xref: /openbmc/linux/arch/s390/kernel/smp.c (revision 15786f7b)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  SMP related functions
4  *
5  *    Copyright IBM Corp. 1999, 2012
6  *    Author(s): Denis Joseph Barrow,
7  *		 Martin Schwidefsky <schwidefsky@de.ibm.com>,
8  *		 Heiko Carstens <heiko.carstens@de.ibm.com>,
9  *
10  *  based on other smp stuff by
11  *    (c) 1995 Alan Cox, CymruNET Ltd  <alan@cymru.net>
12  *    (c) 1998 Ingo Molnar
13  *
14  * The code outside of smp.c uses logical cpu numbers, only smp.c does
15  * the translation of logical to physical cpu ids. All new code that
16  * operates on physical cpu numbers needs to go into smp.c.
17  */
18 
19 #define KMSG_COMPONENT "cpu"
20 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
21 
22 #include <linux/workqueue.h>
23 #include <linux/memblock.h>
24 #include <linux/export.h>
25 #include <linux/init.h>
26 #include <linux/mm.h>
27 #include <linux/err.h>
28 #include <linux/spinlock.h>
29 #include <linux/kernel_stat.h>
30 #include <linux/delay.h>
31 #include <linux/interrupt.h>
32 #include <linux/irqflags.h>
33 #include <linux/irq_work.h>
34 #include <linux/cpu.h>
35 #include <linux/slab.h>
36 #include <linux/sched/hotplug.h>
37 #include <linux/sched/task_stack.h>
38 #include <linux/crash_dump.h>
39 #include <linux/kprobes.h>
40 #include <asm/asm-offsets.h>
41 #include <asm/diag.h>
42 #include <asm/switch_to.h>
43 #include <asm/facility.h>
44 #include <asm/ipl.h>
45 #include <asm/setup.h>
46 #include <asm/irq.h>
47 #include <asm/tlbflush.h>
48 #include <asm/vtimer.h>
49 #include <asm/lowcore.h>
50 #include <asm/sclp.h>
51 #include <asm/debug.h>
52 #include <asm/os_info.h>
53 #include <asm/sigp.h>
54 #include <asm/idle.h>
55 #include <asm/nmi.h>
56 #include <asm/stacktrace.h>
57 #include <asm/topology.h>
58 #include <asm/vdso.h>
59 #include "entry.h"
60 
61 enum {
62 	ec_schedule = 0,
63 	ec_call_function_single,
64 	ec_stop_cpu,
65 	ec_mcck_pending,
66 	ec_irq_work,
67 };
68 
69 enum {
70 	CPU_STATE_STANDBY,
71 	CPU_STATE_CONFIGURED,
72 };
73 
74 static DEFINE_PER_CPU(struct cpu *, cpu_device);
75 
76 struct pcpu {
77 	struct lowcore *lowcore;	/* lowcore page(s) for the cpu */
78 	unsigned long ec_mask;		/* bit mask for ec_xxx functions */
79 	unsigned long ec_clk;		/* sigp timestamp for ec_xxx */
80 	signed char state;		/* physical cpu state */
81 	signed char polarization;	/* physical polarization */
82 	u16 address;			/* physical cpu address */
83 };
84 
85 static u8 boot_core_type;
86 static struct pcpu pcpu_devices[NR_CPUS];
87 
88 unsigned int smp_cpu_mt_shift;
89 EXPORT_SYMBOL(smp_cpu_mt_shift);
90 
91 unsigned int smp_cpu_mtid;
92 EXPORT_SYMBOL(smp_cpu_mtid);
93 
94 #ifdef CONFIG_CRASH_DUMP
95 __vector128 __initdata boot_cpu_vector_save_area[__NUM_VXRS];
96 #endif
97 
98 static unsigned int smp_max_threads __initdata = -1U;
99 
100 static int __init early_nosmt(char *s)
101 {
102 	smp_max_threads = 1;
103 	return 0;
104 }
105 early_param("nosmt", early_nosmt);
106 
107 static int __init early_smt(char *s)
108 {
109 	get_option(&s, &smp_max_threads);
110 	return 0;
111 }
112 early_param("smt", early_smt);
113 
114 /*
115  * The smp_cpu_state_mutex must be held when changing the state or polarization
116  * member of a pcpu data structure within the pcpu_devices arreay.
117  */
118 DEFINE_MUTEX(smp_cpu_state_mutex);
119 
120 /*
121  * Signal processor helper functions.
122  */
123 static inline int __pcpu_sigp_relax(u16 addr, u8 order, unsigned long parm)
124 {
125 	int cc;
126 
127 	while (1) {
128 		cc = __pcpu_sigp(addr, order, parm, NULL);
129 		if (cc != SIGP_CC_BUSY)
130 			return cc;
131 		cpu_relax();
132 	}
133 }
134 
135 static int pcpu_sigp_retry(struct pcpu *pcpu, u8 order, u32 parm)
136 {
137 	int cc, retry;
138 
139 	for (retry = 0; ; retry++) {
140 		cc = __pcpu_sigp(pcpu->address, order, parm, NULL);
141 		if (cc != SIGP_CC_BUSY)
142 			break;
143 		if (retry >= 3)
144 			udelay(10);
145 	}
146 	return cc;
147 }
148 
149 static inline int pcpu_stopped(struct pcpu *pcpu)
150 {
151 	u32 status;
152 
153 	if (__pcpu_sigp(pcpu->address, SIGP_SENSE,
154 			0, &status) != SIGP_CC_STATUS_STORED)
155 		return 0;
156 	return !!(status & (SIGP_STATUS_CHECK_STOP|SIGP_STATUS_STOPPED));
157 }
158 
159 static inline int pcpu_running(struct pcpu *pcpu)
160 {
161 	if (__pcpu_sigp(pcpu->address, SIGP_SENSE_RUNNING,
162 			0, NULL) != SIGP_CC_STATUS_STORED)
163 		return 1;
164 	/* Status stored condition code is equivalent to cpu not running. */
165 	return 0;
166 }
167 
168 /*
169  * Find struct pcpu by cpu address.
