xref: /openbmc/linux/arch/s390/kernel/smp.c (revision 5ff32883)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  SMP related functions
4  *
5  *    Copyright IBM Corp. 1999, 2012
6  *    Author(s): Denis Joseph Barrow,
7  *		 Martin Schwidefsky <schwidefsky@de.ibm.com>,
8  *		 Heiko Carstens <heiko.carstens@de.ibm.com>,
9  *
10  *  based on other smp stuff by
11  *    (c) 1995 Alan Cox, CymruNET Ltd  <alan@cymru.net>
12  *    (c) 1998 Ingo Molnar
13  *
14  * The code outside of smp.c uses logical cpu numbers, only smp.c does
15  * the translation of logical to physical cpu ids. All new code that
16  * operates on physical cpu numbers needs to go into smp.c.
17  */
18 
19 #define KMSG_COMPONENT "cpu"
20 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
21 
22 #include <linux/workqueue.h>
23 #include <linux/memblock.h>
24 #include <linux/export.h>
25 #include <linux/init.h>
26 #include <linux/mm.h>
27 #include <linux/err.h>
28 #include <linux/spinlock.h>
29 #include <linux/kernel_stat.h>
30 #include <linux/delay.h>
31 #include <linux/interrupt.h>
32 #include <linux/irqflags.h>
33 #include <linux/cpu.h>
34 #include <linux/slab.h>
35 #include <linux/sched/hotplug.h>
36 #include <linux/sched/task_stack.h>
37 #include <linux/crash_dump.h>
38 #include <linux/kprobes.h>
39 #include <asm/asm-offsets.h>
40 #include <asm/diag.h>
41 #include <asm/switch_to.h>
42 #include <asm/facility.h>
43 #include <asm/ipl.h>
44 #include <asm/setup.h>
45 #include <asm/irq.h>
46 #include <asm/tlbflush.h>
47 #include <asm/vtimer.h>
48 #include <asm/lowcore.h>
49 #include <asm/sclp.h>
50 #include <asm/vdso.h>
51 #include <asm/debug.h>
52 #include <asm/os_info.h>
53 #include <asm/sigp.h>
54 #include <asm/idle.h>
55 #include <asm/nmi.h>
56 #include <asm/topology.h>
57 #include "entry.h"
58 
59 enum {
60 	ec_schedule = 0,
61 	ec_call_function_single,
62 	ec_stop_cpu,
63 };
64 
65 enum {
66 	CPU_STATE_STANDBY,
67 	CPU_STATE_CONFIGURED,
68 };
69 
70 static DEFINE_PER_CPU(struct cpu *, cpu_device);
71 
72 struct pcpu {
73 	struct lowcore *lowcore;	/* lowcore page(s) for the cpu */
74 	unsigned long ec_mask;		/* bit mask for ec_xxx functions */
75 	unsigned long ec_clk;		/* sigp timestamp for ec_xxx */
76 	signed char state;		/* physical cpu state */
77 	signed char polarization;	/* physical polarization */
78 	u16 address;			/* physical cpu address */
79 };
80 
81 static u8 boot_core_type;
82 static struct pcpu pcpu_devices[NR_CPUS];
83 
84 unsigned int smp_cpu_mt_shift;
85 EXPORT_SYMBOL(smp_cpu_mt_shift);
86 
87 unsigned int smp_cpu_mtid;
88 EXPORT_SYMBOL(smp_cpu_mtid);
89 
90 #ifdef CONFIG_CRASH_DUMP
91 __vector128 __initdata boot_cpu_vector_save_area[__NUM_VXRS];
92 #endif
93 
94 static unsigned int smp_max_threads __initdata = -1U;
95 
96 static int __init early_nosmt(char *s)
97 {
98 	smp_max_threads = 1;
99 	return 0;
100 }
101 early_param("nosmt", early_nosmt);
102 
103 static int __init early_smt(char *s)
104 {
105 	get_option(&s, &smp_max_threads);
106 	return 0;
107 }
108 early_param("smt", early_smt);
109 
110 /*
111  * The smp_cpu_state_mutex must be held when changing the state or polarization
112  * member of a pcpu data structure within the pcpu_devices arreay.
113  */
114 DEFINE_MUTEX(smp_cpu_state_mutex);
115 
116 /*
117  * Signal processor helper functions.
118  */
119 static inline int __pcpu_sigp_relax(u16 addr, u8 order, unsigned long parm)
120 {
121 	int cc;
122 
123 	while (1) {
124 		cc = __pcpu_sigp(addr, order, parm, NULL);
125 		if (cc != SIGP_CC_BUSY)
126 			return cc;
127 		cpu_relax();
128 	}
129 }
130 
131 static int pcpu_sigp_retry(struct pcpu *pcpu, u8 order, u32 parm)
132 {
133 	int cc, retry;
134 
135 	for (retry = 0; ; retry++) {
136 		cc = __pcpu_sigp(pcpu->address, order, parm, NULL);
137 		if (cc != SIGP_CC_BUSY)
138 			break;
139 		if (retry >= 3)
140 			udelay(10);
141 	}
142 	return cc;
143 }
144 
145 static inline int pcpu_stopped(struct pcpu *pcpu)
146 {
147 	u32 uninitialized_var(status);
148 
149 	if (__pcpu_sigp(pcpu->address, SIGP_SENSE,
150 			0, &status) != SIGP_CC_STATUS_STORED)
151 		return 0;
152 	return !!(status & (SIGP_STATUS_CHECK_STOP|SIGP_STATUS_STOPPED));
153 }
154 
155 static inline int pcpu_running(struct pcpu *pcpu)
156 {
157 	if (__pcpu_sigp(pcpu->address, SIGP_SENSE_RUNNING,
158 			0, NULL) != SIGP_CC_STATUS_STORED)
159 		return 1;
160 	/* Status stored condition code is equivalent to cpu not running. */
161 	return 0;
162 }
163 
164 /*
165  * Find struct pcpu by cpu address.
