktrace.h>
57 #include <asm/topology.h>
58 #include "entry.h"
59 
60 enum {
61 	ec_schedule = 0,
62 	ec_call_function_single,
63 	ec_stop_cpu,
64 };
65 
66 enum {
67 	CPU_STATE_STANDBY,
68 	CPU_STATE_CONFIGURED,
69 };
70 
71 static DEFINE_PER_CPU(struct cpu *, cpu_device);
72 
73 struct pcpu {
74 	struct lowcore *lowcore;	/* lowcore page(s) for the cpu */
75 	unsigned long ec_mask;		/* bit mask for ec_xxx functions */
76 	unsigned long ec_clk;		/* sigp timestamp for ec_xxx */
77 	signed char state;		/* physical cpu state */
78 	signed char polarization;	/* physical polarization */
79 	u16 address;			/* physical cpu address */
80 };
81 
82 static u8 boot_core_type;
83 static struct pcpu pcpu_devices[NR_CPUS];
84 
85 unsigned int smp_cpu_mt_shift;
86 EXPORT_SYMBOL(smp_cpu_mt_shift);
87 
88 unsigned int smp_cpu_mtid;
89 EXPORT_SYMBOL(smp_cpu_mtid);
90 
91 #ifdef CONFIG_CRASH_DUMP
92 __vector128 __initdata boot_cpu_vector_save_area[__NUM_VXRS];
93 #endif
94 
95 static unsigned int smp_max_threads __initdata = -1U;
96 
97 static int __init early_nosmt(char *s)
98 {
99 	smp_max_threads = 1;
100 	return 0;
101 }
102 early_param("nosmt", early_nosmt);
103 
104 static int __init early_smt(char *s)
105 {
106 	get_option(&s, &smp_max_threads);
107 	return 0;
108 }
109 early_param("smt", early_smt);
110 
111 /*
112  * The smp_cpu_state_mutex must be held when changing the state or polarization
113  * member of a pcpu data structure within the pcpu_devices arreay.
114  */
115 DEFINE_MUTEX(smp_cpu_state_mutex);
116 
117 /*
118  * Signal processor helper functions.
119  */
120 static inline int __pcpu_sigp_relax(u16 addr, u8 order, unsigned long parm)
121 {
122 	int cc;
123 
124 	while (1) {
125 		cc = __pcpu_sigp(addr, order, parm, NULL);
126 		if (cc != SIGP_CC_BUSY)
127 			return cc;
128 		cpu_relax();
129 	}
130 }
131 
132 static int pcpu_sigp_retry(struct pcpu *pcpu, u8 order, u32 parm)
133 {
134 	int cc, retry;
135 
136 	for (retry = 0; ; retry++) {
137 		cc = __pcpu_sigp(pcpu->address, order, parm, NULL);
138 		if (cc != SIGP_CC_BUSY)
139 			break;
140 		if (retry >= 3)
141 			udelay(10);
142 	}
143 	return cc;
144 }
145 
146 static inline int pcpu_stopped(struct pcpu *pcpu)
147 {
148 	u32 uninitialized_var(status);
149 
150 	if (__pcpu_sigp(pcpu->address, SIGP_SENSE,
151 			0, &status) != SIGP_CC_STATUS_STORED)
152 		return 0;
153 	return !!(status & (SIGP_STATUS_CHECK_STOP|SIGP_STATUS_STOPPED));
154 }
155 
156 static inline int pcpu_running(struct pcpu *pcpu)
157 {
158 	if (__pcpu_sigp(pcpu->address, SIGP_SENSE_RUNNING,
159 			0, NULL) != SIGP_CC_STATUS_STORED)
160 		return 1;
161 	/* Status stored condition code is equivalent to cpu not running. */
162 	return 0;
163 }
164 
165 /*
166  * Find struct pcpu by cpu address.
167  */
168 static struct pcpu *pcpu_find_address(const struct cpumask *mask, u16 address)
169 {
170 	int cpu;
171 
172 	for_each_cpu(cpu, mask)
173 		if (pcpu_devices[cpu].address == address)
174 			return pcpu_devices + cpu;
175 	return NULL;
176 }
177 
178 static void pcpu_ec_call(struct pcpu *pcpu, int ec_bit)
179 {
180 	int order;
181 
182 	if (test_and_set_bit(ec_bit, &pcpu->ec_mask))
183 		return;
184 	order = pcpu_running(pcpu) ? SIGP_EXTERNAL_CALL : SIGP_EMERGENCY_SIGNAL;
185 	pcpu->ec_clk = get_tod_clock_fast();
186 	pcpu_sigp_retry(pcpu, order, 0);
187 }
188 
189 static int pcpu_alloc_lowcore(struct pcpu *pcpu, int cpu)
190 {
191 	unsigned long async_stack, nodat_stack;
192 	struct lowcore *lc;
193 
194 	if (pcpu != &pcpu_devices[0]) {
195 		pcpu->lowcore =	(struct lowcore *)
196 			__get_free_pages(GFP_KERNEL | GFP_DMA, LC_ORDER);
197 		nodat_stack = __get_free_pages(GFP_KERNEL, THREAD_SIZE_ORDER);
198 		if (!pcpu->lowcore || !nodat_stack)
199 			goto out;
200 	} else {
201 		nodat_stack = pcpu->lowcore->nodat_stack - STACK_INIT_OFFSET;
202 	}
203 	async_stack = stack_alloc();
204 	if (!async_stack)
205 		goto out;
206 	lc = pcpu->lowcore;
207 	memcpy(lc, &S390_lowcore, 512);
208 	memset((char *) lc + 512, 0, sizeof(*lc) - 512);
209 	lc->async_stack = async_stack + STACK_INIT_OFFSET;
210 	lc->nodat_stack = nodat_stack + STACK_INIT_OFFSET;
211 	lc->cpu_nr = cpu;
212 	lc->spinlock_lockval = arch_spin_lockval(cpu);
213 	lc->spinlock_index = 0;
214 	lc->br_r1_trampoline = 0x07f1;	/* br %r1 */
215 	if (nmi_alloc_per_cpu(lc))
216 		goto out_async;
217 	if (vdso_alloc_per_cpu(lc))
218 		goto out_mcesa;
219 	lowcore_ptr[cpu] = lc;
220 	pcpu_sigp_retry(pcpu, SIGP_SET_PREFIX, (u32)(unsigned long) lc);
