xref: /openbmc/linux/arch/s390/kernel/smp.c (revision 545e4006)
1 /*
2  *  arch/s390/kernel/smp.c
3  *
4  *    Copyright IBM Corp. 1999,2007
5  *    Author(s): Denis Joseph Barrow (djbarrow@de.ibm.com,barrow_dj@yahoo.com),
6  *		 Martin Schwidefsky (schwidefsky@de.ibm.com)
7  *		 Heiko Carstens (heiko.carstens@de.ibm.com)
8  *
9  *  based on other smp stuff by
10  *    (c) 1995 Alan Cox, CymruNET Ltd  <alan@cymru.net>
11  *    (c) 1998 Ingo Molnar
12  *
13  * We work with logical cpu numbering everywhere we can. The only
14  * functions using the real cpu address (got from STAP) are the sigp
15  * functions. For all other functions we use the identity mapping.
16  * That means that cpu_number_map[i] == i for every cpu. cpu_number_map is
17  * used e.g. to find the idle task belonging to a logical cpu. Every array
18  * in the kernel is sorted by the logical cpu number and not by the physical
19  * one which is causing all the confusion with __cpu_logical_map and
20  * cpu_number_map in other architectures.
21  */
22 
23 #include <linux/module.h>
24 #include <linux/init.h>
25 #include <linux/mm.h>
26 #include <linux/err.h>
27 #include <linux/spinlock.h>
28 #include <linux/kernel_stat.h>
29 #include <linux/delay.h>
30 #include <linux/cache.h>
31 #include <linux/interrupt.h>
32 #include <linux/cpu.h>
33 #include <linux/timex.h>
34 #include <linux/bootmem.h>
35 #include <asm/ipl.h>
36 #include <asm/setup.h>
37 #include <asm/sigp.h>
38 #include <asm/pgalloc.h>
39 #include <asm/irq.h>
40 #include <asm/s390_ext.h>
41 #include <asm/cpcmd.h>
42 #include <asm/tlbflush.h>
43 #include <asm/timer.h>
44 #include <asm/lowcore.h>
45 #include <asm/sclp.h>
46 #include <asm/cpu.h>
47 #include "entry.h"
48 
49 /*
50  * An array with a pointer the lowcore of every CPU.
51  */
52 struct _lowcore *lowcore_ptr[NR_CPUS];
53 EXPORT_SYMBOL(lowcore_ptr);
54 
55 cpumask_t cpu_online_map = CPU_MASK_NONE;
56 EXPORT_SYMBOL(cpu_online_map);
57 
58 cpumask_t cpu_possible_map = CPU_MASK_ALL;
59 EXPORT_SYMBOL(cpu_possible_map);
60 
61 static struct task_struct *current_set[NR_CPUS];
62 
63 static u8 smp_cpu_type;
64 static int smp_use_sigp_detection;
65 
66 enum s390_cpu_state {
67 	CPU_STATE_STANDBY,
68 	CPU_STATE_CONFIGURED,
69 };
70 
71 DEFINE_MUTEX(smp_cpu_state_mutex);
72 int smp_cpu_polarization[NR_CPUS];
73 static int smp_cpu_state[NR_CPUS];
74 static int cpu_management;
75 
76 static DEFINE_PER_CPU(struct cpu, cpu_devices);
77 
78 static void smp_ext_bitcall(int, ec_bit_sig);
79 
80 /*
81  * Structure and data for __smp_call_function_map(). This is designed to
82  * minimise static memory requirements. It also looks cleaner.
83  */
84 static DEFINE_SPINLOCK(call_lock);
85 
86 struct call_data_struct {
87 	void (*func) (void *info);
88 	void *info;
89 	cpumask_t started;
90 	cpumask_t finished;
91 	int wait;
92 };
93 
94 static struct call_data_struct *call_data;
95 
96 /*
97  * 'Call function' interrupt callback
98  */
99 static void do_call_function(void)
100 {
101 	void (*func) (void *info) = call_data->func;
102 	void *info = call_data->info;
103 	int wait = call_data->wait;
104 
105 	cpu_set(smp_processor_id(), call_data->started);
106 	(*func)(info);
107 	if (wait)
108 		cpu_set(smp_processor_id(), call_data->finished);;
109 }
110 
111 static void __smp_call_function_map(void (*func) (void *info), void *info,
112 				    int wait, cpumask_t map)
113 {
114 	struct call_data_struct data;
115 	int cpu, local = 0;
116 
117 	/*
118 	 * Can deadlock when interrupts are disabled or if in wrong context.
119 	 */
120 	WARN_ON(irqs_disabled() || in_irq());
121 
122 	/*
123 	 * Check for local function call. We have to have the same call order
124 	 * as in on_each_cpu() because of machine_restart_smp().
125 	 */
126 	if (cpu_isset(smp_processor_id(), map)) {
127 		local = 1;
128 		cpu_clear(smp_processor_id(), map);
129 	}
130 
131 	cpus_and(map, map, cpu_online_map);
132 	if (cpus_empty(map))
133 		goto out;
134 
135 	data.func = func;
136 	data.info = info;
137 	data.started = CPU_MASK_NONE;
138 	data.wait = wait;
139 	if (wait)
140 		data.finished = CPU_MASK_NONE;
141 
142 	call_data = &data;
143 
144 	for_each_cpu_mask(cpu, map)
145 		smp_ext_bitcall(cpu, ec_call_function);
146 
147 	/* Wait for response */
148 	while (!cpus_equal(map, data.started))
149 		cpu_relax();
150 	if (wait)
151 		while (!cpus_equal(map, data.finished))
152 			cpu_relax();
153 out:
154 	if (local) {
155 		local_irq_disable();
156 		func(info);
157 		local_irq_enable();
158 	}
159 }
160 
161 /*
162  * smp_call_function:
163  * @func: the function to run; this must be fast and non-blocking
164  * @info: an arbitrary pointer to pass to the function
165  * @wait: if true, wait (atomically) until function has completed on other CPUs
166  *
167  * Run a function on all other CPUs.