166  */
167 static struct pcpu *pcpu_find_address(const struct cpumask *mask, u16 address)
168 {
169 	int cpu;
170 
171 	for_each_cpu(cpu, mask)
172 		if (pcpu_devices[cpu].address == address)
173 			return pcpu_devices + cpu;
174 	return NULL;
175 }
176 
177 static void pcpu_ec_call(struct pcpu *pcpu, int ec_bit)
178 {
179 	int order;
180 
181 	if (test_and_set_bit(ec_bit, &pcpu->ec_mask))
182 		return;
183 	order = pcpu_running(pcpu) ? SIGP_EXTERNAL_CALL : SIGP_EMERGENCY_SIGNAL;
184 	pcpu->ec_clk = get_tod_clock_fast();
185 	pcpu_sigp_retry(pcpu, order, 0);
186 }
187 
188 static int pcpu_alloc_lowcore(struct pcpu *pcpu, int cpu)
189 {
190 	unsigned long async_stack, nodat_stack;
191 	struct lowcore *lc;
192 
193 	if (pcpu != &pcpu_devices[0]) {
194 		pcpu->lowcore =	(struct lowcore *)
195 			__get_free_pages(GFP_KERNEL | GFP_DMA, LC_ORDER);
196 		nodat_stack = __get_free_pages(GFP_KERNEL, THREAD_SIZE_ORDER);
197 		if (!pcpu->lowcore || !nodat_stack)
198 			goto out;
199 	} else {
200 		nodat_stack = pcpu->lowcore->nodat_stack - STACK_INIT_OFFSET;
201 	}
202 	async_stack = stack_alloc();
203 	if (!async_stack)
204 		goto out;
205 	lc = pcpu->lowcore;
206 	memcpy(lc, &S390_lowcore, 512);
207 	memset((char *) lc + 512, 0, sizeof(*lc) - 512);
208 	lc->async_stack = async_stack + STACK_INIT_OFFSET;
209 	lc->nodat_stack = nodat_stack + STACK_INIT_OFFSET;
210 	lc->cpu_nr = cpu;
211 	lc->spinlock_lockval = arch_spin_lockval(cpu);
212 	lc->spinlock_index = 0;
213 	lc->br_r1_trampoline = 0x07f1;	/* br %r1 */
214 	if (nmi_alloc_per_cpu(lc))
215 		goto out_async;
216 	if (vdso_alloc_per_cpu(lc))
217 		goto out_mcesa;
218 	lowcore_ptr[cpu] = lc;
219 	pcpu_sigp_retry(pcpu, SIGP_SET_PREFIX, (u32)(unsigned long) lc);
220 	return 0;
221 
222 out_mcesa:
223 	nmi_free_per_cpu(lc);
224 out_async:
225 	stack_free(async_stack);
226 out:
227 	if (pcpu != &pcpu_devices[0]) {
228 		free_pages(nodat_stack, THREAD_SIZE_ORDER);
229 		free_pages((unsigned long) pcpu->lowcore, LC_ORDER);
230 	}
231 	return -ENOMEM;
232 }
233 
234 #ifdef CONFIG_HOTPLUG_CPU
235 
236 static void pcpu_free_lowcore(struct pcpu *pcpu)
237 {
238 	unsigned long async_stack, nodat_stack, lowcore;
239 
240 	nodat_stack = pcpu->lowcore->nodat_stack - STACK_INIT_OFFSET;
241 	async_stack = pcpu->lowcore->async_stack - STACK_INIT_OFFSET;
242 	lowcore = (unsigned long) pcpu->lowcore;
243 
244 	pcpu_sigp_retry(pcpu, SIGP_SET_PREFIX, 0);
245 	lowcore_ptr[pcpu - pcpu_devices] = NULL;
246 	vdso_free_per_cpu(pcpu->lowcore);
247 	nmi_free_per_cpu(pcpu->lowcore);
248 	stack_free(async_stack);
249 	if (pcpu == &pcpu_devices[0])
250 		return;
251 	free_pages(nodat_stack, THREAD_SIZE_ORDER);
252 	free_pages(lowcore, LC_ORDER);
253 }
254 
255 #endif /* CONFIG_HOTPLUG_CPU */
256 
257 static void pcpu_prepare_secondary(struct pcpu *pcpu, int cpu)
258 {
259 	struct lowcore *lc = pcpu->lowcore;
260 
261 	cpumask_set_cpu(cpu, &init_mm.context.cpu_attach_mask);
262 	cpumask_set_cpu(cpu, mm_cpumask(&init_mm));
263 	lc->cpu_nr = cpu;
264 	lc->spinlock_lockval = arch_spin_lockval(cpu);
265 	lc->spinlock_index = 0;
266 	lc->percpu_offset = __per_cpu_offset[cpu];
267 	lc->kernel_asce = S390_lowcore.kernel_asce;
268 	lc->machine_flags = S390_lowcore.machine_flags;
269 	lc->user_timer = lc->system_timer = lc->steal_timer = 0;
270 	__ctl_store(lc->cregs_save_area, 0, 15);
271 	save_access_regs((unsigned int *) lc->access_regs_save_area);
272 	memcpy(lc->stfle_fac_list, S390_lowcore.stfle_fac_list,
273 	       sizeof(lc->stfle_fac_list));
274 	memcpy(lc->alt_stfle_fac_list, S390_lowcore.alt_stfle_fac_list,
275 	       sizeof(lc->alt_stfle_fac_list));
276 	arch_spin_lock_setup(cpu);
277 }
278 
279 static void pcpu_attach_task(struct pcpu *pcpu, struct task_struct *tsk)
280 {
281 	struct lowcore *lc = pcpu->lowcore;
282 
283 	lc->kernel_stack = (unsigned long) task_stack_page(tsk)
284 		+ THREAD_SIZE - STACK_FRAME_OVERHEAD - sizeof(struct pt_regs);
285 	lc->current_task = (unsigned long) tsk;
286 	lc->lpp = LPP_MAGIC;
287 	lc->current_pid = tsk->pid;
288 	lc->user_timer = tsk->thread.user_timer;
289 	lc->guest_timer = tsk->thread.guest_timer;
290 	lc->system_timer = tsk->thread.system_timer;
291 	lc->hardirq_timer = tsk->thread.hardirq_timer;
292 	lc->softirq_timer = tsk->thread.softirq_timer;
293 	lc->steal_timer = 0;
294 }
295 
296 static void pcpu_start_fn(struct pcpu *pcpu, void (*func)(void *), void *data)
297 {
298 	struct lowcore *lc = pcpu->lowcore;
299 
300 	lc->restart_stack = lc->nodat_stack;
301 	lc->restart_fn = (unsigned long) func;
302 	lc->restart_data = (unsigned long) data;
303 	lc->restart_source = -1UL;
304 	pcpu_sigp_retry(pcpu, SIGP_RESTART, 0);
305 }
306 
307 /*
308  * Call function via PSW restart on pcpu and stop the current cpu.
