xref: /openbmc/linux/arch/s390/kernel/smp.c (revision 33fb626b)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  SMP related functions
4  *
5  *    Copyright IBM Corp. 1999, 2012
6  *    Author(s): Denis Joseph Barrow,
7  *		 Martin Schwidefsky <schwidefsky@de.ibm.com>,
8  *		 Heiko Carstens <heiko.carstens@de.ibm.com>,
9  *
10  *  based on other smp stuff by
11  *    (c) 1995 Alan Cox, CymruNET Ltd  <alan@cymru.net>
12  *    (c) 1998 Ingo Molnar
13  *
14  * The code outside of smp.c uses logical cpu numbers, only smp.c does
15  * the translation of logical to physical cpu ids. All new code that
16  * operates on physical cpu numbers needs to go into smp.c.
17  */
18 
19 #define KMSG_COMPONENT "cpu"
20 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
21 
22 #include <linux/workqueue.h>
23 #include <linux/memblock.h>
24 #include <linux/export.h>
25 #include <linux/init.h>
26 #include <linux/mm.h>
27 #include <linux/err.h>
28 #include <linux/spinlock.h>
29 #include <linux/kernel_stat.h>
30 #include <linux/delay.h>
31 #include <linux/interrupt.h>
32 #include <linux/irqflags.h>
33 #include <linux/cpu.h>
34 #include <linux/slab.h>
35 #include <linux/sched/hotplug.h>
36 #include <linux/sched/task_stack.h>
37 #include <linux/crash_dump.h>
38 #include <linux/kprobes.h>
39 #include <asm/asm-offsets.h>
40 #include <asm/diag.h>
41 #include <asm/switch_to.h>
42 #include <asm/facility.h>
43 #include <asm/ipl.h>
44 #include <asm/setup.h>
45 #include <asm/irq.h>
46 #include <asm/tlbflush.h>
47 #include <asm/vtimer.h>
48 #include <asm/lowcore.h>
49 #include <asm/sclp.h>
50 #include <asm/debug.h>
51 #include <asm/os_info.h>
52 #include <asm/sigp.h>
53 #include <asm/idle.h>
54 #include <asm/nmi.h>
55 #include <asm/stacktrace.h>
56 #include <asm/topology.h>
57 #include <asm/vdso.h>
58 #include "entry.h"
59 
60 enum {
61 	ec_schedule = 0,
62 	ec_call_function_single,
63 	ec_stop_cpu,
64 	ec_mcck_pending,
65 };
66 
67 enum {
68 	CPU_STATE_STANDBY,
69 	CPU_STATE_CONFIGURED,
70 };
71 
72 static DEFINE_PER_CPU(struct cpu *, cpu_device);
73 
74 struct pcpu {
75 	struct lowcore *lowcore;	/* lowcore page(s) for the cpu */
76 	unsigned long ec_mask;		/* bit mask for ec_xxx functions */
77 	unsigned long ec_clk;		/* sigp timestamp for ec_xxx */
78 	signed char state;		/* physical cpu state */
79 	signed char polarization;	/* physical polarization */
80 	u16 address;			/* physical cpu address */
81 };
82 
83 static u8 boot_core_type;
84 static struct pcpu pcpu_devices[NR_CPUS];
85 
86 unsigned int smp_cpu_mt_shift;
87 EXPORT_SYMBOL(smp_cpu_mt_shift);
88 
89 unsigned int smp_cpu_mtid;
90 EXPORT_SYMBOL(smp_cpu_mtid);
91 
92 #ifdef CONFIG_CRASH_DUMP
93 __vector128 __initdata boot_cpu_vector_save_area[__NUM_VXRS];
94 #endif
95 
96 static unsigned int smp_max_threads __initdata = -1U;
97 
98 static int __init early_nosmt(char *s)
99 {
100 	smp_max_threads = 1;
101 	return 0;
102 }
103 early_param("nosmt", early_nosmt);
104 
105 static int __init early_smt(char *s)
106 {
107 	get_option(&s, &smp_max_threads);
108 	return 0;
109 }
110 early_param("smt", early_smt);
111 
112 /*
113  * The smp_cpu_state_mutex must be held when changing the state or polarization
114  * member of a pcpu data structure within the pcpu_devices arreay.
115  */
116 DEFINE_MUTEX(smp_cpu_state_mutex);
117 
118 /*
119  * Signal processor helper functions.
120  */
121 static inline int __pcpu_sigp_relax(u16 addr, u8 order, unsigned long parm)
122 {
123 	int cc;
124 
125 	while (1) {
126 		cc = __pcpu_sigp(addr, order, parm, NULL);
127 		if (cc != SIGP_CC_BUSY)
128 			return cc;
129 		cpu_relax();
130 	}
131 }
132 
133 static int pcpu_sigp_retry(struct pcpu *pcpu, u8 order, u32 parm)
134 {
135 	int cc, retry;
136 
137 	for (retry = 0; ; retry++) {
138 		cc = __pcpu_sigp(pcpu->address, order, parm, NULL);
139 		if (cc != SIGP_CC_BUSY)
140 			break;
141 		if (retry >= 3)
142 			udelay(10);
143 	}
144 	return cc;
145 }
146 
147 static inline int pcpu_stopped(struct pcpu *pcpu)
148 {
149 	u32 status;
150 
151 	if (__pcpu_sigp(pcpu->address, SIGP_SENSE,
152 			0, &status) != SIGP_CC_STATUS_STORED)
153 		return 0;
154 	return !!(status & (SIGP_STATUS_CHECK_STOP|SIGP_STATUS_STOPPED));
155 }
156 
157 static inline int pcpu_running(struct pcpu *pcpu)
158 {
159 	if (__pcpu_sigp(pcpu->address, SIGP_SENSE_RUNNING,
160 			0, NULL) != SIGP_CC_STATUS_STORED)
161 		return 1;
162 	/* Status stored condition code is equivalent to cpu not running. */
163 	return 0;
164 }
165 
166 /*
167  * Find struct pcpu by cpu address.
