1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * SMP related functions 4 * 5 * Copyright IBM Corp. 1999, 2012 6 * Author(s): Denis Joseph Barrow, 7 * Martin Schwidefsky <schwidefsky@de.ibm.com>, 8 * Heiko Carstens <heiko.carstens@de.ibm.com>, 9 * 10 * based on other smp stuff by 11 * (c) 1995 Alan Cox, CymruNET Ltd <alan@cymru.net> 12 * (c) 1998 Ingo Molnar 13 * 14 * The code outside of smp.c uses logical cpu numbers, only smp.c does 15 * the translation of logical to physical cpu ids. All new code that 16 * operates on physical cpu numbers needs to go into smp.c. 17 */ 18 19 #define KMSG_COMPONENT "cpu" 20 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt 21 22 #include <linux/workqueue.h> 23 #include <linux/memblock.h> 24 #include <linux/export.h> 25 #include <linux/init.h> 26 #include <linux/mm.h> 27 #include <linux/err.h> 28 #include <linux/spinlock.h> 29 #include <linux/kernel_stat.h> 30 #include <linux/delay.h> 31 #include <linux/interrupt.h> 32 #include <linux/irqflags.h> 33 #include <linux/cpu.h> 34 #include <linux/slab.h> 35 #include <linux/sched/hotplug.h> 36 #include <linux/sched/task_stack.h> 37 #include <linux/crash_dump.h> 38 #include <linux/kprobes.h> 39 #include <asm/asm-offsets.h> 40 #include <asm/diag.h> 41 #include <asm/switch_to.h> 42 #include <asm/facility.h> 43 #include <asm/ipl.h> 44 #include <asm/setup.h> 45 #include <asm/irq.h> 46 #include <asm/tlbflush.h> 47 #include <asm/vtimer.h> 48 #include <asm/lowcore.h> 49 #include <asm/sclp.h> 50 #include <asm/vdso.h> 51 #include <asm/debug.h> 52 #include <asm/os_info.h> 53 #include <asm/sigp.h> 54 #include <asm/idle.h> 55 #include <asm/nmi.h> 56 #include <asm/stacktrace.h> 57 #include <asm/topology.h> 58 #include "entry.h" 59 60 enum { 61 ec_schedule = 0, 62 ec_call_function_single, 63 ec_stop_cpu, 64 }; 65 66 enum { 67 CPU_STATE_STANDBY, 68 CPU_STATE_CONFIGURED, 69 }; 70 71 static DEFINE_PER_CPU(struct cpu *, cpu_device); 72 73 struct pcpu { 74 struct lowcore *lowcore; /* lowcore page(s) for the cpu */ 75 unsigned long ec_mask; /* bit mask for ec_xxx functions */ 76 unsigned long ec_clk; /* sigp timestamp for ec_xxx */ 77 signed char state; /* physical cpu state */ 78 signed char polarization; /* physical polarization */ 79 u16 address; /* physical cpu address */ 80 }; 81 82 static u8 boot_core_type; 83 static struct pcpu pcpu_devices[NR_CPUS]; 84 85 unsigned int smp_cpu_mt_shift; 86 EXPORT_SYMBOL(smp_cpu_mt_shift); 87 88 unsigned int smp_cpu_mtid; 89 EXPORT_SYMBOL(smp_cpu_mtid); 90 91 #ifdef CONFIG_CRASH_DUMP 92 __vector128 __initdata boot_cpu_vector_save_area[__NUM_VXRS]; 93 #endif 94 95 static unsigned int smp_max_threads __initdata = -1U; 96 97 static int __init early_nosmt(char *s) 98 { 99 smp_max_threads = 1; 100 return 0; 101 } 102 early_param("nosmt", early_nosmt); 103 104 static int __init early_smt(char *s) 105 { 106 get_option(&s, &smp_max_threads); 107 return 0; 108 } 109 early_param("smt", early_smt); 110 111 /* 112 * The smp_cpu_state_mutex must be held when changing the state or polarization 113 * member of a pcpu data structure within the pcpu_devices arreay. 114 */ 115 DEFINE_MUTEX(smp_cpu_state_mutex); 116 117 /* 118 * Signal processor helper functions. 119 */ 120 static inline int __pcpu_sigp_relax(u16 addr, u8 order, unsigned long parm) 121 { 122 int cc; 123 124 while (1) { 125 cc = __pcpu_sigp(addr, order, parm, NULL); 126 if (cc != SIGP_CC_BUSY) 127 return cc; 128 cpu_relax(); 129 } 130 } 131 132 static int pcpu_sigp_retry(struct pcpu *pcpu, u8 order, u32 parm) 133 { 134 int cc, retry; 135 136 for (retry = 0; ; retry++) { 137 cc = __pcpu_sigp(pcpu->address, order, parm, NULL); 138 if (cc != SIGP_CC_BUSY) 139 break; 140 if (retry >= 3) 141 udelay(10); 142 } 143 return cc; 144 } 145 146 static inline int pcpu_stopped(struct pcpu *pcpu) 147 { 148 u32 uninitialized_var(status); 149 150 if (__pcpu_sigp(pcpu->address, SIGP_SENSE, 151 0, &status) != SIGP_CC_STATUS_STORED) 152 return 0; 153 return !!(status & (SIGP_STATUS_CHECK_STOP|SIGP_STATUS_STOPPED)); 154 } 155 156 static inline int pcpu_running(struct pcpu *pcpu) 157 { 158 if (__pcpu_sigp(pcpu->address, SIGP_SENSE_RUNNING, 159 0, NULL) != SIGP_CC_STATUS_STORED) 160 return 1; 161 /* Status stored condition code is equivalent to cpu not running. */ 162 return 0; 163 } 164 165 /* 166 * Find struct pcpu by cpu address. 