309  */
310 static void __pcpu_delegate(void (*func)(void*), void *data)
311 {
312 	func(data);	/* should not return */
313 }
314 
315 static void __no_sanitize_address pcpu_delegate(struct pcpu *pcpu,
316 						void (*func)(void *),
317 						void *data, unsigned long stack)
318 {
319 	struct lowcore *lc = lowcore_ptr[pcpu - pcpu_devices];
320 	unsigned long source_cpu = stap();
321 
322 	__load_psw_mask(PSW_KERNEL_BITS | PSW_MASK_DAT);
323 	if (pcpu->address == source_cpu)
324 		CALL_ON_STACK(__pcpu_delegate, stack, 2, func, data);
325 	/* Stop target cpu (if func returns this stops the current cpu). */
326 	pcpu_sigp_retry(pcpu, SIGP_STOP, 0);
327 	/* Restart func on the target cpu and stop the current cpu. */
328 	mem_assign_absolute(lc->restart_stack, stack);
329 	mem_assign_absolute(lc->restart_fn, (unsigned long) func);
330 	mem_assign_absolute(lc->restart_data, (unsigned long) data);
331 	mem_assign_absolute(lc->restart_source, source_cpu);
332 	__bpon();
333 	asm volatile(
334 		"0:	sigp	0,%0,%2	# sigp restart to target cpu\n"
335 		"	brc	2,0b	# busy, try again\n"
336 		"1:	sigp	0,%1,%3	# sigp stop to current cpu\n"
337 		"	brc	2,1b	# busy, try again\n"
338 		: : "d" (pcpu->address), "d" (source_cpu),
339 		    "K" (SIGP_RESTART), "K" (SIGP_STOP)
340 		: "0", "1", "cc");
341 	for (;;) ;
342 }
343 
344 /*
345  * Enable additional logical cpus for multi-threading.
346  */
347 static int pcpu_set_smt(unsigned int mtid)
348 {
349 	int cc;
350 
351 	if (smp_cpu_mtid == mtid)
352 		return 0;
353 	cc = __pcpu_sigp(0, SIGP_SET_MULTI_THREADING, mtid, NULL);
354 	if (cc == 0) {
355 		smp_cpu_mtid = mtid;
356 		smp_cpu_mt_shift = 0;
357 		while (smp_cpu_mtid >= (1U << smp_cpu_mt_shift))
358 			smp_cpu_mt_shift++;
359 		pcpu_devices[0].address = stap();
360 	}
361 	return cc;
362 }
363 
364 /*
365  * Call function on an online CPU.
366  */
367 void smp_call_online_cpu(void (*func)(void *), void *data)
368 {
369 	struct pcpu *pcpu;
370 
371 	/* Use the current cpu if it is online. */
372 	pcpu = pcpu_find_address(cpu_online_mask, stap());
373 	if (!pcpu)
374 		/* Use the first online cpu. */
375 		pcpu = pcpu_devices + cpumask_first(cpu_online_mask);
376 	pcpu_delegate(pcpu, func, data, (unsigned long) restart_stack);
377 }
378 
379 /*
380  * Call function on the ipl CPU.
381  */
382 void smp_call_ipl_cpu(void (*func)(void *), void *data)
383 {
384 	struct lowcore *lc = pcpu_devices->lowcore;
385 
386 	if (pcpu_devices[0].address == stap())
387 		lc = &S390_lowcore;
388 
389 	pcpu_delegate(&pcpu_devices[0], func, data,
390 		      lc->nodat_stack);
391 }
392 
393 int smp_find_processor_id(u16 address)
394 {
395 	int cpu;
396 
397 	for_each_present_cpu(cpu)
398 		if (pcpu_devices[cpu].address == address)
399 			return cpu;
400 	return -1;
401 }
402 
403 bool arch_vcpu_is_preempted(int cpu)
404 {
405 	if (test_cpu_flag_of(CIF_ENABLED_WAIT, cpu))
406 		return false;
407 	if (pcpu_running(pcpu_devices + cpu))
408 		return false;
409 	return true;
410 }
411 EXPORT_SYMBOL(arch_vcpu_is_preempted);
412 
413 void smp_yield_cpu(int cpu)
414 {
415 	if (MACHINE_HAS_DIAG9C) {
416 		diag_stat_inc_norecursion(DIAG_STAT_X09C);
417 		asm volatile("diag %0,0,0x9c"
418 			     : : "d" (pcpu_devices[cpu].address));
419 	} else if (MACHINE_HAS_DIAG44) {
420 		diag_stat_inc_norecursion(DIAG_STAT_X044);
421 		asm volatile("diag 0,0,0x44");
422 	}
423 }
424 
425 /*
426  * Send cpus emergency shutdown signal. This gives the cpus the
427  * opportunity to complete outstanding interrupts.
428  */
429 void notrace smp_emergency_stop(void)
430 {
431 	cpumask_t cpumask;
432 	u64 end;
433 	int cpu;
434 
435 	cpumask_copy(&cpumask, cpu_online_mask);
436 	cpumask_clear_cpu(smp_processor_id(), &cpumask);
437 
438 	end = get_tod_clock() + (1000000UL << 12);
439 	for_each_cpu(cpu, &cpumask) {
440 		struct pcpu *pcpu = pcpu_devices + cpu;
441 		set_bit(ec_stop_cpu, &pcpu->ec_mask);
442 		while (__pcpu_sigp(pcpu->address, SIGP_EMERGENCY_SIGNAL,
443 				   0, NULL) == SIGP_CC_BUSY &&
444 		       get_tod_clock() < end)
445 			cpu_relax();
446 	}
447 	while (get_tod_clock() < end) {
448 		for_each_cpu(cpu, &cpumask)
449 			if (pcpu_stopped(pcpu_devices + cpu))
450 				cpumask_clear_cpu(cpu, &cpumask);
451 		if (cpumask_empty(&cpumask))
452 			break;
453 		cpu_relax();
454 	}
455 }
456 NOKPROBE_SYMBOL(smp_emergency_stop);
457 
458 /*
459  * Stop all cpus but the current one.