168  *
169  * You must not call this function with disabled interrupts, from a
170  * hardware interrupt handler or from a bottom half.
171  */
172 int smp_call_function(void (*func) (void *info), void *info, int wait)
173 {
174 	cpumask_t map;
175 
176 	spin_lock(&call_lock);
177 	map = cpu_online_map;
178 	cpu_clear(smp_processor_id(), map);
179 	__smp_call_function_map(func, info, wait, map);
180 	spin_unlock(&call_lock);
181 	return 0;
182 }
183 EXPORT_SYMBOL(smp_call_function);
184 
185 /*
186  * smp_call_function_single:
187  * @cpu: the CPU where func should run
188  * @func: the function to run; this must be fast and non-blocking
189  * @info: an arbitrary pointer to pass to the function
190  * @wait: if true, wait (atomically) until function has completed on other CPUs
191  *
192  * Run a function on one processor.
193  *
194  * You must not call this function with disabled interrupts, from a
195  * hardware interrupt handler or from a bottom half.
196  */
197 int smp_call_function_single(int cpu, void (*func) (void *info), void *info,
198 			     int wait)
199 {
200 	spin_lock(&call_lock);
201 	__smp_call_function_map(func, info, wait, cpumask_of_cpu(cpu));
202 	spin_unlock(&call_lock);
203 	return 0;
204 }
205 EXPORT_SYMBOL(smp_call_function_single);
206 
207 /**
208  * smp_call_function_mask(): Run a function on a set of other CPUs.
209  * @mask: The set of cpus to run on.  Must not include the current cpu.
210  * @func: The function to run. This must be fast and non-blocking.
211  * @info: An arbitrary pointer to pass to the function.
212  * @wait: If true, wait (atomically) until function has completed on other CPUs.
213  *
214  * Returns 0 on success, else a negative status code.
215  *
216  * If @wait is true, then returns once @func has returned; otherwise
217  * it returns just before the target cpu calls @func.
218  *
219  * You must not call this function with disabled interrupts or from a
220  * hardware interrupt handler or from a bottom half handler.
221  */
222 int smp_call_function_mask(cpumask_t mask, void (*func)(void *), void *info,
223 			   int wait)
224 {
225 	spin_lock(&call_lock);
226 	cpu_clear(smp_processor_id(), mask);
227 	__smp_call_function_map(func, info, wait, mask);
228 	spin_unlock(&call_lock);
229 	return 0;
230 }
231 EXPORT_SYMBOL(smp_call_function_mask);
232 
233 void smp_send_stop(void)
234 {
235 	int cpu, rc;
236 
237 	/* Disable all interrupts/machine checks */
238 	__load_psw_mask(psw_kernel_bits & ~PSW_MASK_MCHECK);
239 
240 	/* write magic number to zero page (absolute 0) */
241 	lowcore_ptr[smp_processor_id()]->panic_magic = __PANIC_MAGIC;
242 
243 	/* stop all processors */
244 	for_each_online_cpu(cpu) {
245 		if (cpu == smp_processor_id())
246 			continue;
247 		do {
248 			rc = signal_processor(cpu, sigp_stop);
249 		} while (rc == sigp_busy);
250 
251 		while (!smp_cpu_not_running(cpu))
252 			cpu_relax();
253 	}
254 }
255 
256 /*
257  * This is the main routine where commands issued by other
258  * cpus are handled.
259  */
260 
261 static void do_ext_call_interrupt(__u16 code)
262 {
263 	unsigned long bits;
264 
265 	/*
266 	 * handle bit signal external calls
267 	 *
268 	 * For the ec_schedule signal we have to do nothing. All the work
269 	 * is done automatically when we return from the interrupt.
270 	 */
271 	bits = xchg(&S390_lowcore.ext_call_fast, 0);
272 
273 	if (test_bit(ec_call_function, &bits))
274 		do_call_function();
275 }
276 
277 /*
278  * Send an external call sigp to another cpu and return without waiting
279  * for its completion.
280  */
281 static void smp_ext_bitcall(int cpu, ec_bit_sig sig)
282 {
283 	/*
284 	 * Set signaling bit in lowcore of target cpu and kick it
285 	 */
286 	set_bit(sig, (unsigned long *) &lowcore_ptr[cpu]->ext_call_fast);
287 	while (signal_processor(cpu, sigp_emergency_signal) == sigp_busy)
288 		udelay(10);
289 }
290 
291 #ifndef CONFIG_64BIT
292 /*
293  * this function sends a 'purge tlb' signal to another CPU.
294  */
295 static void smp_ptlb_callback(void *info)
296 {
297 	__tlb_flush_local();
298 }
299 
300 void smp_ptlb_all(void)
301 {
302 	on_each_cpu(smp_ptlb_callback, NULL, 1);
303 }
304 EXPORT_SYMBOL(smp_ptlb_all);
305 #endif /* ! CONFIG_64BIT */
306 
307 /*
308  * this function sends a 'reschedule' IPI to another CPU.
309  * it goes straight through and wastes no time serializing
310  * anything. Worst case is that we lose a reschedule ...