168  */
169 static struct pcpu *pcpu_find_address(const struct cpumask *mask, u16 address)
170 {
171 	int cpu;
172 
173 	for_each_cpu(cpu, mask)
174 		if (pcpu_devices[cpu].address == address)
175 			return pcpu_devices + cpu;
176 	return NULL;
177 }
178 
179 static void pcpu_ec_call(struct pcpu *pcpu, int ec_bit)
180 {
181 	int order;
182 
183 	if (test_and_set_bit(ec_bit, &pcpu->ec_mask))
184 		return;
185 	order = pcpu_running(pcpu) ? SIGP_EXTERNAL_CALL : SIGP_EMERGENCY_SIGNAL;
186 	pcpu->ec_clk = get_tod_clock_fast();
187 	pcpu_sigp_retry(pcpu, order, 0);
188 }
189 
190 static int pcpu_alloc_lowcore(struct pcpu *pcpu, int cpu)
191 {
192 	unsigned long async_stack, nodat_stack;
193 	struct lowcore *lc;
194 
195 	if (pcpu != &pcpu_devices[0]) {
196 		pcpu->lowcore =	(struct lowcore *)
197 			__get_free_pages(GFP_KERNEL | GFP_DMA, LC_ORDER);
198 		nodat_stack = __get_free_pages(GFP_KERNEL, THREAD_SIZE_ORDER);
199 		if (!pcpu->lowcore || !nodat_stack)
200 			goto out;
201 	} else {
202 		nodat_stack = pcpu->lowcore->nodat_stack - STACK_INIT_OFFSET;
203 	}
204 	async_stack = stack_alloc();
205 	if (!async_stack)
206 		goto out;
207 	lc = pcpu->lowcore;
208 	memcpy(lc, &S390_lowcore, 512);
209 	memset((char *) lc + 512, 0, sizeof(*lc) - 512);
210 	lc->async_stack = async_stack + STACK_INIT_OFFSET;
211 	lc->nodat_stack = nodat_stack + STACK_INIT_OFFSET;
212 	lc->cpu_nr = cpu;
213 	lc->spinlock_lockval = arch_spin_lockval(cpu);
214 	lc->spinlock_index = 0;
215 	lc->br_r1_trampoline = 0x07f1;	/* br %r1 */
216 	lc->return_lpswe = gen_lpswe(__LC_RETURN_PSW);
217 	lc->return_mcck_lpswe = gen_lpswe(__LC_RETURN_MCCK_PSW);
218 	if (nmi_alloc_per_cpu(lc))
219 		goto out_async;
220 	lowcore_ptr[cpu] = lc;
221 	pcpu_sigp_retry(pcpu, SIGP_SET_PREFIX, (u32)(unsigned long) lc);
222 	return 0;
223 
224 out_async:
225 	stack_free(async_stack);
226 out:
227 	if (pcpu != &pcpu_devices[0]) {
228 		free_pages(nodat_stack, THREAD_SIZE_ORDER);
229 		free_pages((unsigned long) pcpu->lowcore, LC_ORDER);
230 	}
231 	return -ENOMEM;
232 }
233 
234 static void pcpu_free_lowcore(struct pcpu *pcpu)
235 {
236 	unsigned long async_stack, nodat_stack, lowcore;
237 
238 	nodat_stack = pcpu->lowcore->nodat_stack - STACK_INIT_OFFSET;
239 	async_stack = pcpu->lowcore->async_stack - STACK_INIT_OFFSET;
240 	lowcore = (unsigned long) pcpu->lowcore;
241 
242 	pcpu_sigp_retry(pcpu, SIGP_SET_PREFIX, 0);
243 	lowcore_ptr[pcpu - pcpu_devices] = NULL;
244 	nmi_free_per_cpu(pcpu->lowcore);
245 	stack_free(async_stack);
246 	if (pcpu == &pcpu_devices[0])
247 		return;
248 	free_pages(nodat_stack, THREAD_SIZE_ORDER);
249 	free_pages(lowcore, LC_ORDER);
250 }
251 
252 static void pcpu_prepare_secondary(struct pcpu *pcpu, int cpu)
253 {
254 	struct lowcore *lc = pcpu->lowcore;
255 
256 	cpumask_set_cpu(cpu, &init_mm.context.cpu_attach_mask);
257 	cpumask_set_cpu(cpu, mm_cpumask(&init_mm));
258 	lc->cpu_nr = cpu;
259 	lc->spinlock_lockval = arch_spin_lockval(cpu);
260 	lc->spinlock_index = 0;
261 	lc->percpu_offset = __per_cpu_offset[cpu];
262 	lc->kernel_asce = S390_lowcore.kernel_asce;
263 	lc->user_asce = s390_invalid_asce;
264 	lc->machine_flags = S390_lowcore.machine_flags;
265 	lc->user_timer = lc->system_timer =
266 		lc->steal_timer = lc->avg_steal_timer = 0;
267 	__ctl_store(lc->cregs_save_area, 0, 15);
268 	lc->cregs_save_area[1] = lc->kernel_asce;
269 	lc->cregs_save_area[7] = lc->user_asce;
270 	save_access_regs((unsigned int *) lc->access_regs_save_area);
271 	memcpy(lc->stfle_fac_list, S390_lowcore.stfle_fac_list,
272 	       sizeof(lc->stfle_fac_list));
273 	memcpy(lc->alt_stfle_fac_list, S390_lowcore.alt_stfle_fac_list,
274 	       sizeof(lc->alt_stfle_fac_list));
275 	arch_spin_lock_setup(cpu);
276 }
277 
278 static void pcpu_attach_task(struct pcpu *pcpu, struct task_struct *tsk)
279 {
280 	struct lowcore *lc = pcpu->lowcore;
281 
282 	lc->kernel_stack = (unsigned long) task_stack_page(tsk)
283 		+ THREAD_SIZE - STACK_FRAME_OVERHEAD - sizeof(struct pt_regs);
284 	lc->current_task = (unsigned long) tsk;
285 	lc->lpp = LPP_MAGIC;
286 	lc->current_pid = tsk->pid;
287 	lc->user_timer = tsk->thread.user_timer;
288 	lc->guest_timer = tsk->thread.guest_timer;
289 	lc->system_timer = tsk->thread.system_timer;
290 	lc->hardirq_timer = tsk->thread.hardirq_timer;
291 	lc->softirq_timer = tsk->thread.softirq_timer;
292 	lc->steal_timer = 0;
293 }
294 
295 static void pcpu_start_fn(struct pcpu *pcpu, void (*func)(void *), void *data)
296 {
297 	struct lowcore *lc = pcpu->lowcore;
298 
299 	lc->restart_stack = lc->nodat_stack;
300 	lc->restart_fn = (unsigned long) func;
301 	lc->restart_data = (unsigned long) data;
302 	lc->restart_source = -1UL;
303 	pcpu_sigp_retry(pcpu, SIGP_RESTART, 0);
304 }
305 
306 /*
307  * Call function via PSW restart on pcpu and stop the current cpu.