460  */
461 void smp_send_stop(void)
462 {
463 	int cpu;
464 
465 	/* Disable all interrupts/machine checks */
466 	__load_psw_mask(PSW_KERNEL_BITS | PSW_MASK_DAT);
467 	trace_hardirqs_off();
468 
469 	debug_set_critical();
470 
471 	if (oops_in_progress)
472 		smp_emergency_stop();
473 
474 	/* stop all processors */
475 	for_each_online_cpu(cpu) {
476 		if (cpu == smp_processor_id())
477 			continue;
478 		pcpu_sigp_retry(pcpu_devices + cpu, SIGP_STOP, 0);
479 		while (!pcpu_stopped(pcpu_devices + cpu))
480 			cpu_relax();
481 	}
482 }
483 
484 /*
485  * This is the main routine where commands issued by other
486  * cpus are handled.
487  */
488 static void smp_handle_ext_call(void)
489 {
490 	unsigned long bits;
491 
492 	/* handle bit signal external calls */
493 	bits = xchg(&pcpu_devices[smp_processor_id()].ec_mask, 0);
494 	if (test_bit(ec_stop_cpu, &bits))
495 		smp_stop_cpu();
496 	if (test_bit(ec_schedule, &bits))
497 		scheduler_ipi();
498 	if (test_bit(ec_call_function_single, &bits))
499 		generic_smp_call_function_single_interrupt();
500 }
501 
502 static void do_ext_call_interrupt(struct ext_code ext_code,
503 				  unsigned int param32, unsigned long param64)
504 {
505 	inc_irq_stat(ext_code.code == 0x1202 ? IRQEXT_EXC : IRQEXT_EMS);
506 	smp_handle_ext_call();
507 }
508 
509 void arch_send_call_function_ipi_mask(const struct cpumask *mask)
510 {
511 	int cpu;
512 
513 	for_each_cpu(cpu, mask)
514 		pcpu_ec_call(pcpu_devices + cpu, ec_call_function_single);
515 }
516 
517 void arch_send_call_function_single_ipi(int cpu)
518 {
519 	pcpu_ec_call(pcpu_devices + cpu, ec_call_function_single);
520 }
521 
522 /*
523  * this function sends a 'reschedule' IPI to another CPU.
524  * it goes straight through and wastes no time serializing
525  * anything. Worst case is that we lose a reschedule ...
526  */
527 void smp_send_reschedule(int cpu)
528 {
529 	pcpu_ec_call(pcpu_devices + cpu, ec_schedule);
530 }
531 
532 /*
533  * parameter area for the set/clear control bit callbacks
534  */
535 struct ec_creg_mask_parms {
536 	unsigned long orval;
537 	unsigned long andval;
538 	int cr;
539 };
540 
541 /*
542  * callback for setting/clearing control bits
543  */
544 static void smp_ctl_bit_callback(void *info)
545 {
546 	struct ec_creg_mask_parms *pp = info;
547 	unsigned long cregs[16];
548 
549 	__ctl_store(cregs, 0, 15);
550 	cregs[pp->cr] = (cregs[pp->cr] & pp->andval) | pp->orval;
551 	__ctl_load(cregs, 0, 15);
552 }
553 
554 /*
555  * Set a bit in a control register of all cpus
556  */
557 void smp_ctl_set_bit(int cr, int bit)
558 {
559 	struct ec_creg_mask_parms parms = { 1UL << bit, -1UL, cr };
560 
561 	on_each_cpu(smp_ctl_bit_callback, &parms, 1);
562 }
563 EXPORT_SYMBOL(smp_ctl_set_bit);
564 
565 /*
566  * Clear a bit in a control register of all cpus
567  */
568 void smp_ctl_clear_bit(int cr, int bit)
569 {
570 	struct ec_creg_mask_parms parms = { 0, ~(1UL << bit), cr };
571 
572 	on_each_cpu(smp_ctl_bit_callback, &parms, 1);
573 }
574 EXPORT_SYMBOL(smp_ctl_clear_bit);
575 
576 #ifdef CONFIG_CRASH_DUMP
577 
578 int smp_store_status(int cpu)
579 {
580 	struct pcpu *pcpu = pcpu_devices + cpu;
581 	unsigned long pa;
582 
583 	pa = __pa(&pcpu->lowcore->floating_pt_save_area);
584 	if (__pcpu_sigp_relax(pcpu->address, SIGP_STORE_STATUS_AT_ADDRESS,
585 			      pa) != SIGP_CC_ORDER_CODE_ACCEPTED)
586 		return -EIO;
587 	if (!MACHINE_HAS_VX && !MACHINE_HAS_GS)
588 		return 0;
589 	pa = __pa(pcpu->lowcore->mcesad & MCESA_ORIGIN_MASK);
590 	if (MACHINE_HAS_GS)
591 		pa |= pcpu->lowcore->mcesad & MCESA_LC_MASK;
592 	if (__pcpu_sigp_relax(pcpu->address, SIGP_STORE_ADDITIONAL_STATUS,
593 			      pa) != SIGP_CC_ORDER_CODE_ACCEPTED)
594 		return -EIO;
595 	return 0;
596 }
597 
598 /*
599  * Collect CPU state of the previous, crashed system.
600  * There are four cases:
601  * 1) standard zfcp dump
602  *    condition: OLDMEM_BASE == NULL && ipl_info.type == IPL_TYPE_FCP_DUMP
603  *    The state for all CPUs except the boot CPU needs to be collected
604  *    with sigp stop-and-store-status. The boot CPU state is located in
605  *    the absolute lowcore of the memory stored in the HSA. The zcore code
606  *    will copy the boot CPU state from the HSA.