311  */
312 void smp_send_reschedule(int cpu)
313 {
314 	smp_ext_bitcall(cpu, ec_schedule);
315 }
316 
317 /*
318  * parameter area for the set/clear control bit callbacks
319  */
320 struct ec_creg_mask_parms {
321 	unsigned long orvals[16];
322 	unsigned long andvals[16];
323 };
324 
325 /*
326  * callback for setting/clearing control bits
327  */
328 static void smp_ctl_bit_callback(void *info)
329 {
330 	struct ec_creg_mask_parms *pp = info;
331 	unsigned long cregs[16];
332 	int i;
333 
334 	__ctl_store(cregs, 0, 15);
335 	for (i = 0; i <= 15; i++)
336 		cregs[i] = (cregs[i] & pp->andvals[i]) | pp->orvals[i];
337 	__ctl_load(cregs, 0, 15);
338 }
339 
340 /*
341  * Set a bit in a control register of all cpus
342  */
343 void smp_ctl_set_bit(int cr, int bit)
344 {
345 	struct ec_creg_mask_parms parms;
346 
347 	memset(&parms.orvals, 0, sizeof(parms.orvals));
348 	memset(&parms.andvals, 0xff, sizeof(parms.andvals));
349 	parms.orvals[cr] = 1 << bit;
350 	on_each_cpu(smp_ctl_bit_callback, &parms, 1);
351 }
352 EXPORT_SYMBOL(smp_ctl_set_bit);
353 
354 /*
355  * Clear a bit in a control register of all cpus
356  */
357 void smp_ctl_clear_bit(int cr, int bit)
358 {
359 	struct ec_creg_mask_parms parms;
360 
361 	memset(&parms.orvals, 0, sizeof(parms.orvals));
362 	memset(&parms.andvals, 0xff, sizeof(parms.andvals));
363 	parms.andvals[cr] = ~(1L << bit);
364 	on_each_cpu(smp_ctl_bit_callback, &parms, 1);
365 }
366 EXPORT_SYMBOL(smp_ctl_clear_bit);
367 
368 /*
369  * In early ipl state a temp. logically cpu number is needed, so the sigp
370  * functions can be used to sense other cpus. Since NR_CPUS is >= 2 on
371  * CONFIG_SMP and the ipl cpu is logical cpu 0, it must be 1.
372  */
373 #define CPU_INIT_NO	1
374 
375 #if defined(CONFIG_ZFCPDUMP) || defined(CONFIG_ZFCPDUMP_MODULE)
376 
377 /*
378  * zfcpdump_prefix_array holds prefix registers for the following scenario:
379  * 64 bit zfcpdump kernel and 31 bit kernel which is to be dumped. We have to
380  * save its prefix registers, since they get lost, when switching from 31 bit
381  * to 64 bit.
382  */
383 unsigned int zfcpdump_prefix_array[NR_CPUS + 1] \
384 	__attribute__((__section__(".data")));
385 
386 static void __init smp_get_save_area(unsigned int cpu, unsigned int phy_cpu)
387 {
388 	if (ipl_info.type != IPL_TYPE_FCP_DUMP)
389 		return;
390 	if (cpu >= NR_CPUS) {
391 		printk(KERN_WARNING "Registers for cpu %i not saved since dump "
392 		       "kernel was compiled with NR_CPUS=%i\n", cpu, NR_CPUS);
393 		return;
394 	}
395 	zfcpdump_save_areas[cpu] = kmalloc(sizeof(union save_area), GFP_KERNEL);
396 	__cpu_logical_map[CPU_INIT_NO] = (__u16) phy_cpu;
397 	while (signal_processor(CPU_INIT_NO, sigp_stop_and_store_status) ==
398 	       sigp_busy)
399 		cpu_relax();
400 	memcpy(zfcpdump_save_areas[cpu],
401 	       (void *)(unsigned long) store_prefix() + SAVE_AREA_BASE,
402 	       SAVE_AREA_SIZE);
403 #ifdef CONFIG_64BIT
404 	/* copy original prefix register */
405 	zfcpdump_save_areas[cpu]->s390x.pref_reg = zfcpdump_prefix_array[cpu];
406 #endif
407 }
408 
409 union save_area *zfcpdump_save_areas[NR_CPUS + 1];
410 EXPORT_SYMBOL_GPL(zfcpdump_save_areas);
411 
412 #else
413 
414 static inline void smp_get_save_area(unsigned int cpu, unsigned int phy_cpu) { }
415 
416 #endif /* CONFIG_ZFCPDUMP || CONFIG_ZFCPDUMP_MODULE */
417 
418 static int cpu_stopped(int cpu)
419 {
420 	__u32 status;
421 
422 	/* Check for stopped state */
423 	if (signal_processor_ps(&status, 0, cpu, sigp_sense) ==
424 	    sigp_status_stored) {
425 		if (status & 0x40)
426 			return 1;
427 	}
428 	return 0;
429 }
430 
431 static int cpu_known(int cpu_id)
432 {
433 	int cpu;
434 
435 	for_each_present_cpu(cpu) {
436 		if (__cpu_logical_map[cpu] == cpu_id)
437 			return 1;
438 	}
439 	return 0;
440 }
441 
442 static int smp_rescan_cpus_sigp(cpumask_t avail)
443 {
444 	int cpu_id, logical_cpu;
445 
446 	logical_cpu = first_cpu(avail);
447 	if (logical_cpu == NR_CPUS)
448 		return 0;
449 	for (cpu_id = 0; cpu_id <= 65535; cpu_id++) {
450 		if (cpu_known(cpu_id))
451 			continue;
452 		__cpu_logical_map[logical_cpu] = cpu_id;
453 		smp_cpu_polarization[logical_cpu] = POLARIZATION_UNKNWN;
454 		if (!cpu_stopped(logical_cpu))
455 			continue;
