xref: /openbmc/linux/arch/s390/kernel/smp.c (revision 174cd4b1)
1 /*
2  *  SMP related functions
3  *
4  *    Copyright IBM Corp. 1999, 2012
5  *    Author(s): Denis Joseph Barrow,
6  *		 Martin Schwidefsky <schwidefsky@de.ibm.com>,
7  *		 Heiko Carstens <heiko.carstens@de.ibm.com>,
8  *
9  *  based on other smp stuff by
10  *    (c) 1995 Alan Cox, CymruNET Ltd  <alan@cymru.net>
11  *    (c) 1998 Ingo Molnar
12  *
13  * The code outside of smp.c uses logical cpu numbers, only smp.c does
14  * the translation of logical to physical cpu ids. All new code that
15  * operates on physical cpu numbers needs to go into smp.c.
16  */
17 
18 #define KMSG_COMPONENT "cpu"
19 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
20 
21 #include <linux/workqueue.h>
22 #include <linux/bootmem.h>
23 #include <linux/export.h>
24 #include <linux/init.h>
25 #include <linux/mm.h>
26 #include <linux/err.h>
27 #include <linux/spinlock.h>
28 #include <linux/kernel_stat.h>
29 #include <linux/delay.h>
30 #include <linux/interrupt.h>
31 #include <linux/irqflags.h>
32 #include <linux/cpu.h>
33 #include <linux/slab.h>
34 #include <linux/crash_dump.h>
35 #include <linux/memblock.h>
36 #include <asm/asm-offsets.h>
37 #include <asm/diag.h>
38 #include <asm/switch_to.h>
39 #include <asm/facility.h>
40 #include <asm/ipl.h>
41 #include <asm/setup.h>
42 #include <asm/irq.h>
43 #include <asm/tlbflush.h>
44 #include <asm/vtimer.h>
45 #include <asm/lowcore.h>
46 #include <asm/sclp.h>
47 #include <asm/vdso.h>
48 #include <asm/debug.h>
49 #include <asm/os_info.h>
50 #include <asm/sigp.h>
51 #include <asm/idle.h>
52 #include "entry.h"
53 
54 enum {
55 	ec_schedule = 0,
56 	ec_call_function_single,
57 	ec_stop_cpu,
58 };
59 
60 enum {
61 	CPU_STATE_STANDBY,
62 	CPU_STATE_CONFIGURED,
63 };
64 
65 static DEFINE_PER_CPU(struct cpu *, cpu_device);
66 
67 struct pcpu {
68 	struct lowcore *lowcore;	/* lowcore page(s) for the cpu */
69 	unsigned long ec_mask;		/* bit mask for ec_xxx functions */
70 	unsigned long ec_clk;		/* sigp timestamp for ec_xxx */
71 	signed char state;		/* physical cpu state */
72 	signed char polarization;	/* physical polarization */
73 	u16 address;			/* physical cpu address */
74 };
75 
76 static u8 boot_core_type;
77 static struct pcpu pcpu_devices[NR_CPUS];
78 
79 unsigned int smp_cpu_mt_shift;
80 EXPORT_SYMBOL(smp_cpu_mt_shift);
81 
82 unsigned int smp_cpu_mtid;
83 EXPORT_SYMBOL(smp_cpu_mtid);
84 
85 #ifdef CONFIG_CRASH_DUMP
86 __vector128 __initdata boot_cpu_vector_save_area[__NUM_VXRS];
87 #endif
88 
89 static unsigned int smp_max_threads __initdata = -1U;
90 
91 static int __init early_nosmt(char *s)
92 {
93 	smp_max_threads = 1;
94 	return 0;
95 }
96 early_param("nosmt", early_nosmt);
97 
98 static int __init early_smt(char *s)
99 {
100 	get_option(&s, &smp_max_threads);
101 	return 0;
102 }
103 early_param("smt", early_smt);
104 
105 /*
106  * The smp_cpu_state_mutex must be held when changing the state or polarization
107  * member of a pcpu data structure within the pcpu_devices arreay.
108  */
109 DEFINE_MUTEX(smp_cpu_state_mutex);
110 
111 /*
112  * Signal processor helper functions.
113  */
114 static inline int __pcpu_sigp_relax(u16 addr, u8 order, unsigned long parm)
115 {
116 	int cc;
117 
118 	while (1) {
119 		cc = __pcpu_sigp(addr, order, parm, NULL);
120 		if (cc != SIGP_CC_BUSY)
121 			return cc;
122 		cpu_relax();
123 	}
124 }
125 
126 static int pcpu_sigp_retry(struct pcpu *pcpu, u8 order, u32 parm)
127 {
128 	int cc, retry;
129 
130 	for (retry = 0; ; retry++) {
131 		cc = __pcpu_sigp(pcpu->address, order, parm, NULL);
132 		if (cc != SIGP_CC_BUSY)
133 			break;
134 		if (retry >= 3)
135 			udelay(10);
136 	}
137 	return cc;
138 }
139 
140 static inline int pcpu_stopped(struct pcpu *pcpu)
141 {
142 	u32 uninitialized_var(status);
143 
144 	if (__pcpu_sigp(pcpu->address, SIGP_SENSE,
145 			0, &status) != SIGP_CC_STATUS_STORED)
146 		return 0;
147 	return !!(status & (SIGP_STATUS_CHECK_STOP|SIGP_STATUS_STOPPED));
148 }
149 
150 static inline int pcpu_running(struct pcpu *pcpu)
151 {
152 	if (__pcpu_sigp(pcpu->address, SIGP_SENSE_RUNNING,
153 			0, NULL) != SIGP_CC_STATUS_STORED)
154 		return 1;
155 	/* Status stored condition code is equivalent to cpu not running. */
156 	return 0;
157 }
158 
159 /*
160  * Find struct pcpu by cpu address.