170  */
171 static struct pcpu *pcpu_find_address(const struct cpumask *mask, u16 address)
172 {
173 	int cpu;
174 
175 	for_each_cpu(cpu, mask)
176 		if (pcpu_devices[cpu].address == address)
177 			return pcpu_devices + cpu;
178 	return NULL;
179 }
180 
181 static void pcpu_ec_call(struct pcpu *pcpu, int ec_bit)
182 {
183 	int order;
184 
185 	if (test_and_set_bit(ec_bit, &pcpu->ec_mask))
186 		return;
187 	order = pcpu_running(pcpu) ? SIGP_EXTERNAL_CALL : SIGP_EMERGENCY_SIGNAL;
188 	pcpu->ec_clk = get_tod_clock_fast();
189 	pcpu_sigp_retry(pcpu, order, 0);
190 }
191 
192 static int pcpu_alloc_lowcore(struct pcpu *pcpu, int cpu)
193 {
194 	unsigned long async_stack, nodat_stack, mcck_stack;
195 	struct lowcore *lc;
196 
197 	if (pcpu != &pcpu_devices[0]) {
198 		pcpu->lowcore =	(struct lowcore *)
199 			__get_free_pages(GFP_KERNEL | GFP_DMA, LC_ORDER);
200 		nodat_stack = __get_free_pages(GFP_KERNEL, THREAD_SIZE_ORDER);
201 		if (!pcpu->lowcore || !nodat_stack)
202 			goto out;
203 	} else {
204 		nodat_stack = pcpu->lowcore->nodat_stack - STACK_INIT_OFFSET;
205 	}
206 	async_stack = stack_alloc();
207 	mcck_stack = stack_alloc();
208 	if (!async_stack || !mcck_stack)
209 		goto out_stack;
210 	lc = pcpu->lowcore;
211 	memcpy(lc, &S390_lowcore, 512);
212 	memset((char *) lc + 512, 0, sizeof(*lc) - 512);
213 	lc->async_stack = async_stack + STACK_INIT_OFFSET;
214 	lc->nodat_stack = nodat_stack + STACK_INIT_OFFSET;
215 	lc->mcck_stack = mcck_stack + STACK_INIT_OFFSET;
216 	lc->cpu_nr = cpu;
217 	lc->spinlock_lockval = arch_spin_lockval(cpu);
218 	lc->spinlock_index = 0;
219 	lc->br_r1_trampoline = 0x07f1;	/* br %r1 */
220 	lc->return_lpswe = gen_lpswe(__LC_RETURN_PSW);
221 	lc->return_mcck_lpswe = gen_lpswe(__LC_RETURN_MCCK_PSW);
222 	if (nmi_alloc_per_cpu(lc))
223 		goto out_stack;
224 	lowcore_ptr[cpu] = lc;
225 	pcpu_sigp_retry(pcpu, SIGP_SET_PREFIX, (u32)(unsigned long) lc);
226 	return 0;
227 
228 out_stack:
229 	stack_free(mcck_stack);
230 	stack_free(async_stack);
231 out:
232 	if (pcpu != &pcpu_devices[0]) {
233 		free_pages(nodat_stack, THREAD_SIZE_ORDER);
234 		free_pages((unsigned long) pcpu->lowcore, LC_ORDER);
235 	}
236 	return -ENOMEM;
237 }
238 
239 static void pcpu_free_lowcore(struct pcpu *pcpu)
240 {
241 	unsigned long async_stack, nodat_stack, mcck_stack, lowcore;
242 
243 	nodat_stack = pcpu->lowcore->nodat_stack - STACK_INIT_OFFSET;
244 	async_stack = pcpu->lowcore->async_stack - STACK_INIT_OFFSET;
245 	mcck_stack = pcpu->lowcore->mcck_stack - STACK_INIT_OFFSET;
246 	lowcore = (unsigned long) pcpu->lowcore;
247 
248 	pcpu_sigp_retry(pcpu, SIGP_SET_PREFIX, 0);
249 	lowcore_ptr[pcpu - pcpu_devices] = NULL;
250 	nmi_free_per_cpu(pcpu->lowcore);
251 	stack_free(async_stack);
252 	stack_free(mcck_stack);
253 	if (pcpu == &pcpu_devices[0])
254 		return;
255 	free_pages(nodat_stack, THREAD_SIZE_ORDER);
256 	free_pages(lowcore, LC_ORDER);
257 }
258 
259 static void pcpu_prepare_secondary(struct pcpu *pcpu, int cpu)
260 {
261 	struct lowcore *lc = pcpu->lowcore;
262 
263 	cpumask_set_cpu(cpu, &init_mm.context.cpu_attach_mask);
264 	cpumask_set_cpu(cpu, mm_cpumask(&init_mm));
265 	lc->cpu_nr = cpu;
266 	lc->spinlock_lockval = arch_spin_lockval(cpu);
267 	lc->spinlock_index = 0;
268 	lc->percpu_offset = __per_cpu_offset[cpu];
269 	lc->kernel_asce = S390_lowcore.kernel_asce;
270 	lc->user_asce = s390_invalid_asce;
271 	lc->machine_flags = S390_lowcore.machine_flags;
272 	lc->user_timer = lc->system_timer =
273 		lc->steal_timer = lc->avg_steal_timer = 0;
274 	__ctl_store(lc->cregs_save_area, 0, 15);
275 	lc->cregs_save_area[1] = lc->kernel_asce;
276 	lc->cregs_save_area[7] = lc->user_asce;
277 	save_access_regs((unsigned int *) lc->access_regs_save_area);
278 	memcpy(lc->stfle_fac_list, S390_lowcore.stfle_fac_list,
279 	       sizeof(lc->stfle_fac_list));
280 	memcpy(lc->alt_stfle_fac_list, S390_lowcore.alt_stfle_fac_list,
281 	       sizeof(lc->alt_stfle_fac_list));
282 	arch_spin_lock_setup(cpu);
283 }
284 
285 static void pcpu_attach_task(struct pcpu *pcpu, struct task_struct *tsk)
286 {
287 	struct lowcore *lc = pcpu->lowcore;
288 
289 	lc->kernel_stack = (unsigned long) task_stack_page(tsk)
290 		+ THREAD_SIZE - STACK_FRAME_OVERHEAD - sizeof(struct pt_regs);
291 	lc->current_task = (unsigned long) tsk;
292 	lc->lpp = LPP_MAGIC;
293 	lc->current_pid = tsk->pid;
294 	lc->user_timer = tsk->thread.user_timer;
295 	lc->guest_timer = tsk->thread.guest_timer;
296 	lc->system_timer = tsk->thread.system_timer;
297 	lc->hardirq_timer = tsk->thread.hardirq_timer;
298 	lc->softirq_timer = tsk->thread.softirq_timer;
299 	lc->steal_timer = 0;
300 }
301 
302 static void pcpu_start_fn(struct pcpu *pcpu, void (*func)(void *), void *data)
303 {
304 	struct lowcore *lc = pcpu->lowcore;
305 
306 	lc->restart_stack = lc->nodat_stack;
307 	lc->restart_fn = (unsigned long) func;
308 	lc->restart_data = (unsigned long) data;
309 	lc->restart_source = -1UL;
310 	pcpu_sigp_retry(pcpu, SIGP_RESTART, 0);
311 }
312 
313 /*
314  * Call function via PSW restart on pcpu and stop the current cpu.
