xref: /openbmc/linux/arch/s390/kernel/smp.c (revision 22a41e9a5044bf3519f05b4a00e99af34bfeb40c)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  SMP related functions
4  *
5  *    Copyright IBM Corp. 1999, 2012
6  *    Author(s): Denis Joseph Barrow,
7  *		 Martin Schwidefsky <schwidefsky@de.ibm.com>,
8  *
9  *  based on other smp stuff by
10  *    (c) 1995 Alan Cox, CymruNET Ltd  <alan@cymru.net>
11  *    (c) 1998 Ingo Molnar
12  *
13  * The code outside of smp.c uses logical cpu numbers, only smp.c does
14  * the translation of logical to physical cpu ids. All new code that
15  * operates on physical cpu numbers needs to go into smp.c.
16  */
17 
18 #define KMSG_COMPONENT "cpu"
19 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
20 
21 #include <linux/workqueue.h>
22 #include <linux/memblock.h>
23 #include <linux/export.h>
24 #include <linux/init.h>
25 #include <linux/mm.h>
26 #include <linux/err.h>
27 #include <linux/spinlock.h>
28 #include <linux/kernel_stat.h>
29 #include <linux/delay.h>
30 #include <linux/interrupt.h>
31 #include <linux/irqflags.h>
32 #include <linux/irq_work.h>
33 #include <linux/cpu.h>
34 #include <linux/slab.h>
35 #include <linux/sched/hotplug.h>
36 #include <linux/sched/task_stack.h>
37 #include <linux/crash_dump.h>
38 #include <linux/kprobes.h>
39 #include <asm/asm-offsets.h>
40 #include <asm/diag.h>
41 #include <asm/switch_to.h>
42 #include <asm/facility.h>
43 #include <asm/ipl.h>
44 #include <asm/setup.h>
45 #include <asm/irq.h>
46 #include <asm/tlbflush.h>
47 #include <asm/vtimer.h>
48 #include <asm/lowcore.h>
49 #include <asm/sclp.h>
50 #include <asm/debug.h>
51 #include <asm/os_info.h>
52 #include <asm/sigp.h>
53 #include <asm/idle.h>
54 #include <asm/nmi.h>
55 #include <asm/stacktrace.h>
56 #include <asm/topology.h>
57 #include <asm/vdso.h>
58 #include "entry.h"
59 
60 enum {
61 	ec_schedule = 0,
62 	ec_call_function_single,
63 	ec_stop_cpu,
64 	ec_mcck_pending,
65 	ec_irq_work,
66 };
67 
68 enum {
69 	CPU_STATE_STANDBY,
70 	CPU_STATE_CONFIGURED,
71 };
72 
73 static DEFINE_PER_CPU(struct cpu *, cpu_device);
74 
75 struct pcpu {
76 	unsigned long ec_mask;		/* bit mask for ec_xxx functions */
77 	unsigned long ec_clk;		/* sigp timestamp for ec_xxx */
78 	signed char state;		/* physical cpu state */
79 	signed char polarization;	/* physical polarization */
80 	u16 address;			/* physical cpu address */
81 };
82 
83 static u8 boot_core_type;
84 static struct pcpu pcpu_devices[NR_CPUS];
85 
86 unsigned int smp_cpu_mt_shift;
87 EXPORT_SYMBOL(smp_cpu_mt_shift);
88 
89 unsigned int smp_cpu_mtid;
90 EXPORT_SYMBOL(smp_cpu_mtid);
91 
92 #ifdef CONFIG_CRASH_DUMP
93 __vector128 __initdata boot_cpu_vector_save_area[__NUM_VXRS];
94 #endif
95 
96 static unsigned int smp_max_threads __initdata = -1U;
97 cpumask_t cpu_setup_mask;
98 
99 static int __init early_nosmt(char *s)
100 {
101 	smp_max_threads = 1;
102 	return 0;
103 }
104 early_param("nosmt", early_nosmt);
105 
106 static int __init early_smt(char *s)
107 {
108 	get_option(&s, &smp_max_threads);
109 	return 0;
110 }
111 early_param("smt", early_smt);
112 
113 /*
114  * The smp_cpu_state_mutex must be held when changing the state or polarization
115  * member of a pcpu data structure within the pcpu_devices arreay.
116  */
117 DEFINE_MUTEX(smp_cpu_state_mutex);
118 
119 /*
120  * Signal processor helper functions.
121  */
122 static inline int __pcpu_sigp_relax(u16 addr, u8 order, unsigned long parm)
123 {
124 	int cc;
125 
126 	while (1) {
127 		cc = __pcpu_sigp(addr, order, parm, NULL);
128 		if (cc != SIGP_CC_BUSY)
129 			return cc;
130 		cpu_relax();
131 	}
132 }
133 
134 static int pcpu_sigp_retry(struct pcpu *pcpu, u8 order, u32 parm)
135 {
136 	int cc, retry;
137 
138 	for (retry = 0; ; retry++) {
139 		cc = __pcpu_sigp(pcpu->address, order, parm, NULL);
140 		if (cc != SIGP_CC_BUSY)
141 			break;
142 		if (retry >= 3)
143 			udelay(10);
144 	}
145 	return cc;
146 }
147 
148 static inline int pcpu_stopped(struct pcpu *pcpu)
149 {
150 	u32 status;
151 
152 	if (__pcpu_sigp(pcpu->address, SIGP_SENSE,
153 			0, &status) != SIGP_CC_STATUS_STORED)
154 		return 0;
155 	return !!(status & (SIGP_STATUS_CHECK_STOP|SIGP_STATUS_STOPPED));
156 }
157 
158 static inline int pcpu_running(struct pcpu *pcpu)
159 {
160 	if (__pcpu_sigp(pcpu->address, SIGP_SENSE_RUNNING,
161 			0, NULL) != SIGP_CC_STATUS_STORED)
162 		return 1;
163 	/* Status stored condition code is equivalent to cpu not running. */
164 	return 0;
165 }
166 
167 /*
168  * Find struct pcpu by cpu address.