308  */
309 static void __pcpu_delegate(void (*func)(void*), void *data)
310 {
311 	func(data);	/* should not return */
312 }
313 
314 static void __no_sanitize_address pcpu_delegate(struct pcpu *pcpu,
315 						void (*func)(void *),
316 						void *data, unsigned long stack)
317 {
318 	struct lowcore *lc = lowcore_ptr[pcpu - pcpu_devices];
319 	unsigned long source_cpu = stap();
320 
321 	__load_psw_mask(PSW_KERNEL_BITS | PSW_MASK_DAT);
322 	if (pcpu->address == source_cpu)
323 		CALL_ON_STACK(__pcpu_delegate, stack, 2, func, data);
324 	/* Stop target cpu (if func returns this stops the current cpu). */
325 	pcpu_sigp_retry(pcpu, SIGP_STOP, 0);
326 	/* Restart func on the target cpu and stop the current cpu. */
327 	mem_assign_absolute(lc->restart_stack, stack);
328 	mem_assign_absolute(lc->restart_fn, (unsigned long) func);
329 	mem_assign_absolute(lc->restart_data, (unsigned long) data);
330 	mem_assign_absolute(lc->restart_source, source_cpu);
331 	__bpon();
332 	asm volatile(
333 		"0:	sigp	0,%0,%2	# sigp restart to target cpu\n"
334 		"	brc	2,0b	# busy, try again\n"
335 		"1:	sigp	0,%1,%3	# sigp stop to current cpu\n"
336 		"	brc	2,1b	# busy, try again\n"
337 		: : "d" (pcpu->address), "d" (source_cpu),
338 		    "K" (SIGP_RESTART), "K" (SIGP_STOP)
339 		: "0", "1", "cc");
340 	for (;;) ;
341 }
342 
343 /*
344  * Enable additional logical cpus for multi-threading.
345  */
346 static int pcpu_set_smt(unsigned int mtid)
347 {
348 	int cc;
349 
350 	if (smp_cpu_mtid == mtid)
351 		return 0;
352 	cc = __pcpu_sigp(0, SIGP_SET_MULTI_THREADING, mtid, NULL);
353 	if (cc == 0) {
354 		smp_cpu_mtid = mtid;
355 		smp_cpu_mt_shift = 0;
356 		while (smp_cpu_mtid >= (1U << smp_cpu_mt_shift))
357 			smp_cpu_mt_shift++;
358 		pcpu_devices[0].address = stap();
359 	}
360 	return cc;
361 }
362 
363 /*
364  * Call function on an online CPU.
365  */
366 void smp_call_online_cpu(void (*func)(void *), void *data)
367 {
368 	struct pcpu *pcpu;
369 
370 	/* Use the current cpu if it is online. */
371 	pcpu = pcpu_find_address(cpu_online_mask, stap());
372 	if (!pcpu)
373 		/* Use the first online cpu. */
374 		pcpu = pcpu_devices + cpumask_first(cpu_online_mask);
375 	pcpu_delegate(pcpu, func, data, (unsigned long) restart_stack);
376 }
377 
378 /*
379  * Call function on the ipl CPU.
380  */
381 void smp_call_ipl_cpu(void (*func)(void *), void *data)
382 {
383 	struct lowcore *lc = pcpu_devices->lowcore;
384 
385 	if (pcpu_devices[0].address == stap())
386 		lc = &S390_lowcore;
387 
388 	pcpu_delegate(&pcpu_devices[0], func, data,
389 		      lc->nodat_stack);
390 }
391 
392 int smp_find_processor_id(u16 address)
393 {
394 	int cpu;
395 
396 	for_each_present_cpu(cpu)
397 		if (pcpu_devices[cpu].address == address)
398 			return cpu;
399 	return -1;
400 }
401 
402 void schedule_mcck_handler(void)
403 {
404 	pcpu_ec_call(pcpu_devices + smp_processor_id(), ec_mcck_pending);
405 }
406 
407 bool notrace arch_vcpu_is_preempted(int cpu)
408 {
409 	if (test_cpu_flag_of(CIF_ENABLED_WAIT, cpu))
410 		return false;
411 	if (pcpu_running(pcpu_devices + cpu))
412 		return false;
413 	return true;
414 }
415 EXPORT_SYMBOL(arch_vcpu_is_preempted);
416 
417 void notrace smp_yield_cpu(int cpu)
418 {
419 	if (!MACHINE_HAS_DIAG9C)
420 		return;
421 	diag_stat_inc_norecursion(DIAG_STAT_X09C);
422 	asm volatile("diag %0,0,0x9c"
423 		     : : "d" (pcpu_devices[cpu].address));
424 }
425 
426 /*
427  * Send cpus emergency shutdown signal. This gives the cpus the
428  * opportunity to complete outstanding interrupts.
429  */
430 void notrace smp_emergency_stop(void)
431 {
432 	cpumask_t cpumask;
433 	u64 end;
434 	int cpu;
435 
436 	cpumask_copy(&cpumask, cpu_online_mask);
437 	cpumask_clear_cpu(smp_processor_id(), &cpumask);
438 
439 	end = get_tod_clock() + (1000000UL << 12);
440 	for_each_cpu(cpu, &cpumask) {
441 		struct pcpu *pcpu = pcpu_devices + cpu;
442 		set_bit(ec_stop_cpu, &pcpu->ec_mask);
443 		while (__pcpu_sigp(pcpu->address, SIGP_EMERGENCY_SIGNAL,
444 				   0, NULL) == SIGP_CC_BUSY &&
445 		       get_tod_clock() < end)
446 			cpu_relax();
447 	}
448 	while (get_tod_clock() < end) {
449 		for_each_cpu(cpu, &cpumask)
450 			if (pcpu_stopped(pcpu_devices + cpu))
451 				cpumask_clear_cpu(cpu, &cpumask);
452 		if (cpumask_empty(&cpumask))
453 			break;
454 		cpu_relax();
455 	}
456 }
457 NOKPROBE_SYMBOL(smp_emergency_stop);
458 
459 /*
460  * Stop all cpus but the current one.