315  */
316 static void __pcpu_delegate(void (*func)(void*), void *data)
317 {
318 	func(data);	/* should not return */
319 }
320 
321 static void __no_sanitize_address pcpu_delegate(struct pcpu *pcpu,
322 						void (*func)(void *),
323 						void *data, unsigned long stack)
324 {
325 	struct lowcore *lc = lowcore_ptr[pcpu - pcpu_devices];
326 	unsigned long source_cpu = stap();
327 
328 	__load_psw_mask(PSW_KERNEL_BITS | PSW_MASK_DAT);
329 	if (pcpu->address == source_cpu)
330 		CALL_ON_STACK(__pcpu_delegate, stack, 2, func, data);
331 	/* Stop target cpu (if func returns this stops the current cpu). */
332 	pcpu_sigp_retry(pcpu, SIGP_STOP, 0);
333 	/* Restart func on the target cpu and stop the current cpu. */
334 	mem_assign_absolute(lc->restart_stack, stack);
335 	mem_assign_absolute(lc->restart_fn, (unsigned long) func);
336 	mem_assign_absolute(lc->restart_data, (unsigned long) data);
337 	mem_assign_absolute(lc->restart_source, source_cpu);
338 	__bpon();
339 	asm volatile(
340 		"0:	sigp	0,%0,%2	# sigp restart to target cpu\n"
341 		"	brc	2,0b	# busy, try again\n"
342 		"1:	sigp	0,%1,%3	# sigp stop to current cpu\n"
343 		"	brc	2,1b	# busy, try again\n"
344 		: : "d" (pcpu->address), "d" (source_cpu),
345 		    "K" (SIGP_RESTART), "K" (SIGP_STOP)
346 		: "0", "1", "cc");
347 	for (;;) ;
348 }
349 
350 /*
351  * Enable additional logical cpus for multi-threading.
352  */
353 static int pcpu_set_smt(unsigned int mtid)
354 {
355 	int cc;
356 
357 	if (smp_cpu_mtid == mtid)
358 		return 0;
359 	cc = __pcpu_sigp(0, SIGP_SET_MULTI_THREADING, mtid, NULL);
360 	if (cc == 0) {
361 		smp_cpu_mtid = mtid;
362 		smp_cpu_mt_shift = 0;
363 		while (smp_cpu_mtid >= (1U << smp_cpu_mt_shift))
364 			smp_cpu_mt_shift++;
365 		pcpu_devices[0].address = stap();
366 	}
367 	return cc;
368 }
369 
370 /*
371  * Call function on an online CPU.
372  */
373 void smp_call_online_cpu(void (*func)(void *), void *data)
374 {
375 	struct pcpu *pcpu;
376 
377 	/* Use the current cpu if it is online. */
378 	pcpu = pcpu_find_address(cpu_online_mask, stap());
379 	if (!pcpu)
380 		/* Use the first online cpu. */
381 		pcpu = pcpu_devices + cpumask_first(cpu_online_mask);
382 	pcpu_delegate(pcpu, func, data, (unsigned long) restart_stack);
383 }
384 
385 /*
386  * Call function on the ipl CPU.
387  */
388 void smp_call_ipl_cpu(void (*func)(void *), void *data)
389 {
390 	struct lowcore *lc = pcpu_devices->lowcore;
391 
392 	if (pcpu_devices[0].address == stap())
393 		lc = &S390_lowcore;
394 
395 	pcpu_delegate(&pcpu_devices[0], func, data,
396 		      lc->nodat_stack);
397 }
398 
399 int smp_find_processor_id(u16 address)
400 {
401 	int cpu;
402 
403 	for_each_present_cpu(cpu)
404 		if (pcpu_devices[cpu].address == address)
405 			return cpu;
406 	return -1;
407 }
408 
409 void schedule_mcck_handler(void)
410 {
411 	pcpu_ec_call(pcpu_devices + smp_processor_id(), ec_mcck_pending);
412 }
413 
414 bool notrace arch_vcpu_is_preempted(int cpu)
415 {
416 	if (test_cpu_flag_of(CIF_ENABLED_WAIT, cpu))
417 		return false;
418 	if (pcpu_running(pcpu_devices + cpu))
419 		return false;
420 	return true;
421 }
422 EXPORT_SYMBOL(arch_vcpu_is_preempted);
423 
424 void notrace smp_yield_cpu(int cpu)
425 {
426 	if (!MACHINE_HAS_DIAG9C)
427 		return;
428 	diag_stat_inc_norecursion(DIAG_STAT_X09C);
429 	asm volatile("diag %0,0,0x9c"
430 		     : : "d" (pcpu_devices[cpu].address));
431 }
432 
433 /*
434  * Send cpus emergency shutdown signal. This gives the cpus the
435  * opportunity to complete outstanding interrupts.
436  */
437 void notrace smp_emergency_stop(void)
438 {
439 	static arch_spinlock_t lock = __ARCH_SPIN_LOCK_UNLOCKED;
440 	static cpumask_t cpumask;
441 	u64 end;
442 	int cpu;
443 
444 	arch_spin_lock(&lock);
445 	cpumask_copy(&cpumask, cpu_online_mask);
446 	cpumask_clear_cpu(smp_processor_id(), &cpumask);
447 
448 	end = get_tod_clock() + (1000000UL << 12);
449 	for_each_cpu(cpu, &cpumask) {
450 		struct pcpu *pcpu = pcpu_devices + cpu;
451 		set_bit(ec_stop_cpu, &pcpu->ec_mask);
452 		while (__pcpu_sigp(pcpu->address, SIGP_EMERGENCY_SIGNAL,
453 				   0, NULL) == SIGP_CC_BUSY &&
454 		       get_tod_clock() < end)
455 			cpu_relax();
456 	}
457 	while (get_tod_clock() < end) {
458 		for_each_cpu(cpu, &cpumask)
459 			if (pcpu_stopped(pcpu_devices + cpu))
460 				cpumask_clear_cpu(cpu, &cpumask);
461 		if (cpumask_empty(&cpumask))
462 			break;
463 		cpu_relax();
464 	}
465 	arch_spin_unlock(&lock);
466 }
467 NOKPROBE_SYMBOL(smp_emergency_stop);
468 
469 /*
470  * Stop all cpus but the current one.