169  */
170 static struct pcpu *pcpu_find_address(const struct cpumask *mask, u16 address)
171 {
172 	int cpu;
173 
174 	for_each_cpu(cpu, mask)
175 		if (pcpu_devices[cpu].address == address)
176 			return pcpu_devices + cpu;
177 	return NULL;
178 }
179 
180 static void pcpu_ec_call(struct pcpu *pcpu, int ec_bit)
181 {
182 	int order;
183 
184 	if (test_and_set_bit(ec_bit, &pcpu->ec_mask))
185 		return;
186 	order = pcpu_running(pcpu) ? SIGP_EXTERNAL_CALL : SIGP_EMERGENCY_SIGNAL;
187 	pcpu->ec_clk = get_tod_clock_fast();
188 	pcpu_sigp_retry(pcpu, order, 0);
189 }
190 
191 static int pcpu_alloc_lowcore(struct pcpu *pcpu, int cpu)
192 {
193 	unsigned long async_stack, nodat_stack, mcck_stack;
194 	struct lowcore *lc;
195 
196 	lc = (struct lowcore *) __get_free_pages(GFP_KERNEL | GFP_DMA, LC_ORDER);
197 	nodat_stack = __get_free_pages(GFP_KERNEL, THREAD_SIZE_ORDER);
198 	async_stack = stack_alloc();
199 	mcck_stack = stack_alloc();
200 	if (!lc || !nodat_stack || !async_stack || !mcck_stack)
201 		goto out;
202 	memcpy(lc, &S390_lowcore, 512);
203 	memset((char *) lc + 512, 0, sizeof(*lc) - 512);
204 	lc->async_stack = async_stack + STACK_INIT_OFFSET;
205 	lc->nodat_stack = nodat_stack + STACK_INIT_OFFSET;
206 	lc->mcck_stack = mcck_stack + STACK_INIT_OFFSET;
207 	lc->cpu_nr = cpu;
208 	lc->spinlock_lockval = arch_spin_lockval(cpu);
209 	lc->spinlock_index = 0;
210 	lc->return_lpswe = gen_lpswe(__LC_RETURN_PSW);
211 	lc->return_mcck_lpswe = gen_lpswe(__LC_RETURN_MCCK_PSW);
212 	lc->preempt_count = PREEMPT_DISABLED;
213 	if (nmi_alloc_mcesa(&lc->mcesad))
214 		goto out;
215 	lowcore_ptr[cpu] = lc;
216 	pcpu_sigp_retry(pcpu, SIGP_SET_PREFIX, (u32)(unsigned long) lc);
217 	return 0;
218 
219 out:
220 	stack_free(mcck_stack);
221 	stack_free(async_stack);
222 	free_pages(nodat_stack, THREAD_SIZE_ORDER);
223 	free_pages((unsigned long) lc, LC_ORDER);
224 	return -ENOMEM;
225 }
226 
227 static void pcpu_free_lowcore(struct pcpu *pcpu)
228 {
229 	unsigned long async_stack, nodat_stack, mcck_stack;
230 	struct lowcore *lc;
231 	int cpu;
232 
233 	cpu = pcpu - pcpu_devices;
234 	lc = lowcore_ptr[cpu];
235 	nodat_stack = lc->nodat_stack - STACK_INIT_OFFSET;
236 	async_stack = lc->async_stack - STACK_INIT_OFFSET;
237 	mcck_stack = lc->mcck_stack - STACK_INIT_OFFSET;
238 	pcpu_sigp_retry(pcpu, SIGP_SET_PREFIX, 0);
239 	lowcore_ptr[cpu] = NULL;
240 	nmi_free_mcesa(&lc->mcesad);
241 	stack_free(async_stack);
242 	stack_free(mcck_stack);
243 	free_pages(nodat_stack, THREAD_SIZE_ORDER);
244 	free_pages((unsigned long) lc, LC_ORDER);
245 }
246 
247 static void pcpu_prepare_secondary(struct pcpu *pcpu, int cpu)
248 {
249 	struct lowcore *lc = lowcore_ptr[cpu];
250 
251 	cpumask_set_cpu(cpu, &init_mm.context.cpu_attach_mask);
252 	cpumask_set_cpu(cpu, mm_cpumask(&init_mm));
253 	lc->cpu_nr = cpu;
254 	lc->restart_flags = RESTART_FLAG_CTLREGS;
255 	lc->spinlock_lockval = arch_spin_lockval(cpu);
256 	lc->spinlock_index = 0;
257 	lc->percpu_offset = __per_cpu_offset[cpu];
258 	lc->kernel_asce = S390_lowcore.kernel_asce;
259 	lc->user_asce = s390_invalid_asce;
260 	lc->machine_flags = S390_lowcore.machine_flags;
261 	lc->user_timer = lc->system_timer =
262 		lc->steal_timer = lc->avg_steal_timer = 0;
263 	__ctl_store(lc->cregs_save_area, 0, 15);
264 	lc->cregs_save_area[1] = lc->kernel_asce;
265 	lc->cregs_save_area[7] = lc->user_asce;
266 	save_access_regs((unsigned int *) lc->access_regs_save_area);
267 	arch_spin_lock_setup(cpu);
268 }
269 
270 static void pcpu_attach_task(struct pcpu *pcpu, struct task_struct *tsk)
271 {
272 	struct lowcore *lc;
273 	int cpu;
274 
275 	cpu = pcpu - pcpu_devices;
276 	lc = lowcore_ptr[cpu];
277 	lc->kernel_stack = (unsigned long) task_stack_page(tsk)
278 		+ THREAD_SIZE - STACK_FRAME_OVERHEAD - sizeof(struct pt_regs);
279 	lc->current_task = (unsigned long) tsk;
280 	lc->lpp = LPP_MAGIC;
281 	lc->current_pid = tsk->pid;
282 	lc->user_timer = tsk->thread.user_timer;
283 	lc->guest_timer = tsk->thread.guest_timer;
284 	lc->system_timer = tsk->thread.system_timer;
285 	lc->hardirq_timer = tsk->thread.hardirq_timer;
286 	lc->softirq_timer = tsk->thread.softirq_timer;
287 	lc->steal_timer = 0;
288 }
289 
290 static void pcpu_start_fn(struct pcpu *pcpu, void (*func)(void *), void *data)
291 {
292 	struct lowcore *lc;
293 	int cpu;
294 
295 	cpu = pcpu - pcpu_devices;
296 	lc = lowcore_ptr[cpu];
297 	lc->restart_stack = lc->kernel_stack;
298 	lc->restart_fn = (unsigned long) func;
299 	lc->restart_data = (unsigned long) data;
300 	lc->restart_source = -1U;
301 	pcpu_sigp_retry(pcpu, SIGP_RESTART, 0);
302 }
303 
304 typedef void (pcpu_delegate_fn)(void *);
305 
306 /*
307  * Call function via PSW restart on pcpu and stop the current cpu.