167 */ 168 static struct pcpu *pcpu_find_address(const struct cpumask *mask, u16 address) 169 { 170 int cpu; 171 172 for_each_cpu(cpu, mask) 173 if (pcpu_devices[cpu].address == address) 174 return pcpu_devices + cpu; 175 return NULL; 176 } 177 178 static void pcpu_ec_call(struct pcpu *pcpu, int ec_bit) 179 { 180 int order; 181 182 if (test_and_set_bit(ec_bit, &pcpu->ec_mask)) 183 return; 184 order = pcpu_running(pcpu) ? SIGP_EXTERNAL_CALL : SIGP_EMERGENCY_SIGNAL; 185 pcpu->ec_clk = get_tod_clock_fast(); 186 pcpu_sigp_retry(pcpu, order, 0); 187 } 188 189 static int pcpu_alloc_lowcore(struct pcpu *pcpu, int cpu) 190 { 191 unsigned long async_stack, nodat_stack; 192 struct lowcore *lc; 193 194 if (pcpu != &pcpu_devices[0]) { 195 pcpu->lowcore = (struct lowcore *) 196 __get_free_pages(GFP_KERNEL | GFP_DMA, LC_ORDER); 197 nodat_stack = __get_free_pages(GFP_KERNEL, THREAD_SIZE_ORDER); 198 if (!pcpu->lowcore || !nodat_stack) 199 goto out; 200 } else { 201 nodat_stack = pcpu->lowcore->nodat_stack - STACK_INIT_OFFSET; 202 } 203 async_stack = stack_alloc(); 204 if (!async_stack) 205 goto out; 206 lc = pcpu->lowcore; 207 memcpy(lc, &S390_lowcore, 512); 208 memset((char *) lc + 512, 0, sizeof(*lc) - 512); 209 lc->async_stack = async_stack + STACK_INIT_OFFSET; 210 lc->nodat_stack = nodat_stack + STACK_INIT_OFFSET; 211 lc->cpu_nr = cpu; 212 lc->spinlock_lockval = arch_spin_lockval(cpu); 213 lc->spinlock_index = 0; 214 lc->br_r1_trampoline = 0x07f1; /* br %r1 */ 215 if (nmi_alloc_per_cpu(lc)) 216 goto out_async; 217 if (vdso_alloc_per_cpu(lc)) 218 goto out_mcesa; 219 lowcore_ptr[cpu] = lc; 220 pcpu_sigp_retry(pcpu, SIGP_SET_PREFIX, (u32)(unsigned long) lc); 221 return 0; 222 223 out_mcesa: 224 nmi_free_per_cpu(lc); 225 out_async: 226 stack_free(async_stack); 227 out: 228 if (pcpu != &pcpu_devices[0]) { 229 free_pages(nodat_stack, THREAD_SIZE_ORDER); 230 free_pages((unsigned long) pcpu->lowcore, LC_ORDER); 231 } 232 return -ENOMEM; 233 } 234 235 static void pcpu_free_lowcore(struct pcpu *pcpu) 236 { 237 unsigned long async_stack, nodat_stack, lowcore; 238 239 nodat_stack = pcpu->lowcore->nodat_stack - STACK_INIT_OFFSET; 240 async_stack = pcpu->lowcore->async_stack - STACK_INIT_OFFSET; 241 lowcore = (unsigned long) pcpu->lowcore; 242 243 pcpu_sigp_retry(pcpu, SIGP_SET_PREFIX, 0); 244 lowcore_ptr[pcpu - pcpu_devices] = NULL; 245 vdso_free_per_cpu(pcpu->lowcore); 246 nmi_free_per_cpu(pcpu->lowcore); 247 stack_free(async_stack); 248 if (pcpu == &pcpu_devices[0]) 249 return; 250 free_pages(nodat_stack, THREAD_SIZE_ORDER); 251 free_pages(lowcore, LC_ORDER); 252 } 253 254 static void pcpu_prepare_secondary(struct pcpu *pcpu, int cpu) 255 { 256 struct lowcore *lc = pcpu->lowcore; 257 258 cpumask_set_cpu(cpu, &init_mm.context.cpu_attach_mask); 259 cpumask_set_cpu(cpu, mm_cpumask(&init_mm)); 260 lc->cpu_nr = cpu; 261 lc->spinlock_lockval = arch_spin_lockval(cpu); 262 lc->spinlock_index = 0; 263 lc->percpu_offset = __per_cpu_offset[cpu]; 264 lc->kernel_asce = S390_lowcore.kernel_asce; 265 lc->machine_flags = S390_lowcore.machine_flags; 266 lc->user_timer = lc->system_timer = 267 lc->steal_timer = lc->avg_steal_timer = 0; 268 __ctl_store(lc->cregs_save_area, 0, 15); 269 save_access_regs((unsigned int *) lc->access_regs_save_area); 270 memcpy(lc->stfle_fac_list, S390_lowcore.stfle_fac_list, 271 sizeof(lc->stfle_fac_list)); 272 memcpy(lc->alt_stfle_fac_list, S390_lowcore.alt_stfle_fac_list, 273 sizeof(lc->alt_stfle_fac_list)); 274 arch_spin_lock_setup(cpu); 275 } 276 277 static void pcpu_attach_task(struct pcpu *pcpu, struct task_struct *tsk) 278 { 279 struct lowcore *lc = pcpu->lowcore; 280 281 lc->kernel_stack = (unsigned long) task_stack_page(tsk) 282 + THREAD_SIZE - STACK_FRAME_OVERHEAD - sizeof(struct pt_regs); 283 lc->current_task = (unsigned long) tsk; 284 lc->lpp = LPP_MAGIC; 285 lc->current_pid = tsk->pid; 286 lc->user_timer = tsk->thread.user_timer; 287 lc->guest_timer = tsk->thread.guest_timer; 288 lc->system_timer = tsk->thread.system_timer; 289 lc->hardirq_timer = tsk->thread.hardirq_timer; 290 lc->softirq_timer = tsk->thread.softirq_timer; 291 lc->steal_timer = 0; 292 } 293 294 static void pcpu_start_fn(struct pcpu *pcpu, void (*func)(void *), void *data) 295 { 296 struct lowcore *lc = pcpu->lowcore; 297 298 lc->restart_stack = lc->nodat_stack; 299 