161  */
162 static struct pcpu *pcpu_find_address(const struct cpumask *mask, u16 address)
163 {
164 	int cpu;
165 
166 	for_each_cpu(cpu, mask)
167 		if (pcpu_devices[cpu].address == address)
168 			return pcpu_devices + cpu;
169 	return NULL;
170 }
171 
172 static void pcpu_ec_call(struct pcpu *pcpu, int ec_bit)
173 {
174 	int order;
175 
176 	if (test_and_set_bit(ec_bit, &pcpu->ec_mask))
177 		return;
178 	order = pcpu_running(pcpu) ? SIGP_EXTERNAL_CALL : SIGP_EMERGENCY_SIGNAL;
179 	pcpu->ec_clk = get_tod_clock_fast();
180 	pcpu_sigp_retry(pcpu, order, 0);
181 }
182 
183 #define ASYNC_FRAME_OFFSET (ASYNC_SIZE - STACK_FRAME_OVERHEAD - __PT_SIZE)
184 #define PANIC_FRAME_OFFSET (PAGE_SIZE - STACK_FRAME_OVERHEAD - __PT_SIZE)
185 
186 static int pcpu_alloc_lowcore(struct pcpu *pcpu, int cpu)
187 {
188 	unsigned long async_stack, panic_stack;
189 	struct lowcore *lc;
190 
191 	if (pcpu != &pcpu_devices[0]) {
192 		pcpu->lowcore =	(struct lowcore *)
193 			__get_free_pages(GFP_KERNEL | GFP_DMA, LC_ORDER);
194 		async_stack = __get_free_pages(GFP_KERNEL, ASYNC_ORDER);
195 		panic_stack = __get_free_page(GFP_KERNEL);
196 		if (!pcpu->lowcore || !panic_stack || !async_stack)
197 			goto out;
198 	} else {
199 		async_stack = pcpu->lowcore->async_stack - ASYNC_FRAME_OFFSET;
200 		panic_stack = pcpu->lowcore->panic_stack - PANIC_FRAME_OFFSET;
201 	}
202 	lc = pcpu->lowcore;
203 	memcpy(lc, &S390_lowcore, 512);
204 	memset((char *) lc + 512, 0, sizeof(*lc) - 512);
205 	lc->async_stack = async_stack + ASYNC_FRAME_OFFSET;
206 	lc->panic_stack = panic_stack + PANIC_FRAME_OFFSET;
207 	lc->cpu_nr = cpu;
208 	lc->spinlock_lockval = arch_spin_lockval(cpu);
209 	if (MACHINE_HAS_VX)
210 		lc->vector_save_area_addr =
211 			(unsigned long) &lc->vector_save_area;
212 	if (vdso_alloc_per_cpu(lc))
213 		goto out;
214 	lowcore_ptr[cpu] = lc;
215 	pcpu_sigp_retry(pcpu, SIGP_SET_PREFIX, (u32)(unsigned long) lc);
216 	return 0;
217 out:
218 	if (pcpu != &pcpu_devices[0]) {
219 		free_page(panic_stack);
220 		free_pages(async_stack, ASYNC_ORDER);
221 		free_pages((unsigned long) pcpu->lowcore, LC_ORDER);
222 	}
223 	return -ENOMEM;
224 }
225 
226 #ifdef CONFIG_HOTPLUG_CPU
227 
228 static void pcpu_free_lowcore(struct pcpu *pcpu)
229 {
230 	pcpu_sigp_retry(pcpu, SIGP_SET_PREFIX, 0);
231 	lowcore_ptr[pcpu - pcpu_devices] = NULL;
232 	vdso_free_per_cpu(pcpu->lowcore);
233 	if (pcpu == &pcpu_devices[0])
234 		return;
235 	free_page(pcpu->lowcore->panic_stack-PANIC_FRAME_OFFSET);
236 	free_pages(pcpu->lowcore->async_stack-ASYNC_FRAME_OFFSET, ASYNC_ORDER);
237 	free_pages((unsigned long) pcpu->lowcore, LC_ORDER);
238 }
239 
240 #endif /* CONFIG_HOTPLUG_CPU */
241 
242 static void pcpu_prepare_secondary(struct pcpu *pcpu, int cpu)
243 {
244 	struct lowcore *lc = pcpu->lowcore;
245 
246 	cpumask_set_cpu(cpu, &init_mm.context.cpu_attach_mask);
247 	cpumask_set_cpu(cpu, mm_cpumask(&init_mm));
248 	lc->cpu_nr = cpu;
249 	lc->spinlock_lockval = arch_spin_lockval(cpu);
250 	lc->percpu_offset = __per_cpu_offset[cpu];
251 	lc->kernel_asce = S390_lowcore.kernel_asce;
252 	lc->machine_flags = S390_lowcore.machine_flags;
253 	lc->user_timer = lc->system_timer = lc->steal_timer = 0;
254 	__ctl_store(lc->cregs_save_area, 0, 15);
255 	save_access_regs((unsigned int *) lc->access_regs_save_area);
256 	memcpy(lc->stfle_fac_list, S390_lowcore.stfle_fac_list,
257 	       MAX_FACILITY_BIT/8);
258 }
259 
260 static void pcpu_attach_task(struct pcpu *pcpu, struct task_struct *tsk)
261 {
262 	struct lowcore *lc = pcpu->lowcore;
263 
264 	lc->kernel_stack = (unsigned long) task_stack_page(tsk)
265 		+ THREAD_SIZE - STACK_FRAME_OVERHEAD - sizeof(struct pt_regs);
266 	lc->current_task = (unsigned long) tsk;
267 	lc->lpp = LPP_MAGIC;
268 	lc->current_pid = tsk->pid;
269 	lc->user_timer = tsk->thread.user_timer;
270 	lc->system_timer = tsk->thread.system_timer;
271 	lc->steal_timer = 0;
272 }
273 
274 static void pcpu_start_fn(struct pcpu *pcpu, void (*func)(void *), void *data)
275 {
276 	struct lowcore *lc = pcpu->lowcore;
277 
278 	lc->restart_stack = lc->kernel_stack;
279 	lc->restart_fn = (unsigned long) func;
280 	lc->restart_data = (unsigned long) data;
281 	lc->restart_source = -1UL;
282 	pcpu_sigp_retry(pcpu, SIGP_RESTART, 0);
283 }
284 
285 /*
286  * Call function via PSW restart on pcpu and stop the current cpu.