308  */
309 static void __pcpu_delegate(pcpu_delegate_fn *func, void *data)
310 {
311 	func(data);	/* should not return */
312 }
313 
314 static void pcpu_delegate(struct pcpu *pcpu,
315 			  pcpu_delegate_fn *func,
316 			  void *data, unsigned long stack)
317 {
318 	struct lowcore *lc = lowcore_ptr[pcpu - pcpu_devices];
319 	unsigned int source_cpu = stap();
320 
321 	__load_psw_mask(PSW_KERNEL_BITS | PSW_MASK_DAT);
322 	if (pcpu->address == source_cpu) {
323 		call_on_stack(2, stack, void, __pcpu_delegate,
324 			      pcpu_delegate_fn *, func, void *, data);
325 	}
326 	/* Stop target cpu (if func returns this stops the current cpu). */
327 	pcpu_sigp_retry(pcpu, SIGP_STOP, 0);
328 	/* Restart func on the target cpu and stop the current cpu. */
329 	mem_assign_absolute(lc->restart_stack, stack);
330 	mem_assign_absolute(lc->restart_fn, (unsigned long) func);
331 	mem_assign_absolute(lc->restart_data, (unsigned long) data);
332 	mem_assign_absolute(lc->restart_source, source_cpu);
333 	__bpon();
334 	asm volatile(
335 		"0:	sigp	0,%0,%2	# sigp restart to target cpu\n"
336 		"	brc	2,0b	# busy, try again\n"
337 		"1:	sigp	0,%1,%3	# sigp stop to current cpu\n"
338 		"	brc	2,1b	# busy, try again\n"
339 		: : "d" (pcpu->address), "d" (source_cpu),
340 		    "K" (SIGP_RESTART), "K" (SIGP_STOP)
341 		: "0", "1", "cc");
342 	for (;;) ;
343 }
344 
345 /*
346  * Enable additional logical cpus for multi-threading.
347  */
348 static int pcpu_set_smt(unsigned int mtid)
349 {
350 	int cc;
351 
352 	if (smp_cpu_mtid == mtid)
353 		return 0;
354 	cc = __pcpu_sigp(0, SIGP_SET_MULTI_THREADING, mtid, NULL);
355 	if (cc == 0) {
356 		smp_cpu_mtid = mtid;
357 		smp_cpu_mt_shift = 0;
358 		while (smp_cpu_mtid >= (1U << smp_cpu_mt_shift))
359 			smp_cpu_mt_shift++;
360 		pcpu_devices[0].address = stap();
361 	}
362 	return cc;
363 }
364 
365 /*
366  * Call function on an online CPU.
367  */
368 void smp_call_online_cpu(void (*func)(void *), void *data)
369 {
370 	struct pcpu *pcpu;
371 
372 	/* Use the current cpu if it is online. */
373 	pcpu = pcpu_find_address(cpu_online_mask, stap());
374 	if (!pcpu)
375 		/* Use the first online cpu. */
376 		pcpu = pcpu_devices + cpumask_first(cpu_online_mask);
377 	pcpu_delegate(pcpu, func, data, (unsigned long) restart_stack);
378 }
379 
380 /*
381  * Call function on the ipl CPU.
382  */
383 void smp_call_ipl_cpu(void (*func)(void *), void *data)
384 {
385 	struct lowcore *lc = lowcore_ptr[0];
386 
387 	if (pcpu_devices[0].address == stap())
388 		lc = &S390_lowcore;
389 
390 	pcpu_delegate(&pcpu_devices[0], func, data,
391 		      lc->nodat_stack);
392 }
393 
394 int smp_find_processor_id(u16 address)
395 {
396 	int cpu;
397 
398 	for_each_present_cpu(cpu)
399 		if (pcpu_devices[cpu].address == address)
400 			return cpu;
401 	return -1;
402 }
403 
404 void schedule_mcck_handler(void)
405 {
406 	pcpu_ec_call(pcpu_devices + smp_processor_id(), ec_mcck_pending);
407 }
408 
409 bool notrace arch_vcpu_is_preempted(int cpu)
410 {
411 	if (test_cpu_flag_of(CIF_ENABLED_WAIT, cpu))
412 		return false;
413 	if (pcpu_running(pcpu_devices + cpu))
414 		return false;
415 	return true;
416 }
417 EXPORT_SYMBOL(arch_vcpu_is_preempted);
418 
419 void notrace smp_yield_cpu(int cpu)
420 {
421 	if (!MACHINE_HAS_DIAG9C)
422 		return;
423 	diag_stat_inc_norecursion(DIAG_STAT_X09C);
424 	asm volatile("diag %0,0,0x9c"
425 		     : : "d" (pcpu_devices[cpu].address));
426 }
427 EXPORT_SYMBOL_GPL(smp_yield_cpu);
428 
429 /*
430  * Send cpus emergency shutdown signal. This gives the cpus the
431  * opportunity to complete outstanding interrupts.
432  */
433 void notrace smp_emergency_stop(void)
434 {
435 	static arch_spinlock_t lock = __ARCH_SPIN_LOCK_UNLOCKED;
436 	static cpumask_t cpumask;
437 	u64 end;
438 	int cpu;
439 
440 	arch_spin_lock(&lock);
441 	cpumask_copy(&cpumask, cpu_online_mask);
442 	cpumask_clear_cpu(smp_processor_id(), &cpumask);
443 
444 	end = get_tod_clock() + (1000000UL << 12);
445 	for_each_cpu(cpu, &cpumask) {
446 		struct pcpu *pcpu = pcpu_devices + cpu;
447 		set_bit(ec_stop_cpu, &pcpu->ec_mask);
448 		while (__pcpu_sigp(pcpu->address, SIGP_EMERGENCY_SIGNAL,
449 				   0, NULL) == SIGP_CC_BUSY &&
450 		       get_tod_clock() < end)
451 			cpu_relax();
452 	}
453 	while (get_tod_clock() < end) {
454 		for_each_cpu(cpu, &cpumask)
455 			if (pcpu_stopped(pcpu_devices + cpu))
456 				cpumask_clear_cpu(cpu, &cpumask);
457 		if (cpumask_empty(&cpumask))
458 			break;
459 		cpu_relax();
460 	}
461 	arch_spin_unlock(&lock);
462 }
463 NOKPROBE_SYMBOL(smp_emergency_stop);
464 
465 /*
466  * Stop all cpus but the current one.
467  */
468 void smp_send_stop(void)
469 {
470 	int cpu;
471 
472 	/* Disable all interrupts/machine checks */
473 	__load_psw_mask(PSW_KERNEL_BITS | PSW_MASK_DAT);
474 	trace_hardirqs_off();
475 
476 	debug_set_critical();
477 
478 	if (oops_in_progress)
479 		smp_emergency_stop();
480 
481 	/* stop all processors */
482 	for_each_online_cpu(cpu) {
483 		if (cpu == smp_processor_id())
484 			continue;
485 		pcpu_sigp_retry(pcpu_devices + cpu, SIGP_STOP, 0);
486 		while (!pcpu_stopped(pcpu_devices + cpu))
487 			cpu_relax();
488 	}
489 }
490 
491 /*
492  * This is the main routine where commands issued by other
493  * cpus are handled.