lc->restart_fn = (unsigned long) func; 300 lc->restart_data = (unsigned long) data; 301 lc->restart_source = -1UL; 302 pcpu_sigp_retry(pcpu, SIGP_RESTART, 0); 303 } 304 305 /* 306 * Call function via PSW restart on pcpu and stop the current cpu. 307 */ 308 static void __pcpu_delegate(void (*func)(void*), void *data) 309 { 310 func(data); /* should not return */ 311 } 312 313 static void __no_sanitize_address pcpu_delegate(struct pcpu *pcpu, 314 void (*func)(void *), 315 void *data, unsigned long stack) 316 { 317 struct lowcore *lc = lowcore_ptr[pcpu - pcpu_devices]; 318 unsigned long source_cpu = stap(); 319 320 __load_psw_mask(PSW_KERNEL_BITS | PSW_MASK_DAT); 321 if (pcpu->address == source_cpu) 322 CALL_ON_STACK(__pcpu_delegate, stack, 2, func, data); 323 /* Stop target cpu (if func returns this stops the current cpu). */ 324 pcpu_sigp_retry(pcpu, SIGP_STOP, 0); 325 /* Restart func on the target cpu and stop the current cpu. */ 326 mem_assign_absolute(lc->restart_stack, stack); 327 mem_assign_absolute(lc->restart_fn, (unsigned long) func); 328 mem_assign_absolute(lc->restart_data, (unsigned long) data); 329 mem_assign_absolute(lc->restart_source, source_cpu); 330 __bpon(); 331 asm volatile( 332 "0: sigp 0,%0,%2 # sigp restart to target cpu\n" 333 " brc 2,0b # busy, try again\n" 334 "1: sigp 0,%1,%3 # sigp stop to current cpu\n" 335 " brc 2,1b # busy, try again\n" 336 : : "d" (pcpu->address), "d" (source_cpu), 337 "K" (SIGP_RESTART), "K" (SIGP_STOP) 338 : "0", "1", "cc"); 339 for (;;) ; 340 } 341 342 /* 343 * Enable additional logical cpus for multi-threading. 344 */ 345 static int pcpu_set_smt(unsigned int mtid) 346 { 347 int cc; 348 349 if (smp_cpu_mtid == mtid) 350 return 0; 351 cc = __pcpu_sigp(0, SIGP_SET_MULTI_THREADING, mtid, NULL); 352 if (cc == 0) { 353 smp_cpu_mtid = mtid; 354 smp_cpu_mt_shift = 0; 355 while (smp_cpu_mtid >= (1U << smp_cpu_mt_shift)) 356 smp_cpu_mt_shift++; 357 pcpu_devices[0].address = stap(); 358 } 359 return cc; 360 } 361 362 /* 363 * Call function on an online CPU. 364 */ 365 void smp_call_online_cpu(void (*func)(void *), void *data) 366 { 367 struct pcpu *pcpu; 368 369 /* Use the current cpu if it is online. */ 370 pcpu = pcpu_find_address(cpu_online_mask, stap()); 371 if (!pcpu) 372 /* Use the first online cpu. */ 373 pcpu = pcpu_devices + cpumask_first(cpu_online_mask); 374 pcpu_delegate(pcpu, func, data, (unsigned long) restart_stack); 375 } 376 377 /* 378 * Call function on the ipl CPU. 379 */ 380 void smp_call_ipl_cpu(void (*func)(void *), void *data) 381 { 382 struct lowcore *lc = pcpu_devices->lowcore; 383 384 if (pcpu_devices[0].address == stap()) 385 lc = &S390_lowcore; 386 387 pcpu_delegate(&pcpu_devices[0], func, data, 388 lc->nodat_stack); 389 } 390 391 int smp_find_processor_id(u16 address) 392 { 393 int cpu; 394 395 for_each_present_cpu(cpu) 396 if (pcpu_devices[cpu].address == address) 397 return cpu; 398 return -1; 399 } 400 401 bool arch_vcpu_is_preempted(int cpu) 402 { 403 if (test_cpu_flag_of(CIF_ENABLED_WAIT, cpu)) 404 return false; 405 if (pcpu_running(pcpu_devices + cpu)) 406 return false; 407 return true; 408 } 409 EXPORT_SYMBOL(arch_vcpu_is_preempted); 410 411 void smp_yield_cpu(int cpu) 412 { 413 if (MACHINE_HAS_DIAG9C) { 414 diag_stat_inc_norecursion(DIAG_STAT_X09C); 415 asm volatile("diag %0,0,0x9c" 416 : : "d" (pcpu_devices[cpu].address)); 417 } else if (MACHINE_HAS_DIAG44 && !smp_cpu_mtid) { 418 diag_stat_inc_norecursion(DIAG_STAT_X044); 419 asm volatile("diag 0,0,0x44"); 420 } 421 } 422 423 /* 424 * Send cpus emergency shutdown signal. This gives the cpus the 425 * opportunity to complete outstanding interrupts. 426 */ 427 void notrace smp_emergency_stop(void) 428 { 429 cpumask_t cpumask; 430 u64 end; 431 int cpu; 432 433 cpumask_copy(&cpumask, cpu_online_mask); 434 cpumask_clear_cpu(smp_processor_id(), &cpumask); 435 436 end = get_tod_clock() + (1000000UL << 12); 437 for_each_cpu(cpu, &cpumask) { 438 struct pcpu *pcpu = pcpu_devices + cpu; 439 set_bit(ec_stop_cpu, &pcpu->ec_mask); 440 while (__pcpu_sigp(pcpu->address, SIGP_EMERGENCY_SIGNAL, 441 0, NULL) == SIGP_CC_BUSY && 442 get_tod_clock() < end) 443 cpu_relax(); 444 } 445 while (get_tod_clock() < end) { 446 for_each_cpu(cpu, &cpumask) 447 if (pcpu_stopped(pcpu_devices + cpu)) 448 cpumask_clear_cpu(cpu, &cpumask); 449 if (cpumask_empty(&cpumask)) 