471  */
472 void smp_send_stop(void)
473 {
474 	int cpu;
475 
476 	/* Disable all interrupts/machine checks */
477 	__load_psw_mask(PSW_KERNEL_BITS | PSW_MASK_DAT);
478 	trace_hardirqs_off();
479 
480 	debug_set_critical();
481 
482 	if (oops_in_progress)
483 		smp_emergency_stop();
484 
485 	/* stop all processors */
486 	for_each_online_cpu(cpu) {
487 		if (cpu == smp_processor_id())
488 			continue;
489 		pcpu_sigp_retry(pcpu_devices + cpu, SIGP_STOP, 0);
490 		while (!pcpu_stopped(pcpu_devices + cpu))
491 			cpu_relax();
492 	}
493 }
494 
495 /*
496  * This is the main routine where commands issued by other
497  * cpus are handled.
498  */
499 static void smp_handle_ext_call(void)
500 {
501 	unsigned long bits;
502 
503 	/* handle bit signal external calls */
504 	bits = xchg(&pcpu_devices[smp_processor_id()].ec_mask, 0);
505 	if (test_bit(ec_stop_cpu, &bits))
506 		smp_stop_cpu();
507 	if (test_bit(ec_schedule, &bits))
508 		scheduler_ipi();
509 	if (test_bit(ec_call_function_single, &bits))
510 		generic_smp_call_function_single_interrupt();
511 	if (test_bit(ec_mcck_pending, &bits))
512 		__s390_handle_mcck();
513 	if (test_bit(ec_irq_work, &bits))
514 		irq_work_run();
515 }
516 
517 static void do_ext_call_interrupt(struct ext_code ext_code,
518 				  unsigned int param32, unsigned long param64)
519 {
520 	inc_irq_stat(ext_code.code == 0x1202 ? IRQEXT_EXC : IRQEXT_EMS);
521 	smp_handle_ext_call();
522 }
523 
524 void arch_send_call_function_ipi_mask(const struct cpumask *mask)
525 {
526 	int cpu;
527 
528 	for_each_cpu(cpu, mask)
529 		pcpu_ec_call(pcpu_devices + cpu, ec_call_function_single);
530 }
531 
532 void arch_send_call_function_single_ipi(int cpu)
533 {
534 	pcpu_ec_call(pcpu_devices + cpu, ec_call_function_single);
535 }
536 
537 /*
538  * this function sends a 'reschedule' IPI to another CPU.
539  * it goes straight through and wastes no time serializing
540  * anything. Worst case is that we lose a reschedule ...
541  */
542 void smp_send_reschedule(int cpu)
543 {
544 	pcpu_ec_call(pcpu_devices + cpu, ec_schedule);
545 }
546 
547 #ifdef CONFIG_IRQ_WORK
548 void arch_irq_work_raise(void)
549 {
550 	pcpu_ec_call(pcpu_devices + smp_processor_id(), ec_irq_work);
551 }
552 #endif
553 
554 /*
555  * parameter area for the set/clear control bit callbacks
556  */
557 struct ec_creg_mask_parms {
558 	unsigned long orval;
559 	unsigned long andval;
560 	int cr;
561 };
562 
563 /*
564  * callback for setting/clearing control bits
565  */
566 static void smp_ctl_bit_callback(void *info)
567 {
568 	struct ec_creg_mask_parms *pp = info;
569 	unsigned long cregs[16];
570 
571 	__ctl_store(cregs, 0, 15);
572 	cregs[pp->cr] = (cregs[pp->cr] & pp->andval) | pp->orval;
573 	__ctl_load(cregs, 0, 15);
574 }
575 
576 /*
577  * Set a bit in a control register of all cpus
578  */
579 void smp_ctl_set_bit(int cr, int bit)
580 {
581 	struct ec_creg_mask_parms parms = { 1UL << bit, -1UL, cr };
582 
583 	on_each_cpu(smp_ctl_bit_callback, &parms, 1);
584 }
585 EXPORT_SYMBOL(smp_ctl_set_bit);
586 
587 /*
588  * Clear a bit in a control register of all cpus
589  */
590 void smp_ctl_clear_bit(int cr, int bit)
591 {
592 	struct ec_creg_mask_parms parms = { 0, ~(1UL << bit), cr };
593 
594 	on_each_cpu(smp_ctl_bit_callback, &parms, 1);
595 }
596 EXPORT_SYMBOL(smp_ctl_clear_bit);
597 
598 #ifdef CONFIG_CRASH_DUMP
599 
600 int smp_store_status(int cpu)
601 {
602 	struct pcpu *pcpu = pcpu_devices + cpu;
603 	unsigned long pa;
604 
605 	pa = __pa(&pcpu->lowcore->floating_pt_save_area);
606 	if (__pcpu_sigp_relax(pcpu->address, SIGP_STORE_STATUS_AT_ADDRESS,
607 			      pa) != SIGP_CC_ORDER_CODE_ACCEPTED)
608 		return -EIO;
609 	if (!MACHINE_HAS_VX && !MACHINE_HAS_GS)
610 		return 0;
611 	pa = __pa(pcpu->lowcore->mcesad & MCESA_ORIGIN_MASK);
612 	if (MACHINE_HAS_GS)
613 		pa |= pcpu->lowcore->mcesad & MCESA_LC_MASK;
614 	if (__pcpu_sigp_relax(pcpu->address, SIGP_STORE_ADDITIONAL_STATUS,
615 			      pa) != SIGP_CC_ORDER_CODE_ACCEPTED)
616 		return -EIO;
617 	return 0;
618 }
619 
620 /*
621  * Collect CPU state of the previous, crashed system.