221 	return 0;
222 
223 out_mcesa:
224 	nmi_free_per_cpu(lc);
225 out_async:
226 	stack_free(async_stack);
227 out:
228 	if (pcpu != &pcpu_devices[0]) {
229 		free_pages(nodat_stack, THREAD_SIZE_ORDER);
230 		free_pages((unsigned long) pcpu->lowcore, LC_ORDER);
231 	}
232 	return -ENOMEM;
233 }
234 
235 static void pcpu_free_lowcore(struct pcpu *pcpu)
236 {
237 	unsigned long async_stack, nodat_stack, lowcore;
238 
239 	nodat_stack = pcpu->lowcore->nodat_stack - STACK_INIT_OFFSET;
240 	async_stack = pcpu->lowcore->async_stack - STACK_INIT_OFFSET;
241 	lowcore = (unsigned long) pcpu->lowcore;
242 
243 	pcpu_sigp_retry(pcpu, SIGP_SET_PREFIX, 0);
244 	lowcore_ptr[pcpu - pcpu_devices] = NULL;
245 	vdso_free_per_cpu(pcpu->lowcore);
246 	nmi_free_per_cpu(pcpu->lowcore);
247 	stack_free(async_stack);
248 	if (pcpu == &pcpu_devices[0])
249 		return;
250 	free_pages(nodat_stack, THREAD_SIZE_ORDER);
251 	free_pages(lowcore, LC_ORDER);
252 }
253 
254 static void pcpu_prepare_secondary(struct pcpu *pcpu, int cpu)
255 {
256 	struct lowcore *lc = pcpu->lowcore;
257 
258 	cpumask_set_cpu(cpu, &init_mm.context.cpu_attach_mask);
259 	cpumask_set_cpu(cpu, mm_cpumask(&init_mm));
260 	lc->cpu_nr = cpu;
261 	lc->spinlock_lockval = arch_spin_lockval(cpu);
262 	lc->spinlock_index = 0;
263 	lc->percpu_offset = __per_cpu_offset[cpu];
264 	lc->kernel_asce = S390_lowcore.kernel_asce;
265 	lc->user_asce = S390_lowcore.kernel_asce;
266 	lc->machine_flags = S390_lowcore.machine_flags;
267 	lc->user_timer = lc->system_timer =
268 		lc->steal_timer = lc->avg_steal_timer = 0;
269 	__ctl_store(lc->cregs_save_area, 0, 15);
270 	lc->cregs_save_area[1] = lc->kernel_asce;
271 	lc->cregs_save_area[7] = lc->vdso_asce;
272 	save_access_regs((unsigned int *) lc->access_regs_save_area);
273 	memcpy(lc->stfle_fac_list, S390_lowcore.stfle_fac_list,
274 	       sizeof(lc->stfle_fac_list));
275 	memcpy(lc->alt_stfle_fac_list, S390_lowcore.alt_stfle_fac_list,
276 	       sizeof(lc->alt_stfle_fac_list));
277 	arch_spin_lock_setup(cpu);
278 }
279 
280 static void pcpu_attach_task(struct pcpu *pcpu, struct task_struct *tsk)
281 {
282 	struct lowcore *lc = pcpu->lowcore;
283 
284 	lc->kernel_stack = (unsigned long) task_stack_page(tsk)
285 		+ THREAD_SIZE - STACK_FRAME_OVERHEAD - sizeof(struct pt_regs);
286 	lc->current_task = (unsigned long) tsk;
287 	lc->lpp = LPP_MAGIC;
288 	lc->current_pid = tsk->pid;
289 	lc->user_timer = tsk->thread.user_timer;
290 	lc->guest_timer = tsk->thread.guest_timer;
291 	lc->system_timer = tsk->thread.system_timer;
292 	lc->hardirq_timer = tsk->thread.hardirq_timer;
293 	lc->softirq_timer = tsk->thread.softirq_timer;
294 	lc->steal_timer = 0;
295 }
296 
297 static void pcpu_start_fn(struct pcpu *pcpu, void (*func)(void *), void *data)
298 {
299 	struct lowcore *lc = pcpu->lowcore;
300 
301 	lc->restart_stack = lc->nodat_stack;
302 	lc->restart_fn = (unsigned long) func;
303 	lc->restart_data = (unsigned long) data;
304 	lc->restart_source = -1UL;
305 	pcpu_sigp_retry(pcpu, SIGP_RESTART, 0);
306 }
307 
308 /*
309  * Call function via PSW restart on pcpu and stop the current cpu.
310  */
311 static void __pcpu_delegate(void (*func)(void*), void *data)
312 {
313 	func(data);	/* should not return */
314 }
315 
316 static void __no_sanitize_address pcpu_delegate(struct pcpu *pcpu,
317 						void (*func)(void *),
318 						void *data, unsigned long stack)
319 {
320 	struct lowcore *lc = lowcore_ptr[pcpu - pcpu_devices];
321 	unsigned long source_cpu = stap();
322 
323 	__load_psw_mask(PSW_KERNEL_BITS | PSW_MASK_DAT);
324 	if (pcpu->address == source_cpu)
325 		CALL_ON_STACK(__pcpu_delegate, stack, 2, func, data);
326 	/* Stop target cpu (if func returns this stops the current cpu). */
327 	pcpu_sigp_retry(pcpu, SIGP_STOP, 0);
328 	/* Restart func on the target cpu and stop the current cpu. */
329 	mem_assign_absolute(lc->restart_stack, stack);
330 	mem_assign_absolute(lc->restart_fn, (unsigned long) func);
331 	mem_assign_absolute(lc->restart_data, (unsigned long) data);
332 	mem_assign_absolute(lc->restart_source, source_cpu);
333 	__bpon();
334 	asm volatile(
335 		"0:	sigp	0,%0,%2	# sigp restart to target cpu\n"
336 		"	brc	2,0b	# busy, try again\n"
337 		"1:	sigp	0,%1,%3	# sigp stop to current cpu\n"
338 		"	brc	2,1b	# busy, try again\n"
339 		: : "d" (pcpu->address), "d" (source_cpu),
340 		    "K" (SIGP_RESTART), "K" (SIGP_STOP)
341 		: "0", "1", "cc");
342 	for (;;) ;
343 }
344 
345 /*
346  * Enable additional logical cpus for multi-threading.
