xref: /openbmc/linux/arch/s390/kernel/smp.c (revision 023e41632e065d49bcbe31b3c4b336217f96a271)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  SMP related functions
4  *
5  *    Copyright IBM Corp. 1999, 2012
6  *    Author(s): Denis Joseph Barrow,
7  *		 Martin Schwidefsky <schwidefsky@de.ibm.com>,
8  *		 Heiko Carstens <heiko.carstens@de.ibm.com>,
9  *
10  *  based on other smp stuff by
11  *    (c) 1995 Alan Cox, CymruNET Ltd  <alan@cymru.net>
12  *    (c) 1998 Ingo Molnar
13  *
14  * The code outside of smp.c uses logical cpu numbers, only smp.c does
15  * the translation of logical to physical cpu ids. All new code that
16  * operates on physical cpu numbers needs to go into smp.c.
17  */
18 
19 #define KMSG_COMPONENT "cpu"
20 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
21 
22 #include <linux/workqueue.h>
23 #include <linux/memblock.h>
24 #include <linux/export.h>
25 #include <linux/init.h>
26 #include <linux/mm.h>
27 #include <linux/err.h>
28 #include <linux/spinlock.h>
29 #include <linux/kernel_stat.h>
30 #include <linux/delay.h>
31 #include <linux/interrupt.h>
32 #include <linux/irqflags.h>
33 #include <linux/cpu.h>
34 #include <linux/slab.h>
35 #include <linux/sched/hotplug.h>
36 #include <linux/sched/task_stack.h>
37 #include <linux/crash_dump.h>
38 #include <linux/kprobes.h>
39 #include <asm/asm-offsets.h>
40 #include <asm/diag.h>
41 #include <asm/switch_to.h>
42 #include <asm/facility.h>
43 #include <asm/ipl.h>
44 #include <asm/setup.h>
45 #include <asm/irq.h>
46 #include <asm/tlbflush.h>
47 #include <asm/vtimer.h>
48 #include <asm/lowcore.h>
49 #include <asm/sclp.h>
50 #include <asm/vdso.h>
51 #include <asm/debug.h>
52 #include <asm/os_info.h>
53 #include <asm/sigp.h>
54 #include <asm/idle.h>
55 #include <asm/nmi.h>
56 #include <asm/topology.h>
57 #include "entry.h"
58 
59 enum {
60 	ec_schedule = 0,
61 	ec_call_function_single,
62 	ec_stop_cpu,
63 };
64 
65 enum {
66 	CPU_STATE_STANDBY,
67 	CPU_STATE_CONFIGURED,
68 };
69 
70 static DEFINE_PER_CPU(struct cpu *, cpu_device);
71 
72 struct pcpu {
73 	struct lowcore *lowcore;	/* lowcore page(s) for the cpu */
74 	unsigned long ec_mask;		/* bit mask for ec_xxx functions */
75 	unsigned long ec_clk;		/* sigp timestamp for ec_xxx */
76 	signed char state;		/* physical cpu state */
77 	signed char polarization;	/* physical polarization */
78 	u16 address;			/* physical cpu address */
79 };
80 
81 static u8 boot_core_type;
82 static struct pcpu pcpu_devices[NR_CPUS];
83 
84 unsigned int smp_cpu_mt_shift;
85 EXPORT_SYMBOL(smp_cpu_mt_shift);
86 
87 unsigned int smp_cpu_mtid;
88 EXPORT_SYMBOL(smp_cpu_mtid);
89 
90 #ifdef CONFIG_CRASH_DUMP
91 __vector128 __initdata boot_cpu_vector_save_area[__NUM_VXRS];
92 #endif
93 
94 static unsigned int smp_max_threads __initdata = -1U;
95 
96 static int __init early_nosmt(char *s)
97 {
98 	smp_max_threads = 1;
99 	return 0;
100 }
101 early_param("nosmt", early_nosmt);
102 
103 static int __init early_smt(char *s)
104 {
105 	get_option(&s, &smp_max_threads);
106 	return 0;
107 }
108 early_param("smt", early_smt);
109 
110 /*
111  * The smp_cpu_state_mutex must be held when changing the state or polarization
112  * member of a pcpu data structure within the pcpu_devices arreay.
113  */
114 DEFINE_MUTEX(smp_cpu_state_mutex);
115 
116 /*
117  * Signal processor helper functions.
118  */
119 static inline int __pcpu_sigp_relax(u16 addr, u8 order, unsigned long parm)
120 {
121 	int cc;
122 
123 	while (1) {
124 		cc = __pcpu_sigp(addr, order, parm, NULL);
125 		if (cc != SIGP_CC_BUSY)
126 			return cc;
127 		cpu_relax();
128 	}
129 }
130 
131 static int pcpu_sigp_retry(struct pcpu *pcpu, u8 order, u32 parm)
132 {
133 	int cc, retry;
134 
135 	for (retry = 0; ; retry++) {
136 		cc = __pcpu_sigp(pcpu->address, order, parm, NULL);
137 		if (cc != SIGP_CC_BUSY)
138 			break;
139 		if (retry >= 3)
140 			udelay(10);
141 	}
142 	return cc;
143 }
144 
145 static inline int pcpu_stopped(struct pcpu *pcpu)
146 {
147 	u32 uninitialized_var(status);
148 
149 	if (__pcpu_sigp(pcpu->address, SIGP_SENSE,
150 			0, &status) != SIGP_CC_STATUS_STORED)
151 		return 0;
152 	return !!(status & (SIGP_STATUS_CHECK_STOP|SIGP_STATUS_STOPPED));
153 }
154 
155 static inline int pcpu_running(struct pcpu *pcpu)
156 {
157 	if (__pcpu_sigp(pcpu->address, SIGP_SENSE_RUNNING,
158 			0, NULL) != SIGP_CC_STATUS_STORED)
159 		return 1;
160 	/* Status stored condition code is equivalent to cpu not running. */
161 	return 0;
162 }
163 
164 /*
165  * Find struct pcpu by cpu address.