456 		cpu_set(logical_cpu, cpu_present_map);
457 		smp_cpu_state[logical_cpu] = CPU_STATE_CONFIGURED;
458 		logical_cpu = next_cpu(logical_cpu, avail);
459 		if (logical_cpu == NR_CPUS)
460 			break;
461 	}
462 	return 0;
463 }
464 
465 static int smp_rescan_cpus_sclp(cpumask_t avail)
466 {
467 	struct sclp_cpu_info *info;
468 	int cpu_id, logical_cpu, cpu;
469 	int rc;
470 
471 	logical_cpu = first_cpu(avail);
472 	if (logical_cpu == NR_CPUS)
473 		return 0;
474 	info = kmalloc(sizeof(*info), GFP_KERNEL);
475 	if (!info)
476 		return -ENOMEM;
477 	rc = sclp_get_cpu_info(info);
478 	if (rc)
479 		goto out;
480 	for (cpu = 0; cpu < info->combined; cpu++) {
481 		if (info->has_cpu_type && info->cpu[cpu].type != smp_cpu_type)
482 			continue;
483 		cpu_id = info->cpu[cpu].address;
484 		if (cpu_known(cpu_id))
485 			continue;
486 		__cpu_logical_map[logical_cpu] = cpu_id;
487 		smp_cpu_polarization[logical_cpu] = POLARIZATION_UNKNWN;
488 		cpu_set(logical_cpu, cpu_present_map);
489 		if (cpu >= info->configured)
490 			smp_cpu_state[logical_cpu] = CPU_STATE_STANDBY;
491 		else
492 			smp_cpu_state[logical_cpu] = CPU_STATE_CONFIGURED;
493 		logical_cpu = next_cpu(logical_cpu, avail);
494 		if (logical_cpu == NR_CPUS)
495 			break;
496 	}
497 out:
498 	kfree(info);
499 	return rc;
500 }
501 
502 static int __smp_rescan_cpus(void)
503 {
504 	cpumask_t avail;
505 
506 	cpus_xor(avail, cpu_possible_map, cpu_present_map);
507 	if (smp_use_sigp_detection)
508 		return smp_rescan_cpus_sigp(avail);
509 	else
510 		return smp_rescan_cpus_sclp(avail);
511 }
512 
513 static void __init smp_detect_cpus(void)
514 {
515 	unsigned int cpu, c_cpus, s_cpus;
516 	struct sclp_cpu_info *info;
517 	u16 boot_cpu_addr, cpu_addr;
518 
519 	c_cpus = 1;
520 	s_cpus = 0;
521 	boot_cpu_addr = S390_lowcore.cpu_data.cpu_addr;
522 	info = kmalloc(sizeof(*info), GFP_KERNEL);
523 	if (!info)
524 		panic("smp_detect_cpus failed to allocate memory\n");
525 	/* Use sigp detection algorithm if sclp doesn't work. */
526 	if (sclp_get_cpu_info(info)) {
527 		smp_use_sigp_detection = 1;
528 		for (cpu = 0; cpu <= 65535; cpu++) {
529 			if (cpu == boot_cpu_addr)
530 				continue;
531 			__cpu_logical_map[CPU_INIT_NO] = cpu;
532 			if (!cpu_stopped(CPU_INIT_NO))
533 				continue;
534 			smp_get_save_area(c_cpus, cpu);
535 			c_cpus++;
536 		}
537 		goto out;
538 	}
539 
540 	if (info->has_cpu_type) {
541 		for (cpu = 0; cpu < info->combined; cpu++) {
542 			if (info->cpu[cpu].address == boot_cpu_addr) {
543 				smp_cpu_type = info->cpu[cpu].type;
544 				break;
545 			}
546 		}
547 	}
548 
549 	for (cpu = 0; cpu < info->combined; cpu++) {
550 		if (info->has_cpu_type && info->cpu[cpu].type != smp_cpu_type)
551 			continue;
552 		cpu_addr = info->cpu[cpu].address;
553 		if (cpu_addr == boot_cpu_addr)
554 			continue;
555 		__cpu_logical_map[CPU_INIT_NO] = cpu_addr;
556 		if (!cpu_stopped(CPU_INIT_NO)) {
557 			s_cpus++;
558 			continue;
559 		}
560 		smp_get_save_area(c_cpus, cpu_addr);
561 		c_cpus++;
562 	}
563 out:
564 	kfree(info);
565 	printk(KERN_INFO "CPUs: %d configured, %d standby\n", c_cpus, s_cpus);
566 	get_online_cpus();
567 	__smp_rescan_cpus();
568 	put_online_cpus();
569 }
570 
571 /*
572  *	Activate a secondary processor.
573  */
574 int __cpuinit start_secondary(void *cpuvoid)
575 {
576 	/* Setup the cpu */
577 	cpu_init();
578 	preempt_disable();
579 	/* Enable TOD clock interrupts on the secondary cpu. */
580 	init_cpu_timer();
581 #ifdef CONFIG_VIRT_TIMER
582 	/* Enable cpu timer interrupts on the secondary cpu. */
583 	init_cpu_vtimer();
584 #endif
585 	/* Enable pfault pseudo page faults on this cpu. */
586 	pfault_init();
587 
588 	/* Mark this cpu as online */
589 	spin_lock(&call_lock);
590 	cpu_set(smp_processor_id(), cpu_online_map);
591 	spin_unlock(&call_lock);
592 	/* Switch on interrupts */
593 	local_irq_enable();
594 	/* Print info about this processor */
595 	print_cpu_info(&S390_lowcore.cpu_data);
596 	/* cpu_idle will call schedule for us */
597 	cpu_idle();
598 	return 0;
599 }
600 
601 static void __init smp_create_idle(unsigned int cpu)
602 {
603 	struct task_struct *p;
604 
605 	/*
606 	 *  don't care about the psw and regs settings since we'll never
607 	 *  reschedule the forked task.