461  */
462 void smp_send_stop(void)
463 {
464 	int cpu;
465 
466 	/* Disable all interrupts/machine checks */
467 	__load_psw_mask(PSW_KERNEL_BITS | PSW_MASK_DAT);
468 	trace_hardirqs_off();
469 
470 	debug_set_critical();
471 
472 	if (oops_in_progress)
473 		smp_emergency_stop();
474 
475 	/* stop all processors */
476 	for_each_online_cpu(cpu) {
477 		if (cpu == smp_processor_id())
478 			continue;
479 		pcpu_sigp_retry(pcpu_devices + cpu, SIGP_STOP, 0);
480 		while (!pcpu_stopped(pcpu_devices + cpu))
481 			cpu_relax();
482 	}
483 }
484 
485 /*
486  * This is the main routine where commands issued by other
487  * cpus are handled.
488  */
489 static void smp_handle_ext_call(void)
490 {
491 	unsigned long bits;
492 
493 	/* handle bit signal external calls */
494 	bits = xchg(&pcpu_devices[smp_processor_id()].ec_mask, 0);
495 	if (test_bit(ec_stop_cpu, &bits))
496 		smp_stop_cpu();
497 	if (test_bit(ec_schedule, &bits))
498 		scheduler_ipi();
499 	if (test_bit(ec_call_function_single, &bits))
500 		generic_smp_call_function_single_interrupt();
501 	if (test_bit(ec_mcck_pending, &bits))
502 		s390_handle_mcck();
503 }
504 
505 static void do_ext_call_interrupt(struct ext_code ext_code,
506 				  unsigned int param32, unsigned long param64)
507 {
508 	inc_irq_stat(ext_code.code == 0x1202 ? IRQEXT_EXC : IRQEXT_EMS);
509 	smp_handle_ext_call();
510 }
511 
512 void arch_send_call_function_ipi_mask(const struct cpumask *mask)
513 {
514 	int cpu;
515 
516 	for_each_cpu(cpu, mask)
517 		pcpu_ec_call(pcpu_devices + cpu, ec_call_function_single);
518 }
519 
520 void arch_send_call_function_single_ipi(int cpu)
521 {
522 	pcpu_ec_call(pcpu_devices + cpu, ec_call_function_single);
523 }
524 
525 /*
526  * this function sends a 'reschedule' IPI to another CPU.
527  * it goes straight through and wastes no time serializing
528  * anything. Worst case is that we lose a reschedule ...
529  */
530 void smp_send_reschedule(int cpu)
531 {
532 	pcpu_ec_call(pcpu_devices + cpu, ec_schedule);
533 }
534 
535 /*
536  * parameter area for the set/clear control bit callbacks
537  */
538 struct ec_creg_mask_parms {
539 	unsigned long orval;
540 	unsigned long andval;
541 	int cr;
542 };
543 
544 /*
545  * callback for setting/clearing control bits
546  */
547 static void smp_ctl_bit_callback(void *info)
548 {
549 	struct ec_creg_mask_parms *pp = info;
550 	unsigned long cregs[16];
551 
552 	__ctl_store(cregs, 0, 15);
553 	cregs[pp->cr] = (cregs[pp->cr] & pp->andval) | pp->orval;
554 	__ctl_load(cregs, 0, 15);
555 }
556 
557 /*
558  * Set a bit in a control register of all cpus
559  */
560 void smp_ctl_set_bit(int cr, int bit)
561 {
562 	struct ec_creg_mask_parms parms = { 1UL << bit, -1UL, cr };
563 
564 	on_each_cpu(smp_ctl_bit_callback, &parms, 1);
565 }
566 EXPORT_SYMBOL(smp_ctl_set_bit);
567 
568 /*
569  * Clear a bit in a control register of all cpus
570  */
571 void smp_ctl_clear_bit(int cr, int bit)
572 {
573 	struct ec_creg_mask_parms parms = { 0, ~(1UL << bit), cr };
574 
575 	on_each_cpu(smp_ctl_bit_callback, &parms, 1);
576 }
577 EXPORT_SYMBOL(smp_ctl_clear_bit);
578 
579 #ifdef CONFIG_CRASH_DUMP
580 
581 int smp_store_status(int cpu)
582 {
583 	struct pcpu *pcpu = pcpu_devices + cpu;
584 	unsigned long pa;
585 
586 	pa = __pa(&pcpu->lowcore->floating_pt_save_area);
587 	if (__pcpu_sigp_relax(pcpu->address, SIGP_STORE_STATUS_AT_ADDRESS,
588 			      pa) != SIGP_CC_ORDER_CODE_ACCEPTED)
589 		return -EIO;
590 	if (!MACHINE_HAS_VX && !MACHINE_HAS_GS)
591 		return 0;
592 	pa = __pa(pcpu->lowcore->mcesad & MCESA_ORIGIN_MASK);
593 	if (MACHINE_HAS_GS)
594 		pa |= pcpu->lowcore->mcesad & MCESA_LC_MASK;
595 	if (__pcpu_sigp_relax(pcpu->address, SIGP_STORE_ADDITIONAL_STATUS,
596 			      pa) != SIGP_CC_ORDER_CODE_ACCEPTED)
597 		return -EIO;
598 	return 0;
599 }
600 
601 /*
602  * Collect CPU state of the previous, crashed system.
603  * There are four cases:
604  * 1) standard zfcp/nvme dump
605  *    condition: OLDMEM_BASE == NULL && is_ipl_type_dump() == true
606  *    The state for all CPUs except the boot CPU needs to be collected
607  *    with sigp stop-and-store-status. The boot CPU state is located in
608  *    the absolute lowcore of the memory stored in the HSA. The zcore code
609  *    will copy the boot CPU state from the HSA.