347  */
348 static int pcpu_set_smt(unsigned int mtid)
349 {
350 	int cc;
351 
352 	if (smp_cpu_mtid == mtid)
353 		return 0;
354 	cc = __pcpu_sigp(0, SIGP_SET_MULTI_THREADING, mtid, NULL);
355 	if (cc == 0) {
356 		smp_cpu_mtid = mtid;
357 		smp_cpu_mt_shift = 0;
358 		while (smp_cpu_mtid >= (1U << smp_cpu_mt_shift))
359 			smp_cpu_mt_shift++;
360 		pcpu_devices[0].address = stap();
361 	}
362 	return cc;
363 }
364 
365 /*
366  * Call function on an online CPU.
367  */
368 void smp_call_online_cpu(void (*func)(void *), void *data)
369 {
370 	struct pcpu *pcpu;
371 
372 	/* Use the current cpu if it is online. */
373 	pcpu = pcpu_find_address(cpu_online_mask, stap());
374 	if (!pcpu)
375 		/* Use the first online cpu. */
376 		pcpu = pcpu_devices + cpumask_first(cpu_online_mask);
377 	pcpu_delegate(pcpu, func, data, (unsigned long) restart_stack);
378 }
379 
380 /*
381  * Call function on the ipl CPU.
382  */
383 void smp_call_ipl_cpu(void (*func)(void *), void *data)
384 {
385 	struct lowcore *lc = pcpu_devices->lowcore;
386 
387 	if (pcpu_devices[0].address == stap())
388 		lc = &S390_lowcore;
389 
390 	pcpu_delegate(&pcpu_devices[0], func, data,
391 		      lc->nodat_stack);
392 }
393 
394 int smp_find_processor_id(u16 address)
395 {
396 	int cpu;
397 
398 	for_each_present_cpu(cpu)
399 		if (pcpu_devices[cpu].address == address)
400 			return cpu;
401 	return -1;
402 }
403 
404 bool arch_vcpu_is_preempted(int cpu)
405 {
406 	if (test_cpu_flag_of(CIF_ENABLED_WAIT, cpu))
407 		return false;
408 	if (pcpu_running(pcpu_devices + cpu))
409 		return false;
410 	return true;
411 }
412 EXPORT_SYMBOL(arch_vcpu_is_preempted);
413 
414 void smp_yield_cpu(int cpu)
415 {
416 	if (MACHINE_HAS_DIAG9C) {
417 		diag_stat_inc_norecursion(DIAG_STAT_X09C);
418 		asm volatile("diag %0,0,0x9c"
419 			     : : "d" (pcpu_devices[cpu].address));
420 	} else if (MACHINE_HAS_DIAG44 && !smp_cpu_mtid) {
421 		diag_stat_inc_norecursion(DIAG_STAT_X044);
422 		asm volatile("diag 0,0,0x44");
423 	}
424 }
425 
426 /*
427  * Send cpus emergency shutdown signal. This gives the cpus the
428  * opportunity to complete outstanding interrupts.
429  */
430 void notrace smp_emergency_stop(void)
431 {
432 	cpumask_t cpumask;
433 	u64 end;
434 	int cpu;
435 
436 	cpumask_copy(&cpumask, cpu_online_mask);
437 	cpumask_clear_cpu(smp_processor_id(), &cpumask);
438 
439 	end = get_tod_clock() + (1000000UL << 12);
440 	for_each_cpu(cpu, &cpumask) {
441 		struct pcpu *pcpu = pcpu_devices + cpu;
442 		set_bit(ec_stop_cpu, &pcpu->ec_mask);
443 		while (__pcpu_sigp(pcpu->address, SIGP_EMERGENCY_SIGNAL,
444 				   0, NULL) == SIGP_CC_BUSY &&
445 		       get_tod_clock() < end)
446 			cpu_relax();
447 	}
448 	while (get_tod_clock() < end) {
449 		for_each_cpu(cpu, &cpumask)
450 			if (pcpu_stopped(pcpu_devices + cpu))
451 				cpumask_clear_cpu(cpu, &cpumask);
452 		if (cpumask_empty(&cpumask))
453 			break;
454 		cpu_relax();
455 	}
456 }
457 NOKPROBE_SYMBOL(smp_emergency_stop);
458 
459 /*
460  * Stop all cpus but the current one.
461  */
462 void smp_send_stop(void)
463 {
464 	int cpu;
465 
466 	/* Disable all interrupts/machine checks */
467 	__load_psw_mask(PSW_KERNEL_BITS | PSW_MASK_DAT);
468 	trace_hardirqs_off();
469 
470 	debug_set_critical();
471 
472 	if (oops_in_progress)
473 		smp_emergency_stop();
474 
475 	/* stop all processors */
476 	for_each_online_cpu(cpu) {
477 		if (cpu == smp_processor_id())
478 			continue;
479 		pcpu_sigp_retry(pcpu_devices + cpu, SIGP_STOP, 0);
480 		while (!pcpu_stopped(pcpu_devices + cpu))
481 			cpu_relax();
482 	}
483 }
484 
485 /*
486  * This is the main routine where commands issued by other
487  * cpus are handled.