166  */
167 static struct pcpu *pcpu_find_address(const struct cpumask *mask, u16 address)
168 {
169 	int cpu;
170 
171 	for_each_cpu(cpu, mask)
172 		if (pcpu_devices[cpu].address == address)
173 			return pcpu_devices + cpu;
174 	return NULL;
175 }
176 
177 static void pcpu_ec_call(struct pcpu *pcpu, int ec_bit)
178 {
179 	int order;
180 
181 	if (test_and_set_bit(ec_bit, &pcpu->ec_mask))
182 		return;
183 	order = pcpu_running(pcpu) ? SIGP_EXTERNAL_CALL : SIGP_EMERGENCY_SIGNAL;
184 	pcpu->ec_clk = get_tod_clock_fast();
185 	pcpu_sigp_retry(pcpu, order, 0);
186 }
187 
188 static int pcpu_alloc_lowcore(struct pcpu *pcpu, int cpu)
189 {
190 	unsigned long async_stack, nodat_stack;
191 	struct lowcore *lc;
192 
193 	if (pcpu != &pcpu_devices[0]) {
194 		pcpu->lowcore =	(struct lowcore *)
195 			__get_free_pages(GFP_KERNEL | GFP_DMA, LC_ORDER);
196 		nodat_stack = __get_free_pages(GFP_KERNEL, THREAD_SIZE_ORDER);
197 		if (!pcpu->lowcore || !nodat_stack)
198 			goto out;
199 	} else {
200 		nodat_stack = pcpu->lowcore->nodat_stack - STACK_INIT_OFFSET;
201 	}
202 	async_stack = stack_alloc();
203 	if (!async_stack)
204 		goto out;
205 	lc = pcpu->lowcore;
206 	memcpy(lc, &S390_lowcore, 512);
207 	memset((char *) lc + 512, 0, sizeof(*lc) - 512);
208 	lc->async_stack = async_stack + STACK_INIT_OFFSET;
209 	lc->nodat_stack = nodat_stack + STACK_INIT_OFFSET;
210 	lc->cpu_nr = cpu;
211 	lc->spinlock_lockval = arch_spin_lockval(cpu);
212 	lc->spinlock_index = 0;
213 	lc->br_r1_trampoline = 0x07f1;	/* br %r1 */
214 	if (nmi_alloc_per_cpu(lc))
215 		goto out_async;
216 	if (vdso_alloc_per_cpu(lc))
217 		goto out_mcesa;
218 	lowcore_ptr[cpu] = lc;
219 	pcpu_sigp_retry(pcpu, SIGP_SET_PREFIX, (u32)(unsigned long) lc);
220 	return 0;
221 
222 out_mcesa:
223 	nmi_free_per_cpu(lc);
224 out_async:
225 	stack_free(async_stack);
226 out:
227 	if (pcpu != &pcpu_devices[0]) {
228 		free_pages(nodat_stack, THREAD_SIZE_ORDER);
229 		free_pages((unsigned long) pcpu->lowcore, LC_ORDER);
230 	}
231 	return -ENOMEM;
232 }
233 
234 #ifdef CONFIG_HOTPLUG_CPU
235 
236 static void pcpu_free_lowcore(struct pcpu *pcpu)
237 {
238 	unsigned long async_stack, nodat_stack, lowcore;
239 
240 	nodat_stack = pcpu->lowcore->nodat_stack - STACK_INIT_OFFSET;
241 	async_stack = pcpu->lowcore->async_stack - STACK_INIT_OFFSET;
242 	lowcore = (unsigned long) pcpu->lowcore;
243 
244 	pcpu_sigp_retry(pcpu, SIGP_SET_PREFIX, 0);
245 	lowcore_ptr[pcpu - pcpu_devices] = NULL;
246 	vdso_free_per_cpu(pcpu->lowcore);
247 	nmi_free_per_cpu(pcpu->lowcore);
248 	stack_free(async_stack);
249 	if (pcpu == &pcpu_devices[0])
250 		return;
251 	free_pages(nodat_stack, THREAD_SIZE_ORDER);
252 	free_pages(lowcore, LC_ORDER);
253 }
254 
255 #endif /* CONFIG_HOTPLUG_CPU */
256 
257 static void pcpu_prepare_secondary(struct pcpu *pcpu, int cpu)
258 {
259 	struct lowcore *lc = pcpu->lowcore;
260 
261 	cpumask_set_cpu(cpu, &init_mm.context.cpu_attach_mask);
262 	cpumask_set_cpu(cpu, mm_cpumask(&init_mm));
263 	lc->cpu_nr = cpu;
264 	lc->spinlock_lockval = arch_spin_lockval(cpu);
265 	lc->spinlock_index = 0;
266 	lc->percpu_offset = __per_cpu_offset[cpu];
267 	lc->kernel_asce = S390_lowcore.kernel_asce;
268 	lc->machine_flags = S390_lowcore.machine_flags;
269 	lc->user_timer = lc->system_timer =
270 		lc->steal_timer = lc->avg_steal_timer = 0;
271 	__ctl_store(lc->cregs_save_area, 0, 15);
272 	save_access_regs((unsigned int *) lc->access_regs_save_area);
273 	memcpy(lc->stfle_fac_list, S390_lowcore.stfle_fac_list,
274 	       sizeof(lc->stfle_fac_list));
275 	memcpy(lc->alt_stfle_fac_list, S390_lowcore.alt_stfle_fac_list,
276 	       sizeof(lc->alt_stfle_fac_list));
277 	arch_spin_lock_setup(cpu);
278 }
279 
280 static void pcpu_attach_task(struct pcpu *pcpu, struct task_struct *tsk)
281 {
282 	struct lowcore *lc = pcpu->lowcore;
283 
284 	lc->kernel_stack = (unsigned long) task_stack_page(tsk)
285 		+ THREAD_SIZE - STACK_FRAME_OVERHEAD - sizeof(struct pt_regs);
286 	lc->current_task = (unsigned long) tsk;
287 	lc->lpp = LPP_MAGIC;
288 	lc->current_pid = tsk->pid;
289 	lc->user_timer = tsk->thread.user_timer;
290 	lc->guest_timer = tsk->thread.guest_timer;
291 	lc->system_timer = tsk->thread.system_timer;
292 	lc->hardirq_timer = tsk->thread.hardirq_timer;
293 	lc->softirq_timer = tsk->thread.softirq_timer;
294 	lc->steal_timer = 0;
295 }
296 
297 static void pcpu_start_fn(struct pcpu *pcpu, void (*func)(void *), void *data)
298 {
299 	struct lowcore *lc = pcpu->lowcore;
300 
301 	lc->restart_stack = lc->nodat_stack;
302 	lc->restart_fn = (unsigned long) func;
303 	lc->restart_data = (unsigned long) data;
304 	lc->restart_source = -1UL;
305 	pcpu_sigp_retry(pcpu, SIGP_RESTART, 0);
306 }
307 
308 /*
309  * Call function via PSW restart on pcpu and stop the current cpu.