607  * 2) stand-alone kdump for SCSI (zfcp dump with swapped memory)
608  *    condition: OLDMEM_BASE != NULL && ipl_info.type == IPL_TYPE_FCP_DUMP
609  *    The state for all CPUs except the boot CPU needs to be collected
610  *    with sigp stop-and-store-status. The firmware or the boot-loader
611  *    stored the registers of the boot CPU in the absolute lowcore in the
612  *    memory of the old system.
613  * 3) kdump and the old kernel did not store the CPU state,
614  *    or stand-alone kdump for DASD
615  *    condition: OLDMEM_BASE != NULL && !is_kdump_kernel()
616  *    The state for all CPUs except the boot CPU needs to be collected
617  *    with sigp stop-and-store-status. The kexec code or the boot-loader
618  *    stored the registers of the boot CPU in the memory of the old system.
619  * 4) kdump and the old kernel stored the CPU state
620  *    condition: OLDMEM_BASE != NULL && is_kdump_kernel()
621  *    This case does not exist for s390 anymore, setup_arch explicitly
622  *    deactivates the elfcorehdr= kernel parameter
623  */
624 static __init void smp_save_cpu_vxrs(struct save_area *sa, u16 addr,
625 				     bool is_boot_cpu, unsigned long page)
626 {
627 	__vector128 *vxrs = (__vector128 *) page;
628 
629 	if (is_boot_cpu)
630 		vxrs = boot_cpu_vector_save_area;
631 	else
632 		__pcpu_sigp_relax(addr, SIGP_STORE_ADDITIONAL_STATUS, page);
633 	save_area_add_vxrs(sa, vxrs);
634 }
635 
636 static __init void smp_save_cpu_regs(struct save_area *sa, u16 addr,
637 				     bool is_boot_cpu, unsigned long page)
638 {
639 	void *regs = (void *) page;
640 
641 	if (is_boot_cpu)
642 		copy_oldmem_kernel(regs, (void *) __LC_FPREGS_SAVE_AREA, 512);
643 	else
644 		__pcpu_sigp_relax(addr, SIGP_STORE_STATUS_AT_ADDRESS, page);
645 	save_area_add_regs(sa, regs);
646 }
647 
648 void __init smp_save_dump_cpus(void)
649 {
650 	int addr, boot_cpu_addr, max_cpu_addr;
651 	struct save_area *sa;
652 	unsigned long page;
653 	bool is_boot_cpu;
654 
655 	if (!(OLDMEM_BASE || ipl_info.type == IPL_TYPE_FCP_DUMP))
656 		/* No previous system present, normal boot. */
657 		return;
658 	/* Allocate a page as dumping area for the store status sigps */
659 	page = memblock_alloc_base(PAGE_SIZE, PAGE_SIZE, 1UL << 31);
660 	/* Set multi-threading state to the previous system. */
661 	pcpu_set_smt(sclp.mtid_prev);
662 	boot_cpu_addr = stap();
663 	max_cpu_addr = SCLP_MAX_CORES << sclp.mtid_prev;
664 	for (addr = 0; addr <= max_cpu_addr; addr++) {
665 		if (__pcpu_sigp_relax(addr, SIGP_SENSE, 0) ==
666 		    SIGP_CC_NOT_OPERATIONAL)
667 			continue;
668 		is_boot_cpu = (addr == boot_cpu_addr);
669 		/* Allocate save area */
670 		sa = save_area_alloc(is_boot_cpu);
671 		if (!sa)
672 			panic("could not allocate memory for save area\n");
673 		if (MACHINE_HAS_VX)
674 			/* Get the vector registers */
675 			smp_save_cpu_vxrs(sa, addr, is_boot_cpu, page);
676 		/*
677 		 * For a zfcp dump OLDMEM_BASE == NULL and the registers
678 		 * of the boot CPU are stored in the HSA. To retrieve
679 		 * these registers an SCLP request is required which is
680 		 * done by drivers/s390/char/zcore.c:init_cpu_info()
681 		 */
682 		if (!is_boot_cpu || OLDMEM_BASE)
683 			/* Get the CPU registers */
684 			smp_save_cpu_regs(sa, addr, is_boot_cpu, page);
685 	}
686 	memblock_free(page, PAGE_SIZE);
687 	diag308_reset();
688 	pcpu_set_smt(0);
689 }
690 #endif /* CONFIG_CRASH_DUMP */
691 
692 void smp_cpu_set_polarization(int cpu, int val)
693 {
694 	pcpu_devices[cpu].polarization = val;
695 }
696 
697 int smp_cpu_get_polarization(int cpu)
698 {
699 	return pcpu_devices[cpu].polarization;
700 }
701 
702 static void __ref smp_get_core_info(struct sclp_core_info *info, int early)
703 {
704 	static int use_sigp_detection;
705 	int address;
706 
707 	if (use_sigp_detection || sclp_get_core_info(info, early)) {
708 		use_sigp_detection = 1;
709 		for (address = 0;
710 		     address < (SCLP_MAX_CORES << smp_cpu_mt_shift);
711 		     address += (1U << smp_cpu_mt_shift)) {
712 			if (__pcpu_sigp_relax(address, SIGP_SENSE, 0) ==
713 			    SIGP_CC_NOT_OPERATIONAL)
714 				continue;
715 			info->core[info->configured].core_id =
716 				address >> smp_cpu_mt_shift;
717 			info->configured++;
718 		}
719 		info->combined = info->configured;
720 	}
721 }
722 
723 static int smp_add_present_cpu(int cpu);
724 
725 static int __smp_rescan_cpus(struct sclp_core_info *info, int sysfs_add)
726 {
727 	struct pcpu *pcpu;
728 	cpumask_t avail;
729 	int cpu, nr, i, j;
730 	u16 address;
731 
732 	nr = 0;
733 	cpumask_xor(&avail, cpu_possible_mask, cpu_present_mask);
734 	cpu = cpumask_first(&avail);
735 	for (i = 0; (i < info->combined) && (cpu < nr_cpu_ids); i++) {
736 		if (sclp.has_core_type && info->core[i].type != boot_core_type)
737 			continue;
738 		address = info->core[i].core_id << smp_cpu_mt_shift;
739 		for (j = 0; j <= smp_cpu_mtid; j++) {
740 			if (pcpu_find_address(cpu_present_mask, address + j))
741 				continue;
742 			pcpu = pcpu_devices + cpu;
743 			pcpu->address = address + j;
744 			pcpu->state =
745 				(cpu >= info->configured*(smp_cpu_mtid + 1)) ?