622  * There are four cases:
623  * 1) standard zfcp/nvme dump
624  *    condition: OLDMEM_BASE == NULL && is_ipl_type_dump() == true
625  *    The state for all CPUs except the boot CPU needs to be collected
626  *    with sigp stop-and-store-status. The boot CPU state is located in
627  *    the absolute lowcore of the memory stored in the HSA. The zcore code
628  *    will copy the boot CPU state from the HSA.
629  * 2) stand-alone kdump for SCSI/NVMe (zfcp/nvme dump with swapped memory)
630  *    condition: OLDMEM_BASE != NULL && is_ipl_type_dump() == true
631  *    The state for all CPUs except the boot CPU needs to be collected
632  *    with sigp stop-and-store-status. The firmware or the boot-loader
633  *    stored the registers of the boot CPU in the absolute lowcore in the
634  *    memory of the old system.
635  * 3) kdump and the old kernel did not store the CPU state,
636  *    or stand-alone kdump for DASD
637  *    condition: OLDMEM_BASE != NULL && !is_kdump_kernel()
638  *    The state for all CPUs except the boot CPU needs to be collected
639  *    with sigp stop-and-store-status. The kexec code or the boot-loader
640  *    stored the registers of the boot CPU in the memory of the old system.
641  * 4) kdump and the old kernel stored the CPU state
642  *    condition: OLDMEM_BASE != NULL && is_kdump_kernel()
643  *    This case does not exist for s390 anymore, setup_arch explicitly
644  *    deactivates the elfcorehdr= kernel parameter
645  */
646 static __init void smp_save_cpu_vxrs(struct save_area *sa, u16 addr,
647 				     bool is_boot_cpu, unsigned long page)
648 {
649 	__vector128 *vxrs = (__vector128 *) page;
650 
651 	if (is_boot_cpu)
652 		vxrs = boot_cpu_vector_save_area;
653 	else
654 		__pcpu_sigp_relax(addr, SIGP_STORE_ADDITIONAL_STATUS, page);
655 	save_area_add_vxrs(sa, vxrs);
656 }
657 
658 static __init void smp_save_cpu_regs(struct save_area *sa, u16 addr,
659 				     bool is_boot_cpu, unsigned long page)
660 {
661 	void *regs = (void *) page;
662 
663 	if (is_boot_cpu)
664 		copy_oldmem_kernel(regs, (void *) __LC_FPREGS_SAVE_AREA, 512);
665 	else
666 		__pcpu_sigp_relax(addr, SIGP_STORE_STATUS_AT_ADDRESS, page);
667 	save_area_add_regs(sa, regs);
668 }
669 
670 void __init smp_save_dump_cpus(void)
671 {
672 	int addr, boot_cpu_addr, max_cpu_addr;
673 	struct save_area *sa;
674 	unsigned long page;
675 	bool is_boot_cpu;
676 
677 	if (!(OLDMEM_BASE || is_ipl_type_dump()))
678 		/* No previous system present, normal boot. */
679 		return;
680 	/* Allocate a page as dumping area for the store status sigps */
681 	page = memblock_phys_alloc_range(PAGE_SIZE, PAGE_SIZE, 0, 1UL << 31);
682 	if (!page)
683 		panic("ERROR: Failed to allocate %lx bytes below %lx\n",
684 		      PAGE_SIZE, 1UL << 31);
685 
686 	/* Set multi-threading state to the previous system. */
687 	pcpu_set_smt(sclp.mtid_prev);
688 	boot_cpu_addr = stap();
689 	max_cpu_addr = SCLP_MAX_CORES << sclp.mtid_prev;
690 	for (addr = 0; addr <= max_cpu_addr; addr++) {
691 		if (__pcpu_sigp_relax(addr, SIGP_SENSE, 0) ==
692 		    SIGP_CC_NOT_OPERATIONAL)
693 			continue;
694 		is_boot_cpu = (addr == boot_cpu_addr);
695 		/* Allocate save area */
696 		sa = save_area_alloc(is_boot_cpu);
697 		if (!sa)
698 			panic("could not allocate memory for save area\n");
699 		if (MACHINE_HAS_VX)
700 			/* Get the vector registers */
701 			smp_save_cpu_vxrs(sa, addr, is_boot_cpu, page);
702 		/*
703 		 * For a zfcp/nvme dump OLDMEM_BASE == NULL and the registers
704 		 * of the boot CPU are stored in the HSA. To retrieve
705 		 * these registers an SCLP request is required which is
706 		 * done by drivers/s390/char/zcore.c:init_cpu_info()
707 		 */
708 		if (!is_boot_cpu || OLDMEM_BASE)
709 			/* Get the CPU registers */
710 			smp_save_cpu_regs(sa, addr, is_boot_cpu, page);
711 	}
712 	memblock_free(page, PAGE_SIZE);
713 	diag_dma_ops.diag308_reset();
714 	pcpu_set_smt(0);
715 }
716 #endif /* CONFIG_CRASH_DUMP */
717 
718 void smp_cpu_set_polarization(int cpu, int val)
719 {
720 	pcpu_devices[cpu].polarization = val;
721 }
722 
723 int smp_cpu_get_polarization(int cpu)
724 {
725 	return pcpu_devices[cpu].polarization;
726 }
727 
728 int smp_cpu_get_cpu_address(int cpu)
729 {
730 	return pcpu_devices[cpu].address;
731 }
732 
733 static void __ref smp_get_core_info(struct sclp_core_info *info, int early)
734 {
735 	static int use_sigp_detection;
736 	int address;
737 
738 	if (use_sigp_detection || sclp_get_core_info(info, early)) {
739 		use_sigp_detection = 1;
740 		for (address = 0;
741 		     address < (SCLP_MAX_CORES << smp_cpu_mt_shift);
742 		     address += (1U << smp_cpu_mt_shift)) {
743 			if (__pcpu_sigp_relax(address, SIGP_SENSE, 0) ==
744 			    SIGP_CC_NOT_OPERATIONAL)
745 				continue;
746 			info->core[info->configured].core_id =
747 				address >> smp_cpu_mt_shift;
748 			info->configured++;
749 		}
750 		info->combined = info->configured;
751 	}
752 }
753 
754 static int smp_add_present_cpu(int cpu);
755 
756 static int smp_add_core(struct sclp_core_entry *core, cpumask_t *avail,
757 			bool configured, bool early)
758 {
759 	struct pcpu *pcpu;
760 	int cpu, nr, i;
761 	u16 address;
762 
763 	nr = 0;
764 	if (sclp.has_core_type && core->type != boot_core_type)
765 		return nr;
766 	cpu = cpumask_first(avail);
767 	address = core->core_id << smp_cpu_mt_shift;
768 	for (i = 0; (i <= smp_cpu_mtid) && (cpu < nr_cpu_ids); i++) {
769 		if (pcpu_find_address(cpu_present_mask, address + i))
770 			continue;
771 		pcpu = pcpu_devices + cpu;
772 		pcpu->address = address + i;
773 		if (configured)
774 			pcpu->state = CPU_STATE_CONFIGURED;
775 		else
776 			pcpu->state = CPU_STATE_STANDBY;
777 		smp_cpu_set_polarization(cpu, POLARIZATION_UNKNOWN);
778 		set_cpu_present(cpu, true);
779 		if (!early && smp_add_present_cpu(cpu) != 0)
780 			set_cpu_present(cpu, false);
781 		else
782 			nr++;
783 		cpumask_clear_cpu(cpu, avail);
784 		cpu = cpumask_next(cpu, avail);
785 	}
786 	return nr;
787 }
788 
789 static int __smp_rescan_cpus(struct sclp_core_info *info, bool early)
790 {
791 	struct sclp_core_entry *core;
792 	static cpumask_t avail;
793 	bool configured;
794 	u16 core_id;
795 	int nr, i;
796 
797 	get_online_cpus();
798 	mutex_lock(&smp_cpu_state_mutex);
799 	nr = 0;
800 	cpumask_xor(&avail, cpu_possible_mask, cpu_present_mask);
801 	/*
802 	 * Add IPL core first (which got logical CPU number 0) to make sure
803 	 * that all SMT threads get subsequent logical CPU numbers.