287  */
288 static void pcpu_delegate(struct pcpu *pcpu, void (*func)(void *),
289 			  void *data, unsigned long stack)
290 {
291 	struct lowcore *lc = lowcore_ptr[pcpu - pcpu_devices];
292 	unsigned long source_cpu = stap();
293 
294 	__load_psw_mask(PSW_KERNEL_BITS);
295 	if (pcpu->address == source_cpu)
296 		func(data);	/* should not return */
297 	/* Stop target cpu (if func returns this stops the current cpu). */
298 	pcpu_sigp_retry(pcpu, SIGP_STOP, 0);
299 	/* Restart func on the target cpu and stop the current cpu. */
300 	mem_assign_absolute(lc->restart_stack, stack);
301 	mem_assign_absolute(lc->restart_fn, (unsigned long) func);
302 	mem_assign_absolute(lc->restart_data, (unsigned long) data);
303 	mem_assign_absolute(lc->restart_source, source_cpu);
304 	asm volatile(
305 		"0:	sigp	0,%0,%2	# sigp restart to target cpu\n"
306 		"	brc	2,0b	# busy, try again\n"
307 		"1:	sigp	0,%1,%3	# sigp stop to current cpu\n"
308 		"	brc	2,1b	# busy, try again\n"
309 		: : "d" (pcpu->address), "d" (source_cpu),
310 		    "K" (SIGP_RESTART), "K" (SIGP_STOP)
311 		: "0", "1", "cc");
312 	for (;;) ;
313 }
314 
315 /*
316  * Enable additional logical cpus for multi-threading.
317  */
318 static int pcpu_set_smt(unsigned int mtid)
319 {
320 	int cc;
321 
322 	if (smp_cpu_mtid == mtid)
323 		return 0;
324 	cc = __pcpu_sigp(0, SIGP_SET_MULTI_THREADING, mtid, NULL);
325 	if (cc == 0) {
326 		smp_cpu_mtid = mtid;
327 		smp_cpu_mt_shift = 0;
328 		while (smp_cpu_mtid >= (1U << smp_cpu_mt_shift))
329 			smp_cpu_mt_shift++;
330 		pcpu_devices[0].address = stap();
331 	}
332 	return cc;
333 }
334 
335 /*
336  * Call function on an online CPU.
337  */
338 void smp_call_online_cpu(void (*func)(void *), void *data)
339 {
340 	struct pcpu *pcpu;
341 
342 	/* Use the current cpu if it is online. */
343 	pcpu = pcpu_find_address(cpu_online_mask, stap());
344 	if (!pcpu)
345 		/* Use the first online cpu. */
346 		pcpu = pcpu_devices + cpumask_first(cpu_online_mask);
347 	pcpu_delegate(pcpu, func, data, (unsigned long) restart_stack);
348 }
349 
350 /*
351  * Call function on the ipl CPU.
352  */
353 void smp_call_ipl_cpu(void (*func)(void *), void *data)
354 {
355 	pcpu_delegate(&pcpu_devices[0], func, data,
356 		      pcpu_devices->lowcore->panic_stack -
357 		      PANIC_FRAME_OFFSET + PAGE_SIZE);
358 }
359 
360 int smp_find_processor_id(u16 address)
361 {
362 	int cpu;
363 
364 	for_each_present_cpu(cpu)
365 		if (pcpu_devices[cpu].address == address)
366 			return cpu;
367 	return -1;
368 }
369 
370 bool arch_vcpu_is_preempted(int cpu)
371 {
372 	if (test_cpu_flag_of(CIF_ENABLED_WAIT, cpu))
373 		return false;
374 	if (pcpu_running(pcpu_devices + cpu))
375 		return false;
376 	return true;
377 }
378 EXPORT_SYMBOL(arch_vcpu_is_preempted);
379 
380 void smp_yield_cpu(int cpu)
381 {
382 	if (MACHINE_HAS_DIAG9C) {
383 		diag_stat_inc_norecursion(DIAG_STAT_X09C);
384 		asm volatile("diag %0,0,0x9c"
385 			     : : "d" (pcpu_devices[cpu].address));
386 	} else if (MACHINE_HAS_DIAG44) {
387 		diag_stat_inc_norecursion(DIAG_STAT_X044);
388 		asm volatile("diag 0,0,0x44");
389 	}
390 }
391 
392 /*
393  * Send cpus emergency shutdown signal. This gives the cpus the
394  * opportunity to complete outstanding interrupts.
395  */
396 static void smp_emergency_stop(cpumask_t *cpumask)
397 {
398 	u64 end;
399 	int cpu;
400 
401 	end = get_tod_clock() + (1000000UL << 12);
402 	for_each_cpu(cpu, cpumask) {
403 		struct pcpu *pcpu = pcpu_devices + cpu;
404 		set_bit(ec_stop_cpu, &pcpu->ec_mask);
405 		while (__pcpu_sigp(pcpu->address, SIGP_EMERGENCY_SIGNAL,
406 				   0, NULL) == SIGP_CC_BUSY &&
407 		       get_tod_clock() < end)
408 			cpu_relax();
409 	}
410 	while (get_tod_clock() < end) {
411 		for_each_cpu(cpu, cpumask)
412 			if (pcpu_stopped(pcpu_devices + cpu))
413 				cpumask_clear_cpu(cpu, cpumask);
414 		if (cpumask_empty(cpumask))
415 			break;
416 		cpu_relax();
417 	}
418 }
419 
420 /*
421  * Stop all cpus but the current one.