310  */
311 static void __pcpu_delegate(void (*func)(void*), void *data)
312 {
313 	func(data);	/* should not return */
314 }
315 
316 static void __no_sanitize_address pcpu_delegate(struct pcpu *pcpu,
317 						void (*func)(void *),
318 						void *data, unsigned long stack)
319 {
320 	struct lowcore *lc = lowcore_ptr[pcpu - pcpu_devices];
321 	unsigned long source_cpu = stap();
322 
323 	__load_psw_mask(PSW_KERNEL_BITS | PSW_MASK_DAT);
324 	if (pcpu->address == source_cpu)
325 		CALL_ON_STACK(__pcpu_delegate, stack, 2, func, data);
326 	/* Stop target cpu (if func returns this stops the current cpu). */
327 	pcpu_sigp_retry(pcpu, SIGP_STOP, 0);
328 	/* Restart func on the target cpu and stop the current cpu. */
329 	mem_assign_absolute(lc->restart_stack, stack);
330 	mem_assign_absolute(lc->restart_fn, (unsigned long) func);
331 	mem_assign_absolute(lc->restart_data, (unsigned long) data);
332 	mem_assign_absolute(lc->restart_source, source_cpu);
333 	__bpon();
334 	asm volatile(
335 		"0:	sigp	0,%0,%2	# sigp restart to target cpu\n"
336 		"	brc	2,0b	# busy, try again\n"
337 		"1:	sigp	0,%1,%3	# sigp stop to current cpu\n"
338 		"	brc	2,1b	# busy, try again\n"
339 		: : "d" (pcpu->address), "d" (source_cpu),
340 		    "K" (SIGP_RESTART), "K" (SIGP_STOP)
341 		: "0", "1", "cc");
342 	for (;;) ;
343 }
344 
345 /*
346  * Enable additional logical cpus for multi-threading.
347  */
348 static int pcpu_set_smt(unsigned int mtid)
349 {
350 	int cc;
351 
352 	if (smp_cpu_mtid == mtid)
353 		return 0;
354 	cc = __pcpu_sigp(0, SIGP_SET_MULTI_THREADING, mtid, NULL);
355 	if (cc == 0) {
356 		smp_cpu_mtid = mtid;
357 		smp_cpu_mt_shift = 0;
358 		while (smp_cpu_mtid >= (1U << smp_cpu_mt_shift))
359 			smp_cpu_mt_shift++;
360 		pcpu_devices[0].address = stap();
361 	}
362 	return cc;
363 }
364 
365 /*
366  * Call function on an online CPU.
367  */
368 void smp_call_online_cpu(void (*func)(void *), void *data)
369 {
370 	struct pcpu *pcpu;
371 
372 	/* Use the current cpu if it is online. */
373 	pcpu = pcpu_find_address(cpu_online_mask, stap());
374 	if (!pcpu)
375 		/* Use the first online cpu. */
376 		pcpu = pcpu_devices + cpumask_first(cpu_online_mask);
377 	pcpu_delegate(pcpu, func, data, (unsigned long) restart_stack);
378 }
379 
380 /*
381  * Call function on the ipl CPU.
382  */
383 void smp_call_ipl_cpu(void (*func)(void *), void *data)
384 {
385 	struct lowcore *lc = pcpu_devices->lowcore;
386 
387 	if (pcpu_devices[0].address == stap())
388 		lc = &S390_lowcore;
389 
390 	pcpu_delegate(&pcpu_devices[0], func, data,
391 		      lc->nodat_stack);
392 }
393 
394 int smp_find_processor_id(u16 address)
395 {
396 	int cpu;
397 
398 	for_each_present_cpu(cpu)
399 		if (pcpu_devices[cpu].address == address)
400 			return cpu;
401 	return -1;
402 }
403 
404 bool arch_vcpu_is_preempted(int cpu)
405 {
406 	if (test_cpu_flag_of(CIF_ENABLED_WAIT, cpu))
407 		return false;
408 	if (pcpu_running(pcpu_devices + cpu))
409 		return false;
410 	return true;
411 }
412 EXPORT_SYMBOL(arch_vcpu_is_preempted);
413 
414 void smp_yield_cpu(int cpu)
415 {
416 	if (MACHINE_HAS_DIAG9C) {
417 		diag_stat_inc_norecursion(DIAG_STAT_X09C);
418 		asm volatile("diag %0,0,0x9c"
419 			     : : "d" (pcpu_devices[cpu].address));
420 	} else if (MACHINE_HAS_DIAG44) {
421 		diag_stat_inc_norecursion(DIAG_STAT_X044);
422 		asm volatile("diag 0,0,0x44");
423 	}
424 }
425 
426 /*
427  * Send cpus emergency shutdown signal. This gives the cpus the
428  * opportunity to complete outstanding interrupts.
429  */
430 void notrace smp_emergency_stop(void)
431 {
432 	cpumask_t cpumask;
433 	u64 end;
434 	int cpu;
435 
436 	cpumask_copy(&cpumask, cpu_online_mask);
437 	cpumask_clear_cpu(smp_processor_id(), &cpumask);
438 
439 	end = get_tod_clock() + (1000000UL << 12);
440 	for_each_cpu(cpu, &cpumask) {
441 		struct pcpu *pcpu = pcpu_devices + cpu;
442 		set_bit(ec_stop_cpu, &pcpu->ec_mask);
443 		while (__pcpu_sigp(pcpu->address, SIGP_EMERGENCY_SIGNAL,
444 				   0, NULL) == SIGP_CC_BUSY &&
445 		       get_tod_clock() < end)
446 			cpu_relax();
447 	}
448 	while (get_tod_clock() < end) {
449 		for_each_cpu(cpu, &cpumask)
450 			if (pcpu_stopped(pcpu_devices + cpu))
451 				cpumask_clear_cpu(cpu, &cpumask);
452 		if (cpumask_empty(&cpumask))
453 			break;
454 		cpu_relax();
455 	}
456 }
457 NOKPROBE_SYMBOL(smp_emergency_stop);
458 
459 /*
460  * Stop all cpus but the current one.