746 				CPU_STATE_STANDBY : CPU_STATE_CONFIGURED;
747 			smp_cpu_set_polarization(cpu, POLARIZATION_UNKNOWN);
748 			set_cpu_present(cpu, true);
749 			if (sysfs_add && smp_add_present_cpu(cpu) != 0)
750 				set_cpu_present(cpu, false);
751 			else
752 				nr++;
753 			cpu = cpumask_next(cpu, &avail);
754 			if (cpu >= nr_cpu_ids)
755 				break;
756 		}
757 	}
758 	return nr;
759 }
760 
761 void __init smp_detect_cpus(void)
762 {
763 	unsigned int cpu, mtid, c_cpus, s_cpus;
764 	struct sclp_core_info *info;
765 	u16 address;
766 
767 	/* Get CPU information */
768 	info = memblock_alloc(sizeof(*info), 8);
769 	smp_get_core_info(info, 1);
770 	/* Find boot CPU type */
771 	if (sclp.has_core_type) {
772 		address = stap();
773 		for (cpu = 0; cpu < info->combined; cpu++)
774 			if (info->core[cpu].core_id == address) {
775 				/* The boot cpu dictates the cpu type. */
776 				boot_core_type = info->core[cpu].type;
777 				break;
778 			}
779 		if (cpu >= info->combined)
780 			panic("Could not find boot CPU type");
781 	}
782 
783 	/* Set multi-threading state for the current system */
784 	mtid = boot_core_type ? sclp.mtid : sclp.mtid_cp;
785 	mtid = (mtid < smp_max_threads) ? mtid : smp_max_threads - 1;
786 	pcpu_set_smt(mtid);
787 
788 	/* Print number of CPUs */
789 	c_cpus = s_cpus = 0;
790 	for (cpu = 0; cpu < info->combined; cpu++) {
791 		if (sclp.has_core_type &&
792 		    info->core[cpu].type != boot_core_type)
793 			continue;
794 		if (cpu < info->configured)
795 			c_cpus += smp_cpu_mtid + 1;
796 		else
797 			s_cpus += smp_cpu_mtid + 1;
798 	}
799 	pr_info("%d configured CPUs, %d standby CPUs\n", c_cpus, s_cpus);
800 
801 	/* Add CPUs present at boot */
802 	get_online_cpus();
803 	__smp_rescan_cpus(info, 0);
804 	put_online_cpus();
805 	memblock_free_early((unsigned long)info, sizeof(*info));
806 }
807 
808 static void smp_init_secondary(void)
809 {
810 	int cpu = smp_processor_id();
811 
812 	S390_lowcore.last_update_clock = get_tod_clock();
813 	restore_access_regs(S390_lowcore.access_regs_save_area);
814 	cpu_init();
815 	preempt_disable();
816 	init_cpu_timer();
817 	vtime_init();
818 	pfault_init();
819 	notify_cpu_starting(smp_processor_id());
820 	if (topology_cpu_dedicated(cpu))
821 		set_cpu_flag(CIF_DEDICATED_CPU);
822 	else
823 		clear_cpu_flag(CIF_DEDICATED_CPU);
824 	set_cpu_online(smp_processor_id(), true);
825 	inc_irq_stat(CPU_RST);
826 	local_irq_enable();
827 	cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
828 }
829 
830 /*
831  *	Activate a secondary processor.
832  */
833 static void __no_sanitize_address smp_start_secondary(void *cpuvoid)
834 {
835 	S390_lowcore.restart_stack = (unsigned long) restart_stack;
836 	S390_lowcore.restart_fn = (unsigned long) do_restart;
837 	S390_lowcore.restart_data = 0;
838 	S390_lowcore.restart_source = -1UL;
839 	__ctl_load(S390_lowcore.cregs_save_area, 0, 15);
840 	__load_psw_mask(PSW_KERNEL_BITS | PSW_MASK_DAT);
841 	CALL_ON_STACK(smp_init_secondary, S390_lowcore.kernel_stack, 0);
842 }
843 
844 /* Upping and downing of CPUs */
845 int __cpu_up(unsigned int cpu, struct task_struct *tidle)
846 {
847 	struct pcpu *pcpu;
848 	int base, i, rc;
849 
850 	pcpu = pcpu_devices + cpu;
851 	if (pcpu->state != CPU_STATE_CONFIGURED)
852 		return -EIO;
853 	base = smp_get_base_cpu(cpu);
854 	for (i = 0; i <= smp_cpu_mtid; i++) {
855 		if (base + i < nr_cpu_ids)
856 			if (cpu_online(base + i))
857 				break;
858 	}
859 	/*
860 	 * If this is the first CPU of the core to get online
861 	 * do an initial CPU reset.