422  */
423 void smp_send_stop(void)
424 {
425 	cpumask_t cpumask;
426 	int cpu;
427 
428 	/* Disable all interrupts/machine checks */
429 	__load_psw_mask(PSW_KERNEL_BITS | PSW_MASK_DAT);
430 	trace_hardirqs_off();
431 
432 	debug_set_critical();
433 	cpumask_copy(&cpumask, cpu_online_mask);
434 	cpumask_clear_cpu(smp_processor_id(), &cpumask);
435 
436 	if (oops_in_progress)
437 		smp_emergency_stop(&cpumask);
438 
439 	/* stop all processors */
440 	for_each_cpu(cpu, &cpumask) {
441 		struct pcpu *pcpu = pcpu_devices + cpu;
442 		pcpu_sigp_retry(pcpu, SIGP_STOP, 0);
443 		while (!pcpu_stopped(pcpu))
444 			cpu_relax();
445 	}
446 }
447 
448 /*
449  * This is the main routine where commands issued by other
450  * cpus are handled.
451  */
452 static void smp_handle_ext_call(void)
453 {
454 	unsigned long bits;
455 
456 	/* handle bit signal external calls */
457 	bits = xchg(&pcpu_devices[smp_processor_id()].ec_mask, 0);
458 	if (test_bit(ec_stop_cpu, &bits))
459 		smp_stop_cpu();
460 	if (test_bit(ec_schedule, &bits))
461 		scheduler_ipi();
462 	if (test_bit(ec_call_function_single, &bits))
463 		generic_smp_call_function_single_interrupt();
464 }
465 
466 static void do_ext_call_interrupt(struct ext_code ext_code,
467 				  unsigned int param32, unsigned long param64)
468 {
469 	inc_irq_stat(ext_code.code == 0x1202 ? IRQEXT_EXC : IRQEXT_EMS);
470 	smp_handle_ext_call();
471 }
472 
473 void arch_send_call_function_ipi_mask(const struct cpumask *mask)
474 {
475 	int cpu;
476 
477 	for_each_cpu(cpu, mask)
478 		pcpu_ec_call(pcpu_devices + cpu, ec_call_function_single);
479 }
480 
481 void arch_send_call_function_single_ipi(int cpu)
482 {
483 	pcpu_ec_call(pcpu_devices + cpu, ec_call_function_single);
484 }
485 
486 /*
487  * this function sends a 'reschedule' IPI to another CPU.
488  * it goes straight through and wastes no time serializing
489  * anything. Worst case is that we lose a reschedule ...
490  */
491 void smp_send_reschedule(int cpu)
492 {
493 	pcpu_ec_call(pcpu_devices + cpu, ec_schedule);
494 }
495 
496 /*
497  * parameter area for the set/clear control bit callbacks
498  */
499 struct ec_creg_mask_parms {
500 	unsigned long orval;
501 	unsigned long andval;
502 	int cr;
503 };
504 
505 /*
506  * callback for setting/clearing control bits
507  */
508 static void smp_ctl_bit_callback(void *info)
509 {
510 	struct ec_creg_mask_parms *pp = info;
511 	unsigned long cregs[16];
512 
513 	__ctl_store(cregs, 0, 15);
514 	cregs[pp->cr] = (cregs[pp->cr] & pp->andval) | pp->orval;
515 	__ctl_load(cregs, 0, 15);
516 }
517 
518 /*
519  * Set a bit in a control register of all cpus
520  */
521 void smp_ctl_set_bit(int cr, int bit)
522 {
523 	struct ec_creg_mask_parms parms = { 1UL << bit, -1UL, cr };
524 
525 	on_each_cpu(smp_ctl_bit_callback, &parms, 1);
526 }
527 EXPORT_SYMBOL(smp_ctl_set_bit);
528 
529 /*
530  * Clear a bit in a control register of all cpus
531  */
532 void smp_ctl_clear_bit(int cr, int bit)
533 {
534 	struct ec_creg_mask_parms parms = { 0, ~(1UL << bit), cr };
535 
536 	on_each_cpu(smp_ctl_bit_callback, &parms, 1);
537 }
538 EXPORT_SYMBOL(smp_ctl_clear_bit);
539 
540 #ifdef CONFIG_CRASH_DUMP
541 
542 int smp_store_status(int cpu)
543 {
544 	struct pcpu *pcpu = pcpu_devices + cpu;
545 	unsigned long pa;
546 
547 	pa = __pa(&pcpu->lowcore->floating_pt_save_area);
548 	if (__pcpu_sigp_relax(pcpu->address, SIGP_STORE_STATUS_AT_ADDRESS,
549 			      pa) != SIGP_CC_ORDER_CODE_ACCEPTED)
550 		return -EIO;
551 	if (!MACHINE_HAS_VX)
552 		return 0;
553 	pa = __pa(pcpu->lowcore->vector_save_area_addr);
554 	if (__pcpu_sigp_relax(pcpu->address, SIGP_STORE_ADDITIONAL_STATUS,
555 			      pa) != SIGP_CC_ORDER_CODE_ACCEPTED)
556 		return -EIO;
557 	return 0;
558 }
559 
560 /*
561  * Collect CPU state of the previous, crashed system.
562  * There are four cases:
563  * 1) standard zfcp dump
564  *    condition: OLDMEM_BASE == NULL && ipl_info.type == IPL_TYPE_FCP_DUMP
565  *    The state for all CPUs except the boot CPU needs to be collected
566  *    with sigp stop-and-store-status. The boot CPU state is located in
567  *    the absolute lowcore of the memory stored in the HSA. The zcore code
568  *    will copy the boot CPU state from the HSA.
569  * 2) stand-alone kdump for SCSI (zfcp dump with swapped memory)
570  *    condition: OLDMEM_BASE != NULL && ipl_info.type == IPL_TYPE_FCP_DUMP
571  *    The state for all CPUs except the boot CPU needs to be collected
572  *    with sigp stop-and-store-status. The firmware or the boot-loader
573  *    stored the registers of the boot CPU in the absolute lowcore in the
574  *    memory of the old system.