804 	 */
805 	if (early) {
806 		core_id = pcpu_devices[0].address >> smp_cpu_mt_shift;
807 		for (i = 0; i < info->configured; i++) {
808 			core = &info->core[i];
809 			if (core->core_id == core_id) {
810 				nr += smp_add_core(core, &avail, true, early);
811 				break;
812 			}
813 		}
814 	}
815 	for (i = 0; i < info->combined; i++) {
816 		configured = i < info->configured;
817 		nr += smp_add_core(&info->core[i], &avail, configured, early);
818 	}
819 	mutex_unlock(&smp_cpu_state_mutex);
820 	put_online_cpus();
821 	return nr;
822 }
823 
824 void __init smp_detect_cpus(void)
825 {
826 	unsigned int cpu, mtid, c_cpus, s_cpus;
827 	struct sclp_core_info *info;
828 	u16 address;
829 
830 	/* Get CPU information */
831 	info = memblock_alloc(sizeof(*info), 8);
832 	if (!info)
833 		panic("%s: Failed to allocate %zu bytes align=0x%x\n",
834 		      __func__, sizeof(*info), 8);
835 	smp_get_core_info(info, 1);
836 	/* Find boot CPU type */
837 	if (sclp.has_core_type) {
838 		address = stap();
839 		for (cpu = 0; cpu < info->combined; cpu++)
840 			if (info->core[cpu].core_id == address) {
841 				/* The boot cpu dictates the cpu type. */
842 				boot_core_type = info->core[cpu].type;
843 				break;
844 			}
845 		if (cpu >= info->combined)
846 			panic("Could not find boot CPU type");
847 	}
848 
849 	/* Set multi-threading state for the current system */
850 	mtid = boot_core_type ? sclp.mtid : sclp.mtid_cp;
851 	mtid = (mtid < smp_max_threads) ? mtid : smp_max_threads - 1;
852 	pcpu_set_smt(mtid);
853 
854 	/* Print number of CPUs */
855 	c_cpus = s_cpus = 0;
856 	for (cpu = 0; cpu < info->combined; cpu++) {
857 		if (sclp.has_core_type &&
858 		    info->core[cpu].type != boot_core_type)
859 			continue;
860 		if (cpu < info->configured)
861 			c_cpus += smp_cpu_mtid + 1;
862 		else
863 			s_cpus += smp_cpu_mtid + 1;
864 	}
865 	pr_info("%d configured CPUs, %d standby CPUs\n", c_cpus, s_cpus);
866 
867 	/* Add CPUs present at boot */
868 	__smp_rescan_cpus(info, true);
869 	memblock_free_early((unsigned long)info, sizeof(*info));
870 }
871 
872 static void smp_init_secondary(void)
873 {
874 	int cpu = raw_smp_processor_id();
875 
876 	S390_lowcore.last_update_clock = get_tod_clock();
877 	restore_access_regs(S390_lowcore.access_regs_save_area);
878 	cpu_init();
879 	rcu_cpu_starting(cpu);
880 	preempt_disable();
881 	init_cpu_timer();
882 	vtime_init();
883 	vdso_getcpu_init();
884 	pfault_init();
885 	notify_cpu_starting(cpu);
886 	if (topology_cpu_dedicated(cpu))
887 		set_cpu_flag(CIF_DEDICATED_CPU);
888 	else
889 		clear_cpu_flag(CIF_DEDICATED_CPU);
890 	set_cpu_online(cpu, true);
891 	update_cpu_masks();
892 	inc_irq_stat(CPU_RST);
893 	local_irq_enable();
894 	cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
895 }
896 
897 /*
898  *	Activate a secondary processor.