608 	 */
609 	p = fork_idle(cpu);
610 	if (IS_ERR(p))
611 		panic("failed fork for CPU %u: %li", cpu, PTR_ERR(p));
612 	current_set[cpu] = p;
613 	spin_lock_init(&(&per_cpu(s390_idle, cpu))->lock);
614 }
615 
616 static int __cpuinit smp_alloc_lowcore(int cpu)
617 {
618 	unsigned long async_stack, panic_stack;
619 	struct _lowcore *lowcore;
620 	int lc_order;
621 
622 	lc_order = sizeof(long) == 8 ? 1 : 0;
623 	lowcore = (void *) __get_free_pages(GFP_KERNEL | GFP_DMA, lc_order);
624 	if (!lowcore)
625 		return -ENOMEM;
626 	async_stack = __get_free_pages(GFP_KERNEL, ASYNC_ORDER);
627 	panic_stack = __get_free_page(GFP_KERNEL);
628 	if (!panic_stack || !async_stack)
629 		goto out;
630 	memcpy(lowcore, &S390_lowcore, 512);
631 	memset((char *)lowcore + 512, 0, sizeof(*lowcore) - 512);
632 	lowcore->async_stack = async_stack + ASYNC_SIZE;
633 	lowcore->panic_stack = panic_stack + PAGE_SIZE;
634 
635 #ifndef CONFIG_64BIT
636 	if (MACHINE_HAS_IEEE) {
637 		unsigned long save_area;
638 
639 		save_area = get_zeroed_page(GFP_KERNEL);
640 		if (!save_area)
641 			goto out_save_area;
642 		lowcore->extended_save_area_addr = (u32) save_area;
643 	}
644 #endif
645 	lowcore_ptr[cpu] = lowcore;
646 	return 0;
647 
648 #ifndef CONFIG_64BIT
649 out_save_area:
650 	free_page(panic_stack);
651 #endif
652 out:
653 	free_pages(async_stack, ASYNC_ORDER);
654 	free_pages((unsigned long) lowcore, lc_order);
655 	return -ENOMEM;
656 }
657 
658 #ifdef CONFIG_HOTPLUG_CPU
659 static void smp_free_lowcore(int cpu)
660 {
661 	struct _lowcore *lowcore;
662 	int lc_order;
663 
664 	lc_order = sizeof(long) == 8 ? 1 : 0;
665 	lowcore = lowcore_ptr[cpu];
666 #ifndef CONFIG_64BIT
667 	if (MACHINE_HAS_IEEE)
668 		free_page((unsigned long) lowcore->extended_save_area_addr);
669 #endif
670 	free_page(lowcore->panic_stack - PAGE_SIZE);
671 	free_pages(lowcore->async_stack - ASYNC_SIZE, ASYNC_ORDER);
672 	free_pages((unsigned long) lowcore, lc_order);
673 	lowcore_ptr[cpu] = NULL;
674 }
675 #endif /* CONFIG_HOTPLUG_CPU */
676 
677 /* Upping and downing of CPUs */
678 int __cpuinit __cpu_up(unsigned int cpu)
679 {
680 	struct task_struct *idle;
681 	struct _lowcore *cpu_lowcore;
682 	struct stack_frame *sf;
683 	sigp_ccode ccode;
684 
685 	if (smp_cpu_state[cpu] != CPU_STATE_CONFIGURED)
686 		return -EIO;
687 	if (smp_alloc_lowcore(cpu))
688 		return -ENOMEM;
689 
690 	ccode = signal_processor_p((__u32)(unsigned long)(lowcore_ptr[cpu]),
691 				   cpu, sigp_set_prefix);
692 	if (ccode) {
693 		printk("sigp_set_prefix failed for cpu %d "
694 		       "with condition code %d\n",
695 		       (int) cpu, (int) ccode);
696 		return -EIO;
697 	}
698 
699 	idle = current_set[cpu];
700 	cpu_lowcore = lowcore_ptr[cpu];
701 	cpu_lowcore->kernel_stack = (unsigned long)
702 		task_stack_page(idle) + THREAD_SIZE;
703 	cpu_lowcore->thread_info = (unsigned long) task_thread_info(idle);
704 	sf = (struct stack_frame *) (cpu_lowcore->kernel_stack
705 				     - sizeof(struct pt_regs)
706 				     - sizeof(struct stack_frame));
707 	memset(sf, 0, sizeof(struct stack_frame));
708 	sf->gprs[9] = (unsigned long) sf;
709 	cpu_lowcore->save_area[15] = (unsigned long) sf;
710 	__ctl_store(cpu_lowcore->cregs_save_area, 0, 15);
711 	asm volatile(
712 		"	stam	0,15,0(%0)"
713 		: : "a" (&cpu_lowcore->access_regs_save_area) : "memory");
714 	cpu_lowcore->percpu_offset = __per_cpu_offset[cpu];
715 	cpu_lowcore->current_task = (unsigned long) idle;
716 	cpu_lowcore->cpu_data.cpu_nr = cpu;
717 	cpu_lowcore->kernel_asce = S390_lowcore.kernel_asce;
718 	cpu_lowcore->ipl_device = S390_lowcore.ipl_device;
719 	eieio();
720 
721 	while (signal_processor(cpu, sigp_restart) == sigp_busy)
722 		udelay(10);
723 
724 	while (!cpu_online(cpu))
725 		cpu_relax();
726 	return 0;
727 }
728 
729 static int __init setup_possible_cpus(char *s)
730 {