494  */
495 static void smp_handle_ext_call(void)
496 {
497 	unsigned long bits;
498 
499 	/* handle bit signal external calls */
500 	bits = xchg(&pcpu_devices[smp_processor_id()].ec_mask, 0);
501 	if (test_bit(ec_stop_cpu, &bits))
502 		smp_stop_cpu();
503 	if (test_bit(ec_schedule, &bits))
504 		scheduler_ipi();
505 	if (test_bit(ec_call_function_single, &bits))
506 		generic_smp_call_function_single_interrupt();
507 	if (test_bit(ec_mcck_pending, &bits))
508 		__s390_handle_mcck();
509 	if (test_bit(ec_irq_work, &bits))
510 		irq_work_run();
511 }
512 
513 static void do_ext_call_interrupt(struct ext_code ext_code,
514 				  unsigned int param32, unsigned long param64)
515 {
516 	inc_irq_stat(ext_code.code == 0x1202 ? IRQEXT_EXC : IRQEXT_EMS);
517 	smp_handle_ext_call();
518 }
519 
520 void arch_send_call_function_ipi_mask(const struct cpumask *mask)
521 {
522 	int cpu;
523 
524 	for_each_cpu(cpu, mask)
525 		pcpu_ec_call(pcpu_devices + cpu, ec_call_function_single);
526 }
527 
528 void arch_send_call_function_single_ipi(int cpu)
529 {
530 	pcpu_ec_call(pcpu_devices + cpu, ec_call_function_single);
531 }
532 
533 /*
534  * this function sends a 'reschedule' IPI to another CPU.
535  * it goes straight through and wastes no time serializing
536  * anything. Worst case is that we lose a reschedule ...
537  */
538 void smp_send_reschedule(int cpu)
539 {
540 	pcpu_ec_call(pcpu_devices + cpu, ec_schedule);
541 }
542 
543 #ifdef CONFIG_IRQ_WORK
544 void arch_irq_work_raise(void)
545 {
546 	pcpu_ec_call(pcpu_devices + smp_processor_id(), ec_irq_work);
547 }
548 #endif
549 
550 /*
551  * parameter area for the set/clear control bit callbacks
552  */
553 struct ec_creg_mask_parms {
554 	unsigned long orval;
555 	unsigned long andval;
556 	int cr;
557 };
558 
559 /*
560  * callback for setting/clearing control bits
561  */
562 static void smp_ctl_bit_callback(void *info)
563 {
564 	struct ec_creg_mask_parms *pp = info;
565 	unsigned long cregs[16];
566 
567 	__ctl_store(cregs, 0, 15);
568 	cregs[pp->cr] = (cregs[pp->cr] & pp->andval) | pp->orval;
569 	__ctl_load(cregs, 0, 15);
570 }
571 
572 static DEFINE_SPINLOCK(ctl_lock);
573 static unsigned long ctlreg;
574 
575 /*
576  * Set a bit in a control register of all cpus
577  */
578 void smp_ctl_set_bit(int cr, int bit)
579 {
580 	struct ec_creg_mask_parms parms = { 1UL << bit, -1UL, cr };
581 
582 	spin_lock(&ctl_lock);
583 	memcpy_absolute(&ctlreg, &S390_lowcore.cregs_save_area[cr], sizeof(ctlreg));
584 	__set_bit(bit, &ctlreg);
585 	memcpy_absolute(&S390_lowcore.cregs_save_area[cr], &ctlreg, sizeof(ctlreg));
586 	spin_unlock(&ctl_lock);
587 	on_each_cpu(smp_ctl_bit_callback, &parms, 1);
588 }
589 EXPORT_SYMBOL(smp_ctl_set_bit);
590 
591 /*
592  * Clear a bit in a control register of all cpus
593  */
594 void smp_ctl_clear_bit(int cr, int bit)
595 {
596 	struct ec_creg_mask_parms parms = { 0, ~(1UL << bit), cr };
597 
598 	spin_lock(&ctl_lock);
599 	memcpy_absolute(&ctlreg, &S390_lowcore.cregs_save_area[cr], sizeof(ctlreg));
600 	__clear_bit(bit, &ctlreg);
601 	memcpy_absolute(&S390_lowcore.cregs_save_area[cr], &ctlreg, sizeof(ctlreg));
602 	spin_unlock(&ctl_lock);
603 	on_each_cpu(smp_ctl_bit_callback, &parms, 1);
604 }
605 EXPORT_SYMBOL(smp_ctl_clear_bit);
606 
607 #ifdef CONFIG_CRASH_DUMP
608 
609 int smp_store_status(int cpu)
610 {
611 	struct lowcore *lc;
612 	struct pcpu *pcpu;
613 	unsigned long pa;
614 
615 	pcpu = pcpu_devices + cpu;
616 	lc = lowcore_ptr[cpu];
617 	pa = __pa(&lc->floating_pt_save_area);
618 	if (__pcpu_sigp_relax(pcpu->address, SIGP_STORE_STATUS_AT_ADDRESS,
619 			      pa) != SIGP_CC_ORDER_CODE_ACCEPTED)
620 		return -EIO;
621 	if (!MACHINE_HAS_VX && !MACHINE_HAS_GS)
622 		return 0;
623 	pa = lc->mcesad & MCESA_ORIGIN_MASK;
624 	if (MACHINE_HAS_GS)
625 		pa |= lc->mcesad & MCESA_LC_MASK;
626 	if (__pcpu_sigp_relax(pcpu->address, SIGP_STORE_ADDITIONAL_STATUS,
627 			      pa) != SIGP_CC_ORDER_CODE_ACCEPTED)
628 		return -EIO;
629 	return 0;
630 }
631 
632 /*
633  * Collect CPU state of the previous, crashed system.
634  * There are four cases:
635  * 1) standard zfcp/nvme dump
636  *    condition: OLDMEM_BASE == NULL && is_ipl_type_dump() == true
637  *    The state for all CPUs except the boot CPU needs to be collected
638  *    with sigp stop-and-store-status. The boot CPU state is located in
639  *    the absolute lowcore of the memory stored in the HSA. The zcore code
640  *    will copy the boot CPU state from the HSA.
641  * 2) stand-alone kdump for SCSI/NVMe (zfcp/nvme dump with swapped memory)
642  *    condition: OLDMEM_BASE != NULL && is_ipl_type_dump() == true
643  *    The state for all CPUs except the boot CPU needs to be collected
644  *    with sigp stop-and-store-status. The firmware or the boot-loader
645  *    stored the registers of the boot CPU in the absolute lowcore in the
646  *    memory of the old system.
647  * 3) kdump and the old kernel did not store the CPU state,
648  *    or stand-alone kdump for DASD
649  *    condition: OLDMEM_BASE != NULL && !is_kdump_kernel()
650  *    The state for all CPUs except the boot CPU needs to be collected
651  *    with sigp stop-and-store-status. The kexec code or the boot-loader
652  *    stored the registers of the boot CPU in the memory of the old system.