899  */
900 static void __no_sanitize_address smp_start_secondary(void *cpuvoid)
901 {
902 	S390_lowcore.restart_stack = (unsigned long) restart_stack;
903 	S390_lowcore.restart_fn = (unsigned long) do_restart;
904 	S390_lowcore.restart_data = 0;
905 	S390_lowcore.restart_source = -1UL;
906 	__ctl_load(S390_lowcore.cregs_save_area, 0, 15);
907 	__load_psw_mask(PSW_KERNEL_BITS | PSW_MASK_DAT);
908 	CALL_ON_STACK_NORETURN(smp_init_secondary, S390_lowcore.kernel_stack);
909 }
910 
911 /* Upping and downing of CPUs */
912 int __cpu_up(unsigned int cpu, struct task_struct *tidle)
913 {
914 	struct pcpu *pcpu = pcpu_devices + cpu;
915 	int rc;
916 
917 	if (pcpu->state != CPU_STATE_CONFIGURED)
918 		return -EIO;
919 	if (pcpu_sigp_retry(pcpu, SIGP_INITIAL_CPU_RESET, 0) !=
920 	    SIGP_CC_ORDER_CODE_ACCEPTED)
921 		return -EIO;
922 
923 	rc = pcpu_alloc_lowcore(pcpu, cpu);
924 	if (rc)
925 		return rc;
926 	pcpu_prepare_secondary(pcpu, cpu);
927 	pcpu_attach_task(pcpu, tidle);
928 	pcpu_start_fn(pcpu, smp_start_secondary, NULL);
929 	/* Wait until cpu puts itself in the online & active maps */
930 	while (!cpu_online(cpu))
931 		cpu_relax();
932 	return 0;
933 }
934 
935 static unsigned int setup_possible_cpus __initdata;
936 
937 static int __init _setup_possible_cpus(char *s)
938 {
939 	get_option(&s, &setup_possible_cpus);
940 	return 0;
941 }
942 early_param("possible_cpus", _setup_possible_cpus);
943 
944 int __cpu_disable(void)
945 {
946 	unsigned long cregs[16];
947 
948 	/* Handle possible pending IPIs */
949 	smp_handle_ext_call();
950 	set_cpu_online(smp_processor_id(), false);
951 	update_cpu_masks();
952 	/* Disable pseudo page faults on this cpu. */
953 	pfault_fini();
954 	/* Disable interrupt sources via control register. */
955 	__ctl_store(cregs, 0, 15);
956 	cregs[0]  &= ~0x0000ee70UL;	/* disable all external interrupts */
957 	cregs[6]  &= ~0xff000000UL;	/* disable all I/O interrupts */
958 	cregs[14] &= ~0x1f000000UL;	/* disable most machine checks */
959 	__ctl_load(cregs, 0, 15);
960 	clear_cpu_flag(CIF_NOHZ_DELAY);
961 	return 0;
962 }
963 
964 void __cpu_die(unsigned int cpu)
965 {
966 	struct pcpu *pcpu;
967 
968 	/* Wait until target cpu is down */
969 	pcpu = pcpu_devices + cpu;
970 	while (!pcpu_stopped(pcpu))
971 		cpu_relax();
972 	pcpu_free_lowcore(pcpu);
973 	cpumask_clear_cpu(cpu, mm_cpumask(&init_mm));
974 	cpumask_clear_cpu(cpu, &init_mm.context.cpu_attach_mask);
975 }
976 
977 void __noreturn cpu_die(void)
978 {
979 	idle_task_exit();
980 	__bpon();
981 	pcpu_sigp_retry(pcpu_devices + smp_processor_id(), SIGP_STOP, 0);
982 	for (;;) ;
983 }
984 
985 void __init smp_fill_possible_mask(void)
986 {
987 	unsigned int possible, sclp_max, cpu;
988 
989 	sclp_max = max(sclp.mtid, sclp.mtid_cp) + 1;
990 	sclp_max = min(smp_max_threads, sclp_max);
991 	sclp_max = (sclp.max_cores * sclp_max) ?: nr_cpu_ids;
992 	possible = setup_possible_cpus ?: nr_cpu_ids;
993 	possible = min(possible, sclp_max);
994 	for (cpu = 0; cpu < possible && cpu < nr_cpu_ids; cpu++)
995 		set_cpu_possible(cpu, true);
996 }
997 
998 void __init smp_prepare_cpus(unsigned int max_cpus)
999 {
1000 	/* request the 0x1201 emergency signal external interrupt */
1001 	if (register_external_irq(EXT_IRQ_EMERGENCY_SIG, do_ext_call_interrupt))
1002 		panic("Couldn't request external interrupt 0x1201");
1003 	/* request the 0x1202 external call external interrupt */
1004 	if (register_external_irq(EXT_IRQ_EXTERNAL_CALL, do_ext_call_interrupt))
1005 		panic("Couldn't request external interrupt 0x1202");
1006 }
1007 
1008 void __init smp_prepare_boot_cpu(void)
1009 {
1010 	struct pcpu *pcpu = pcpu_devices;
1011 
1012 	WARN_ON(!cpu_present(0) || !cpu_online(0));
1013 	pcpu->state = CPU_STATE_CONFIGURED;
1014 	pcpu->lowcore = (struct lowcore *)(unsigned long) store_prefix();
1015 	S390_lowcore.percpu_offset = __per_cpu_offset[0];
1016 	smp_cpu_set_polarization(0, POLARIZATION_UNKNOWN);
1017 }
1018 
1019 void __init smp_setup_processor_id(void)
1020 {
1021 	pcpu_devices[0].address = stap();
1022 	S390_lowcore.cpu_nr = 0;
1023 	S390_lowcore.spinlock_lockval = arch_spin_lockval(0);
1024 	S390_lowcore.spinlock_index = 0;
1025 }
1026 
1027 /*
1028  * the frequency of the profiling timer can be changed
1029  * by writing a multiplier value into /proc/profile.