450 break; 451 cpu_relax(); 452 } 453 } 454 NOKPROBE_SYMBOL(smp_emergency_stop); 455 456 /* 457 * Stop all cpus but the current one. 458 */ 459 void smp_send_stop(void) 460 { 461 int cpu; 462 463 /* Disable all interrupts/machine checks */ 464 __load_psw_mask(PSW_KERNEL_BITS | PSW_MASK_DAT); 465 trace_hardirqs_off(); 466 467 debug_set_critical(); 468 469 if (oops_in_progress) 470 smp_emergency_stop(); 471 472 /* stop all processors */ 473 for_each_online_cpu(cpu) { 474 if (cpu == smp_processor_id()) 475 continue; 476 pcpu_sigp_retry(pcpu_devices + cpu, SIGP_STOP, 0); 477 while (!pcpu_stopped(pcpu_devices + cpu)) 478 cpu_relax(); 479 } 480 } 481 482 /* 483 * This is the main routine where commands issued by other 484 * cpus are handled. 485 */ 486 static void smp_handle_ext_call(void) 487 { 488 unsigned long bits; 489 490 /* handle bit signal external calls */ 491 bits = xchg(&pcpu_devices[smp_processor_id()].ec_mask, 0); 492 if (test_bit(ec_stop_cpu, &bits)) 493 smp_stop_cpu(); 494 if (test_bit(ec_schedule, &bits)) 495 scheduler_ipi(); 496 if (test_bit(ec_call_function_single, &bits)) 497 generic_smp_call_function_single_interrupt(); 498 } 499 500 static void do_ext_call_interrupt(struct ext_code ext_code, 501 unsigned int param32, unsigned long param64) 502 { 503 inc_irq_stat(ext_code.code == 0x1202 ? IRQEXT_EXC : IRQEXT_EMS); 504 smp_handle_ext_call(); 505 } 506 507 void arch_send_call_function_ipi_mask(const struct cpumask *mask) 508 { 509 int cpu; 510 511 for_each_cpu(cpu, mask) 512 pcpu_ec_call(pcpu_devices + cpu, ec_call_function_single); 513 } 514 515 void arch_send_call_function_single_ipi(int cpu) 516 { 517 pcpu_ec_call(pcpu_devices + cpu, ec_call_function_single); 518 } 519 520 /* 521 * this function sends a 'reschedule' IPI to another CPU. 522 * it goes straight through and wastes no time serializing 523 * anything. Worst case is that we lose a reschedule ... 524 */ 525 void smp_send_reschedule(int cpu) 526 { 527 pcpu_ec_call(pcpu_devices + cpu, ec_schedule); 528 } 529 530 /* 531 * parameter area for the set/clear control bit callbacks 532 */ 533 struct ec_creg_mask_parms { 534 unsigned long orval; 535 unsigned long andval; 536 int cr; 537 }; 538 539 /* 540 * callback for setting/clearing control bits 541 */ 542 static void smp_ctl_bit_callback(void *info) 543 { 544 struct ec_creg_mask_parms *pp = info; 545 unsigned long cregs[16]; 546 547 __ctl_store(cregs, 0, 15); 548 cregs[pp->cr] = (cregs[pp->cr] & pp->andval) | pp->orval; 549 __ctl_load(cregs, 0, 15); 550 } 551 552 /* 553 * Set a bit in a control register of all cpus 554 */ 555 void smp_ctl_set_bit(int cr, int bit) 556 { 557 struct ec_creg_mask_parms parms = { 1UL << bit, -1UL, cr }; 558 559 on_each_cpu(smp_ctl_bit_callback, &parms, 1); 560 } 561 EXPORT_SYMBOL(smp_ctl_set_bit); 562 563 /* 564 * Clear a bit in a control register of all cpus 565 */ 566 void smp_ctl_clear_bit(int cr, int bit) 567 { 568 struct ec_creg_mask_parms parms = { 0, ~(1UL << bit), cr }; 569 570 on_each_cpu(smp_ctl_bit_callback, &parms, 1); 571 } 572 EXPORT_SYMBOL(smp_ctl_clear_bit); 573 574 #ifdef CONFIG_CRASH_DUMP 575 576 int smp_store_status(int cpu) 577 { 578 struct pcpu *pcpu = pcpu_devices + cpu; 579 unsigned long pa; 580 581 pa = __pa(&pcpu->lowcore->floating_pt_save_area); 582 if (__pcpu_sigp_relax(pcpu->address, SIGP_STORE_STATUS_AT_ADDRESS, 583 pa) != SIGP_CC_ORDER_CODE_ACCEPTED) 584 return -EIO; 585 if (!MACHINE_HAS_VX && !MACHINE_HAS_GS) 586 return 0; 587 pa = __pa(pcpu->lowcore->mcesad & MCESA_ORIGIN_MASK); 588 if (MACHINE_HAS_GS) 589 pa |= pcpu->lowcore->mcesad & MCESA_LC_MASK; 590 if (__pcpu_sigp_relax(pcpu->address, SIGP_STORE_ADDITIONAL_STATUS, 591 pa) != SIGP_CC_ORDER_CODE_ACCEPTED) 592 return -EIO; 593 return 0; 594 } 595 596 /* 597 * Collect CPU state of the previous, crashed system. 598 * There are four cases: 599 * 1) standard zfcp dump 600 * condition: OLDMEM_BASE == NULL && ipl_info.type == IPL_TYPE_FCP_DUMP 601 * The state for all CPUs except the boot CPU needs to be collected 602 * with sigp stop-and-store-status. The boot CPU state is located in 603 * the absolute lowcore of the memory stored in the HSA. The zcore code 604 * will copy the boot CPU state from the HSA. 605 * 2) stand-alone kdump for SCSI (zfcp dump with swapped memory) 606 * condition: OLDMEM_BASE != NULL && ipl_info.type == IPL_TYPE_FCP_DUMP 607 * The state for all CPUs except the boot CPU needs to be collected 608 * with sigp stop-and-store-status. The firmware or the boot-loader 609 * stored the registers of the boot CPU in the absolute lowcore in the 610 * memory of the old system. 