610  * 2) stand-alone kdump for SCSI/NVMe (zfcp/nvme dump with swapped memory)
611  *    condition: OLDMEM_BASE != NULL && is_ipl_type_dump() == true
612  *    The state for all CPUs except the boot CPU needs to be collected
613  *    with sigp stop-and-store-status. The firmware or the boot-loader
614  *    stored the registers of the boot CPU in the absolute lowcore in the
615  *    memory of the old system.
616  * 3) kdump and the old kernel did not store the CPU state,
617  *    or stand-alone kdump for DASD
618  *    condition: OLDMEM_BASE != NULL && !is_kdump_kernel()
619  *    The state for all CPUs except the boot CPU needs to be collected
620  *    with sigp stop-and-store-status. The kexec code or the boot-loader
621  *    stored the registers of the boot CPU in the memory of the old system.
622  * 4) kdump and the old kernel stored the CPU state
623  *    condition: OLDMEM_BASE != NULL && is_kdump_kernel()
624  *    This case does not exist for s390 anymore, setup_arch explicitly
625  *    deactivates the elfcorehdr= kernel parameter
626  */
627 static __init void smp_save_cpu_vxrs(struct save_area *sa, u16 addr,
628 				     bool is_boot_cpu, unsigned long page)
629 {
630 	__vector128 *vxrs = (__vector128 *) page;
631 
632 	if (is_boot_cpu)
633 		vxrs = boot_cpu_vector_save_area;
634 	else
635 		__pcpu_sigp_relax(addr, SIGP_STORE_ADDITIONAL_STATUS, page);
636 	save_area_add_vxrs(sa, vxrs);
637 }
638 
639 static __init void smp_save_cpu_regs(struct save_area *sa, u16 addr,
640 				     bool is_boot_cpu, unsigned long page)
641 {
642 	void *regs = (void *) page;
643 
644 	if (is_boot_cpu)
645 		copy_oldmem_kernel(regs, (void *) __LC_FPREGS_SAVE_AREA, 512);
646 	else
647 		__pcpu_sigp_relax(addr, SIGP_STORE_STATUS_AT_ADDRESS, page);
648 	save_area_add_regs(sa, regs);
649 }
650 
651 void __init smp_save_dump_cpus(void)
652 {
653 	int addr, boot_cpu_addr, max_cpu_addr;
654 	struct save_area *sa;
655 	unsigned long page;
656 	bool is_boot_cpu;
657 
658 	if (!(OLDMEM_BASE || is_ipl_type_dump()))
659 		/* No previous system present, normal boot. */
660 		return;
661 	/* Allocate a page as dumping area for the store status sigps */
662 	page = memblock_phys_alloc_range(PAGE_SIZE, PAGE_SIZE, 0, 1UL << 31);
663 	if (!page)
664 		panic("ERROR: Failed to allocate %lx bytes below %lx\n",
665 		      PAGE_SIZE, 1UL << 31);
666 
667 	/* Set multi-threading state to the previous system. */
668 	pcpu_set_smt(sclp.mtid_prev);
669 	boot_cpu_addr = stap();
670 	max_cpu_addr = SCLP_MAX_CORES << sclp.mtid_prev;
671 	for (addr = 0; addr <= max_cpu_addr; addr++) {
672 		if (__pcpu_sigp_relax(addr, SIGP_SENSE, 0) ==
673 		    SIGP_CC_NOT_OPERATIONAL)
674 			continue;
675 		is_boot_cpu = (addr == boot_cpu_addr);
676 		/* Allocate save area */
677 		sa = save_area_alloc(is_boot_cpu);
678 		if (!sa)
679 			panic("could not allocate memory for save area\n");
680 		if (MACHINE_HAS_VX)
681 			/* Get the vector registers */
682 			smp_save_cpu_vxrs(sa, addr, is_boot_cpu, page);
683 		/*
684 		 * For a zfcp/nvme dump OLDMEM_BASE == NULL and the registers
685 		 * of the boot CPU are stored in the HSA. To retrieve
686 		 * these registers an SCLP request is required which is
687 		 * done by drivers/s390/char/zcore.c:init_cpu_info()
688 		 */
689 		if (!is_boot_cpu || OLDMEM_BASE)
690 			/* Get the CPU registers */
691 			smp_save_cpu_regs(sa, addr, is_boot_cpu, page);
692 	}
693 	memblock_free(page, PAGE_SIZE);
694 	diag_dma_ops.diag308_reset();
695 	pcpu_set_smt(0);
696 }
697 #endif /* CONFIG_CRASH_DUMP */
698 
699 void smp_cpu_set_polarization(int cpu, int val)
700 {
701 	pcpu_devices[cpu].polarization = val;
702 }
703 
704 int smp_cpu_get_polarization(int cpu)
705 {
706 	return pcpu_devices[cpu].polarization;
707 }
708 
709 int smp_cpu_get_cpu_address(int cpu)
710 {
711 	return pcpu_devices[cpu].address;
712 }
713 
714 static void __ref smp_get_core_info(struct sclp_core_info *info, int early)
715 {
716 	static int use_sigp_detection;
717 	int address;
718 
719 	if (use_sigp_detection || sclp_get_core_info(info, early)) {
720 		use_sigp_detection = 1;
721 		for (address = 0;
722 		     address < (SCLP_MAX_CORES << smp_cpu_mt_shift);
723 		     address += (1U << smp_cpu_mt_shift)) {
724 			if (__pcpu_sigp_relax(address, SIGP_SENSE, 0) ==
725 			    SIGP_CC_NOT_OPERATIONAL)
726 				continue;
727 			info->core[info->configured].core_id =
728 				address >> smp_cpu_mt_shift;
729 			info->configured++;
730 		}
731 		info->combined = info->configured;
732 	}
733 }
734 
735 static int smp_add_present_cpu(int cpu);
736 
737 static int smp_add_core(struct sclp_core_entry *core, cpumask_t *avail,
738 			bool configured, bool early)
739 {
740 	struct pcpu *pcpu;
741 	int cpu, nr, i;
742 	u16 address;
743 
744 	nr = 0;
745 	if (sclp.has_core_type && core->type != boot_core_type)
746 		return nr;
747 	cpu = cpumask_first(avail);
748 	address = core->core_id << smp_cpu_mt_shift;
749 	for (i = 0; (i <= smp_cpu_mtid) && (cpu < nr_cpu_ids); i++) {
750 		if (pcpu_find_address(cpu_present_mask, address + i))
751 			continue;
752 		pcpu = pcpu_devices + cpu;
753 		pcpu->address = address + i;
754 		if (configured)
755 			pcpu->state = CPU_STATE_CONFIGURED;
756 		else
757 			pcpu->state = CPU_STATE_STANDBY;
758 		smp_cpu_set_polarization(cpu, POLARIZATION_UNKNOWN);
759 		set_cpu_present(cpu, true);
760 		if (!early && smp_add_present_cpu(cpu) != 0)
761 			set_cpu_present(cpu, false);
762 		else
763 			nr++;
764 		cpumask_clear_cpu(cpu, avail);
765 		cpu = cpumask_next(cpu, avail);
766 	}
767 	return nr;
768 }
769 
770 static int __smp_rescan_cpus(struct sclp_core_info *info, bool early)
771 {
772 	struct sclp_core_entry *core;
773 	cpumask_t avail;
774 	bool configured;
775 	u16 core_id;
776 	int nr, i;
777 
778 	nr = 0;
779 	cpumask_xor(&avail, cpu_possible_mask, cpu_present_mask);
780 	/*
781 	 * Add IPL core first (which got logical CPU number 0) to make sure
782 	 * that all SMT threads get subsequent logical CPU numbers.