488  */
489 static void smp_handle_ext_call(void)
490 {
491 	unsigned long bits;
492 
493 	/* handle bit signal external calls */
494 	bits = xchg(&pcpu_devices[smp_processor_id()].ec_mask, 0);
495 	if (test_bit(ec_stop_cpu, &bits))
496 		smp_stop_cpu();
497 	if (test_bit(ec_schedule, &bits))
498 		scheduler_ipi();
499 	if (test_bit(ec_call_function_single, &bits))
500 		generic_smp_call_function_single_interrupt();
501 }
502 
503 static void do_ext_call_interrupt(struct ext_code ext_code,
504 				  unsigned int param32, unsigned long param64)
505 {
506 	inc_irq_stat(ext_code.code == 0x1202 ? IRQEXT_EXC : IRQEXT_EMS);
507 	smp_handle_ext_call();
508 }
509 
510 void arch_send_call_function_ipi_mask(const struct cpumask *mask)
511 {
512 	int cpu;
513 
514 	for_each_cpu(cpu, mask)
515 		pcpu_ec_call(pcpu_devices + cpu, ec_call_function_single);
516 }
517 
518 void arch_send_call_function_single_ipi(int cpu)
519 {
520 	pcpu_ec_call(pcpu_devices + cpu, ec_call_function_single);
521 }
522 
523 /*
524  * this function sends a 'reschedule' IPI to another CPU.
525  * it goes straight through and wastes no time serializing
526  * anything. Worst case is that we lose a reschedule ...
527  */
528 void smp_send_reschedule(int cpu)
529 {
530 	pcpu_ec_call(pcpu_devices + cpu, ec_schedule);
531 }
532 
533 /*
534  * parameter area for the set/clear control bit callbacks
535  */
536 struct ec_creg_mask_parms {
537 	unsigned long orval;
538 	unsigned long andval;
539 	int cr;
540 };
541 
542 /*
543  * callback for setting/clearing control bits
544  */
545 static void smp_ctl_bit_callback(void *info)
546 {
547 	struct ec_creg_mask_parms *pp = info;
548 	unsigned long cregs[16];
549 
550 	__ctl_store(cregs, 0, 15);
551 	cregs[pp->cr] = (cregs[pp->cr] & pp->andval) | pp->orval;
552 	__ctl_load(cregs, 0, 15);
553 }
554 
555 /*
556  * Set a bit in a control register of all cpus
557  */
558 void smp_ctl_set_bit(int cr, int bit)
559 {
560 	struct ec_creg_mask_parms parms = { 1UL << bit, -1UL, cr };
561 
562 	on_each_cpu(smp_ctl_bit_callback, &parms, 1);
563 }
564 EXPORT_SYMBOL(smp_ctl_set_bit);
565 
566 /*
567  * Clear a bit in a control register of all cpus
568  */
569 void smp_ctl_clear_bit(int cr, int bit)
570 {
571 	struct ec_creg_mask_parms parms = { 0, ~(1UL << bit), cr };
572 
573 	on_each_cpu(smp_ctl_bit_callback, &parms, 1);
574 }
575 EXPORT_SYMBOL(smp_ctl_clear_bit);
576 
577 #ifdef CONFIG_CRASH_DUMP
578 
579 int smp_store_status(int cpu)
580 {
581 	struct pcpu *pcpu = pcpu_devices + cpu;
582 	unsigned long pa;
583 
584 	pa = __pa(&pcpu->lowcore->floating_pt_save_area);
585 	if (__pcpu_sigp_relax(pcpu->address, SIGP_STORE_STATUS_AT_ADDRESS,
586 			      pa) != SIGP_CC_ORDER_CODE_ACCEPTED)
587 		return -EIO;
588 	if (!MACHINE_HAS_VX && !MACHINE_HAS_GS)
589 		return 0;
590 	pa = __pa(pcpu->lowcore->mcesad & MCESA_ORIGIN_MASK);
591 	if (MACHINE_HAS_GS)
592 		pa |= pcpu->lowcore->mcesad & MCESA_LC_MASK;
593 	if (__pcpu_sigp_relax(pcpu->address, SIGP_STORE_ADDITIONAL_STATUS,
594 			      pa) != SIGP_CC_ORDER_CODE_ACCEPTED)
595 		return -EIO;
596 	return 0;
597 }
598 
599 /*
600  * Collect CPU state of the previous, crashed system.
601  * There are four cases:
602  * 1) standard zfcp dump
603  *    condition: OLDMEM_BASE == NULL && ipl_info.type == IPL_TYPE_FCP_DUMP
604  *    The state for all CPUs except the boot CPU needs to be collected
605  *    with sigp stop-and-store-status. The boot CPU state is located in
606  *    the absolute lowcore of the memory stored in the HSA. The zcore code
607  *    will copy the boot CPU state from the HSA.
608  * 2) stand-alone kdump for SCSI (zfcp dump with swapped memory)
609  *    condition: OLDMEM_BASE != NULL && ipl_info.type == IPL_TYPE_FCP_DUMP
610  *    The state for all CPUs except the boot CPU needs to be collected
611  *    with sigp stop-and-store-status. The firmware or the boot-loader
612  *    stored the registers of the boot CPU in the absolute lowcore in the
613  *    memory of the old system.
614  * 3) kdump and the old kernel did not store the CPU state,
615  *    or stand-alone kdump for DASD
616  *    condition: OLDMEM_BASE != NULL && !is_kdump_kernel()
617  *    The state for all CPUs except the boot CPU needs to be collected
618  *    with sigp stop-and-store-status. The kexec code or the boot-loader
619  *    stored the registers of the boot CPU in the memory of the old system.