1030  *
1031  * usually you want to run this on all CPUs ;)
1032  */
1033 int setup_profiling_timer(unsigned int multiplier)
1034 {
1035 	return 0;
1036 }
1037 
1038 static ssize_t cpu_configure_show(struct device *dev,
1039 				  struct device_attribute *attr, char *buf)
1040 {
1041 	ssize_t count;
1042 
1043 	mutex_lock(&smp_cpu_state_mutex);
1044 	count = sprintf(buf, "%d\n", pcpu_devices[dev->id].state);
1045 	mutex_unlock(&smp_cpu_state_mutex);
1046 	return count;
1047 }
1048 
1049 static ssize_t cpu_configure_store(struct device *dev,
1050 				   struct device_attribute *attr,
1051 				   const char *buf, size_t count)
1052 {
1053 	struct pcpu *pcpu;
1054 	int cpu, val, rc, i;
1055 	char delim;
1056 
1057 	if (sscanf(buf, "%d %c", &val, &delim) != 1)
1058 		return -EINVAL;
1059 	if (val != 0 && val != 1)
1060 		return -EINVAL;
1061 	get_online_cpus();
1062 	mutex_lock(&smp_cpu_state_mutex);
1063 	rc = -EBUSY;
1064 	/* disallow configuration changes of online cpus and cpu 0 */
1065 	cpu = dev->id;
1066 	cpu = smp_get_base_cpu(cpu);
1067 	if (cpu == 0)
1068 		goto out;
1069 	for (i = 0; i <= smp_cpu_mtid; i++)
1070 		if (cpu_online(cpu + i))
1071 			goto out;
1072 	pcpu = pcpu_devices + cpu;
1073 	rc = 0;
1074 	switch (val) {
1075 	case 0:
1076 		if (pcpu->state != CPU_STATE_CONFIGURED)
1077 			break;
1078 		rc = sclp_core_deconfigure(pcpu->address >> smp_cpu_mt_shift);
1079 		if (rc)
1080 			break;
1081 		for (i = 0; i <= smp_cpu_mtid; i++) {
1082 			if (cpu + i >= nr_cpu_ids || !cpu_present(cpu + i))
1083 				continue;
1084 			pcpu[i].state = CPU_STATE_STANDBY;
1085 			smp_cpu_set_polarization(cpu + i,
1086 						 POLARIZATION_UNKNOWN);
1087 		}
1088 		topology_expect_change();
1089 		break;
1090 	case 1:
1091 		if (pcpu->state != CPU_STATE_STANDBY)
1092 			break;
1093 		rc = sclp_core_configure(pcpu->address >> smp_cpu_mt_shift);
1094 		if (rc)
1095 			break;
1096 		for (i = 0; i <= smp_cpu_mtid; i++) {
1097 			if (cpu + i >= nr_cpu_ids || !cpu_present(cpu + i))
1098 				continue;
1099 			pcpu[i].state = CPU_STATE_CONFIGURED;
1100 			smp_cpu_set_polarization(cpu + i,
1101 						 POLARIZATION_UNKNOWN);
1102 		}
1103 		topology_expect_change();
1104 		break;
1105 	default:
1106 		break;
1107 	}
1108 out:
1109 	mutex_unlock(&smp_cpu_state_mutex);
1110 	put_online_cpus();
1111 	return rc ? rc : count;
1112 }
1113 static DEVICE_ATTR(configure, 0644, cpu_configure_show, cpu_configure_store);
1114 
1115 static ssize_t show_cpu_address(struct device *dev,
1116 				struct device_attribute *attr, char *buf)
1117 {
1118 	return sprintf(buf, "%d\n", pcpu_devices[dev->id].address);
1119 }
1120 static DEVICE_ATTR(address, 0444, show_cpu_address, NULL);
1121 
1122 static struct attribute *cpu_common_attrs[] = {
1123 	&dev_attr_configure.attr,
1124 	&dev_attr_address.attr,
1125 	NULL,
1126 };
1127 
1128 static struct attribute_group cpu_common_attr_group = {
1129 	.attrs = cpu_common_attrs,
1130 };
1131 
1132 static struct attribute *cpu_online_attrs[] = {
1133 	&dev_attr_idle_count.attr,
1134 	&dev_attr_idle_time_us.attr,
1135 	NULL,
1136 };
1137 
1138 static struct attribute_group cpu_online_attr_group = {
1139 	.attrs = cpu_online_attrs,
1140 };
1141 
1142 static int smp_cpu_online(unsigned int cpu)
1143 {
1144 	struct device *s = &per_cpu(cpu_device, cpu)->dev;
1145 
1146 	return sysfs_create_group(&s->kobj, &cpu_online_attr_group);
1147 }
1148 
1149 static int smp_cpu_pre_down(unsigned int cpu)
1150 {
1151 	struct device *s = &per_cpu(cpu_device, cpu)->dev;
1152 
1153 	sysfs_remove_group(&s->kobj, &cpu_online_attr_group);
1154 	return 0;
1155 }
1156 
1157 static int smp_add_present_cpu(int cpu)
1158 {
1159 	struct device *s;
1160 	struct cpu *c;
1161 	int rc;
1162 
1163 	c = kzalloc(sizeof(*c), GFP_KERNEL);
1164 	if (!c)
1165 		return -ENOMEM;
1166 	per_cpu(cpu_device, cpu) = c;
1167 	s = &c->dev;
1168 	c->hotpluggable = 1;
1169 	rc = register_cpu(c, cpu);
1170 	if (rc)
1171 		goto out;
1172 	rc = sysfs_create_group(&s->kobj, &cpu_common_attr_group);
1173 	if (rc)
1174 		goto out_cpu;
1175 	rc = topology_cpu_init(c);
1176 	if (rc)
1177 		goto out_topology;
1178 	return 0;
1179 
1180 out_topology:
1181 	sysfs_remove_group(&s->kobj, &cpu_common_attr_group);
1182 out_cpu:
1183 	unregister_cpu(c);
1184 out:
1185 	return rc;
1186 }
1187 
1188 int __ref smp_rescan_cpus(void)
1189 {
1190 	struct sclp_core_info *info;
1191 	int nr;
1192 
1193 	info = kzalloc(sizeof(*info), GFP_KERNEL);
1194 	if (!info)
1195 		return -ENOMEM;
1196 	smp_get_core_info(info, 0);
1197 	nr = __smp_rescan_cpus(info, false);
1198 	kfree(info);
1199 	if (nr)
1200 		topology_schedule_update();
1201 	return 0;
1202 }
1203 
1204 static ssize_t __ref rescan_store(struct device *dev,
1205 				  struct device_attribute *attr,
1206 				  const char *buf,
1207 				  size_t count)
1208 {
1209 	int rc;
1210 
1211 	rc = lock_device_hotplug_sysfs();
1212 	if (rc)
1213 		return rc;
1214 	rc = smp_rescan_cpus();
1215 	unlock_device_hotplug();
1216 	return rc ? rc : count;
1217 }
1218 static DEVICE_ATTR_WO(rescan);
1219 
1220 static int __init s390_smp_init(void)
1221 {
1222 	int cpu, rc = 0;
1223 
1224 	rc = device_create_file(cpu_subsys.dev_root, &dev_attr_rescan);
1225 	if (rc)
1226 		return rc;
1227 	for_each_present_cpu(cpu) {
1228 		rc = smp_add_present_cpu(cpu);
1229 		if (rc)
1230 			goto out;
1231 	}
1232 
1233 	rc = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "s390/smp:online",
1234 			       smp_cpu_online, smp_cpu_pre_down);
1235 	rc = rc <= 0 ? rc : 0;
1236 out:
1237 	return rc;
1238 }
1239 subsys_initcall(s390_smp_init);
1240