461  */
462 void smp_send_stop(void)
463 {
464 	int cpu;
465 
466 	/* Disable all interrupts/machine checks */
467 	__load_psw_mask(PSW_KERNEL_BITS | PSW_MASK_DAT);
468 	trace_hardirqs_off();
469 
470 	debug_set_critical();
471 
472 	if (oops_in_progress)
473 		smp_emergency_stop();
474 
475 	/* stop all processors */
476 	for_each_online_cpu(cpu) {
477 		if (cpu == smp_processor_id())
478 			continue;
479 		pcpu_sigp_retry(pcpu_devices + cpu, SIGP_STOP, 0);
480 		while (!pcpu_stopped(pcpu_devices + cpu))
481 			cpu_relax();
482 	}
483 }
484 
485 /*
486  * This is the main routine where commands issued by other
487  * cpus are handled.
488  */
489 static void smp_handle_ext_call(void)
490 {
491 	unsigned long bits;
492 
493 	/* handle bit signal external calls */
494 	bits = xchg(&pcpu_devices[smp_processor_id()].ec_mask, 0);
495 	if (test_bit(ec_stop_cpu, &bits))
496 		smp_stop_cpu();
497 	if (test_bit(ec_schedule, &bits))
498 		scheduler_ipi();
499 	if (test_bit(ec_call_function_single, &bits))
500 		generic_smp_call_function_single_interrupt();
501 }
502 
503 static void do_ext_call_interrupt(struct ext_code ext_code,
504 				  unsigned int param32, unsigned long param64)
505 {
506 	inc_irq_stat(ext_code.code == 0x1202 ? IRQEXT_EXC : IRQEXT_EMS);
507 	smp_handle_ext_call();
508 }
509 
510 void arch_send_call_function_ipi_mask(const struct cpumask *mask)
511 {
512 	int cpu;
513 
514 	for_each_cpu(cpu, mask)
515 		pcpu_ec_call(pcpu_devices + cpu, ec_call_function_single);
516 }
517 
518 void arch_send_call_function_single_ipi(int cpu)
519 {
520 	pcpu_ec_call(pcpu_devices + cpu, ec_call_function_single);
521 }
522 
523 /*
524  * this function sends a 'reschedule' IPI to another CPU.
525  * it goes straight through and wastes no time serializing
526  * anything. Worst case is that we lose a reschedule ...
527  */
528 void smp_send_reschedule(int cpu)
529 {
530 	pcpu_ec_call(pcpu_devices + cpu, ec_schedule);
531 }
532 
533 /*
534  * parameter area for the set/clear control bit callbacks
535  */
536 struct ec_creg_mask_parms {
537 	unsigned long orval;
538 	unsigned long andval;
539 	int cr;
540 };
541 
542 /*
543  * callback for setting/clearing control bits
544  */
545 static void smp_ctl_bit_callback(void *info)
546 {
547 	struct ec_creg_mask_parms *pp = info;
548 	unsigned long cregs[16];
549 
550 	__ctl_store(cregs, 0, 15);
551 	cregs[pp->cr] = (cregs[pp->cr] & pp->andval) | pp->orval;
552 	__ctl_load(cregs, 0, 15);
553 }
554 
555 /*
556  * Set a bit in a control register of all cpus
557  */
558 void smp_ctl_set_bit(int cr, int bit)
559 {
560 	struct ec_creg_mask_parms parms = { 1UL << bit, -1UL, cr };
561 
562 	on_each_cpu(smp_ctl_bit_callback, &parms, 1);
563 }
564 EXPORT_SYMBOL(smp_ctl_set_bit);
565 
566 /*
567  * Clear a bit in a control register of all cpus
568  */
569 void smp_ctl_clear_bit(int cr, int bit)
570 {
571 	struct ec_creg_mask_parms parms = { 0, ~(1UL << bit), cr };
572 
573 	on_each_cpu(smp_ctl_bit_callback, &parms, 1);
574 }
575 EXPORT_SYMBOL(smp_ctl_clear_bit);
576 
577 #ifdef CONFIG_CRASH_DUMP
578 
579 int smp_store_status(int cpu)
580 {
581 	struct pcpu *pcpu = pcpu_devices + cpu;
582 	unsigned long pa;
583 
584 	pa = __pa(&pcpu->lowcore->floating_pt_save_area);
585 	if (__pcpu_sigp_relax(pcpu->address, SIGP_STORE_STATUS_AT_ADDRESS,
586 			      pa) != SIGP_CC_ORDER_CODE_ACCEPTED)
587 		return -EIO;
588 	if (!MACHINE_HAS_VX && !MACHINE_HAS_GS)
589 		return 0;
590 	pa = __pa(pcpu->lowcore->mcesad & MCESA_ORIGIN_MASK);
591 	if (MACHINE_HAS_GS)
592 		pa |= pcpu->lowcore->mcesad & MCESA_LC_MASK;
593 	if (__pcpu_sigp_relax(pcpu->address, SIGP_STORE_ADDITIONAL_STATUS,
594 			      pa) != SIGP_CC_ORDER_CODE_ACCEPTED)
595 		return -EIO;
596 	return 0;
597 }
598 
599 /*
600  * Collect CPU state of the previous, crashed system.
601  * There are four cases:
602  * 1) standard zfcp dump
603  *    condition: OLDMEM_BASE == NULL && ipl_info.type == IPL_TYPE_FCP_DUMP
604  *    The state for all CPUs except the boot CPU needs to be collected
605  *    with sigp stop-and-store-status. The boot CPU state is located in
606  *    the absolute lowcore of the memory stored in the HSA. The zcore code
607  *    will copy the boot CPU state from the HSA.