620  * 4) kdump and the old kernel stored the CPU state
621  *    condition: OLDMEM_BASE != NULL && is_kdump_kernel()
622  *    This case does not exist for s390 anymore, setup_arch explicitly
623  *    deactivates the elfcorehdr= kernel parameter
624  */
625 static __init void smp_save_cpu_vxrs(struct save_area *sa, u16 addr,
626 				     bool is_boot_cpu, unsigned long page)
627 {
628 	__vector128 *vxrs = (__vector128 *) page;
629 
630 	if (is_boot_cpu)
631 		vxrs = boot_cpu_vector_save_area;
632 	else
633 		__pcpu_sigp_relax(addr, SIGP_STORE_ADDITIONAL_STATUS, page);
634 	save_area_add_vxrs(sa, vxrs);
635 }
636 
637 static __init void smp_save_cpu_regs(struct save_area *sa, u16 addr,
638 				     bool is_boot_cpu, unsigned long page)
639 {
640 	void *regs = (void *) page;
641 
642 	if (is_boot_cpu)
643 		copy_oldmem_kernel(regs, (void *) __LC_FPREGS_SAVE_AREA, 512);
644 	else
645 		__pcpu_sigp_relax(addr, SIGP_STORE_STATUS_AT_ADDRESS, page);
646 	save_area_add_regs(sa, regs);
647 }
648 
649 void __init smp_save_dump_cpus(void)
650 {
651 	int addr, boot_cpu_addr, max_cpu_addr;
652 	struct save_area *sa;
653 	unsigned long page;
654 	bool is_boot_cpu;
655 
656 	if (!(OLDMEM_BASE || ipl_info.type == IPL_TYPE_FCP_DUMP))
657 		/* No previous system present, normal boot. */
658 		return;
659 	/* Allocate a page as dumping area for the store status sigps */
660 	page = memblock_phys_alloc_range(PAGE_SIZE, PAGE_SIZE, 0, 1UL << 31);
661 	if (!page)
662 		panic("ERROR: Failed to allocate %lx bytes below %lx\n",
663 		      PAGE_SIZE, 1UL << 31);
664 
665 	/* Set multi-threading state to the previous system. */
666 	pcpu_set_smt(sclp.mtid_prev);
667 	boot_cpu_addr = stap();
668 	max_cpu_addr = SCLP_MAX_CORES << sclp.mtid_prev;
669 	for (addr = 0; addr <= max_cpu_addr; addr++) {
670 		if (__pcpu_sigp_relax(addr, SIGP_SENSE, 0) ==
671 		    SIGP_CC_NOT_OPERATIONAL)
672 			continue;
673 		is_boot_cpu = (addr == boot_cpu_addr);
674 		/* Allocate save area */
675 		sa = save_area_alloc(is_boot_cpu);
676 		if (!sa)
677 			panic("could not allocate memory for save area\n");
678 		if (MACHINE_HAS_VX)
679 			/* Get the vector registers */
680 			smp_save_cpu_vxrs(sa, addr, is_boot_cpu, page);
681 		/*
682 		 * For a zfcp dump OLDMEM_BASE == NULL and the registers
683 		 * of the boot CPU are stored in the HSA. To retrieve
684 		 * these registers an SCLP request is required which is
685 		 * done by drivers/s390/char/zcore.c:init_cpu_info()
686 		 */
687 		if (!is_boot_cpu || OLDMEM_BASE)
688 			/* Get the CPU registers */
689 			smp_save_cpu_regs(sa, addr, is_boot_cpu, page);
690 	}
691 	memblock_free(page, PAGE_SIZE);
692 	diag_dma_ops.diag308_reset();
693 	pcpu_set_smt(0);
694 }
695 #endif /* CONFIG_CRASH_DUMP */
696 
697 void smp_cpu_set_polarization(int cpu, int val)
698 {
699 	pcpu_devices[cpu].polarization = val;
700 }
701 
702 int smp_cpu_get_polarization(int cpu)
703 {
704 	return pcpu_devices[cpu].polarization;
705 }
706 
707 static void __ref smp_get_core_info(struct sclp_core_info *info, int early)
708 {
709 	static int use_sigp_detection;
710 	int address;
711 
712 	if (use_sigp_detection || sclp_get_core_info(info, early)) {
713 		use_sigp_detection = 1;
714 		for (address = 0;
715 		     address < (SCLP_MAX_CORES << smp_cpu_mt_shift);
716 		     address += (1U << smp_cpu_mt_shift)) {
717 			if (__pcpu_sigp_relax(address, SIGP_SENSE, 0) ==
718 			    SIGP_CC_NOT_OPERATIONAL)
719 				continue;
720 			info->core[info->configured].core_id =
721 				address >> smp_cpu_mt_shift;
722 			info->configured++;
723 		}
724 		info->combined = info->configured;
725 	}
726 }
727 
728 static int smp_add_present_cpu(int cpu);
729 
730 static int smp_add_core(struct sclp_core_entry *core, cpumask_t *avail,
731 			bool configured, bool early)
732 {
733 	struct pcpu *pcpu;
734 	int cpu, nr, i;
735 	u16 address;
736 
737 	nr = 0;
738 	if (sclp.has_core_type && core->type != boot_core_type)
739 		return nr;
740 	cpu = cpumask_first(avail);
741 	address = core->core_id << smp_cpu_mt_shift;
742 	for (i = 0; (i <= smp_cpu_mtid) && (cpu < nr_cpu_ids); i++) {
743 		if (pcpu_find_address(cpu_present_mask, address + i))
744 			continue;
745 		pcpu = pcpu_devices + cpu;
746 		pcpu->address = address + i;
747 		if (configured)
748 			pcpu->state = CPU_STATE_CONFIGURED;
749 		else
750 			pcpu->state = CPU_STATE_STANDBY;
751 		smp_cpu_set_polarization(cpu, POLARIZATION_UNKNOWN);
752 		set_cpu_present(cpu, true);
753 		if (!early && smp_add_present_cpu(cpu) != 0)
754 			set_cpu_present(cpu, false);
755 		else
756 			nr++;
757 		cpumask_clear_cpu(cpu, avail);
758 		cpu = cpumask_next(cpu, avail);
759 	}
760 	return nr;
761 }
762 
763 static int __smp_rescan_cpus(struct sclp_core_info *info, bool early)
764 {
765 	struct sclp_core_entry *core;
766 	cpumask_t avail;
767 	bool configured;
768 	u16 core_id;
769 	int nr, i;
770 
771 	nr = 0;
772 	cpumask_xor(&avail, cpu_possible_mask, cpu_present_mask);
773 	/*
774 	 * Add IPL core first (which got logical CPU number 0) to make sure
775 	 * that all SMT threads get subsequent logical CPU numbers.