575  * 3) kdump and the old kernel did not store the CPU state,
576  *    or stand-alone kdump for DASD
577  *    condition: OLDMEM_BASE != NULL && !is_kdump_kernel()
578  *    The state for all CPUs except the boot CPU needs to be collected
579  *    with sigp stop-and-store-status. The kexec code or the boot-loader
580  *    stored the registers of the boot CPU in the memory of the old system.
581  * 4) kdump and the old kernel stored the CPU state
582  *    condition: OLDMEM_BASE != NULL && is_kdump_kernel()
583  *    This case does not exist for s390 anymore, setup_arch explicitly
584  *    deactivates the elfcorehdr= kernel parameter
585  */
586 static __init void smp_save_cpu_vxrs(struct save_area *sa, u16 addr,
587 				     bool is_boot_cpu, unsigned long page)
588 {
589 	__vector128 *vxrs = (__vector128 *) page;
590 
591 	if (is_boot_cpu)
592 		vxrs = boot_cpu_vector_save_area;
593 	else
594 		__pcpu_sigp_relax(addr, SIGP_STORE_ADDITIONAL_STATUS, page);
595 	save_area_add_vxrs(sa, vxrs);
596 }
597 
598 static __init void smp_save_cpu_regs(struct save_area *sa, u16 addr,
599 				     bool is_boot_cpu, unsigned long page)
600 {
601 	void *regs = (void *) page;
602 
603 	if (is_boot_cpu)
604 		copy_oldmem_kernel(regs, (void *) __LC_FPREGS_SAVE_AREA, 512);
605 	else
606 		__pcpu_sigp_relax(addr, SIGP_STORE_STATUS_AT_ADDRESS, page);
607 	save_area_add_regs(sa, regs);
608 }
609 
610 void __init smp_save_dump_cpus(void)
611 {
612 	int addr, boot_cpu_addr, max_cpu_addr;
613 	struct save_area *sa;
614 	unsigned long page;
615 	bool is_boot_cpu;
616 
617 	if (!(OLDMEM_BASE || ipl_info.type == IPL_TYPE_FCP_DUMP))
618 		/* No previous system present, normal boot. */
619 		return;
620 	/* Allocate a page as dumping area for the store status sigps */
621 	page = memblock_alloc_base(PAGE_SIZE, PAGE_SIZE, 1UL << 31);
622 	/* Set multi-threading state to the previous system. */
623 	pcpu_set_smt(sclp.mtid_prev);
624 	boot_cpu_addr = stap();
625 	max_cpu_addr = SCLP_MAX_CORES << sclp.mtid_prev;
626 	for (addr = 0; addr <= max_cpu_addr; addr++) {
627 		if (__pcpu_sigp_relax(addr, SIGP_SENSE, 0) ==
628 		    SIGP_CC_NOT_OPERATIONAL)
629 			continue;
630 		is_boot_cpu = (addr == boot_cpu_addr);
631 		/* Allocate save area */
632 		sa = save_area_alloc(is_boot_cpu);
633 		if (!sa)
634 			panic("could not allocate memory for save area\n");
635 		if (MACHINE_HAS_VX)
636 			/* Get the vector registers */
637 			smp_save_cpu_vxrs(sa, addr, is_boot_cpu, page);
638 		/*
639 		 * For a zfcp dump OLDMEM_BASE == NULL and the registers
640 		 * of the boot CPU are stored in the HSA. To retrieve
641 		 * these registers an SCLP request is required which is
642 		 * done by drivers/s390/char/zcore.c:init_cpu_info()
643 		 */
644 		if (!is_boot_cpu || OLDMEM_BASE)
645 			/* Get the CPU registers */
646 			smp_save_cpu_regs(sa, addr, is_boot_cpu, page);
647 	}
648 	memblock_free(page, PAGE_SIZE);
649 	diag308_reset();
650 	pcpu_set_smt(0);
651 }
652 #endif /* CONFIG_CRASH_DUMP */
653 
654 void smp_cpu_set_polarization(int cpu, int val)
655 {
656 	pcpu_devices[cpu].polarization = val;
657 }
658 
659 int smp_cpu_get_polarization(int cpu)
660 {
661 	return pcpu_devices[cpu].polarization;
662 }
663 
664 static void __ref smp_get_core_info(struct sclp_core_info *info, int early)
665 {
666 	static int use_sigp_detection;
667 	int address;
668 
669 	if (use_sigp_detection || sclp_get_core_info(info, early)) {
670 		use_sigp_detection = 1;
671 		for (address = 0;
672 		     address < (SCLP_MAX_CORES << smp_cpu_mt_shift);
673 		     address += (1U << smp_cpu_mt_shift)) {
674 			if (__pcpu_sigp_relax(address, SIGP_SENSE, 0) ==
675 			    SIGP_CC_NOT_OPERATIONAL)
676 				continue;
677 			info->core[info->configured].core_id =
678 				address >> smp_cpu_mt_shift;
679 			info->configured++;
680 		}
681 		info->combined = info->configured;
682 	}
683 }
684 
685 static int smp_add_present_cpu(int cpu);
686 
687 static int __smp_rescan_cpus(struct sclp_core_info *info, int sysfs_add)
688 {
689 	struct pcpu *pcpu;
690 	cpumask_t avail;
691 	int cpu, nr, i, j;
692 	u16 address;
693 
694 	nr = 0;
695 	cpumask_xor(&avail, cpu_possible_mask, cpu_present_mask);
696 	cpu = cpumask_first(&avail);
697 	for (i = 0; (i < info->combined) && (cpu < nr_cpu_ids); i++) {
698 		if (sclp.has_core_type && info->core[i].type != boot_core_type)
699 			continue;
700 		address = info->core[i].core_id << smp_cpu_mt_shift;
701 		for (j = 0; j <= smp_cpu_mtid; j++) {
702 			if (pcpu_find_address(cpu_present_mask, address + j))
703 				continue;
704 			pcpu = pcpu_devices + cpu;
705 			pcpu->address = address + j;
706 			pcpu->state =
707 				(cpu >= info->configured*(smp_cpu_mtid + 1)) ?