608  * 2) stand-alone kdump for SCSI (zfcp dump with swapped memory)
609  *    condition: OLDMEM_BASE != NULL && ipl_info.type == IPL_TYPE_FCP_DUMP
610  *    The state for all CPUs except the boot CPU needs to be collected
611  *    with sigp stop-and-store-status. The firmware or the boot-loader
612  *    stored the registers of the boot CPU in the absolute lowcore in the
613  *    memory of the old system.
614  * 3) kdump and the old kernel did not store the CPU state,
615  *    or stand-alone kdump for DASD
616  *    condition: OLDMEM_BASE != NULL && !is_kdump_kernel()
617  *    The state for all CPUs except the boot CPU needs to be collected
618  *    with sigp stop-and-store-status. The kexec code or the boot-loader
619  *    stored the registers of the boot CPU in the memory of the old system.
620  * 4) kdump and the old kernel stored the CPU state
621  *    condition: OLDMEM_BASE != NULL && is_kdump_kernel()
622  *    This case does not exist for s390 anymore, setup_arch explicitly
623  *    deactivates the elfcorehdr= kernel parameter
624  */
625 static __init void smp_save_cpu_vxrs(struct save_area *sa, u16 addr,
626 				     bool is_boot_cpu, unsigned long page)
627 {
628 	__vector128 *vxrs = (__vector128 *) page;
629 
630 	if (is_boot_cpu)
631 		vxrs = boot_cpu_vector_save_area;
632 	else
633 		__pcpu_sigp_relax(addr, SIGP_STORE_ADDITIONAL_STATUS, page);
634 	save_area_add_vxrs(sa, vxrs);
635 }
636 
637 static __init void smp_save_cpu_regs(struct save_area *sa, u16 addr,
638 				     bool is_boot_cpu, unsigned long page)
639 {
640 	void *regs = (void *) page;
641 
642 	if (is_boot_cpu)
643 		copy_oldmem_kernel(regs, (void *) __LC_FPREGS_SAVE_AREA, 512);
644 	else
645 		__pcpu_sigp_relax(addr, SIGP_STORE_STATUS_AT_ADDRESS, page);
646 	save_area_add_regs(sa, regs);
647 }
648 
649 void __init smp_save_dump_cpus(void)
650 {
651 	int addr, boot_cpu_addr, max_cpu_addr;
652 	struct save_area *sa;
653 	unsigned long page;
654 	bool is_boot_cpu;
655 
656 	if (!(OLDMEM_BASE || ipl_info.type == IPL_TYPE_FCP_DUMP))
657 		/* No previous system present, normal boot. */
658 		return;
659 	/* Allocate a page as dumping area for the store status sigps */
660 	page = memblock_phys_alloc_range(PAGE_SIZE, PAGE_SIZE, 0, 1UL << 31);
661 	if (!page)
662 		panic("ERROR: Failed to allocate %lx bytes below %lx\n",
663 		      PAGE_SIZE, 1UL << 31);
664 
665 	/* Set multi-threading state to the previous system. */
666 	pcpu_set_smt(sclp.mtid_prev);
667 	boot_cpu_addr = stap();
668 	max_cpu_addr = SCLP_MAX_CORES << sclp.mtid_prev;
669 	for (addr = 0; addr <= max_cpu_addr; addr++) {
670 		if (__pcpu_sigp_relax(addr, SIGP_SENSE, 0) ==
671 		    SIGP_CC_NOT_OPERATIONAL)
672 			continue;
673 		is_boot_cpu = (addr == boot_cpu_addr);
674 		/* Allocate save area */
675 		sa = save_area_alloc(is_boot_cpu);
676 		if (!sa)
677 			panic("could not allocate memory for save area\n");
678 		if (MACHINE_HAS_VX)
679 			/* Get the vector registers */
680 			smp_save_cpu_vxrs(sa, addr, is_boot_cpu, page);
681 		/*
682 		 * For a zfcp dump OLDMEM_BASE == NULL and the registers
683 		 * of the boot CPU are stored in the HSA. To retrieve
684 		 * these registers an SCLP request is required which is
685 		 * done by drivers/s390/char/zcore.c:init_cpu_info()
686 		 */
687 		if (!is_boot_cpu || OLDMEM_BASE)
688 			/* Get the CPU registers */
689 			smp_save_cpu_regs(sa, addr, is_boot_cpu, page);
690 	}
691 	memblock_free(page, PAGE_SIZE);
692 	diag308_reset();
693 	pcpu_set_smt(0);
694 }
695 #endif /* CONFIG_CRASH_DUMP */
696 
697 void smp_cpu_set_polarization(int cpu, int val)
698 {
699 	pcpu_devices[cpu].polarization = val;
700 }
701 
702 int smp_cpu_get_polarization(int cpu)
703 {
704 	return pcpu_devices[cpu].polarization;
705 }
706 
707 static void __ref smp_get_core_info(struct sclp_core_info *info, int early)
708 {
709 	static int use_sigp_detection;
710 	int address;
711 
712 	if (use_sigp_detection || sclp_get_core_info(info, early)) {
713 		use_sigp_detection = 1;
714 		for (address = 0;
715 		     address < (SCLP_MAX_CORES << smp_cpu_mt_shift);
716 		     address += (1U << smp_cpu_mt_shift)) {
717 			if (__pcpu_sigp_relax(address, SIGP_SENSE, 0) ==
718 			    SIGP_CC_NOT_OPERATIONAL)
719 				continue;
720 			info->core[info->configured].core_id =
721 				address >> smp_cpu_mt_shift;
722 			info->configured++;
723 		}
724 		info->combined = info->configured;
725 	}
726 }
727 
728 static int smp_add_present_cpu(int cpu);
729 
730 static int __smp_rescan_cpus(struct sclp_core_info *info, int sysfs_add)
731 {
732 	struct pcpu *pcpu;
733 	cpumask_t avail;
734 	int cpu, nr, i, j;
735 	u16 address;
736 
737 	nr = 0;
738 	cpumask_xor(&avail, cpu_possible_mask, cpu_present_mask);
739 	cpu = cpumask_first(&avail);
740 	for (i = 0; (i < info->combined) && (cpu < nr_cpu_ids); i++) {
741 		if (sclp.has_core_type && info->core[i].type != boot_core_type)
742 			continue;
743 		address = info->core[i].core_id << smp_cpu_mt_shift;
744 		for (j = 0; j <= smp_cpu_mtid; j++) {
745 			if (pcpu_find_address(cpu_present_mask, address + j))
746 				continue;
747 			pcpu = pcpu_devices + cpu;
748 			pcpu->address = address + j;
749 			pcpu->state =
750 				(cpu >= info->configured*(smp_cpu_mtid + 1)) ?