731 	int pcpus, cpu;
732 
733 	pcpus = simple_strtoul(s, NULL, 0);
734 	cpu_possible_map = cpumask_of_cpu(0);
735 	for (cpu = 1; cpu < pcpus && cpu < NR_CPUS; cpu++)
736 		cpu_set(cpu, cpu_possible_map);
737 	return 0;
738 }
739 early_param("possible_cpus", setup_possible_cpus);
740 
741 #ifdef CONFIG_HOTPLUG_CPU
742 
743 int __cpu_disable(void)
744 {
745 	struct ec_creg_mask_parms cr_parms;
746 	int cpu = smp_processor_id();
747 
748 	cpu_clear(cpu, cpu_online_map);
749 
750 	/* Disable pfault pseudo page faults on this cpu. */
751 	pfault_fini();
752 
753 	memset(&cr_parms.orvals, 0, sizeof(cr_parms.orvals));
754 	memset(&cr_parms.andvals, 0xff, sizeof(cr_parms.andvals));
755 
756 	/* disable all external interrupts */
757 	cr_parms.orvals[0] = 0;
758 	cr_parms.andvals[0] = ~(1 << 15 | 1 << 14 | 1 << 13 | 1 << 12 |
759 				1 << 11 | 1 << 10 | 1 <<  6 | 1 <<  4);
760 	/* disable all I/O interrupts */
761 	cr_parms.orvals[6] = 0;
762 	cr_parms.andvals[6] = ~(1 << 31 | 1 << 30 | 1 << 29 | 1 << 28 |
763 				1 << 27 | 1 << 26 | 1 << 25 | 1 << 24);
764 	/* disable most machine checks */
765 	cr_parms.orvals[14] = 0;
766 	cr_parms.andvals[14] = ~(1 << 28 | 1 << 27 | 1 << 26 |
767 				 1 << 25 | 1 << 24);
768 
769 	smp_ctl_bit_callback(&cr_parms);
770 
771 	return 0;
772 }
773 
774 void __cpu_die(unsigned int cpu)
775 {
776 	/* Wait until target cpu is down */
777 	while (!smp_cpu_not_running(cpu))
778 		cpu_relax();
779 	smp_free_lowcore(cpu);
780 	printk(KERN_INFO "Processor %d spun down\n", cpu);
781 }
782 
783 void cpu_die(void)
784 {
785 	idle_task_exit();
786 	signal_processor(smp_processor_id(), sigp_stop);
787 	BUG();
788 	for (;;);
789 }
790 
791 #endif /* CONFIG_HOTPLUG_CPU */
792 
793 void __init smp_prepare_cpus(unsigned int max_cpus)
794 {
795 #ifndef CONFIG_64BIT
796 	unsigned long save_area = 0;
797 #endif
798 	unsigned long async_stack, panic_stack;
799 	struct _lowcore *lowcore;
800 	unsigned int cpu;
801 	int lc_order;
802 
803 	smp_detect_cpus();
804 
805 	/* request the 0x1201 emergency signal external interrupt */
806 	if (register_external_interrupt(0x1201, do_ext_call_interrupt) != 0)
807 		panic("Couldn't request external interrupt 0x1201");
808 	print_cpu_info(&S390_lowcore.cpu_data);
809 
810 	/* Reallocate current lowcore, but keep its contents. */
811 	lc_order = sizeof(long) == 8 ? 1 : 0;
812 	lowcore = (void *) __get_free_pages(GFP_KERNEL | GFP_DMA, lc_order);
813 	panic_stack = __get_free_page(GFP_KERNEL);
814 	async_stack = __get_free_pages(GFP_KERNEL, ASYNC_ORDER);
815 #ifndef CONFIG_64BIT
816 	if (MACHINE_HAS_IEEE)
817 		save_area = get_zeroed_page(GFP_KERNEL);
818 #endif
819 	local_irq_disable();
820 	local_mcck_disable();
821 	lowcore_ptr[smp_processor_id()] = lowcore;
822 	*lowcore = S390_lowcore;
823 	lowcore->panic_stack = panic_stack + PAGE_SIZE;
824 	lowcore->async_stack = async_stack + ASYNC_SIZE;
825 #ifndef CONFIG_64BIT
826 	if (MACHINE_HAS_IEEE)
827 		lowcore->extended_save_area_addr = (u32) save_area;
828 #endif
829 	set_prefix((u32)(unsigned long) lowcore);
830 	local_mcck_enable();
831 	local_irq_enable();
832 	for_each_possible_cpu(cpu)
833 		if (cpu != smp_processor_id())
834 			smp_create_idle(cpu);
835 }
836 
837 void __init smp_prepare_boot_cpu(void)
838 {
839 	BUG_ON(smp_processor_id() != 0);
840 
841 	current_thread_info()->cpu = 0;
842 	cpu_set(0, cpu_present_map);
843 	cpu_set(0, cpu_online_map);
844 	S390_lowcore.percpu_offset = __per_cpu_offset[0];
845 	current_set[0] = current;
846 	smp_cpu_state[0] = CPU_STATE_CONFIGURED;
847 	smp_cpu_polarization[0] = POLARIZATION_UNKNWN;
848 	spin_lock_init(&(&__get_cpu_var(s390_idle))->lock);
849 }
850 
851 void __init smp_cpus_done(unsigned int max_cpus)
852 {
853 }
854 
855 /*
856  * the frequency of the profiling timer can be changed
857  * by writing a multiplier value into /proc/profile.