708 				CPU_STATE_STANDBY : CPU_STATE_CONFIGURED;
709 			smp_cpu_set_polarization(cpu, POLARIZATION_UNKNOWN);
710 			set_cpu_present(cpu, true);
711 			if (sysfs_add && smp_add_present_cpu(cpu) != 0)
712 				set_cpu_present(cpu, false);
713 			else
714 				nr++;
715 			cpu = cpumask_next(cpu, &avail);
716 			if (cpu >= nr_cpu_ids)
717 				break;
718 		}
719 	}
720 	return nr;
721 }
722 
723 void __init smp_detect_cpus(void)
724 {
725 	unsigned int cpu, mtid, c_cpus, s_cpus;
726 	struct sclp_core_info *info;
727 	u16 address;
728 
729 	/* Get CPU information */
730 	info = memblock_virt_alloc(sizeof(*info), 8);
731 	smp_get_core_info(info, 1);
732 	/* Find boot CPU type */
733 	if (sclp.has_core_type) {
734 		address = stap();
735 		for (cpu = 0; cpu < info->combined; cpu++)
736 			if (info->core[cpu].core_id == address) {
737 				/* The boot cpu dictates the cpu type. */
738 				boot_core_type = info->core[cpu].type;
739 				break;
740 			}
741 		if (cpu >= info->combined)
742 			panic("Could not find boot CPU type");
743 	}
744 
745 	/* Set multi-threading state for the current system */
746 	mtid = boot_core_type ? sclp.mtid : sclp.mtid_cp;
747 	mtid = (mtid < smp_max_threads) ? mtid : smp_max_threads - 1;
748 	pcpu_set_smt(mtid);
749 
750 	/* Print number of CPUs */
751 	c_cpus = s_cpus = 0;
752 	for (cpu = 0; cpu < info->combined; cpu++) {
753 		if (sclp.has_core_type &&
754 		    info->core[cpu].type != boot_core_type)
755 			continue;
756 		if (cpu < info->configured)
757 			c_cpus += smp_cpu_mtid + 1;
758 		else
759 			s_cpus += smp_cpu_mtid + 1;
760 	}
761 	pr_info("%d configured CPUs, %d standby CPUs\n", c_cpus, s_cpus);
762 
763 	/* Add CPUs present at boot */
764 	get_online_cpus();
765 	__smp_rescan_cpus(info, 0);
766 	put_online_cpus();
767 	memblock_free_early((unsigned long)info, sizeof(*info));
768 }
769 
770 /*
771  *	Activate a secondary processor.
772  */
773 static void smp_start_secondary(void *cpuvoid)
774 {
775 	S390_lowcore.last_update_clock = get_tod_clock();
776 	S390_lowcore.restart_stack = (unsigned long) restart_stack;
777 	S390_lowcore.restart_fn = (unsigned long) do_restart;
778 	S390_lowcore.restart_data = 0;
779 	S390_lowcore.restart_source = -1UL;
780 	restore_access_regs(S390_lowcore.access_regs_save_area);
781 	__ctl_load(S390_lowcore.cregs_save_area, 0, 15);
782 	__load_psw_mask(PSW_KERNEL_BITS | PSW_MASK_DAT);
783 	cpu_init();
784 	preempt_disable();
785 	init_cpu_timer();
786 	vtime_init();
787 	pfault_init();
788 	notify_cpu_starting(smp_processor_id());
789 	set_cpu_online(smp_processor_id(), true);
790 	inc_irq_stat(CPU_RST);
791 	local_irq_enable();
792 	cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
793 }
794 
795 /* Upping and downing of CPUs */
796 int __cpu_up(unsigned int cpu, struct task_struct *tidle)
797 {
798 	struct pcpu *pcpu;
799 	int base, i, rc;
800 
801 	pcpu = pcpu_devices + cpu;
802 	if (pcpu->state != CPU_STATE_CONFIGURED)
803 		return -EIO;
804 	base = smp_get_base_cpu(cpu);
805 	for (i = 0; i <= smp_cpu_mtid; i++) {
806 		if (base + i < nr_cpu_ids)
807 			if (cpu_online(base + i))
808 				break;
809 	}
810 	/*
811 	 * If this is the first CPU of the core to get online
812 	 * do an initial CPU reset.