751 				CPU_STATE_STANDBY : CPU_STATE_CONFIGURED;
752 			smp_cpu_set_polarization(cpu, POLARIZATION_UNKNOWN);
753 			set_cpu_present(cpu, true);
754 			if (sysfs_add && smp_add_present_cpu(cpu) != 0)
755 				set_cpu_present(cpu, false);
756 			else
757 				nr++;
758 			cpu = cpumask_next(cpu, &avail);
759 			if (cpu >= nr_cpu_ids)
760 				break;
761 		}
762 	}
763 	return nr;
764 }
765 
766 void __init smp_detect_cpus(void)
767 {
768 	unsigned int cpu, mtid, c_cpus, s_cpus;
769 	struct sclp_core_info *info;
770 	u16 address;
771 
772 	/* Get CPU information */
773 	info = memblock_alloc(sizeof(*info), 8);
774 	if (!info)
775 		panic("%s: Failed to allocate %zu bytes align=0x%x\n",
776 		      __func__, sizeof(*info), 8);
777 	smp_get_core_info(info, 1);
778 	/* Find boot CPU type */
779 	if (sclp.has_core_type) {
780 		address = stap();
781 		for (cpu = 0; cpu < info->combined; cpu++)
782 			if (info->core[cpu].core_id == address) {
783 				/* The boot cpu dictates the cpu type. */
784 				boot_core_type = info->core[cpu].type;
785 				break;
786 			}
787 		if (cpu >= info->combined)
788 			panic("Could not find boot CPU type");
789 	}
790 
791 	/* Set multi-threading state for the current system */
792 	mtid = boot_core_type ? sclp.mtid : sclp.mtid_cp;
793 	mtid = (mtid < smp_max_threads) ? mtid : smp_max_threads - 1;
794 	pcpu_set_smt(mtid);
795 
796 	/* Print number of CPUs */
797 	c_cpus = s_cpus = 0;
798 	for (cpu = 0; cpu < info->combined; cpu++) {
799 		if (sclp.has_core_type &&
800 		    info->core[cpu].type != boot_core_type)
801 			continue;
802 		if (cpu < info->configured)
803 			c_cpus += smp_cpu_mtid + 1;
804 		else
805 			s_cpus += smp_cpu_mtid + 1;
806 	}
807 	pr_info("%d configured CPUs, %d standby CPUs\n", c_cpus, s_cpus);
808 
809 	/* Add CPUs present at boot */
810 	get_online_cpus();
811 	__smp_rescan_cpus(info, 0);
812 	put_online_cpus();
813 	memblock_free_early((unsigned long)info, sizeof(*info));
814 }
815 
816 static void smp_init_secondary(void)
817 {
818 	int cpu = smp_processor_id();
819 
820 	S390_lowcore.last_update_clock = get_tod_clock();
821 	restore_access_regs(S390_lowcore.access_regs_save_area);
822 	cpu_init();
823 	preempt_disable();
824 	init_cpu_timer();
825 	vtime_init();
826 	pfault_init();
827 	notify_cpu_starting(smp_processor_id());
828 	if (topology_cpu_dedicated(cpu))
829 		set_cpu_flag(CIF_DEDICATED_CPU);
830 	else
831 		clear_cpu_flag(CIF_DEDICATED_CPU);
832 	set_cpu_online(smp_processor_id(), true);
833 	inc_irq_stat(CPU_RST);
834 	local_irq_enable();
835 	cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
836 }
837 
838 /*
839  *	Activate a secondary processor.
840  */
841 static void __no_sanitize_address smp_start_secondary(void *cpuvoid)
842 {
843 	S390_lowcore.restart_stack = (unsigned long) restart_stack;
844 	S390_lowcore.restart_fn = (unsigned long) do_restart;
845 	S390_lowcore.restart_data = 0;
846 	S390_lowcore.restart_source = -1UL;
847 	__ctl_load(S390_lowcore.cregs_save_area, 0, 15);
848 	__load_psw_mask(PSW_KERNEL_BITS | PSW_MASK_DAT);
849 	CALL_ON_STACK(smp_init_secondary, S390_lowcore.kernel_stack, 0);
850 }
851 
852 /* Upping and downing of CPUs */
853 int __cpu_up(unsigned int cpu, struct task_struct *tidle)
854 {
855 	struct pcpu *pcpu;
856 	int base, i, rc;
857 
858 	pcpu = pcpu_devices + cpu;
859 	if (pcpu->state != CPU_STATE_CONFIGURED)
860 		return -EIO;
861 	base = smp_get_base_cpu(cpu);
862 	for (i = 0; i <= smp_cpu_mtid; i++) {
863 		if (base + i < nr_cpu_ids)
864 			if (cpu_online(base + i))
865 				break;
866 	}
867 	/*
868 	 * If this is the first CPU of the core to get online
869 	 * do an initial CPU reset.