611 * 3) kdump and the old kernel did not store the CPU state, 612 * or stand-alone kdump for DASD 613 * condition: OLDMEM_BASE != NULL && !is_kdump_kernel() 614 * The state for all CPUs except the boot CPU needs to be collected 615 * with sigp stop-and-store-status. The kexec code or the boot-loader 616 * stored the registers of the boot CPU in the memory of the old system. 617 * 4) kdump and the old kernel stored the CPU state 618 * condition: OLDMEM_BASE != NULL && is_kdump_kernel() 619 * This case does not exist for s390 anymore, setup_arch explicitly 620 * deactivates the elfcorehdr= kernel parameter 621 */ 622 static __init void smp_save_cpu_vxrs(struct save_area *sa, u16 addr, 623 bool is_boot_cpu, unsigned long page) 624 { 625 __vector128 *vxrs = (__vector128 *) page; 626 627 if (is_boot_cpu) 628 vxrs = boot_cpu_vector_save_area; 629 else 630 __pcpu_sigp_relax(addr, SIGP_STORE_ADDITIONAL_STATUS, page); 631 save_area_add_vxrs(sa, vxrs); 632 } 633 634 static __init void smp_save_cpu_regs(struct save_area *sa, u16 addr, 635 bool is_boot_cpu, unsigned long page) 636 { 637 void *regs = (void *) page; 638 639 if (is_boot_cpu) 640 copy_oldmem_kernel(regs, (void *) __LC_FPREGS_SAVE_AREA, 512); 641 else 642 __pcpu_sigp_relax(addr, SIGP_STORE_STATUS_AT_ADDRESS, page); 643 save_area_add_regs(sa, regs); 644 } 645 646 void __init smp_save_dump_cpus(void) 647 { 648 int addr, boot_cpu_addr, max_cpu_addr; 649 struct save_area *sa; 650 unsigned long page; 651 bool is_boot_cpu; 652 653 if (!(OLDMEM_BASE || ipl_info.type == IPL_TYPE_FCP_DUMP)) 654 /* No previous system present, normal boot. */ 655 return; 656 /* Allocate a page as dumping area for the store status sigps */ 657 page = memblock_phys_alloc_range(PAGE_SIZE, PAGE_SIZE, 0, 1UL << 31); 658 if (!page) 659 panic("ERROR: Failed to allocate %lx bytes below %lx\n", 660 PAGE_SIZE, 1UL << 31); 661 662 /* Set multi-threading state to the previous system. */ 663 pcpu_set_smt(sclp.mtid_prev); 664 boot_cpu_addr = stap(); 665 max_cpu_addr = SCLP_MAX_CORES << sclp.mtid_prev; 666 for (addr = 0; addr <= max_cpu_addr; addr++) { 667 if (__pcpu_sigp_relax(addr, SIGP_SENSE, 0) == 668 SIGP_CC_NOT_OPERATIONAL) 669 continue; 670 is_boot_cpu = (addr == boot_cpu_addr); 671 /* Allocate save area */ 672 sa = save_area_alloc(is_boot_cpu); 673 if (!sa) 674 panic("could not allocate memory for save area\n"); 675 if (MACHINE_HAS_VX) 676 /* Get the vector registers */ 677 smp_save_cpu_vxrs(sa, addr, is_boot_cpu, page); 678 /* 679 * For a zfcp dump OLDMEM_BASE == NULL and the registers 680 * of the boot CPU are stored in the HSA. To retrieve 681 * these registers an SCLP request is required which is 682 * done by drivers/s390/char/zcore.c:init_cpu_info() 683 */ 684 if (!is_boot_cpu || OLDMEM_BASE) 685 /* Get the CPU registers */ 686 smp_save_cpu_regs(sa, addr, is_boot_cpu, page); 687 } 688 memblock_free(page, PAGE_SIZE); 689 diag_dma_ops.diag308_reset(); 690 pcpu_set_smt(0); 691 } 692 #endif /* CONFIG_CRASH_DUMP */ 693 694 void smp_cpu_set_polarization(int cpu, int val) 695 { 696 pcpu_devices[cpu].polarization = val; 697 } 698 699 int smp_cpu_get_polarization(int cpu) 700 { 701 return pcpu_devices[cpu].polarization; 702 } 703 704 static void __ref smp_get_core_info(struct sclp_core_info *info, int early) 705 { 706 static int use_sigp_detection; 707 int address; 708 709 if (use_sigp_detection || sclp_get_core_info(info, early)) { 710 use_sigp_detection = 1; 711 for (address = 0; 712 address < (SCLP_MAX_CORES << smp_cpu_mt_shift); 713 address += (1U << smp_cpu_mt_shift)) { 714 if (__pcpu_sigp_relax(address, SIGP_SENSE, 0) == 715 SIGP_CC_NOT_OPERATIONAL) 716 continue; 717 info->core[info->configured].core_id = 718 address >> smp_cpu_mt_shift; 719 info->configured++; 720 } 721 info->combined = info->configured; 722 } 723 } 724 725 static int smp_add_present_cpu(int cpu); 726 727 static int __smp_rescan_cpus(struct sclp_core_info *info, int sysfs_add) 728 { 729 struct pcpu *pcpu; 730 cpumask_t avail; 731 int cpu, nr, i, j; 732 u16 address; 733 734 nr = 0; 735 cpumask_xor(&avail, cpu_possible_mask, cpu_present_mask); 736 cpu = cpumask_first(&avail); 737 for (i = 0; (i < info->combined) && (cpu < nr_cpu_ids); i++) { 738 if (sclp.has_core_type && info->core[i].type != boot_core_type) 739 continue; 740 address = info->core[i].core_id << smp_cpu_mt_shift; 741 for (j = 0; j <= smp_cpu_mtid; j++) { 742 if (pcpu_find_address(cpu_present_mask, address + j)) 743 continue; 744 pcpu = pcpu_devices + cpu; 745 pcpu->address = address + j; 746 pcpu->state = 747 (cpu >= info->configured*(smp_cpu_mtid + 1)) ? 