653  * 4) kdump and the old kernel stored the CPU state
654  *    condition: OLDMEM_BASE != NULL && is_kdump_kernel()
655  *    This case does not exist for s390 anymore, setup_arch explicitly
656  *    deactivates the elfcorehdr= kernel parameter
657  */
658 static __init void smp_save_cpu_vxrs(struct save_area *sa, u16 addr,
659 				     bool is_boot_cpu, __vector128 *vxrs)
660 {
661 	if (is_boot_cpu)
662 		vxrs = boot_cpu_vector_save_area;
663 	else
664 		__pcpu_sigp_relax(addr, SIGP_STORE_ADDITIONAL_STATUS, __pa(vxrs));
665 	save_area_add_vxrs(sa, vxrs);
666 }
667 
668 static __init void smp_save_cpu_regs(struct save_area *sa, u16 addr,
669 				     bool is_boot_cpu, void *regs)
670 {
671 	if (is_boot_cpu)
672 		copy_oldmem_kernel(regs, __LC_FPREGS_SAVE_AREA, 512);
673 	else
674 		__pcpu_sigp_relax(addr, SIGP_STORE_STATUS_AT_ADDRESS, __pa(regs));
675 	save_area_add_regs(sa, regs);
676 }
677 
678 void __init smp_save_dump_cpus(void)
679 {
680 	int addr, boot_cpu_addr, max_cpu_addr;
681 	struct save_area *sa;
682 	bool is_boot_cpu;
683 	void *page;
684 
685 	if (!(oldmem_data.start || is_ipl_type_dump()))
686 		/* No previous system present, normal boot. */
687 		return;
688 	/* Allocate a page as dumping area for the store status sigps */
689 	page = memblock_alloc_low(PAGE_SIZE, PAGE_SIZE);
690 	if (!page)
691 		panic("ERROR: Failed to allocate %lx bytes below %lx\n",
692 		      PAGE_SIZE, 1UL << 31);
693 
694 	/* Set multi-threading state to the previous system. */
695 	pcpu_set_smt(sclp.mtid_prev);
696 	boot_cpu_addr = stap();
697 	max_cpu_addr = SCLP_MAX_CORES << sclp.mtid_prev;
698 	for (addr = 0; addr <= max_cpu_addr; addr++) {
699 		if (__pcpu_sigp_relax(addr, SIGP_SENSE, 0) ==
700 		    SIGP_CC_NOT_OPERATIONAL)
701 			continue;
702 		is_boot_cpu = (addr == boot_cpu_addr);
703 		/* Allocate save area */
704 		sa = save_area_alloc(is_boot_cpu);
705 		if (!sa)
706 			panic("could not allocate memory for save area\n");
707 		if (MACHINE_HAS_VX)
708 			/* Get the vector registers */
709 			smp_save_cpu_vxrs(sa, addr, is_boot_cpu, page);
710 		/*
711 		 * For a zfcp/nvme dump OLDMEM_BASE == NULL and the registers
712 		 * of the boot CPU are stored in the HSA. To retrieve
713 		 * these registers an SCLP request is required which is
714 		 * done by drivers/s390/char/zcore.c:init_cpu_info()
715 		 */
716 		if (!is_boot_cpu || oldmem_data.start)
717 			/* Get the CPU registers */
718 			smp_save_cpu_regs(sa, addr, is_boot_cpu, page);
719 	}
720 	memblock_free(page, PAGE_SIZE);
721 	diag_amode31_ops.diag308_reset();
722 	pcpu_set_smt(0);
723 }
724 #endif /* CONFIG_CRASH_DUMP */
725 
726 void smp_cpu_set_polarization(int cpu, int val)
727 {
728 	pcpu_devices[cpu].polarization = val;
729 }
730 
731 int smp_cpu_get_polarization(int cpu)
732 {
733 	return pcpu_devices[cpu].polarization;
734 }
735 
736 int smp_cpu_get_cpu_address(int cpu)
737 {
738 	return pcpu_devices[cpu].address;
739 }
740 
741 static void __ref smp_get_core_info(struct sclp_core_info *info, int early)
742 {
743 	static int use_sigp_detection;
744 	int address;
745 
746 	if (use_sigp_detection || sclp_get_core_info(info, early)) {
747 		use_sigp_detection = 1;
748 		for (address = 0;
749 		     address < (SCLP_MAX_CORES << smp_cpu_mt_shift);
750 		     address += (1U << smp_cpu_mt_shift)) {
751 			if (__pcpu_sigp_relax(address, SIGP_SENSE, 0) ==
752 			    SIGP_CC_NOT_OPERATIONAL)
753 				continue;
754 			info->core[info->configured].core_id =
755 				address >> smp_cpu_mt_shift;
756 			info->configured++;
757 		}
758 		info->combined = info->configured;
759 	}
760 }
761 
762 static int smp_add_present_cpu(int cpu);
763 
764 static int smp_add_core(struct sclp_core_entry *core, cpumask_t *avail,
765 			bool configured, bool early)
766 {
767 	struct pcpu *pcpu;
768 	int cpu, nr, i;
769 	u16 address;
770 
771 	nr = 0;
772 	if (sclp.has_core_type && core->type != boot_core_type)
773 		return nr;
774 	cpu = cpumask_first(avail);
775 	address = core->core_id << smp_cpu_mt_shift;
776 	for (i = 0; (i <= smp_cpu_mtid) && (cpu < nr_cpu_ids); i++) {
777 		if (pcpu_find_address(cpu_present_mask, address + i))
778 			continue;
779 		pcpu = pcpu_devices + cpu;
780 		pcpu->address = address + i;
781 		if (configured)
782 			pcpu->state = CPU_STATE_CONFIGURED;
783 		else
784 			pcpu->state = CPU_STATE_STANDBY;
785 		smp_cpu_set_polarization(cpu, POLARIZATION_UNKNOWN);
786 		set_cpu_present(cpu, true);
787 		if (!early && smp_add_present_cpu(cpu) != 0)
788 			set_cpu_present(cpu, false);
789 		else
790 			nr++;
791 		cpumask_clear_cpu(cpu, avail);
792 		cpu = cpumask_next(cpu, avail);
793 	}
794 	return nr;
795 }
796 
797 static int __smp_rescan_cpus(struct sclp_core_info *info, bool early)
798 {
799 	struct sclp_core_entry *core;
800 	static cpumask_t avail;
801 	bool configured;
802 	u16 core_id;
803 	int nr, i;
804 
805 	cpus_read_lock();
806 	mutex_lock(&smp_cpu_state_mutex);
807 	nr = 0;
808 	cpumask_xor(&avail, cpu_possible_mask, cpu_present_mask);
809 	/*
810 	 * Add IPL core first (which got logical CPU number 0) to make sure
811 	 * that all SMT threads get subsequent logical CPU numbers.