870 	 */
871 	if (i > smp_cpu_mtid &&
872 	    pcpu_sigp_retry(pcpu_devices + base, SIGP_INITIAL_CPU_RESET, 0) !=
873 	    SIGP_CC_ORDER_CODE_ACCEPTED)
874 		return -EIO;
875 
876 	rc = pcpu_alloc_lowcore(pcpu, cpu);
877 	if (rc)
878 		return rc;
879 	pcpu_prepare_secondary(pcpu, cpu);
880 	pcpu_attach_task(pcpu, tidle);
881 	pcpu_start_fn(pcpu, smp_start_secondary, NULL);
882 	/* Wait until cpu puts itself in the online & active maps */
883 	while (!cpu_online(cpu))
884 		cpu_relax();
885 	return 0;
886 }
887 
888 static unsigned int setup_possible_cpus __initdata;
889 
890 static int __init _setup_possible_cpus(char *s)
891 {
892 	get_option(&s, &setup_possible_cpus);
893 	return 0;
894 }
895 early_param("possible_cpus", _setup_possible_cpus);
896 
897 #ifdef CONFIG_HOTPLUG_CPU
898 
899 int __cpu_disable(void)
900 {
901 	unsigned long cregs[16];
902 
903 	/* Handle possible pending IPIs */
904 	smp_handle_ext_call();
905 	set_cpu_online(smp_processor_id(), false);
906 	/* Disable pseudo page faults on this cpu. */
907 	pfault_fini();
908 	/* Disable interrupt sources via control register. */
909 	__ctl_store(cregs, 0, 15);
910 	cregs[0]  &= ~0x0000ee70UL;	/* disable all external interrupts */
911 	cregs[6]  &= ~0xff000000UL;	/* disable all I/O interrupts */
912 	cregs[14] &= ~0x1f000000UL;	/* disable most machine checks */
913 	__ctl_load(cregs, 0, 15);
914 	clear_cpu_flag(CIF_NOHZ_DELAY);
915 	return 0;
916 }
917 
918 void __cpu_die(unsigned int cpu)
919 {
920 	struct pcpu *pcpu;
921 
922 	/* Wait until target cpu is down */
923 	pcpu = pcpu_devices + cpu;
924 	while (!pcpu_stopped(pcpu))
925 		cpu_relax();
926 	pcpu_free_lowcore(pcpu);
927 	cpumask_clear_cpu(cpu, mm_cpumask(&init_mm));
928 	cpumask_clear_cpu(cpu, &init_mm.context.cpu_attach_mask);
929 }
930 
931 void __noreturn cpu_die(void)
932 {
933 	idle_task_exit();
934 	__bpon();
935 	pcpu_sigp_retry(pcpu_devices + smp_processor_id(), SIGP_STOP, 0);
936 	for (;;) ;
937 }
938 
939 #endif /* CONFIG_HOTPLUG_CPU */
940 
941 void __init smp_fill_possible_mask(void)
942 {
943 	unsigned int possible, sclp_max, cpu;
944 
945 	sclp_max = max(sclp.mtid, sclp.mtid_cp) + 1;
946 	sclp_max = min(smp_max_threads, sclp_max);
947 	sclp_max = (sclp.max_cores * sclp_max) ?: nr_cpu_ids;
948 	possible = setup_possible_cpus ?: nr_cpu_ids;
949 	possible = min(possible, sclp_max);
950 	for (cpu = 0; cpu < possible && cpu < nr_cpu_ids; cpu++)
951 		set_cpu_possible(cpu, true);
952 }
953 
954 void __init smp_prepare_cpus(unsigned int max_cpus)
955 {
956 	/* request the 0x1201 emergency signal external interrupt */
957 	if (register_external_irq(EXT_IRQ_EMERGENCY_SIG, do_ext_call_interrupt))
958 		panic("Couldn't request external interrupt 0x1201");
959 	/* request the 0x1202 external call external interrupt */
960 	if (register_external_irq(EXT_IRQ_EXTERNAL_CALL, do_ext_call_interrupt))
961 		panic("Couldn't request external interrupt 0x1202");
962 }
963 
964 void __init smp_prepare_boot_cpu(void)
965 {
966 	struct pcpu *pcpu = pcpu_devices;
967 
968 	WARN_ON(!cpu_present(0) || !cpu_online(0));
969 	pcpu->state = CPU_STATE_CONFIGURED;
970 	pcpu->lowcore = (struct lowcore *)(unsigned long) store_prefix();
971 	S390_lowcore.percpu_offset = __per_cpu_offset[0];
972 	smp_cpu_set_polarization(0, POLARIZATION_UNKNOWN);
973 }
974 
975 void __init smp_cpus_done(unsigned int max_cpus)
976 {
977 }
978 
979 void __init smp_setup_processor_id(void)
980 {
981 	pcpu_devices[0].address = stap();
982 	S390_lowcore.cpu_nr = 0;
983 	S390_lowcore.spinlock_lockval = arch_spin_lockval(0);
984 	S390_lowcore.spinlock_index = 0;
985 }
986 
987 /*
988  * the frequency of the profiling timer can be changed
989  * by writing a multiplier value into /proc/profile.
990  *
991  * usually you want to run this on all CPUs ;)
992  */
993 int setup_profiling_timer(unsigned int multiplier)
994 {
995 	return 0;
996 }
997 
998 #ifdef CONFIG_HOTPLUG_CPU
999 static ssize_t cpu_configure_show(struct device *dev,
1000 				  struct device_attribute *attr, char *buf)
1001 {
1002 	ssize_t count;
1003 
1004 	mutex_lock(&smp_cpu_state_mutex);
1005 	count = sprintf(buf, "%d\n", pcpu_devices[dev->id].state);
1006 	mutex_unlock(&smp_cpu_state_mutex);
1007 	return count;
1008 }
1009 
1010 static ssize_t cpu_configure_store(struct device *dev,
1011 				   struct device_attribute *attr,
1012 				   const char *buf, size_t count)
1013 {
1014 	struct pcpu *pcpu;
1015 	int cpu, val, rc, i;
1016 	char delim;
1017 
1018 	if (sscanf(buf, "%d %c", &val, &delim) != 1)
1019 		return -EINVAL;
1020 	if (val != 0 && val != 1)
1021 		return -EINVAL;
1022 	get_online_cpus();
1023 	mutex_lock(&smp_cpu_state_mutex);
1024 	rc = -EBUSY;
1025 	/* disallow configuration changes of online cpus and cpu 0 */
1026 	cpu = dev->id;
1027 	cpu = smp_get_base_cpu(cpu);
1028 	if (cpu == 0)
1029 		goto out;