776 	 */
777 	if (early) {
778 		core_id = pcpu_devices[0].address >> smp_cpu_mt_shift;
779 		for (i = 0; i < info->configured; i++) {
780 			core = &info->core[i];
781 			if (core->core_id == core_id) {
782 				nr += smp_add_core(core, &avail, true, early);
783 				break;
784 			}
785 		}
786 	}
787 	for (i = 0; i < info->combined; i++) {
788 		configured = i < info->configured;
789 		nr += smp_add_core(&info->core[i], &avail, configured, early);
790 	}
791 	return nr;
792 }
793 
794 void __init smp_detect_cpus(void)
795 {
796 	unsigned int cpu, mtid, c_cpus, s_cpus;
797 	struct sclp_core_info *info;
798 	u16 address;
799 
800 	/* Get CPU information */
801 	info = memblock_alloc(sizeof(*info), 8);
802 	if (!info)
803 		panic("%s: Failed to allocate %zu bytes align=0x%x\n",
804 		      __func__, sizeof(*info), 8);
805 	smp_get_core_info(info, 1);
806 	/* Find boot CPU type */
807 	if (sclp.has_core_type) {
808 		address = stap();
809 		for (cpu = 0; cpu < info->combined; cpu++)
810 			if (info->core[cpu].core_id == address) {
811 				/* The boot cpu dictates the cpu type. */
812 				boot_core_type = info->core[cpu].type;
813 				break;
814 			}
815 		if (cpu >= info->combined)
816 			panic("Could not find boot CPU type");
817 	}
818 
819 	/* Set multi-threading state for the current system */
820 	mtid = boot_core_type ? sclp.mtid : sclp.mtid_cp;
821 	mtid = (mtid < smp_max_threads) ? mtid : smp_max_threads - 1;
822 	pcpu_set_smt(mtid);
823 
824 	/* Print number of CPUs */
825 	c_cpus = s_cpus = 0;
826 	for (cpu = 0; cpu < info->combined; cpu++) {
827 		if (sclp.has_core_type &&
828 		    info->core[cpu].type != boot_core_type)
829 			continue;
830 		if (cpu < info->configured)
831 			c_cpus += smp_cpu_mtid + 1;
832 		else
833 			s_cpus += smp_cpu_mtid + 1;
834 	}
835 	pr_info("%d configured CPUs, %d standby CPUs\n", c_cpus, s_cpus);
836 
837 	/* Add CPUs present at boot */
838 	get_online_cpus();
839 	__smp_rescan_cpus(info, true);
840 	put_online_cpus();
841 	memblock_free_early((unsigned long)info, sizeof(*info));
842 }
843 
844 static void smp_init_secondary(void)
845 {
846 	int cpu = smp_processor_id();
847 
848 	S390_lowcore.last_update_clock = get_tod_clock();
849 	restore_access_regs(S390_lowcore.access_regs_save_area);
850 	set_cpu_flag(CIF_ASCE_PRIMARY);
851 	set_cpu_flag(CIF_ASCE_SECONDARY);
852 	cpu_init();
853 	preempt_disable();
854 	init_cpu_timer();
855 	vtime_init();
856 	pfault_init();
857 	notify_cpu_starting(smp_processor_id());
858 	if (topology_cpu_dedicated(cpu))
859 		set_cpu_flag(CIF_DEDICATED_CPU);
860 	else
861 		clear_cpu_flag(CIF_DEDICATED_CPU);
862 	set_cpu_online(smp_processor_id(), true);
863 	inc_irq_stat(CPU_RST);
864 	local_irq_enable();
865 	cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
866 }
867 
868 /*
869  *	Activate a secondary processor.
870  */
871 static void __no_sanitize_address smp_start_secondary(void *cpuvoid)
872 {
873 	S390_lowcore.restart_stack = (unsigned long) restart_stack;
874 	S390_lowcore.restart_fn = (unsigned long) do_restart;
875 	S390_lowcore.restart_data = 0;
876 	S390_lowcore.restart_source = -1UL;
877 	__ctl_load(S390_lowcore.cregs_save_area, 0, 15);
878 	__load_psw_mask(PSW_KERNEL_BITS | PSW_MASK_DAT);
879 	CALL_ON_STACK_NORETURN(smp_init_secondary, S390_lowcore.kernel_stack);
880 }
881 
882 /* Upping and downing of CPUs */
883 int __cpu_up(unsigned int cpu, struct task_struct *tidle)
884 {
885 	struct pcpu *pcpu;
886 	int base, i, rc;
887 
888 	pcpu = pcpu_devices + cpu;
889 	if (pcpu->state != CPU_STATE_CONFIGURED)
890 		return -EIO;
891 	base = smp_get_base_cpu(cpu);
892 	for (i = 0; i <= smp_cpu_mtid; i++) {
893 		if (base + i < nr_cpu_ids)
894 			if (cpu_online(base + i))
895 				break;
896 	}
897 	/*
898 	 * If this is the first CPU of the core to get online
899 	 * do an initial CPU reset.