748 CPU_STATE_STANDBY : CPU_STATE_CONFIGURED; 749 smp_cpu_set_polarization(cpu, POLARIZATION_UNKNOWN); 750 set_cpu_present(cpu, true); 751 if (sysfs_add && smp_add_present_cpu(cpu) != 0) 752 set_cpu_present(cpu, false); 753 else 754 nr++; 755 cpu = cpumask_next(cpu, &avail); 756 if (cpu >= nr_cpu_ids) 757 break; 758 } 759 } 760 return nr; 761 } 762 763 void __init smp_detect_cpus(void) 764 { 765 unsigned int cpu, mtid, c_cpus, s_cpus; 766 struct sclp_core_info *info; 767 u16 address; 768 769 /* Get CPU information */ 770 info = memblock_alloc(sizeof(*info), 8); 771 if (!info) 772 panic("%s: Failed to allocate %zu bytes align=0x%x\n", 773 __func__, sizeof(*info), 8); 774 smp_get_core_info(info, 1); 775 /* Find boot CPU type */ 776 if (sclp.has_core_type) { 777 address = stap(); 778 for (cpu = 0; cpu < info->combined; cpu++) 779 if (info->core[cpu].core_id == address) { 780 /* The boot cpu dictates the cpu type. */ 781 boot_core_type = info->core[cpu].type; 782 break; 783 } 784 if (cpu >= info->combined) 785 panic("Could not find boot CPU type"); 786 } 787 788 /* Set multi-threading state for the current system */ 789 mtid = boot_core_type ? sclp.mtid : sclp.mtid_cp; 790 mtid = (mtid < smp_max_threads) ? mtid : smp_max_threads - 1; 791 pcpu_set_smt(mtid); 792 793 /* Print number of CPUs */ 794 c_cpus = s_cpus = 0; 795 for (cpu = 0; cpu < info->combined; cpu++) { 796 if (sclp.has_core_type && 797 info->core[cpu].type != boot_core_type) 798 continue; 799 if (cpu < info->configured) 800 c_cpus += smp_cpu_mtid + 1; 801 else 802 s_cpus += smp_cpu_mtid + 1; 803 } 804 pr_info("%d configured CPUs, %d standby CPUs\n", c_cpus, s_cpus); 805 806 /* Add CPUs present at boot */ 807 get_online_cpus(); 808 __smp_rescan_cpus(info, 0); 809 put_online_cpus(); 810 memblock_free_early((unsigned long)info, sizeof(*info)); 811 } 812 813 static void smp_init_secondary(void) 814 { 815 int cpu = smp_processor_id(); 816 817 S390_lowcore.last_update_clock = get_tod_clock(); 818 restore_access_regs(S390_lowcore.access_regs_save_area); 819 cpu_init(); 820 preempt_disable(); 821 init_cpu_timer(); 822 vtime_init(); 823 pfault_init(); 824 notify_cpu_starting(smp_processor_id()); 825 if (topology_cpu_dedicated(cpu)) 826 set_cpu_flag(CIF_DEDICATED_CPU); 827 else 828 clear_cpu_flag(CIF_DEDICATED_CPU); 829 set_cpu_online(smp_processor_id(), true); 830 inc_irq_stat(CPU_RST); 831 local_irq_enable(); 832 cpu_startup_entry(CPUHP_AP_ONLINE_IDLE); 833 } 834 835 /* 836 * Activate a secondary processor. 837 */ 838 static void __no_sanitize_address smp_start_secondary(void *cpuvoid) 839 { 840 S390_lowcore.restart_stack = (unsigned long) restart_stack; 841 S390_lowcore.restart_fn = (unsigned long) do_restart; 842 S390_lowcore.restart_data = 0; 843 S390_lowcore.restart_source = -1UL; 844 __ctl_load(S390_lowcore.cregs_save_area, 0, 15); 845 __load_psw_mask(PSW_KERNEL_BITS | PSW_MASK_DAT); 846 CALL_ON_STACK(smp_init_secondary, S390_lowcore.kernel_stack, 0); 847 } 848 849 /* Upping and downing of CPUs */ 850 int __cpu_up(unsigned int cpu, struct task_struct *tidle) 851 { 852 struct pcpu *pcpu; 853 int base, i, rc; 854 855 pcpu = pcpu_devices + cpu; 856 if (pcpu->state != CPU_STATE_CONFIGURED) 857 return -EIO; 858 base = smp_get_base_cpu(cpu); 859 for (i = 0; i <= smp_cpu_mtid; i++) { 860 if (base + i < nr_cpu_ids) 861 if (cpu_online(base + i)) 862 break; 863 } 864 /* 865 * If this is the first CPU of the core to get online 866 * do an initial CPU reset. 