783 	 */
784 	if (early) {
785 		core_id = pcpu_devices[0].address >> smp_cpu_mt_shift;
786 		for (i = 0; i < info->configured; i++) {
787 			core = &info->core[i];
788 			if (core->core_id == core_id) {
789 				nr += smp_add_core(core, &avail, true, early);
790 				break;
791 			}
792 		}
793 	}
794 	for (i = 0; i < info->combined; i++) {
795 		configured = i < info->configured;
796 		nr += smp_add_core(&info->core[i], &avail, configured, early);
797 	}
798 	return nr;
799 }
800 
801 void __init smp_detect_cpus(void)
802 {
803 	unsigned int cpu, mtid, c_cpus, s_cpus;
804 	struct sclp_core_info *info;
805 	u16 address;
806 
807 	/* Get CPU information */
808 	info = memblock_alloc(sizeof(*info), 8);
809 	if (!info)
810 		panic("%s: Failed to allocate %zu bytes align=0x%x\n",
811 		      __func__, sizeof(*info), 8);
812 	smp_get_core_info(info, 1);
813 	/* Find boot CPU type */
814 	if (sclp.has_core_type) {
815 		address = stap();
816 		for (cpu = 0; cpu < info->combined; cpu++)
817 			if (info->core[cpu].core_id == address) {
818 				/* The boot cpu dictates the cpu type. */
819 				boot_core_type = info->core[cpu].type;
820 				break;
821 			}
822 		if (cpu >= info->combined)
823 			panic("Could not find boot CPU type");
824 	}
825 
826 	/* Set multi-threading state for the current system */
827 	mtid = boot_core_type ? sclp.mtid : sclp.mtid_cp;
828 	mtid = (mtid < smp_max_threads) ? mtid : smp_max_threads - 1;
829 	pcpu_set_smt(mtid);
830 
831 	/* Print number of CPUs */
832 	c_cpus = s_cpus = 0;
833 	for (cpu = 0; cpu < info->combined; cpu++) {
834 		if (sclp.has_core_type &&
835 		    info->core[cpu].type != boot_core_type)
836 			continue;
837 		if (cpu < info->configured)
838 			c_cpus += smp_cpu_mtid + 1;
839 		else
840 			s_cpus += smp_cpu_mtid + 1;
841 	}
842 	pr_info("%d configured CPUs, %d standby CPUs\n", c_cpus, s_cpus);
843 
844 	/* Add CPUs present at boot */
845 	get_online_cpus();
846 	__smp_rescan_cpus(info, true);
847 	put_online_cpus();
848 	memblock_free_early((unsigned long)info, sizeof(*info));
849 }
850 
851 static void smp_init_secondary(void)
852 {
853 	int cpu = raw_smp_processor_id();
854 
855 	S390_lowcore.last_update_clock = get_tod_clock();
856 	restore_access_regs(S390_lowcore.access_regs_save_area);
857 	cpu_init();
858 	rcu_cpu_starting(cpu);
859 	preempt_disable();
860 	init_cpu_timer();
861 	vtime_init();
862 	vdso_getcpu_init();
863 	pfault_init();
864 	notify_cpu_starting(cpu);
865 	if (topology_cpu_dedicated(cpu))
866 		set_cpu_flag(CIF_DEDICATED_CPU);
867 	else
868 		clear_cpu_flag(CIF_DEDICATED_CPU);
869 	set_cpu_online(cpu, true);
870 	update_cpu_masks();
871 	inc_irq_stat(CPU_RST);
872 	local_irq_enable();
873 	cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
874 }
875 
876 /*
877  *	Activate a secondary processor.