813 	 */
814 	if (i > smp_cpu_mtid &&
815 	    pcpu_sigp_retry(pcpu_devices + base, SIGP_INITIAL_CPU_RESET, 0) !=
816 	    SIGP_CC_ORDER_CODE_ACCEPTED)
817 		return -EIO;
818 
819 	rc = pcpu_alloc_lowcore(pcpu, cpu);
820 	if (rc)
821 		return rc;
822 	pcpu_prepare_secondary(pcpu, cpu);
823 	pcpu_attach_task(pcpu, tidle);
824 	pcpu_start_fn(pcpu, smp_start_secondary, NULL);
825 	/* Wait until cpu puts itself in the online & active maps */
826 	while (!cpu_online(cpu))
827 		cpu_relax();
828 	return 0;
829 }
830 
831 static unsigned int setup_possible_cpus __initdata;
832 
833 static int __init _setup_possible_cpus(char *s)
834 {
835 	get_option(&s, &setup_possible_cpus);
836 	return 0;
837 }
838 early_param("possible_cpus", _setup_possible_cpus);
839 
840 #ifdef CONFIG_HOTPLUG_CPU
841 
842 int __cpu_disable(void)
843 {
844 	unsigned long cregs[16];
845 
846 	/* Handle possible pending IPIs */
847 	smp_handle_ext_call();
848 	set_cpu_online(smp_processor_id(), false);
849 	/* Disable pseudo page faults on this cpu. */
850 	pfault_fini();
851 	/* Disable interrupt sources via control register. */
852 	__ctl_store(cregs, 0, 15);
853 	cregs[0]  &= ~0x0000ee70UL;	/* disable all external interrupts */
854 	cregs[6]  &= ~0xff000000UL;	/* disable all I/O interrupts */
855 	cregs[14] &= ~0x1f000000UL;	/* disable most machine checks */
856 	__ctl_load(cregs, 0, 15);
857 	clear_cpu_flag(CIF_NOHZ_DELAY);
858 	return 0;
859 }
860 
861 void __cpu_die(unsigned int cpu)
862 {
863 	struct pcpu *pcpu;
864 
865 	/* Wait until target cpu is down */
866 	pcpu = pcpu_devices + cpu;
867 	while (!pcpu_stopped(pcpu))
868 		cpu_relax();
869 	pcpu_free_lowcore(pcpu);
870 	cpumask_clear_cpu(cpu, mm_cpumask(&init_mm));
871 	cpumask_clear_cpu(cpu, &init_mm.context.cpu_attach_mask);
872 }
873 
874 void __noreturn cpu_die(void)
875 {
876 	idle_task_exit();
877 	pcpu_sigp_retry(pcpu_devices + smp_processor_id(), SIGP_STOP, 0);
878 	for (;;) ;
879 }
880 
881 #endif /* CONFIG_HOTPLUG_CPU */
882 
883 void __init smp_fill_possible_mask(void)
884 {
885 	unsigned int possible, sclp_max, cpu;
886 
887 	sclp_max = max(sclp.mtid, sclp.mtid_cp) + 1;
888 	sclp_max = min(smp_max_threads, sclp_max);
889 	sclp_max = (sclp.max_cores * sclp_max) ?: nr_cpu_ids;
890 	possible = setup_possible_cpus ?: nr_cpu_ids;
891 	possible = min(possible, sclp_max);
892 	for (cpu = 0; cpu < possible && cpu < nr_cpu_ids; cpu++)
893 		set_cpu_possible(cpu, true);
894 }
895 
896 void __init smp_prepare_cpus(unsigned int max_cpus)
897 {
898 	/* request the 0x1201 emergency signal external interrupt */
899 	if (register_external_irq(EXT_IRQ_EMERGENCY_SIG, do_ext_call_interrupt))
900 		panic("Couldn't request external interrupt 0x1201");
901 	/* request the 0x1202 external call external interrupt */
902 	if (register_external_irq(EXT_IRQ_EXTERNAL_CALL, do_ext_call_interrupt))
903 		panic("Couldn't request external interrupt 0x1202");
904 }
905 
906 void __init smp_prepare_boot_cpu(void)
907 {
908 	struct pcpu *pcpu = pcpu_devices;
909 
910 	pcpu->state = CPU_STATE_CONFIGURED;
911 	pcpu->address = stap();
912 	pcpu->lowcore = (struct lowcore *)(unsigned long) store_prefix();
913 	S390_lowcore.percpu_offset = __per_cpu_offset[0];
914 	smp_cpu_set_polarization(0, POLARIZATION_UNKNOWN);
915 	set_cpu_present(0, true);
916 	set_cpu_online(0, true);
917 }
918 
919 void __init smp_cpus_done(unsigned int max_cpus)
920 {
921 }
922 
923 void __init smp_setup_processor_id(void)
924 {
925 	S390_lowcore.cpu_nr = 0;
926 	S390_lowcore.spinlock_lockval = arch_spin_lockval(0);
927 }
928 
929 /*
930  * the frequency of the profiling timer can be changed
931  * by writing a multiplier value into /proc/profile.
932  *
933  * usually you want to run this on all CPUs ;)
934  */
935 int setup_profiling_timer(unsigned int multiplier)
936 {
937 	return 0;
938 }
939 
940 #ifdef CONFIG_HOTPLUG_CPU
941 static ssize_t cpu_configure_show(struct device *dev,
942 				  struct device_attribute *attr, char *buf)
943 {
944 	ssize_t count;
945 
946 	mutex_lock(&smp_cpu_state_mutex);
947 	count = sprintf(buf, "%d\n", pcpu_devices[dev->id].state);
948 	mutex_unlock(&smp_cpu_state_mutex);
949 	return count;
950 }
951 
952 static ssize_t cpu_configure_store(struct device *dev,
953 				   struct device_attribute *attr,
954 				   const char *buf, size_t count)
955 {
956 	struct pcpu *pcpu;
957 	int cpu, val, rc, i;
958 	char delim;
959 
960 	if (sscanf(buf, "%d %c", &val, &delim) != 1)
961 		return -EINVAL;
962 	if (val != 0 && val != 1)
963 		return -EINVAL;
964 	get_online_cpus();
965 	mutex_lock(&smp_cpu_state_mutex);
966 	rc = -EBUSY;
967 	/* disallow configuration changes of online cpus and cpu 0 */
968 	cpu = dev->id;
969 	cpu = smp_get_base_cpu(cpu);
970 	if (cpu == 0)