858  *
859  * usually you want to run this on all CPUs ;)
860  */
861 int setup_profiling_timer(unsigned int multiplier)
862 {
863 	return 0;
864 }
865 
866 #ifdef CONFIG_HOTPLUG_CPU
867 static ssize_t cpu_configure_show(struct sys_device *dev,
868 				struct sysdev_attribute *attr, char *buf)
869 {
870 	ssize_t count;
871 
872 	mutex_lock(&smp_cpu_state_mutex);
873 	count = sprintf(buf, "%d\n", smp_cpu_state[dev->id]);
874 	mutex_unlock(&smp_cpu_state_mutex);
875 	return count;
876 }
877 
878 static ssize_t cpu_configure_store(struct sys_device *dev,
879 				  struct sysdev_attribute *attr,
880 				  const char *buf, size_t count)
881 {
882 	int cpu = dev->id;
883 	int val, rc;
884 	char delim;
885 
886 	if (sscanf(buf, "%d %c", &val, &delim) != 1)
887 		return -EINVAL;
888 	if (val != 0 && val != 1)
889 		return -EINVAL;
890 
891 	get_online_cpus();
892 	mutex_lock(&smp_cpu_state_mutex);
893 	rc = -EBUSY;
894 	if (cpu_online(cpu))
895 		goto out;
896 	rc = 0;
897 	switch (val) {
898 	case 0:
899 		if (smp_cpu_state[cpu] == CPU_STATE_CONFIGURED) {
900 			rc = sclp_cpu_deconfigure(__cpu_logical_map[cpu]);
901 			if (!rc) {
902 				smp_cpu_state[cpu] = CPU_STATE_STANDBY;
903 				smp_cpu_polarization[cpu] = POLARIZATION_UNKNWN;
904 			}
905 		}
906 		break;
907 	case 1:
908 		if (smp_cpu_state[cpu] == CPU_STATE_STANDBY) {
909 			rc = sclp_cpu_configure(__cpu_logical_map[cpu]);
910 			if (!rc) {
911 				smp_cpu_state[cpu] = CPU_STATE_CONFIGURED;
912 				smp_cpu_polarization[cpu] = POLARIZATION_UNKNWN;
913 			}
914 		}
915 		break;
916 	default:
917 		break;
918 	}
919 out:
920 	mutex_unlock(&smp_cpu_state_mutex);
921 	put_online_cpus();
922 	return rc ? rc : count;
923 }
924 static SYSDEV_ATTR(configure, 0644, cpu_configure_show, cpu_configure_store);
925 #endif /* CONFIG_HOTPLUG_CPU */
926 
927 static ssize_t cpu_polarization_show(struct sys_device *dev,
928 				     struct sysdev_attribute *attr, char *buf)
929 {
930 	int cpu = dev->id;
931 	ssize_t count;
932 
933 	mutex_lock(&smp_cpu_state_mutex);
934 	switch (smp_cpu_polarization[cpu]) {
935 	case POLARIZATION_HRZ:
936 		count = sprintf(buf, "horizontal\n");
937 		break;
938 	case POLARIZATION_VL:
939 		count = sprintf(buf, "vertical:low\n");
940 		break;
941 	case POLARIZATION_VM:
942 		count = sprintf(buf, "vertical:medium\n");
943 		break;
944 	case POLARIZATION_VH:
945 		count = sprintf(buf, "vertical:high\n");
946 		break;
947 	default:
948 		count = sprintf(buf, "unknown\n");
949 		break;
950 	}
951 	mutex_unlock(&smp_cpu_state_mutex);
952 	return count;
953 }
954 static SYSDEV_ATTR(polarization, 0444, cpu_polarization_show, NULL);
955 
956 static ssize_t show_cpu_address(struct sys_device *dev,
957 				struct sysdev_attribute *attr, char *buf)
958 {
959 	return sprintf(buf, "%d\n", __cpu_logical_map[dev->id]);
960 }
961 static SYSDEV_ATTR(address, 0444, show_cpu_address, NULL);
962 
963 
964 static struct attribute *cpu_common_attrs[] = {
965 #ifdef CONFIG_HOTPLUG_CPU
966 	&attr_configure.attr,
967 #endif
968 	&attr_address.attr,
969 	&attr_polarization.attr,
970 	NULL,
971 };
972 
973 static struct attribute_group cpu_common_attr_group = {
974 	.attrs = cpu_common_attrs,
975 };
976 
977 static ssize_t show_capability(struct sys_device *dev,
978 				struct sysdev_attribute *attr, char *buf)
979 {
980 	unsigned int capability;
981 	int rc;
982 
983 	rc = get_cpu_capability(&capability);
984 	if (rc)
985 		return rc;
986 	return sprintf(buf, "%u\n", capability);
987 }
988 static SYSDEV_ATTR(capability, 0444, show_capability, NULL);
989 
990 static ssize_t show_idle_count(struct sys_device *dev,
991 				struct sysdev_attribute *attr, char *buf)
992 {
993 	struct s390_idle_data *idle;
994 	unsigned long long idle_count;
995 
996 	idle = &per_cpu(s390_idle, dev->id);
997 	spin_lock_irq(&idle->lock);
998 	idle_count = idle->idle_count;
999 	spin_unlock_irq(&idle->lock);
1000 	return sprintf(buf, "%llu\n", idle_count);
1001 }
1002 static SYSDEV_ATTR(idle_count, 0444, show_idle_count, NULL);
1003 
1004 static ssize_t show_idle_time(struct sys_device *dev,
1005 				struct sysdev_attribute *attr, char *buf)
1006 {
1007 	struct s390_idle_data *idle;
1008 	unsigned long long new_time;
1009 
1010 	idle = &per_cpu(s390_idle, dev->id);
1011 	spin_lock_irq(&idle->lock);
1012 	if (idle->in_idle) {
1013 		new_time = get_clock();
1014 		idle->idle_time += new_time - idle->idle_enter;
1015 		idle->idle_enter = new_time;
1016 	}
1017 	new_time = idle->idle_time;
1018 	spin_unlock_irq(&idle->lock);
1019 	return sprintf(buf, "%llu\n", new_time >> 12);
1020 }
1021 static SYSDEV_ATTR(idle_time_us, 0444, show_idle_time, NULL);
1022 