867 */ 868 if (i > smp_cpu_mtid && 869 pcpu_sigp_retry(pcpu_devices + base, SIGP_INITIAL_CPU_RESET, 0) != 870 SIGP_CC_ORDER_CODE_ACCEPTED) 871 return -EIO; 872 873 rc = pcpu_alloc_lowcore(pcpu, cpu); 874 if (rc) 875 return rc; 876 pcpu_prepare_secondary(pcpu, cpu); 877 pcpu_attach_task(pcpu, tidle); 878 pcpu_start_fn(pcpu, smp_start_secondary, NULL); 879 /* Wait until cpu puts itself in the online & active maps */ 880 while (!cpu_online(cpu)) 881 cpu_relax(); 882 return 0; 883 } 884 885 static unsigned int setup_possible_cpus __initdata; 886 887 static int __init _setup_possible_cpus(char *s) 888 { 889 get_option(&s, &setup_possible_cpus); 890 return 0; 891 } 892 early_param("possible_cpus", _setup_possible_cpus); 893 894 int __cpu_disable(void) 895 { 896 unsigned long cregs[16]; 897 898 /* Handle possible pending IPIs */ 899 smp_handle_ext_call(); 900 set_cpu_online(smp_processor_id(), false); 901 /* Disable pseudo page faults on this cpu. */ 902 pfault_fini(); 903 /* Disable interrupt sources via control register. */ 904 __ctl_store(cregs, 0, 15); 905 cregs[0] &= ~0x0000ee70UL; /* disable all external interrupts */ 906 cregs[6] &= ~0xff000000UL; /* disable all I/O interrupts */ 907 cregs[14] &= ~0x1f000000UL; /* disable most machine checks */ 908 __ctl_load(cregs, 0, 15); 909 clear_cpu_flag(CIF_NOHZ_DELAY); 910 return 0; 911 } 912 913 void __cpu_die(unsigned int cpu) 914 { 915 struct pcpu *pcpu; 916 917 /* Wait until target cpu is down */ 918 pcpu = pcpu_devices + cpu; 919 while (!pcpu_stopped(pcpu)) 920 cpu_relax(); 921 pcpu_free_lowcore(pcpu); 922 cpumask_clear_cpu(cpu, mm_cpumask(&init_mm)); 923 cpumask_clear_cpu(cpu, &init_mm.context.cpu_attach_mask); 924 } 925 926 void __noreturn cpu_die(void) 927 { 928 idle_task_exit(); 929 __bpon(); 930 pcpu_sigp_retry(pcpu_devices + smp_processor_id(), SIGP_STOP, 0); 931 for (;;) ; 932 } 933 934 void __init smp_fill_possible_mask(void) 935 { 936 unsigned int possible, sclp_max, cpu; 937 938 sclp_max = max(sclp.mtid, sclp.mtid_cp) + 1; 939 sclp_max = min(smp_max_threads, sclp_max); 940 sclp_max = (sclp.max_cores * sclp_max) ?: nr_cpu_ids; 941 possible = setup_possible_cpus ?: nr_cpu_ids; 942 possible = min(possible, sclp_max); 943 for (cpu = 0; cpu < possible && cpu < nr_cpu_ids; cpu++) 944 set_cpu_possible(cpu, true); 945 } 946 947 void __init smp_prepare_cpus(unsigned int max_cpus) 948 { 949 /* request the 0x1201 emergency signal external interrupt */ 950 if (register_external_irq(EXT_IRQ_EMERGENCY_SIG, do_ext_call_interrupt)) 951 panic("Couldn't request external interrupt 0x1201"); 952 /* request the 0x1202 external call external interrupt */ 953 if (register_external_irq(EXT_IRQ_EXTERNAL_CALL, do_ext_call_interrupt)) 954 panic("Couldn't request external interrupt 0x1202"); 955 } 956 957 void __init smp_prepare_boot_cpu(void) 958 { 959 struct pcpu *pcpu = pcpu_devices; 960 961 WARN_ON(!cpu_present(0) || !cpu_online(0)); 962 pcpu->state = CPU_STATE_CONFIGURED; 963 pcpu->lowcore = (struct lowcore *)(unsigned long) store_prefix(); 964 S390_lowcore.percpu_offset = __per_cpu_offset[0]; 965 smp_cpu_set_polarization(0, POLARIZATION_UNKNOWN); 966 } 967 968 void __init smp_cpus_done(unsigned int max_cpus) 969 { 970 } 971 972 void __init smp_setup_processor_id(void) 973 { 974 pcpu_devices[0].address = stap(); 975 S390_lowcore.cpu_nr = 0; 976 S390_lowcore.spinlock_lockval = arch_spin_lockval(0); 977 S390_lowcore.spinlock_index = 0; 978 } 979 980 /* 981 * the frequency of the profiling timer can be changed 982 * by writing a multiplier value into /proc/profile. 983 * 984 * usually you want to run this on all CPUs ;) 985 */ 986 int setup_profiling_timer(unsigned int multiplier) 987 { 988 return 0; 989 } 990 991 static ssize_t cpu_configure_show(struct device *dev, 992 struct device_attribute *attr, char *buf) 993 { 994 ssize_t count; 995 996 mutex_lock(&smp_cpu_state_mutex); 997 count = sprintf(buf, "%d\n", pcpu_devices[dev->id].state); 998 mutex_unlock(&smp_cpu_state_mutex); 999 return count; 1000 } 1001 1002 static ssize_t cpu_configure_store(struct device *dev, 1003 struct device_attribute *attr, 1004 const char *buf, size_t count) 1005 { 1006 struct pcpu *pcpu; 1007 int cpu, val, rc, i; 1008 char delim; 1009 1010 if (sscanf(buf, "%d %c", &val, &delim) != 1) 1011 return -EINVAL; 1012 if (val != 0 && val != 1) 1013 return -EINVAL; 1014 get_online_cpus(); 1015 mutex_lock(&smp_cpu_state_mutex); 1016 rc = -EBUSY; 1017 /* disallow configuration changes of online cpus and cpu 0 */ 1018 cpu = dev->id; 1019 cpu = smp_get_base_cpu(cpu); 1020 if (cpu == 0) 1021 goto out; 1022 for (i = 0; i <= smp_cpu_mtid; i++) 1023 if (cpu_online(cpu + i)) 