812 	 */
813 	if (early) {
814 		core_id = pcpu_devices[0].address >> smp_cpu_mt_shift;
815 		for (i = 0; i < info->configured; i++) {
816 			core = &info->core[i];
817 			if (core->core_id == core_id) {
818 				nr += smp_add_core(core, &avail, true, early);
819 				break;
820 			}
821 		}
822 	}
823 	for (i = 0; i < info->combined; i++) {
824 		configured = i < info->configured;
825 		nr += smp_add_core(&info->core[i], &avail, configured, early);
826 	}
827 	mutex_unlock(&smp_cpu_state_mutex);
828 	cpus_read_unlock();
829 	return nr;
830 }
831 
832 void __init smp_detect_cpus(void)
833 {
834 	unsigned int cpu, mtid, c_cpus, s_cpus;
835 	struct sclp_core_info *info;
836 	u16 address;
837 
838 	/* Get CPU information */
839 	info = memblock_alloc(sizeof(*info), 8);
840 	if (!info)
841 		panic("%s: Failed to allocate %zu bytes align=0x%x\n",
842 		      __func__, sizeof(*info), 8);
843 	smp_get_core_info(info, 1);
844 	/* Find boot CPU type */
845 	if (sclp.has_core_type) {
846 		address = stap();
847 		for (cpu = 0; cpu < info->combined; cpu++)
848 			if (info->core[cpu].core_id == address) {
849 				/* The boot cpu dictates the cpu type. */
850 				boot_core_type = info->core[cpu].type;
851 				break;
852 			}
853 		if (cpu >= info->combined)
854 			panic("Could not find boot CPU type");
855 	}
856 
857 	/* Set multi-threading state for the current system */
858 	mtid = boot_core_type ? sclp.mtid : sclp.mtid_cp;
859 	mtid = (mtid < smp_max_threads) ? mtid : smp_max_threads - 1;
860 	pcpu_set_smt(mtid);
861 
862 	/* Print number of CPUs */
863 	c_cpus = s_cpus = 0;
864 	for (cpu = 0; cpu < info->combined; cpu++) {
865 		if (sclp.has_core_type &&
866 		    info->core[cpu].type != boot_core_type)
867 			continue;
868 		if (cpu < info->configured)
869 			c_cpus += smp_cpu_mtid + 1;
870 		else
871 			s_cpus += smp_cpu_mtid + 1;
872 	}
873 	pr_info("%d configured CPUs, %d standby CPUs\n", c_cpus, s_cpus);
874 
875 	/* Add CPUs present at boot */
876 	__smp_rescan_cpus(info, true);
877 	memblock_free(info, sizeof(*info));
878 }
879 
880 /*
881  *	Activate a secondary processor.
882  */
883 static void smp_start_secondary(void *cpuvoid)
884 {
885 	int cpu = raw_smp_processor_id();
886 
887 	S390_lowcore.last_update_clock = get_tod_clock();
888 	S390_lowcore.restart_stack = (unsigned long)restart_stack;
889 	S390_lowcore.restart_fn = (unsigned long)do_restart;
890 	S390_lowcore.restart_data = 0;
891 	S390_lowcore.restart_source = -1U;
892 	S390_lowcore.restart_flags = 0;
893 	restore_access_regs(S390_lowcore.access_regs_save_area);
894 	cpu_init();
895 	rcu_cpu_starting(cpu);
896 	init_cpu_timer();
897 	vtime_init();
898 	vdso_getcpu_init();
899 	pfault_init();
900 	cpumask_set_cpu(cpu, &cpu_setup_mask);
901 	update_cpu_masks();
902 	notify_cpu_starting(cpu);
903 	if (topology_cpu_dedicated(cpu))
904 		set_cpu_flag(CIF_DEDICATED_CPU);
905 	else
906 		clear_cpu_flag(CIF_DEDICATED_CPU);
907 	set_cpu_online(cpu, true);
908 	inc_irq_stat(CPU_RST);
909 	local_irq_enable();
910 	cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
911 }
912 
913 /* Upping and downing of CPUs */
914 int __cpu_up(unsigned int cpu, struct task_struct *tidle)
915 {
916 	struct pcpu *pcpu = pcpu_devices + cpu;
917 	int rc;
918 
919 	if (pcpu->state != CPU_STATE_CONFIGURED)
920 		return -EIO;
921 	if (pcpu_sigp_retry(pcpu, SIGP_INITIAL_CPU_RESET, 0) !=
922 	    SIGP_CC_ORDER_CODE_ACCEPTED)
923 		return -EIO;
924 
925 	rc = pcpu_alloc_lowcore(pcpu, cpu);
926 	if (rc)
927 		return rc;
928 	pcpu_prepare_secondary(pcpu, cpu);
929 	pcpu_attach_task(pcpu, tidle);
930 	pcpu_start_fn(pcpu, smp_start_secondary, NULL);
931 	/* Wait until cpu puts itself in the online & active maps */
932 	while (!cpu_online(cpu))
933 		cpu_relax();
934 	return 0;
935 }
936 
937 static unsigned int setup_possible_cpus __initdata;
938 
939 static int __init _setup_possible_cpus(char *s)
940 {
941 	get_option(&s, &setup_possible_cpus);
942 	return 0;
943 }
944 early_param("possible_cpus", _setup_possible_cpus);
945 
946 int __cpu_disable(void)
947 {
948 	unsigned long cregs[16];
949 	int cpu;
950 
951 	/* Handle possible pending IPIs */
952 	smp_handle_ext_call();
953 	cpu = smp_processor_id();
954 	set_cpu_online(cpu, false);
955 	cpumask_clear_cpu(cpu, &cpu_setup_mask);
956 	update_cpu_masks();
957 	/* Disable pseudo page faults on this cpu. */
958 	pfault_fini();
959 	/* Disable interrupt sources via control register. */
960 	__ctl_store(cregs, 0, 15);
961 	cregs[0]  &= ~0x0000ee70UL;	/* disable all external interrupts */
962 	cregs[6]  &= ~0xff000000UL;	/* disable all I/O interrupts */
963 	cregs[14] &= ~0x1f000000UL;	/* disable most machine checks */
964 	__ctl_load(cregs, 0, 15);
965 	clear_cpu_flag(CIF_NOHZ_DELAY);
966 	return 0;
967 }
968 
969 void __cpu_die(unsigned int cpu)
970 {