900 	 */
901 	if (i > smp_cpu_mtid &&
902 	    pcpu_sigp_retry(pcpu_devices + base, SIGP_INITIAL_CPU_RESET, 0) !=
903 	    SIGP_CC_ORDER_CODE_ACCEPTED)
904 		return -EIO;
905 
906 	rc = pcpu_alloc_lowcore(pcpu, cpu);
907 	if (rc)
908 		return rc;
909 	pcpu_prepare_secondary(pcpu, cpu);
910 	pcpu_attach_task(pcpu, tidle);
911 	pcpu_start_fn(pcpu, smp_start_secondary, NULL);
912 	/* Wait until cpu puts itself in the online & active maps */
913 	while (!cpu_online(cpu))
914 		cpu_relax();
915 	return 0;
916 }
917 
918 static unsigned int setup_possible_cpus __initdata;
919 
920 static int __init _setup_possible_cpus(char *s)
921 {
922 	get_option(&s, &setup_possible_cpus);
923 	return 0;
924 }
925 early_param("possible_cpus", _setup_possible_cpus);
926 
927 int __cpu_disable(void)
928 {
929 	unsigned long cregs[16];
930 
931 	/* Handle possible pending IPIs */
932 	smp_handle_ext_call();
933 	set_cpu_online(smp_processor_id(), false);
934 	/* Disable pseudo page faults on this cpu. */
935 	pfault_fini();
936 	/* Disable interrupt sources via control register. */
937 	__ctl_store(cregs, 0, 15);
938 	cregs[0]  &= ~0x0000ee70UL;	/* disable all external interrupts */
939 	cregs[6]  &= ~0xff000000UL;	/* disable all I/O interrupts */
940 	cregs[14] &= ~0x1f000000UL;	/* disable most machine checks */
941 	__ctl_load(cregs, 0, 15);
942 	clear_cpu_flag(CIF_NOHZ_DELAY);
943 	return 0;
944 }
945 
946 void __cpu_die(unsigned int cpu)
947 {
948 	struct pcpu *pcpu;
949 
950 	/* Wait until target cpu is down */
951 	pcpu = pcpu_devices + cpu;
952 	while (!pcpu_stopped(pcpu))
953 		cpu_relax();
954 	pcpu_free_lowcore(pcpu);
955 	cpumask_clear_cpu(cpu, mm_cpumask(&init_mm));
956 	cpumask_clear_cpu(cpu, &init_mm.context.cpu_attach_mask);
957 }
958 
959 void __noreturn cpu_die(void)
960 {
961 	idle_task_exit();
962 	__bpon();
963 	pcpu_sigp_retry(pcpu_devices + smp_processor_id(), SIGP_STOP, 0);
964 	for (;;) ;
965 }
966 
967 void __init smp_fill_possible_mask(void)
968 {
969 	unsigned int possible, sclp_max, cpu;
970 
971 	sclp_max = max(sclp.mtid, sclp.mtid_cp) + 1;
972 	sclp_max = min(smp_max_threads, sclp_max);
973 	sclp_max = (sclp.max_cores * sclp_max) ?: nr_cpu_ids;
974 	possible = setup_possible_cpus ?: nr_cpu_ids;
975 	possible = min(possible, sclp_max);
976 	for (cpu = 0; cpu < possible && cpu < nr_cpu_ids; cpu++)
977 		set_cpu_possible(cpu, true);
978 }
979 
980 void __init smp_prepare_cpus(unsigned int max_cpus)
981 {
982 	/* request the 0x1201 emergency signal external interrupt */
983 	if (register_external_irq(EXT_IRQ_EMERGENCY_SIG, do_ext_call_interrupt))
984 		panic("Couldn't request external interrupt 0x1201");
985 	/* request the 0x1202 external call external interrupt */
986 	if (register_external_irq(EXT_IRQ_EXTERNAL_CALL, do_ext_call_interrupt))
987 		panic("Couldn't request external interrupt 0x1202");
988 }
989 
990 void __init smp_prepare_boot_cpu(void)
991 {
992 	struct pcpu *pcpu = pcpu_devices;
993 
994 	WARN_ON(!cpu_present(0) || !cpu_online(0));
995 	pcpu->state = CPU_STATE_CONFIGURED;
996 	pcpu->lowcore = (struct lowcore *)(unsigned long) store_prefix();
997 	S390_lowcore.percpu_offset = __per_cpu_offset[0];
998 	smp_cpu_set_polarization(0, POLARIZATION_UNKNOWN);
999 }
1000 
1001 void __init smp_cpus_done(unsigned int max_cpus)
1002 {
1003 }
1004 
1005 void __init smp_setup_processor_id(void)
1006 {
1007 	pcpu_devices[0].address = stap();
1008 	S390_lowcore.cpu_nr = 0;
1009 	S390_lowcore.spinlock_lockval = arch_spin_lockval(0);
1010 	S390_lowcore.spinlock_index = 0;
1011 }
1012 
1013 /*
1014  * the frequency of the profiling timer can be changed
1015  * by writing a multiplier value into /proc/profile.
1016  *
1017  * usually you want to run this on all CPUs ;)
1018  */
1019 int setup_profiling_timer(unsigned int multiplier)
1020 {
1021 	return 0;
1022 }
1023 
1024 static ssize_t cpu_configure_show(struct device *dev,
1025 				  struct device_attribute *attr, char *buf)
1026 {
1027 	ssize_t count;
1028 
1029 	mutex_lock(&smp_cpu_state_mutex);
1030 	count = sprintf(buf, "%d\n", pcpu_devices[dev->id].state);
1031 	mutex_unlock(&smp_cpu_state_mutex);
1032 	return count;
1033 }
1034 
1035 static ssize_t cpu_configure_store(struct device *dev,
1036 				   struct device_attribute *attr,
1037 				   const char *buf, size_t count)
1038 {
1039 	struct pcpu *pcpu;
1040 	int cpu, val, rc, i;
1041 	char delim;
1042 
1043 	if (sscanf(buf, "%d %c", &val, &delim) != 1)
1044 		return -EINVAL;
1045 	if (val != 0 && val != 1)
1046 		return -EINVAL;
1047 	get_online_cpus();
1048 	mutex_lock(&smp_cpu_state_mutex);
1049 	rc = -EBUSY;
1050 	/* disallow configuration changes of online cpus and cpu 0 */
1051 	cpu = dev->id;