1024 goto out; 1025 pcpu = pcpu_devices + cpu; 1026 rc = 0; 1027 switch (val) { 1028 case 0: 1029 if (pcpu->state != CPU_STATE_CONFIGURED) 1030 break; 1031 rc = sclp_core_deconfigure(pcpu->address >> smp_cpu_mt_shift); 1032 if (rc) 1033 break; 1034 for (i = 0; i <= smp_cpu_mtid; i++) { 1035 if (cpu + i >= nr_cpu_ids || !cpu_present(cpu + i)) 1036 continue; 1037 pcpu[i].state = CPU_STATE_STANDBY; 1038 smp_cpu_set_polarization(cpu + i, 1039 POLARIZATION_UNKNOWN); 1040 } 1041 topology_expect_change(); 1042 break; 1043 case 1: 1044 if (pcpu->state != CPU_STATE_STANDBY) 1045 break; 1046 rc = sclp_core_configure(pcpu->address >> smp_cpu_mt_shift); 1047 if (rc) 1048 break; 1049 for (i = 0; i <= smp_cpu_mtid; i++) { 1050 if (cpu + i >= nr_cpu_ids || !cpu_present(cpu + i)) 1051 continue; 1052 pcpu[i].state = CPU_STATE_CONFIGURED; 1053 smp_cpu_set_polarization(cpu + i, 1054 POLARIZATION_UNKNOWN); 1055 } 1056 topology_expect_change(); 1057 break; 1058 default: 1059 break; 1060 } 1061 out: 1062 mutex_unlock(&smp_cpu_state_mutex); 1063 put_online_cpus(); 1064 return rc ? rc : count; 1065 } 1066 static DEVICE_ATTR(configure, 0644, cpu_configure_show, cpu_configure_store); 1067 1068 static ssize_t show_cpu_address(struct device *dev, 1069 struct device_attribute *attr, char *buf) 1070 { 1071 return sprintf(buf, "%d\n", pcpu_devices[dev->id].address); 1072 } 1073 static DEVICE_ATTR(address, 0444, show_cpu_address, NULL); 1074 1075 static struct attribute *cpu_common_attrs[] = { 1076 &dev_attr_configure.attr, 1077 &dev_attr_address.attr, 1078 NULL, 1079 }; 1080 1081 static struct attribute_group cpu_common_attr_group = { 1082 .attrs = cpu_common_attrs, 1083 }; 1084 1085 static struct attribute *cpu_online_attrs[] = { 1086 &dev_attr_idle_count.attr, 1087 &dev_attr_idle_time_us.attr, 1088 NULL, 1089 }; 1090 1091 static struct attribute_group cpu_online_attr_group = { 1092 .attrs = cpu_online_attrs, 1093 }; 1094 1095 static int smp_cpu_online(unsigned int cpu) 1096 { 1097 struct device *s = &per_cpu(cpu_device, cpu)->dev; 1098 1099 return sysfs_create_group(&s->kobj, &cpu_online_attr_group); 1100 } 1101 static int smp_cpu_pre_down(unsigned int cpu) 1102 { 1103 struct device *s = &per_cpu(cpu_device, cpu)->dev; 1104 1105 sysfs_remove_group(&s->kobj, &cpu_online_attr_group); 1106 return 0; 1107 } 1108 1109 static int smp_add_present_cpu(int cpu) 1110 { 1111 struct device *s; 1112 struct cpu *c; 1113 int rc; 1114 1115 c = kzalloc(sizeof(*c), GFP_KERNEL); 1116 if (!c) 1117 return -ENOMEM; 1118 per_cpu(cpu_device, cpu) = c; 1119 s = &c->dev; 1120 c->hotpluggable = 1; 1121 rc = register_cpu(c, cpu); 1122 if (rc) 1123 goto out; 1124 rc = sysfs_create_group(&s->kobj, &cpu_common_attr_group); 1125 if (rc) 1126 goto out_cpu; 1127 rc = topology_cpu_init(c); 1128 if (rc) 1129 goto out_topology; 1130 return 0; 1131 1132 out_topology: 1133 sysfs_remove_group(&s->kobj, &cpu_common_attr_group); 1134 out_cpu: 1135 unregister_cpu(c); 1136 out: 1137 return rc; 1138 } 1139 1140 int __ref smp_rescan_cpus(void) 1141 { 1142 struct sclp_core_info *info; 1143 int nr; 1144 1145 info = kzalloc(sizeof(*info), GFP_KERNEL); 1146 if (!info) 1147 return -ENOMEM; 1148 smp_get_core_info(info, 0); 1149 get_online_cpus(); 1150 mutex_lock(&smp_cpu_state_mutex); 1151 nr = __smp_rescan_cpus(info, 1); 1152 mutex_unlock(&smp_cpu_state_mutex); 1153 put_online_cpus(); 1154 kfree(info); 1155 if (nr) 1156 topology_schedule_update(); 1157 return 0; 1158 } 1159 1160 static ssize_t __ref rescan_store(struct device *dev, 1161 struct device_attribute *attr, 1162 const char *buf, 1163 size_t count) 1164 { 1165 int rc; 1166 1167 rc = lock_device_hotplug_sysfs(); 1168 if (rc) 1169 return rc; 1170 rc = smp_rescan_cpus(); 1171 unlock_device_hotplug(); 1172 return rc ? rc : count; 1173 } 1174 static DEVICE_ATTR_WO(rescan); 1175 1176 static int __init s390_smp_init(void) 1177 { 1178 int cpu, rc = 0; 1179 1180 rc = device_create_file(cpu_subsys.dev_root, &dev_attr_rescan); 1181 if (rc) 1182 return rc; 1183 for_each_present_cpu(cpu) { 1184 rc = smp_add_present_cpu(cpu); 1185 if (rc) 1186 goto out; 1187 } 1188 1189 rc = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "s390/smp:online", 1190 smp_cpu_online, smp_cpu_pre_down); 1191 rc = rc <= 0 ? rc : 0; 1192 out: 1193 return rc; 1194 } 1195 subsys_initcall(s390_smp_init); 1196