971 	struct pcpu *pcpu;
972 
973 	/* Wait until target cpu is down */
974 	pcpu = pcpu_devices + cpu;
975 	while (!pcpu_stopped(pcpu))
976 		cpu_relax();
977 	pcpu_free_lowcore(pcpu);
978 	cpumask_clear_cpu(cpu, mm_cpumask(&init_mm));
979 	cpumask_clear_cpu(cpu, &init_mm.context.cpu_attach_mask);
980 }
981 
982 void __noreturn cpu_die(void)
983 {
984 	idle_task_exit();
985 	__bpon();
986 	pcpu_sigp_retry(pcpu_devices + smp_processor_id(), SIGP_STOP, 0);
987 	for (;;) ;
988 }
989 
990 void __init smp_fill_possible_mask(void)
991 {
992 	unsigned int possible, sclp_max, cpu;
993 
994 	sclp_max = max(sclp.mtid, sclp.mtid_cp) + 1;
995 	sclp_max = min(smp_max_threads, sclp_max);
996 	sclp_max = (sclp.max_cores * sclp_max) ?: nr_cpu_ids;
997 	possible = setup_possible_cpus ?: nr_cpu_ids;
998 	possible = min(possible, sclp_max);
999 	for (cpu = 0; cpu < possible && cpu < nr_cpu_ids; cpu++)
1000 		set_cpu_possible(cpu, true);
1001 }
1002 
1003 void __init smp_prepare_cpus(unsigned int max_cpus)
1004 {
1005 	/* request the 0x1201 emergency signal external interrupt */
1006 	if (register_external_irq(EXT_IRQ_EMERGENCY_SIG, do_ext_call_interrupt))
1007 		panic("Couldn't request external interrupt 0x1201");
1008 	/* request the 0x1202 external call external interrupt */
1009 	if (register_external_irq(EXT_IRQ_EXTERNAL_CALL, do_ext_call_interrupt))
1010 		panic("Couldn't request external interrupt 0x1202");
1011 }
1012 
1013 void __init smp_prepare_boot_cpu(void)
1014 {
1015 	struct pcpu *pcpu = pcpu_devices;
1016 
1017 	WARN_ON(!cpu_present(0) || !cpu_online(0));
1018 	pcpu->state = CPU_STATE_CONFIGURED;
1019 	S390_lowcore.percpu_offset = __per_cpu_offset[0];
1020 	smp_cpu_set_polarization(0, POLARIZATION_UNKNOWN);
1021 }
1022 
1023 void __init smp_setup_processor_id(void)
1024 {
1025 	pcpu_devices[0].address = stap();
1026 	S390_lowcore.cpu_nr = 0;
1027 	S390_lowcore.spinlock_lockval = arch_spin_lockval(0);
1028 	S390_lowcore.spinlock_index = 0;
1029 }
1030 
1031 /*
1032  * the frequency of the profiling timer can be changed
1033  * by writing a multiplier value into /proc/profile.
1034  *
1035  * usually you want to run this on all CPUs ;)
1036  */
1037 int setup_profiling_timer(unsigned int multiplier)
1038 {
1039 	return 0;
1040 }
1041 
1042 static ssize_t cpu_configure_show(struct device *dev,
1043 				  struct device_attribute *attr, char *buf)
1044 {
1045 	ssize_t count;
1046 
1047 	mutex_lock(&smp_cpu_state_mutex);
1048 	count = sprintf(buf, "%d\n", pcpu_devices[dev->id].state);
1049 	mutex_unlock(&smp_cpu_state_mutex);
1050 	return count;
1051 }
1052 
1053 static ssize_t cpu_configure_store(struct device *dev,
1054 				   struct device_attribute *attr,
1055 				   const char *buf, size_t count)
1056 {
1057 	struct pcpu *pcpu;
1058 	int cpu, val, rc, i;
1059 	char delim;
1060 
1061 	if (sscanf(buf, "%d %c", &val, &delim) != 1)
1062 		return -EINVAL;
1063 	if (val != 0 && val != 1)
1064 		return -EINVAL;
1065 	cpus_read_lock();
1066 	mutex_lock(&smp_cpu_state_mutex);
1067 	rc = -EBUSY;
1068 	/* disallow configuration changes of online cpus and cpu 0 */
1069 	cpu = dev->id;
1070 	cpu = smp_get_base_cpu(cpu);
1071 	if (cpu == 0)
1072 		goto out;
1073 	for (i = 0; i <= smp_cpu_mtid; i++)
1074 		if (cpu_online(cpu + i))
1075 			goto out;
1076 	pcpu = pcpu_devices + cpu;
1077 	rc = 0;
1078 	switch (val) {
1079 	case 0:
1080 		if (pcpu->state != CPU_STATE_CONFIGURED)
1081 			break;
1082 		rc = sclp_core_deconfigure(pcpu->address >> smp_cpu_mt_shift);
1083 		if (rc)
1084 			break;
1085 		for (i = 0; i <= smp_cpu_mtid; i++) {
1086 			if (cpu + i >= nr_cpu_ids || !cpu_present(cpu + i))
1087 				continue;
1088 			pcpu[i].state = CPU_STATE_STANDBY;
1089 			smp_cpu_set_polarization(cpu + i,
1090 						 POLARIZATION_UNKNOWN);
1091 		}
1092 		topology_expect_change();
1093 		break;
1094 	case 1:
1095 		if (pcpu->state != CPU_STATE_STANDBY)
1096 			break;
1097 		rc = sclp_core_configure(pcpu->address >> smp_cpu_mt_shift);
1098 		if (rc)
1099 			break;
1100 		for (i = 0; i <= smp_cpu_mtid; i++) {
1101 			if (cpu + i >= nr_cpu_ids || !cpu_present(cpu + i))
1102 				continue;
1103 			pcpu[i].state = CPU_STATE_CONFIGURED;
1104 			smp_cpu_set_polarization(cpu + i,
1105 						 POLARIZATION_UNKNOWN);
1106 		}
1107 		topology_expect_change();
1108 		break;
1109 	default:
1110 		break;
1111 	}
1112 out:
1113 	mutex_unlock(&smp_cpu_state_mutex);
1114 	cpus_read_unlock();
1115 	return rc ? rc : count;
1116 }
1117 static DEVICE_ATTR(configure, 0644, cpu_configure_show, cpu_configure_store);
1118 
1119 static ssize_t show_cpu_address(struct device *dev,
1120 				struct device_attribute *attr, char *buf)
1121 {
1122 	return sprintf(buf, "%d\n", pcpu_devices[dev->id].address);
1123 }
1124 static DEVICE_ATTR(address, 0444, show_cpu_address, NULL);
1125 