1052 	cpu = smp_get_base_cpu(cpu);
1053 	if (cpu == 0)
1054 		goto out;
1055 	for (i = 0; i <= smp_cpu_mtid; i++)
1056 		if (cpu_online(cpu + i))
1057 			goto out;
1058 	pcpu = pcpu_devices + cpu;
1059 	rc = 0;
1060 	switch (val) {
1061 	case 0:
1062 		if (pcpu->state != CPU_STATE_CONFIGURED)
1063 			break;
1064 		rc = sclp_core_deconfigure(pcpu->address >> smp_cpu_mt_shift);
1065 		if (rc)
1066 			break;
1067 		for (i = 0; i <= smp_cpu_mtid; i++) {
1068 			if (cpu + i >= nr_cpu_ids || !cpu_present(cpu + i))
1069 				continue;
1070 			pcpu[i].state = CPU_STATE_STANDBY;
1071 			smp_cpu_set_polarization(cpu + i,
1072 						 POLARIZATION_UNKNOWN);
1073 		}
1074 		topology_expect_change();
1075 		break;
1076 	case 1:
1077 		if (pcpu->state != CPU_STATE_STANDBY)
1078 			break;
1079 		rc = sclp_core_configure(pcpu->address >> smp_cpu_mt_shift);
1080 		if (rc)
1081 			break;
1082 		for (i = 0; i <= smp_cpu_mtid; i++) {
1083 			if (cpu + i >= nr_cpu_ids || !cpu_present(cpu + i))
1084 				continue;
1085 			pcpu[i].state = CPU_STATE_CONFIGURED;
1086 			smp_cpu_set_polarization(cpu + i,
1087 						 POLARIZATION_UNKNOWN);
1088 		}
1089 		topology_expect_change();
1090 		break;
1091 	default:
1092 		break;
1093 	}
1094 out:
1095 	mutex_unlock(&smp_cpu_state_mutex);
1096 	put_online_cpus();
1097 	return rc ? rc : count;
1098 }
1099 static DEVICE_ATTR(configure, 0644, cpu_configure_show, cpu_configure_store);
1100 
1101 static ssize_t show_cpu_address(struct device *dev,
1102 				struct device_attribute *attr, char *buf)
1103 {
1104 	return sprintf(buf, "%d\n", pcpu_devices[dev->id].address);
1105 }
1106 static DEVICE_ATTR(address, 0444, show_cpu_address, NULL);
1107 
1108 static struct attribute *cpu_common_attrs[] = {
1109 	&dev_attr_configure.attr,
1110 	&dev_attr_address.attr,
1111 	NULL,
1112 };
1113 
1114 static struct attribute_group cpu_common_attr_group = {
1115 	.attrs = cpu_common_attrs,
1116 };
1117 
1118 static struct attribute *cpu_online_attrs[] = {
1119 	&dev_attr_idle_count.attr,
1120 	&dev_attr_idle_time_us.attr,
1121 	NULL,
1122 };
1123 
1124 static struct attribute_group cpu_online_attr_group = {
1125 	.attrs = cpu_online_attrs,
1126 };
1127 
1128 static int smp_cpu_online(unsigned int cpu)
1129 {
1130 	struct device *s = &per_cpu(cpu_device, cpu)->dev;
1131 
1132 	return sysfs_create_group(&s->kobj, &cpu_online_attr_group);
1133 }
1134 static int smp_cpu_pre_down(unsigned int cpu)
1135 {
1136 	struct device *s = &per_cpu(cpu_device, cpu)->dev;
1137 
1138 	sysfs_remove_group(&s->kobj, &cpu_online_attr_group);
1139 	return 0;
1140 }
1141 
1142 static int smp_add_present_cpu(int cpu)
1143 {
1144 	struct device *s;
1145 	struct cpu *c;
1146 	int rc;
1147 
1148 	c = kzalloc(sizeof(*c), GFP_KERNEL);
1149 	if (!c)
1150 		return -ENOMEM;
1151 	per_cpu(cpu_device, cpu) = c;
1152 	s = &c->dev;
1153 	c->hotpluggable = 1;
1154 	rc = register_cpu(c, cpu);
1155 	if (rc)
1156 		goto out;
1157 	rc = sysfs_create_group(&s->kobj, &cpu_common_attr_group);
1158 	if (rc)
1159 		goto out_cpu;
1160 	rc = topology_cpu_init(c);
1161 	if (rc)
1162 		goto out_topology;
1163 	return 0;
1164 
1165 out_topology:
1166 	sysfs_remove_group(&s->kobj, &cpu_common_attr_group);
1167 out_cpu:
1168 	unregister_cpu(c);
1169 out:
1170 	return rc;
1171 }
1172 
1173 int __ref smp_rescan_cpus(void)
1174 {
1175 	struct sclp_core_info *info;
1176 	int nr;
1177 
1178 	info = kzalloc(sizeof(*info), GFP_KERNEL);
1179 	if (!info)
1180 		return -ENOMEM;
1181 	smp_get_core_info(info, 0);
1182 	get_online_cpus();
1183 	mutex_lock(&smp_cpu_state_mutex);
1184 	nr = __smp_rescan_cpus(info, false);
1185 	mutex_unlock(&smp_cpu_state_mutex);
1186 	put_online_cpus();
1187 	kfree(info);
1188 	if (nr)
1189 		topology_schedule_update();
1190 	return 0;
1191 }
1192 
1193 static ssize_t __ref rescan_store(struct device *dev,
1194 				  struct device_attribute *attr,
1195 				  const char *buf,
1196 				  size_t count)
1197 {
1198 	int rc;
1199 
1200 	rc = lock_device_hotplug_sysfs();
1201 	if (rc)
1202 		return rc;
1203 	rc = smp_rescan_cpus();
1204 	unlock_device_hotplug();
1205 	return rc ? rc : count;
1206 }
1207 static DEVICE_ATTR_WO(rescan);
1208 
1209 static int __init s390_smp_init(void)
1210 {
1211 	int cpu, rc = 0;
1212 
1213 	rc = device_create_file(cpu_subsys.dev_root, &dev_attr_rescan);
1214 	if (rc)
1215 		return rc;
1216 	for_each_present_cpu(cpu) {
1217 		rc = smp_add_present_cpu(cpu);
1218 		if (rc)
1219 			goto out;
1220 	}
1221 
1222 	rc = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "s390/smp:online",
1223 			       smp_cpu_online, smp_cpu_pre_down);
1224 	rc = rc <= 0 ? rc : 0;
1225 out:
1226 	return rc;
1227 }
1228 subsys_initcall(s390_smp_init);
1229