878  */
879 static void __no_sanitize_address smp_start_secondary(void *cpuvoid)
880 {
881 	S390_lowcore.restart_stack = (unsigned long) restart_stack;
882 	S390_lowcore.restart_fn = (unsigned long) do_restart;
883 	S390_lowcore.restart_data = 0;
884 	S390_lowcore.restart_source = -1UL;
885 	__ctl_load(S390_lowcore.cregs_save_area, 0, 15);
886 	__load_psw_mask(PSW_KERNEL_BITS | PSW_MASK_DAT);
887 	CALL_ON_STACK_NORETURN(smp_init_secondary, S390_lowcore.kernel_stack);
888 }
889 
890 /* Upping and downing of CPUs */
891 int __cpu_up(unsigned int cpu, struct task_struct *tidle)
892 {
893 	struct pcpu *pcpu = pcpu_devices + cpu;
894 	int rc;
895 
896 	if (pcpu->state != CPU_STATE_CONFIGURED)
897 		return -EIO;
898 	if (pcpu_sigp_retry(pcpu, SIGP_INITIAL_CPU_RESET, 0) !=
899 	    SIGP_CC_ORDER_CODE_ACCEPTED)
900 		return -EIO;
901 
902 	rc = pcpu_alloc_lowcore(pcpu, cpu);
903 	if (rc)
904 		return rc;
905 	pcpu_prepare_secondary(pcpu, cpu);
906 	pcpu_attach_task(pcpu, tidle);
907 	pcpu_start_fn(pcpu, smp_start_secondary, NULL);
908 	/* Wait until cpu puts itself in the online & active maps */
909 	while (!cpu_online(cpu))
910 		cpu_relax();
911 	return 0;
912 }
913 
914 static unsigned int setup_possible_cpus __initdata;
915 
916 static int __init _setup_possible_cpus(char *s)
917 {
918 	get_option(&s, &setup_possible_cpus);
919 	return 0;
920 }
921 early_param("possible_cpus", _setup_possible_cpus);
922 
923 int __cpu_disable(void)
924 {
925 	unsigned long cregs[16];
926 
927 	/* Handle possible pending IPIs */
928 	smp_handle_ext_call();
929 	set_cpu_online(smp_processor_id(), false);
930 	update_cpu_masks();
931 	/* Disable pseudo page faults on this cpu. */
932 	pfault_fini();
933 	/* Disable interrupt sources via control register. */
934 	__ctl_store(cregs, 0, 15);
935 	cregs[0]  &= ~0x0000ee70UL;	/* disable all external interrupts */
936 	cregs[6]  &= ~0xff000000UL;	/* disable all I/O interrupts */
937 	cregs[14] &= ~0x1f000000UL;	/* disable most machine checks */
938 	__ctl_load(cregs, 0, 15);
939 	clear_cpu_flag(CIF_NOHZ_DELAY);
940 	return 0;
941 }
942 
943 void __cpu_die(unsigned int cpu)
944 {
945 	struct pcpu *pcpu;
946 
947 	/* Wait until target cpu is down */
948 	pcpu = pcpu_devices + cpu;
949 	while (!pcpu_stopped(pcpu))
950 		cpu_relax();
951 	pcpu_free_lowcore(pcpu);
952 	cpumask_clear_cpu(cpu, mm_cpumask(&init_mm));
953 	cpumask_clear_cpu(cpu, &init_mm.context.cpu_attach_mask);
954 }
955 
956 void __noreturn cpu_die(void)
957 {
958 	idle_task_exit();
959 	__bpon();
960 	pcpu_sigp_retry(pcpu_devices + smp_processor_id(), SIGP_STOP, 0);
961 	for (;;) ;
962 }
963 
964 void __init smp_fill_possible_mask(void)
965 {
966 	unsigned int possible, sclp_max, cpu;
967 
968 	sclp_max = max(sclp.mtid, sclp.mtid_cp) + 1;
969 	sclp_max = min(smp_max_threads, sclp_max);
970 	sclp_max = (sclp.max_cores * sclp_max) ?: nr_cpu_ids;
971 	possible = setup_possible_cpus ?: nr_cpu_ids;
972 	possible = min(possible, sclp_max);
973 	for (cpu = 0; cpu < possible && cpu < nr_cpu_ids; cpu++)
974 		set_cpu_possible(cpu, true);
975 }
976 
977 void __init smp_prepare_cpus(unsigned int max_cpus)
978 {
979 	/* request the 0x1201 emergency signal external interrupt */
980 	if (register_external_irq(EXT_IRQ_EMERGENCY_SIG, do_ext_call_interrupt))
981 		panic("Couldn't request external interrupt 0x1201");
982 	/* request the 0x1202 external call external interrupt */
983 	if (register_external_irq(EXT_IRQ_EXTERNAL_CALL, do_ext_call_interrupt))
984 		panic("Couldn't request external interrupt 0x1202");
985 }
986 
987 void __init smp_prepare_boot_cpu(void)
988 {
989 	struct pcpu *pcpu = pcpu_devices;
990 
991 	WARN_ON(!cpu_present(0) || !cpu_online(0));
992 	pcpu->state = CPU_STATE_CONFIGURED;
993 	pcpu->lowcore = (struct lowcore *)(unsigned long) store_prefix();
994 	S390_lowcore.percpu_offset = __per_cpu_offset[0];
995 	smp_cpu_set_polarization(0, POLARIZATION_UNKNOWN);
996 }
997 
998 void __init smp_setup_processor_id(void)
999 {
1000 	pcpu_devices[0].address = stap();
1001 	S390_lowcore.cpu_nr = 0;
1002 	S390_lowcore.spinlock_lockval = arch_spin_lockval(0);
1003 	S390_lowcore.spinlock_index = 0;
1004 }
1005 
1006 /*
1007  * the frequency of the profiling timer can be changed
1008  * by writing a multiplier value into /proc/profile.