971 		goto out;
972 	for (i = 0; i <= smp_cpu_mtid; i++)
973 		if (cpu_online(cpu + i))
974 			goto out;
975 	pcpu = pcpu_devices + cpu;
976 	rc = 0;
977 	switch (val) {
978 	case 0:
979 		if (pcpu->state != CPU_STATE_CONFIGURED)
980 			break;
981 		rc = sclp_core_deconfigure(pcpu->address >> smp_cpu_mt_shift);
982 		if (rc)
983 			break;
984 		for (i = 0; i <= smp_cpu_mtid; i++) {
985 			if (cpu + i >= nr_cpu_ids || !cpu_present(cpu + i))
986 				continue;
987 			pcpu[i].state = CPU_STATE_STANDBY;
988 			smp_cpu_set_polarization(cpu + i,
989 						 POLARIZATION_UNKNOWN);
990 		}
991 		topology_expect_change();
992 		break;
993 	case 1:
994 		if (pcpu->state != CPU_STATE_STANDBY)
995 			break;
996 		rc = sclp_core_configure(pcpu->address >> smp_cpu_mt_shift);
997 		if (rc)
998 			break;
999 		for (i = 0; i <= smp_cpu_mtid; i++) {
1000 			if (cpu + i >= nr_cpu_ids || !cpu_present(cpu + i))
1001 				continue;
1002 			pcpu[i].state = CPU_STATE_CONFIGURED;
1003 			smp_cpu_set_polarization(cpu + i,
1004 						 POLARIZATION_UNKNOWN);
1005 		}
1006 		topology_expect_change();
1007 		break;
1008 	default:
1009 		break;
1010 	}
1011 out:
1012 	mutex_unlock(&smp_cpu_state_mutex);
1013 	put_online_cpus();
1014 	return rc ? rc : count;
1015 }
1016 static DEVICE_ATTR(configure, 0644, cpu_configure_show, cpu_configure_store);
1017 #endif /* CONFIG_HOTPLUG_CPU */
1018 
1019 static ssize_t show_cpu_address(struct device *dev,
1020 				struct device_attribute *attr, char *buf)
1021 {
1022 	return sprintf(buf, "%d\n", pcpu_devices[dev->id].address);
1023 }
1024 static DEVICE_ATTR(address, 0444, show_cpu_address, NULL);
1025 
1026 static struct attribute *cpu_common_attrs[] = {
1027 #ifdef CONFIG_HOTPLUG_CPU
1028 	&dev_attr_configure.attr,
1029 #endif
1030 	&dev_attr_address.attr,
1031 	NULL,
1032 };
1033 
1034 static struct attribute_group cpu_common_attr_group = {
1035 	.attrs = cpu_common_attrs,
1036 };
1037 
1038 static struct attribute *cpu_online_attrs[] = {
1039 	&dev_attr_idle_count.attr,
1040 	&dev_attr_idle_time_us.attr,
1041 	NULL,
1042 };
1043 
1044 static struct attribute_group cpu_online_attr_group = {
1045 	.attrs = cpu_online_attrs,
1046 };
1047 
1048 static int smp_cpu_online(unsigned int cpu)
1049 {
1050 	struct device *s = &per_cpu(cpu_device, cpu)->dev;
1051 
1052 	return sysfs_create_group(&s->kobj, &cpu_online_attr_group);
1053 }
1054 static int smp_cpu_pre_down(unsigned int cpu)
1055 {
1056 	struct device *s = &per_cpu(cpu_device, cpu)->dev;
1057 
1058 	sysfs_remove_group(&s->kobj, &cpu_online_attr_group);
1059 	return 0;
1060 }
1061 
1062 static int smp_add_present_cpu(int cpu)
1063 {
1064 	struct device *s;
1065 	struct cpu *c;
1066 	int rc;
1067 
1068 	c = kzalloc(sizeof(*c), GFP_KERNEL);
1069 	if (!c)
1070 		return -ENOMEM;
1071 	per_cpu(cpu_device, cpu) = c;
1072 	s = &c->dev;
1073 	c->hotpluggable = 1;
1074 	rc = register_cpu(c, cpu);
1075 	if (rc)
1076 		goto out;
1077 	rc = sysfs_create_group(&s->kobj, &cpu_common_attr_group);
1078 	if (rc)
1079 		goto out_cpu;
1080 	rc = topology_cpu_init(c);
1081 	if (rc)
1082 		goto out_topology;
1083 	return 0;
1084 
1085 out_topology:
1086 	sysfs_remove_group(&s->kobj, &cpu_common_attr_group);
1087 out_cpu:
1088 #ifdef CONFIG_HOTPLUG_CPU
1089 	unregister_cpu(c);
1090 #endif
1091 out:
1092 	return rc;
1093 }
1094 
1095 #ifdef CONFIG_HOTPLUG_CPU
1096 
1097 int __ref smp_rescan_cpus(void)
1098 {
1099 	struct sclp_core_info *info;
1100 	int nr;
1101 
1102 	info = kzalloc(sizeof(*info), GFP_KERNEL);
1103 	if (!info)
1104 		return -ENOMEM;
1105 	smp_get_core_info(info, 0);
1106 	get_online_cpus();
1107 	mutex_lock(&smp_cpu_state_mutex);
1108 	nr = __smp_rescan_cpus(info, 1);
1109 	mutex_unlock(&smp_cpu_state_mutex);
1110 	put_online_cpus();
1111 	kfree(info);
1112 	if (nr)
1113 		topology_schedule_update();
1114 	return 0;
1115 }
1116 
1117 static ssize_t __ref rescan_store(struct device *dev,
1118 				  struct device_attribute *attr,
1119 				  const char *buf,
1120 				  size_t count)
1121 {
1122 	int rc;
1123 
1124 	rc = smp_rescan_cpus();
1125 	return rc ? rc : count;
1126 }
1127 static DEVICE_ATTR(rescan, 0200, NULL, rescan_store);
1128 #endif /* CONFIG_HOTPLUG_CPU */
1129 
1130 static int __init s390_smp_init(void)
1131 {
1132 	int cpu, rc = 0;
1133 
1134 #ifdef CONFIG_HOTPLUG_CPU
1135 	rc = device_create_file(cpu_subsys.dev_root, &dev_attr_rescan);
1136 	if (rc)
1137 		return rc;
1138 #endif
1139 	for_each_present_cpu(cpu) {
1140 		rc = smp_add_present_cpu(cpu);
1141 		if (rc)
1142 			goto out;
1143 	}
1144 
1145 	rc = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "s390/smp:online",
1146 			       smp_cpu_online, smp_cpu_pre_down);
1147 out:
1148 	return rc;
1149 }
1150 subsys_initcall(s390_smp_init);
1151