1023 static struct attribute *cpu_online_attrs[] = {
1024 	&attr_capability.attr,
1025 	&attr_idle_count.attr,
1026 	&attr_idle_time_us.attr,
1027 	NULL,
1028 };
1029 
1030 static struct attribute_group cpu_online_attr_group = {
1031 	.attrs = cpu_online_attrs,
1032 };
1033 
1034 static int __cpuinit smp_cpu_notify(struct notifier_block *self,
1035 				    unsigned long action, void *hcpu)
1036 {
1037 	unsigned int cpu = (unsigned int)(long)hcpu;
1038 	struct cpu *c = &per_cpu(cpu_devices, cpu);
1039 	struct sys_device *s = &c->sysdev;
1040 	struct s390_idle_data *idle;
1041 
1042 	switch (action) {
1043 	case CPU_ONLINE:
1044 	case CPU_ONLINE_FROZEN:
1045 		idle = &per_cpu(s390_idle, cpu);
1046 		spin_lock_irq(&idle->lock);
1047 		idle->idle_enter = 0;
1048 		idle->idle_time = 0;
1049 		idle->idle_count = 0;
1050 		spin_unlock_irq(&idle->lock);
1051 		if (sysfs_create_group(&s->kobj, &cpu_online_attr_group))
1052 			return NOTIFY_BAD;
1053 		break;
1054 	case CPU_DEAD:
1055 	case CPU_DEAD_FROZEN:
1056 		sysfs_remove_group(&s->kobj, &cpu_online_attr_group);
1057 		break;
1058 	}
1059 	return NOTIFY_OK;
1060 }
1061 
1062 static struct notifier_block __cpuinitdata smp_cpu_nb = {
1063 	.notifier_call = smp_cpu_notify,
1064 };
1065 
1066 static int __devinit smp_add_present_cpu(int cpu)
1067 {
1068 	struct cpu *c = &per_cpu(cpu_devices, cpu);
1069 	struct sys_device *s = &c->sysdev;
1070 	int rc;
1071 
1072 	c->hotpluggable = 1;
1073 	rc = register_cpu(c, cpu);
1074 	if (rc)
1075 		goto out;
1076 	rc = sysfs_create_group(&s->kobj, &cpu_common_attr_group);
1077 	if (rc)
1078 		goto out_cpu;
1079 	if (!cpu_online(cpu))
1080 		goto out;
1081 	rc = sysfs_create_group(&s->kobj, &cpu_online_attr_group);
1082 	if (!rc)
1083 		return 0;
1084 	sysfs_remove_group(&s->kobj, &cpu_common_attr_group);
1085 out_cpu:
1086 #ifdef CONFIG_HOTPLUG_CPU
1087 	unregister_cpu(c);
1088 #endif
1089 out:
1090 	return rc;
1091 }
1092 
1093 #ifdef CONFIG_HOTPLUG_CPU
1094 
1095 int __ref smp_rescan_cpus(void)
1096 {
1097 	cpumask_t newcpus;
1098 	int cpu;
1099 	int rc;
1100 
1101 	get_online_cpus();
1102 	mutex_lock(&smp_cpu_state_mutex);
1103 	newcpus = cpu_present_map;
1104 	rc = __smp_rescan_cpus();
1105 	if (rc)
1106 		goto out;
1107 	cpus_andnot(newcpus, cpu_present_map, newcpus);
1108 	for_each_cpu_mask(cpu, newcpus) {
1109 		rc = smp_add_present_cpu(cpu);
1110 		if (rc)
1111 			cpu_clear(cpu, cpu_present_map);
1112 	}
1113 	rc = 0;
1114 out:
1115 	mutex_unlock(&smp_cpu_state_mutex);
1116 	put_online_cpus();
1117 	if (!cpus_empty(newcpus))
1118 		topology_schedule_update();
1119 	return rc;
1120 }
1121 
1122 static ssize_t __ref rescan_store(struct sys_device *dev,
1123 				  struct sysdev_attribute *attr,
1124 				  const char *buf,
1125 				  size_t count)
1126 {
1127 	int rc;
1128 
1129 	rc = smp_rescan_cpus();
1130 	return rc ? rc : count;
1131 }
1132 static SYSDEV_ATTR(rescan, 0200, NULL, rescan_store);
1133 #endif /* CONFIG_HOTPLUG_CPU */
1134 
1135 static ssize_t dispatching_show(struct sys_device *dev,
1136 				struct sysdev_attribute *attr,
1137 				char *buf)
1138 {
1139 	ssize_t count;
1140 
1141 	mutex_lock(&smp_cpu_state_mutex);
1142 	count = sprintf(buf, "%d\n", cpu_management);
1143 	mutex_unlock(&smp_cpu_state_mutex);
1144 	return count;
1145 }
1146 
1147 static ssize_t dispatching_store(struct sys_device *dev,
1148 				 struct sysdev_attribute *attr,
1149 				 const char *buf, size_t count)
1150 {
1151 	int val, rc;
1152 	char delim;
1153 
1154 	if (sscanf(buf, "%d %c", &val, &delim) != 1)
1155 		return -EINVAL;
1156 	if (val != 0 && val != 1)
1157 		return -EINVAL;
1158 	rc = 0;
1159 	get_online_cpus();
1160 	mutex_lock(&smp_cpu_state_mutex);
1161 	if (cpu_management == val)
1162 		goto out;
1163 	rc = topology_set_cpu_management(val);
1164 	if (!rc)
1165 		cpu_management = val;
1166 out:
1167 	mutex_unlock(&smp_cpu_state_mutex);
1168 	put_online_cpus();
1169 	return rc ? rc : count;
1170 }
1171 static SYSDEV_ATTR(dispatching, 0644, dispatching_show, dispatching_store);
1172 
1173 static int __init topology_init(void)
1174 {
1175 	int cpu;
1176 	int rc;
1177 
1178 	register_cpu_notifier(&smp_cpu_nb);
1179 
1180 #ifdef CONFIG_HOTPLUG_CPU
1181 	rc = sysfs_create_file(&cpu_sysdev_class.kset.kobj,
1182 			       &attr_rescan.attr);
1183 	if (rc)
1184 		return rc;
1185 #endif
1186 	rc = sysfs_create_file(&cpu_sysdev_class.kset.kobj,
1187 			       &attr_dispatching.attr);
1188 	if (rc)
1189 		return rc;
1190 	for_each_present_cpu(cpu) {
1191 		rc = smp_add_present_cpu(cpu);
1192 		if (rc)
1193 			return rc;
1194 	}
1195 	return 0;
1196 }
1197 subsys_initcall(topology_init);
1198