862 	 */
863 	if (i > smp_cpu_mtid &&
864 	    pcpu_sigp_retry(pcpu_devices + base, SIGP_INITIAL_CPU_RESET, 0) !=
865 	    SIGP_CC_ORDER_CODE_ACCEPTED)
866 		return -EIO;
867 
868 	rc = pcpu_alloc_lowcore(pcpu, cpu);
869 	if (rc)
870 		return rc;
871 	pcpu_prepare_secondary(pcpu, cpu);
872 	pcpu_attach_task(pcpu, tidle);
873 	pcpu_start_fn(pcpu, smp_start_secondary, NULL);
874 	/* Wait until cpu puts itself in the online & active maps */
875 	while (!cpu_online(cpu))
876 		cpu_relax();
877 	return 0;
878 }
879 
880 static unsigned int setup_possible_cpus __initdata;
881 
882 static int __init _setup_possible_cpus(char *s)
883 {
884 	get_option(&s, &setup_possible_cpus);
885 	return 0;
886 }
887 early_param("possible_cpus", _setup_possible_cpus);
888 
889 #ifdef CONFIG_HOTPLUG_CPU
890 
891 int __cpu_disable(void)
892 {
893 	unsigned long cregs[16];
894 
895 	/* Handle possible pending IPIs */
896 	smp_handle_ext_call();
897 	set_cpu_online(smp_processor_id(), false);
898 	/* Disable pseudo page faults on this cpu. */
899 	pfault_fini();
900 	/* Disable interrupt sources via control register. */
901 	__ctl_store(cregs, 0, 15);
902 	cregs[0]  &= ~0x0000ee70UL;	/* disable all external interrupts */
903 	cregs[6]  &= ~0xff000000UL;	/* disable all I/O interrupts */
904 	cregs[14] &= ~0x1f000000UL;	/* disable most machine checks */
905 	__ctl_load(cregs, 0, 15);
906 	clear_cpu_flag(CIF_NOHZ_DELAY);
907 	return 0;
908 }
909 
910 void __cpu_die(unsigned int cpu)
911 {
912 	struct pcpu *pcpu;
913 
914 	/* Wait until target cpu is down */
915 	pcpu = pcpu_devices + cpu;
916 	while (!pcpu_stopped(pcpu))
917 		cpu_relax();
918 	pcpu_free_lowcore(pcpu);
919 	cpumask_clear_cpu(cpu, mm_cpumask(&init_mm));
920 	cpumask_clear_cpu(cpu, &init_mm.context.cpu_attach_mask);
921 }
922 
923 void __noreturn cpu_die(void)
924 {
925 	idle_task_exit();
926 	__bpon();
927 	pcpu_sigp_retry(pcpu_devices + smp_processor_id(), SIGP_STOP, 0);
928 	for (;;) ;
929 }
930 
931 #endif /* CONFIG_HOTPLUG_CPU */
932 
933 void __init smp_fill_possible_mask(void)
934 {
935 	unsigned int possible, sclp_max, cpu;
936 
937 	sclp_max = max(sclp.mtid, sclp.mtid_cp) + 1;
938 	sclp_max = min(smp_max_threads, sclp_max);
939 	sclp_max = (sclp.max_cores * sclp_max) ?: nr_cpu_ids;
940 	possible = setup_possible_cpus ?: nr_cpu_ids;
941 	possible = min(possible, sclp_max);
942 	for (cpu = 0; cpu < possible && cpu < nr_cpu_ids; cpu++)
943 		set_cpu_possible(cpu, true);
944 }
945 
946 void __init smp_prepare_cpus(unsigned int max_cpus)
947 {
948 	/* request the 0x1201 emergency signal external interrupt */
949 	if (register_external_irq(EXT_IRQ_EMERGENCY_SIG, do_ext_call_interrupt))
950 		panic("Couldn't request external interrupt 0x1201");
951 	/* request the 0x1202 external call external interrupt */
952 	if (register_external_irq(EXT_IRQ_EXTERNAL_CALL, do_ext_call_interrupt))
953 		panic("Couldn't request external interrupt 0x1202");
954 }
955 
956 void __init smp_prepare_boot_cpu(void)
957 {
958 	struct pcpu *pcpu = pcpu_devices;
959 
960 	WARN_ON(!cpu_present(0) || !cpu_online(0));
961 	pcpu->state = CPU_STATE_CONFIGURED;
962 	pcpu->lowcore = (struct lowcore *)(unsigned long) store_prefix();
963 	S390_lowcore.percpu_offset = __per_cpu_offset[0];
964 	smp_cpu_set_polarization(0, POLARIZATION_UNKNOWN);
965 }
966 
967 void __init smp_cpus_done(unsigned int max_cpus)
968 {
969 }
970 
971 void __init smp_setup_processor_id(void)
972 {
973 	pcpu_devices[0].address = stap();
974 	S390_lowcore.cpu_nr = 0;
975 	S390_lowcore.spinlock_lockval = arch_spin_lockval(0);
976 	S390_lowcore.spinlock_index = 0;
977 }
978 
979 /*
980  * the frequency of the profiling timer can be changed
981  * by writing a multiplier value into /proc/profile.
982  *
983  * usually you want to run this on all CPUs ;)
984  */
985 int setup_profiling_timer(unsigned int multiplier)
986 {
987 	return 0;
988 }
989 
990 #ifdef CONFIG_HOTPLUG_CPU
991 static ssize_t cpu_configure_show(struct device *dev,
992 				  struct device_attribute *attr, char *buf)
993 {
994 	ssize_t count;
995 
996 	mutex_lock(&smp_cpu_state_mutex);
997 	count = sprintf(buf, "%d\n", pcpu_devices[dev->id].state);
998 	mutex_unlock(&smp_cpu_state_mutex);
999 	return count;
1000 }
1001 
1002 static ssize_t cpu_configure_store(struct device *dev,
1003 				   struct device_attribute *attr,
1004 				   const char *buf, size_t count)
1005 {
1006 	struct pcpu *pcpu;
1007 	int cpu, val, rc, i;
1008 	char delim;
1009 
1010 	if (sscanf(buf, "%d %c", &val, &delim) != 1)
1011 		return -EINVAL;
1012 	if (val != 0 && val != 1)
1013 		return -EINVAL;
1014 	get_online_cpus();
1015 	mutex_lock(&smp_cpu_state_mutex);
1016 	rc = -EBUSY;
1017 	/* disallow configuration changes of online cpus and cpu 0 */
1018 	cpu = dev->id;
1019 	cpu = smp_get_base_cpu(cpu);
1020 	if (cpu == 0)
1021 		goto out;