1126 static struct attribute *cpu_common_attrs[] = {
1127 	&dev_attr_configure.attr,
1128 	&dev_attr_address.attr,
1129 	NULL,
1130 };
1131 
1132 static struct attribute_group cpu_common_attr_group = {
1133 	.attrs = cpu_common_attrs,
1134 };
1135 
1136 static struct attribute *cpu_online_attrs[] = {
1137 	&dev_attr_idle_count.attr,
1138 	&dev_attr_idle_time_us.attr,
1139 	NULL,
1140 };
1141 
1142 static struct attribute_group cpu_online_attr_group = {
1143 	.attrs = cpu_online_attrs,
1144 };
1145 
1146 static int smp_cpu_online(unsigned int cpu)
1147 {
1148 	struct device *s = &per_cpu(cpu_device, cpu)->dev;
1149 
1150 	return sysfs_create_group(&s->kobj, &cpu_online_attr_group);
1151 }
1152 
1153 static int smp_cpu_pre_down(unsigned int cpu)
1154 {
1155 	struct device *s = &per_cpu(cpu_device, cpu)->dev;
1156 
1157 	sysfs_remove_group(&s->kobj, &cpu_online_attr_group);
1158 	return 0;
1159 }
1160 
1161 static int smp_add_present_cpu(int cpu)
1162 {
1163 	struct device *s;
1164 	struct cpu *c;
1165 	int rc;
1166 
1167 	c = kzalloc(sizeof(*c), GFP_KERNEL);
1168 	if (!c)
1169 		return -ENOMEM;
1170 	per_cpu(cpu_device, cpu) = c;
1171 	s = &c->dev;
1172 	c->hotpluggable = 1;
1173 	rc = register_cpu(c, cpu);
1174 	if (rc)
1175 		goto out;
1176 	rc = sysfs_create_group(&s->kobj, &cpu_common_attr_group);
1177 	if (rc)
1178 		goto out_cpu;
1179 	rc = topology_cpu_init(c);
1180 	if (rc)
1181 		goto out_topology;
1182 	return 0;
1183 
1184 out_topology:
1185 	sysfs_remove_group(&s->kobj, &cpu_common_attr_group);
1186 out_cpu:
1187 	unregister_cpu(c);
1188 out:
1189 	return rc;
1190 }
1191 
1192 int __ref smp_rescan_cpus(void)
1193 {
1194 	struct sclp_core_info *info;
1195 	int nr;
1196 
1197 	info = kzalloc(sizeof(*info), GFP_KERNEL);
1198 	if (!info)
1199 		return -ENOMEM;
1200 	smp_get_core_info(info, 0);
1201 	nr = __smp_rescan_cpus(info, false);
1202 	kfree(info);
1203 	if (nr)
1204 		topology_schedule_update();
1205 	return 0;
1206 }
1207 
1208 static ssize_t __ref rescan_store(struct device *dev,
1209 				  struct device_attribute *attr,
1210 				  const char *buf,
1211 				  size_t count)
1212 {
1213 	int rc;
1214 
1215 	rc = lock_device_hotplug_sysfs();
1216 	if (rc)
1217 		return rc;
1218 	rc = smp_rescan_cpus();
1219 	unlock_device_hotplug();
1220 	return rc ? rc : count;
1221 }
1222 static DEVICE_ATTR_WO(rescan);
1223 
1224 static int __init s390_smp_init(void)
1225 {
1226 	int cpu, rc = 0;
1227 
1228 	rc = device_create_file(cpu_subsys.dev_root, &dev_attr_rescan);
1229 	if (rc)
1230 		return rc;
1231 	for_each_present_cpu(cpu) {
1232 		rc = smp_add_present_cpu(cpu);
1233 		if (rc)
1234 			goto out;
1235 	}
1236 
1237 	rc = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "s390/smp:online",
1238 			       smp_cpu_online, smp_cpu_pre_down);
1239 	rc = rc <= 0 ? rc : 0;
1240 out:
1241 	return rc;
1242 }
1243 subsys_initcall(s390_smp_init);
1244 
1245 static __always_inline void set_new_lowcore(struct lowcore *lc)
1246 {
1247 	union register_pair dst, src;
1248 	u32 pfx;
1249 
1250 	src.even = (unsigned long) &S390_lowcore;
1251 	src.odd  = sizeof(S390_lowcore);
1252 	dst.even = (unsigned long) lc;
1253 	dst.odd  = sizeof(*lc);
1254 	pfx = __pa(lc);
1255 
1256 	asm volatile(
1257 		"	mvcl	%[dst],%[src]\n"
1258 		"	spx	%[pfx]\n"
1259 		: [dst] "+&d" (dst.pair), [src] "+&d" (src.pair)
1260 		: [pfx] "Q" (pfx)
1261 		: "memory", "cc");
1262 }
1263 
1264 static int __init smp_reinit_ipl_cpu(void)
1265 {
1266 	unsigned long async_stack, nodat_stack, mcck_stack;
1267 	struct lowcore *lc, *lc_ipl;
1268 	unsigned long flags, cr0;
1269 	u64 mcesad;
1270 
1271 	lc_ipl = lowcore_ptr[0];
1272 	lc = (struct lowcore *)	__get_free_pages(GFP_KERNEL | GFP_DMA, LC_ORDER);
1273 	nodat_stack = __get_free_pages(GFP_KERNEL, THREAD_SIZE_ORDER);
1274 	async_stack = stack_alloc();
1275 	mcck_stack = stack_alloc();
1276 	if (!lc || !nodat_stack || !async_stack || !mcck_stack || nmi_alloc_mcesa(&mcesad))
1277 		panic("Couldn't allocate memory");
1278 
1279 	local_irq_save(flags);
1280 	local_mcck_disable();
1281 	set_new_lowcore(lc);
1282 	S390_lowcore.nodat_stack = nodat_stack + STACK_INIT_OFFSET;
1283 	S390_lowcore.async_stack = async_stack + STACK_INIT_OFFSET;
1284 	S390_lowcore.mcck_stack = mcck_stack + STACK_INIT_OFFSET;
1285 	__ctl_store(cr0, 0, 0);
1286 	__ctl_clear_bit(0, 28); /* disable lowcore protection */
1287 	S390_lowcore.mcesad = mcesad;
1288 	__ctl_load(cr0, 0, 0);
1289 	lowcore_ptr[0] = lc;
1290 	local_mcck_enable();
1291 	local_irq_restore(flags);
1292 
1293 	free_pages(lc_ipl->async_stack - STACK_INIT_OFFSET, THREAD_SIZE_ORDER);
1294 	memblock_free_late(__pa(lc_ipl->mcck_stack - STACK_INIT_OFFSET), THREAD_SIZE);
1295 	memblock_free_late(__pa(lc_ipl), sizeof(*lc_ipl));
1296 
1297 	return 0;
1298 }
1299 early_initcall(smp_reinit_ipl_cpu);
1300