1009  *
1010  * usually you want to run this on all CPUs ;)
1011  */
1012 int setup_profiling_timer(unsigned int multiplier)
1013 {
1014 	return 0;
1015 }
1016 
1017 static ssize_t cpu_configure_show(struct device *dev,
1018 				  struct device_attribute *attr, char *buf)
1019 {
1020 	ssize_t count;
1021 
1022 	mutex_lock(&smp_cpu_state_mutex);
1023 	count = sprintf(buf, "%d\n", pcpu_devices[dev->id].state);
1024 	mutex_unlock(&smp_cpu_state_mutex);
1025 	return count;
1026 }
1027 
1028 static ssize_t cpu_configure_store(struct device *dev,
1029 				   struct device_attribute *attr,
1030 				   const char *buf, size_t count)
1031 {
1032 	struct pcpu *pcpu;
1033 	int cpu, val, rc, i;
1034 	char delim;
1035 
1036 	if (sscanf(buf, "%d %c", &val, &delim) != 1)
1037 		return -EINVAL;
1038 	if (val != 0 && val != 1)
1039 		return -EINVAL;
1040 	get_online_cpus();
1041 	mutex_lock(&smp_cpu_state_mutex);
1042 	rc = -EBUSY;
1043 	/* disallow configuration changes of online cpus and cpu 0 */
1044 	cpu = dev->id;
1045 	cpu = smp_get_base_cpu(cpu);
1046 	if (cpu == 0)
1047 		goto out;
1048 	for (i = 0; i <= smp_cpu_mtid; i++)
1049 		if (cpu_online(cpu + i))
1050 			goto out;
1051 	pcpu = pcpu_devices + cpu;
1052 	rc = 0;
1053 	switch (val) {
1054 	case 0:
1055 		if (pcpu->state != CPU_STATE_CONFIGURED)
1056 			break;
1057 		rc = sclp_core_deconfigure(pcpu->address >> smp_cpu_mt_shift);
1058 		if (rc)
1059 			break;
1060 		for (i = 0; i <= smp_cpu_mtid; i++) {
1061 			if (cpu + i >= nr_cpu_ids || !cpu_present(cpu + i))
1062 				continue;
1063 			pcpu[i].state = CPU_STATE_STANDBY;
1064 			smp_cpu_set_polarization(cpu + i,
1065 						 POLARIZATION_UNKNOWN);
1066 		}
1067 		topology_expect_change();
1068 		break;
1069 	case 1:
1070 		if (pcpu->state != CPU_STATE_STANDBY)
1071 			break;
1072 		rc = sclp_core_configure(pcpu->address >> smp_cpu_mt_shift);
1073 		if (rc)
1074 			break;
1075 		for (i = 0; i <= smp_cpu_mtid; i++) {
1076 			if (cpu + i >= nr_cpu_ids || !cpu_present(cpu + i))
1077 				continue;
1078 			pcpu[i].state = CPU_STATE_CONFIGURED;
1079 			smp_cpu_set_polarization(cpu + i,
1080 						 POLARIZATION_UNKNOWN);
1081 		}
1082 		topology_expect_change();
1083 		break;
1084 	default:
1085 		break;
1086 	}
1087 out:
1088 	mutex_unlock(&smp_cpu_state_mutex);
1089 	put_online_cpus();
1090 	return rc ? rc : count;
1091 }
1092 static DEVICE_ATTR(configure, 0644, cpu_configure_show, cpu_configure_store);
1093 
1094 static ssize_t show_cpu_address(struct device *dev,
1095 				struct device_attribute *attr, char *buf)
1096 {
1097 	return sprintf(buf, "%d\n", pcpu_devices[dev->id].address);
1098 }
1099 static DEVICE_ATTR(address, 0444, show_cpu_address, NULL);
1100 
1101 static struct attribute *cpu_common_attrs[] = {
1102 	&dev_attr_configure.attr,
1103 	&dev_attr_address.attr,
1104 	NULL,
1105 };
1106 
1107 static struct attribute_group cpu_common_attr_group = {
1108 	.attrs = cpu_common_attrs,
1109 };
1110 
1111 static struct attribute *cpu_online_attrs[] = {
1112 	&dev_attr_idle_count.attr,
1113 	&dev_attr_idle_time_us.attr,
1114 	NULL,
1115 };
1116 
1117 static struct attribute_group cpu_online_attr_group = {
1118 	.attrs = cpu_online_attrs,
1119 };
1120 
1121 static int smp_cpu_online(unsigned int cpu)
1122 {
1123 	struct device *s = &per_cpu(cpu_device, cpu)->dev;
1124 
1125 	return sysfs_create_group(&s->kobj, &cpu_online_attr_group);
1126 }
1127 
1128 static int smp_cpu_pre_down(unsigned int cpu)
1129 {
1130 	struct device *s = &per_cpu(cpu_device, cpu)->dev;
1131 
1132 	sysfs_remove_group(&s->kobj, &cpu_online_attr_group);
1133 	return 0;
1134 }
1135 
1136 static int smp_add_present_cpu(int cpu)
1137 {
1138 	struct device *s;
1139 	struct cpu *c;
1140 	int rc;
1141 
1142 	c = kzalloc(sizeof(*c), GFP_KERNEL);
1143 	if (!c)
1144 		return -ENOMEM;
1145 	per_cpu(cpu_device, cpu) = c;
1146 	s = &c->dev;
1147 	c->hotpluggable = 1;
1148 	rc = register_cpu(c, cpu);
1149 	if (rc)
1150 		goto out;
1151 	rc = sysfs_create_group(&s->kobj, &cpu_common_attr_group);
1152 	if (rc)
1153 		goto out_cpu;
1154 	rc = topology_cpu_init(c);
1155 	if (rc)
1156 		goto out_topology;
1157 	return 0;
1158 
1159 out_topology:
1160 	sysfs_remove_group(&s->kobj, &cpu_common_attr_group);
1161 out_cpu:
1162 	unregister_cpu(c);
1163 out:
1164 	return rc;
1165 }
1166 
1167 int __ref smp_rescan_cpus(void)
1168 {
1169 	struct sclp_core_info *info;
1170 	int nr;
1171 
1172 	info = kzalloc(sizeof(*info), GFP_KERNEL);
1173 	if (!info)
1174 		return -ENOMEM;
1175 	smp_get_core_info(info, 0);
1176 	get_online_cpus();
1177 	mutex_lock(&smp_cpu_state_mutex);
1178 	nr = __smp_rescan_cpus(info, false);
1179 	mutex_unlock(&smp_cpu_state_mutex);
1180 	put_online_cpus();
1181 	kfree(info);
1182 	if (nr)
1183 		topology_schedule_update();
1184 	return 0;
1185 }
1186 
1187 static ssize_t __ref rescan_store(struct device *dev,
1188 				  struct device_attribute *attr,
1189 				  const char *buf,
1190 				  size_t count)
1191 {
1192 	int rc;
1193 
1194 	rc = lock_device_hotplug_sysfs();
1195 	if (rc)
1196 		return rc;
1197 	rc = smp_rescan_cpus();
1198 	unlock_device_hotplug();
1199 	return rc ? rc : count;
1200 }
1201 static DEVICE_ATTR_WO(rescan);
1202 
1203 static int __init s390_smp_init(void)
1204 {
1205 	int cpu, rc = 0;
1206 
1207 	rc = device_create_file(cpu_subsys.dev_root, &dev_attr_rescan);
1208 	if (rc)
1209 		return rc;
1210 	for_each_present_cpu(cpu) {
1211 		rc = smp_add_present_cpu(cpu);
1212 		if (rc)
1213 			goto out;
1214 	}
1215 
1216 	rc = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "s390/smp:online",
1217 			       smp_cpu_online, smp_cpu_pre_down);
1218 	rc = rc <= 0 ? rc : 0;
1219 out:
1220 	return rc;
1221 }
1222 subsys_initcall(s390_smp_init);
1223