1030 	for (i = 0; i <= smp_cpu_mtid; i++)
1031 		if (cpu_online(cpu + i))
1032 			goto out;
1033 	pcpu = pcpu_devices + cpu;
1034 	rc = 0;
1035 	switch (val) {
1036 	case 0:
1037 		if (pcpu->state != CPU_STATE_CONFIGURED)
1038 			break;
1039 		rc = sclp_core_deconfigure(pcpu->address >> smp_cpu_mt_shift);
1040 		if (rc)
1041 			break;
1042 		for (i = 0; i <= smp_cpu_mtid; i++) {
1043 			if (cpu + i >= nr_cpu_ids || !cpu_present(cpu + i))
1044 				continue;
1045 			pcpu[i].state = CPU_STATE_STANDBY;
1046 			smp_cpu_set_polarization(cpu + i,
1047 						 POLARIZATION_UNKNOWN);
1048 		}
1049 		topology_expect_change();
1050 		break;
1051 	case 1:
1052 		if (pcpu->state != CPU_STATE_STANDBY)
1053 			break;
1054 		rc = sclp_core_configure(pcpu->address >> smp_cpu_mt_shift);
1055 		if (rc)
1056 			break;
1057 		for (i = 0; i <= smp_cpu_mtid; i++) {
1058 			if (cpu + i >= nr_cpu_ids || !cpu_present(cpu + i))
1059 				continue;
1060 			pcpu[i].state = CPU_STATE_CONFIGURED;
1061 			smp_cpu_set_polarization(cpu + i,
1062 						 POLARIZATION_UNKNOWN);
1063 		}
1064 		topology_expect_change();
1065 		break;
1066 	default:
1067 		break;
1068 	}
1069 out:
1070 	mutex_unlock(&smp_cpu_state_mutex);
1071 	put_online_cpus();
1072 	return rc ? rc : count;
1073 }
1074 static DEVICE_ATTR(configure, 0644, cpu_configure_show, cpu_configure_store);
1075 #endif /* CONFIG_HOTPLUG_CPU */
1076 
1077 static ssize_t show_cpu_address(struct device *dev,
1078 				struct device_attribute *attr, char *buf)
1079 {
1080 	return sprintf(buf, "%d\n", pcpu_devices[dev->id].address);
1081 }
1082 static DEVICE_ATTR(address, 0444, show_cpu_address, NULL);
1083 
1084 static struct attribute *cpu_common_attrs[] = {
1085 #ifdef CONFIG_HOTPLUG_CPU
1086 	&dev_attr_configure.attr,
1087 #endif
1088 	&dev_attr_address.attr,
1089 	NULL,
1090 };
1091 
1092 static struct attribute_group cpu_common_attr_group = {
1093 	.attrs = cpu_common_attrs,
1094 };
1095 
1096 static struct attribute *cpu_online_attrs[] = {
1097 	&dev_attr_idle_count.attr,
1098 	&dev_attr_idle_time_us.attr,
1099 	NULL,
1100 };
1101 
1102 static struct attribute_group cpu_online_attr_group = {
1103 	.attrs = cpu_online_attrs,
1104 };
1105 
1106 static int smp_cpu_online(unsigned int cpu)
1107 {
1108 	struct device *s = &per_cpu(cpu_device, cpu)->dev;
1109 
1110 	return sysfs_create_group(&s->kobj, &cpu_online_attr_group);
1111 }
1112 static int smp_cpu_pre_down(unsigned int cpu)
1113 {
1114 	struct device *s = &per_cpu(cpu_device, cpu)->dev;
1115 
1116 	sysfs_remove_group(&s->kobj, &cpu_online_attr_group);
1117 	return 0;
1118 }
1119 
1120 static int smp_add_present_cpu(int cpu)
1121 {
1122 	struct device *s;
1123 	struct cpu *c;
1124 	int rc;
1125 
1126 	c = kzalloc(sizeof(*c), GFP_KERNEL);
1127 	if (!c)
1128 		return -ENOMEM;
1129 	per_cpu(cpu_device, cpu) = c;
1130 	s = &c->dev;
1131 	c->hotpluggable = 1;
1132 	rc = register_cpu(c, cpu);
1133 	if (rc)
1134 		goto out;
1135 	rc = sysfs_create_group(&s->kobj, &cpu_common_attr_group);
1136 	if (rc)
1137 		goto out_cpu;
1138 	rc = topology_cpu_init(c);
1139 	if (rc)
1140 		goto out_topology;
1141 	return 0;
1142 
1143 out_topology:
1144 	sysfs_remove_group(&s->kobj, &cpu_common_attr_group);
1145 out_cpu:
1146 #ifdef CONFIG_HOTPLUG_CPU
1147 	unregister_cpu(c);
1148 #endif
1149 out:
1150 	return rc;
1151 }
1152 
1153 #ifdef CONFIG_HOTPLUG_CPU
1154 
1155 int __ref smp_rescan_cpus(void)
1156 {
1157 	struct sclp_core_info *info;
1158 	int nr;
1159 
1160 	info = kzalloc(sizeof(*info), GFP_KERNEL);
1161 	if (!info)
1162 		return -ENOMEM;
1163 	smp_get_core_info(info, 0);
1164 	get_online_cpus();
1165 	mutex_lock(&smp_cpu_state_mutex);
1166 	nr = __smp_rescan_cpus(info, 1);
1167 	mutex_unlock(&smp_cpu_state_mutex);
1168 	put_online_cpus();
1169 	kfree(info);
1170 	if (nr)
1171 		topology_schedule_update();
1172 	return 0;
1173 }
1174 
1175 static ssize_t __ref rescan_store(struct device *dev,
1176 				  struct device_attribute *attr,
1177 				  const char *buf,
1178 				  size_t count)
1179 {
1180 	int rc;
1181 
1182 	rc = lock_device_hotplug_sysfs();
1183 	if (rc)
1184 		return rc;
1185 	rc = smp_rescan_cpus();
1186 	unlock_device_hotplug();
1187 	return rc ? rc : count;
1188 }
1189 static DEVICE_ATTR_WO(rescan);
1190 #endif /* CONFIG_HOTPLUG_CPU */
1191 
1192 static int __init s390_smp_init(void)
1193 {
1194 	int cpu, rc = 0;
1195 
1196 #ifdef CONFIG_HOTPLUG_CPU
1197 	rc = device_create_file(cpu_subsys.dev_root, &dev_attr_rescan);
1198 	if (rc)
1199 		return rc;
1200 #endif
1201 	for_each_present_cpu(cpu) {
1202 		rc = smp_add_present_cpu(cpu);
1203 		if (rc)
1204 			goto out;
1205 	}
1206 
1207 	rc = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "s390/smp:online",
1208 			       smp_cpu_online, smp_cpu_pre_down);
1209 	rc = rc <= 0 ? rc : 0;
1210 out:
1211 	return rc;
1212 }
1213 subsys_initcall(s390_smp_init);
1214