1022 	for (i = 0; i <= smp_cpu_mtid; i++)
1023 		if (cpu_online(cpu + i))
1024 			goto out;
1025 	pcpu = pcpu_devices + cpu;
1026 	rc = 0;
1027 	switch (val) {
1028 	case 0:
1029 		if (pcpu->state != CPU_STATE_CONFIGURED)
1030 			break;
1031 		rc = sclp_core_deconfigure(pcpu->address >> smp_cpu_mt_shift);
1032 		if (rc)
1033 			break;
1034 		for (i = 0; i <= smp_cpu_mtid; i++) {
1035 			if (cpu + i >= nr_cpu_ids || !cpu_present(cpu + i))
1036 				continue;
1037 			pcpu[i].state = CPU_STATE_STANDBY;
1038 			smp_cpu_set_polarization(cpu + i,
1039 						 POLARIZATION_UNKNOWN);
1040 		}
1041 		topology_expect_change();
1042 		break;
1043 	case 1:
1044 		if (pcpu->state != CPU_STATE_STANDBY)
1045 			break;
1046 		rc = sclp_core_configure(pcpu->address >> smp_cpu_mt_shift);
1047 		if (rc)
1048 			break;
1049 		for (i = 0; i <= smp_cpu_mtid; i++) {
1050 			if (cpu + i >= nr_cpu_ids || !cpu_present(cpu + i))
1051 				continue;
1052 			pcpu[i].state = CPU_STATE_CONFIGURED;
1053 			smp_cpu_set_polarization(cpu + i,
1054 						 POLARIZATION_UNKNOWN);
1055 		}
1056 		topology_expect_change();
1057 		break;
1058 	default:
1059 		break;
1060 	}
1061 out:
1062 	mutex_unlock(&smp_cpu_state_mutex);
1063 	put_online_cpus();
1064 	return rc ? rc : count;
1065 }
1066 static DEVICE_ATTR(configure, 0644, cpu_configure_show, cpu_configure_store);
1067 #endif /* CONFIG_HOTPLUG_CPU */
1068 
1069 static ssize_t show_cpu_address(struct device *dev,
1070 				struct device_attribute *attr, char *buf)
1071 {
1072 	return sprintf(buf, "%d\n", pcpu_devices[dev->id].address);
1073 }
1074 static DEVICE_ATTR(address, 0444, show_cpu_address, NULL);
1075 
1076 static struct attribute *cpu_common_attrs[] = {
1077 #ifdef CONFIG_HOTPLUG_CPU
1078 	&dev_attr_configure.attr,
1079 #endif
1080 	&dev_attr_address.attr,
1081 	NULL,
1082 };
1083 
1084 static struct attribute_group cpu_common_attr_group = {
1085 	.attrs = cpu_common_attrs,
1086 };
1087 
1088 static struct attribute *cpu_online_attrs[] = {
1089 	&dev_attr_idle_count.attr,
1090 	&dev_attr_idle_time_us.attr,
1091 	NULL,
1092 };
1093 
1094 static struct attribute_group cpu_online_attr_group = {
1095 	.attrs = cpu_online_attrs,
1096 };
1097 
1098 static int smp_cpu_online(unsigned int cpu)
1099 {
1100 	struct device *s = &per_cpu(cpu_device, cpu)->dev;
1101 
1102 	return sysfs_create_group(&s->kobj, &cpu_online_attr_group);
1103 }
1104 static int smp_cpu_pre_down(unsigned int cpu)
1105 {
1106 	struct device *s = &per_cpu(cpu_device, cpu)->dev;
1107 
1108 	sysfs_remove_group(&s->kobj, &cpu_online_attr_group);
1109 	return 0;
1110 }
1111 
1112 static int smp_add_present_cpu(int cpu)
1113 {
1114 	struct device *s;
1115 	struct cpu *c;
1116 	int rc;
1117 
1118 	c = kzalloc(sizeof(*c), GFP_KERNEL);
1119 	if (!c)
1120 		return -ENOMEM;
1121 	per_cpu(cpu_device, cpu) = c;
1122 	s = &c->dev;
1123 	c->hotpluggable = 1;
1124 	rc = register_cpu(c, cpu);
1125 	if (rc)
1126 		goto out;
1127 	rc = sysfs_create_group(&s->kobj, &cpu_common_attr_group);
1128 	if (rc)
1129 		goto out_cpu;
1130 	rc = topology_cpu_init(c);
1131 	if (rc)
1132 		goto out_topology;
1133 	return 0;
1134 
1135 out_topology:
1136 	sysfs_remove_group(&s->kobj, &cpu_common_attr_group);
1137 out_cpu:
1138 #ifdef CONFIG_HOTPLUG_CPU
1139 	unregister_cpu(c);
1140 #endif
1141 out:
1142 	return rc;
1143 }
1144 
1145 #ifdef CONFIG_HOTPLUG_CPU
1146 
1147 int __ref smp_rescan_cpus(void)
1148 {
1149 	struct sclp_core_info *info;
1150 	int nr;
1151 
1152 	info = kzalloc(sizeof(*info), GFP_KERNEL);
1153 	if (!info)
1154 		return -ENOMEM;
1155 	smp_get_core_info(info, 0);
1156 	get_online_cpus();
1157 	mutex_lock(&smp_cpu_state_mutex);
1158 	nr = __smp_rescan_cpus(info, 1);
1159 	mutex_unlock(&smp_cpu_state_mutex);
1160 	put_online_cpus();
1161 	kfree(info);
1162 	if (nr)
1163 		topology_schedule_update();
1164 	return 0;
1165 }
1166 
1167 static ssize_t __ref rescan_store(struct device *dev,
1168 				  struct device_attribute *attr,
1169 				  const char *buf,
1170 				  size_t count)
1171 {
1172 	int rc;
1173 
1174 	rc = lock_device_hotplug_sysfs();
1175 	if (rc)
1176 		return rc;
1177 	rc = smp_rescan_cpus();
1178 	unlock_device_hotplug();
1179 	return rc ? rc : count;
1180 }
1181 static DEVICE_ATTR_WO(rescan);
1182 #endif /* CONFIG_HOTPLUG_CPU */
1183 
1184 static int __init s390_smp_init(void)
1185 {
1186 	int cpu, rc = 0;
1187 
1188 #ifdef CONFIG_HOTPLUG_CPU
1189 	rc = device_create_file(cpu_subsys.dev_root, &dev_attr_rescan);
1190 	if (rc)
1191 		return rc;
1192 #endif
1193 	for_each_present_cpu(cpu) {
1194 		rc = smp_add_present_cpu(cpu);
1195 		if (rc)
1196 			goto out;
1197 	}
1198 
1199 	rc = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "s390/smp:online",
1200 			       smp_cpu_online, smp_cpu_pre_down);
1201 	rc = rc <= 0 ? rc : 0;
1202 out:
1203 	return rc;
1204 }
1205 subsys_initcall(s390_smp_init);
1206