xref: /openbmc/linux/arch/s390/kernel/setup.c (revision d0b73b48)
1 /*
2  *  S390 version
3  *    Copyright IBM Corp. 1999, 2012
4  *    Author(s): Hartmut Penner (hp@de.ibm.com),
5  *               Martin Schwidefsky (schwidefsky@de.ibm.com)
6  *
7  *  Derived from "arch/i386/kernel/setup.c"
8  *    Copyright (C) 1995, Linus Torvalds
9  */
10 
11 /*
12  * This file handles the architecture-dependent parts of initialization
13  */
14 
15 #define KMSG_COMPONENT "setup"
16 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
17 
18 #include <linux/errno.h>
19 #include <linux/export.h>
20 #include <linux/sched.h>
21 #include <linux/kernel.h>
22 #include <linux/memblock.h>
23 #include <linux/mm.h>
24 #include <linux/stddef.h>
25 #include <linux/unistd.h>
26 #include <linux/ptrace.h>
27 #include <linux/user.h>
28 #include <linux/tty.h>
29 #include <linux/ioport.h>
30 #include <linux/delay.h>
31 #include <linux/init.h>
32 #include <linux/initrd.h>
33 #include <linux/bootmem.h>
34 #include <linux/root_dev.h>
35 #include <linux/console.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/device.h>
38 #include <linux/notifier.h>
39 #include <linux/pfn.h>
40 #include <linux/ctype.h>
41 #include <linux/reboot.h>
42 #include <linux/topology.h>
43 #include <linux/ftrace.h>
44 #include <linux/kexec.h>
45 #include <linux/crash_dump.h>
46 #include <linux/memory.h>
47 #include <linux/compat.h>
48 
49 #include <asm/ipl.h>
50 #include <asm/uaccess.h>
51 #include <asm/facility.h>
52 #include <asm/smp.h>
53 #include <asm/mmu_context.h>
54 #include <asm/cpcmd.h>
55 #include <asm/lowcore.h>
56 #include <asm/irq.h>
57 #include <asm/page.h>
58 #include <asm/ptrace.h>
59 #include <asm/sections.h>
60 #include <asm/ebcdic.h>
61 #include <asm/kvm_virtio.h>
62 #include <asm/diag.h>
63 #include <asm/os_info.h>
64 #include <asm/sclp.h>
65 #include "entry.h"
66 
67 long psw_kernel_bits	= PSW_DEFAULT_KEY | PSW_MASK_BASE | PSW_ASC_PRIMARY |
68 			  PSW_MASK_EA | PSW_MASK_BA;
69 long psw_user_bits	= PSW_MASK_DAT | PSW_MASK_IO | PSW_MASK_EXT |
70 			  PSW_DEFAULT_KEY | PSW_MASK_BASE | PSW_MASK_MCHECK |
71 			  PSW_MASK_PSTATE | PSW_ASC_HOME;
72 
73 /*
74  * User copy operations.
75  */
76 struct uaccess_ops uaccess;
77 EXPORT_SYMBOL(uaccess);
78 
79 /*
80  * Machine setup..
81  */
82 unsigned int console_mode = 0;
83 EXPORT_SYMBOL(console_mode);
84 
85 unsigned int console_devno = -1;
86 EXPORT_SYMBOL(console_devno);
87 
88 unsigned int console_irq = -1;
89 EXPORT_SYMBOL(console_irq);
90 
91 unsigned long elf_hwcap = 0;
92 char elf_platform[ELF_PLATFORM_SIZE];
93 
94 struct mem_chunk __initdata memory_chunk[MEMORY_CHUNKS];
95 
96 int __initdata memory_end_set;
97 unsigned long __initdata memory_end;
98 
99 unsigned long VMALLOC_START;
100 EXPORT_SYMBOL(VMALLOC_START);
101 
102 unsigned long VMALLOC_END;
103 EXPORT_SYMBOL(VMALLOC_END);
104 
105 struct page *vmemmap;
106 EXPORT_SYMBOL(vmemmap);
107 
108 #ifdef CONFIG_64BIT
109 unsigned long MODULES_VADDR;
110 unsigned long MODULES_END;
111 #endif
112 
113 /* An array with a pointer to the lowcore of every CPU. */
114 struct _lowcore *lowcore_ptr[NR_CPUS];
115 EXPORT_SYMBOL(lowcore_ptr);
116 
117 /*
118  * This is set up by the setup-routine at boot-time
119  * for S390 need to find out, what we have to setup
120  * using address 0x10400 ...
121  */
122 
123 #include <asm/setup.h>
124 
125 /*
126  * condev= and conmode= setup parameter.
127  */
128 
129 static int __init condev_setup(char *str)
130 {
131 	int vdev;
132 
133 	vdev = simple_strtoul(str, &str, 0);
134 	if (vdev >= 0 && vdev < 65536) {
135 		console_devno = vdev;
136 		console_irq = -1;
137 	}
138 	return 1;
139 }
140 
141 __setup("condev=", condev_setup);
142 
143 static void __init set_preferred_console(void)
144 {
145 	if (MACHINE_IS_KVM) {
146 		if (sclp_has_vt220())
147 			add_preferred_console("ttyS", 1, NULL);
148 		else if (sclp_has_linemode())
149 			add_preferred_console("ttyS", 0, NULL);
150 		else
151 			add_preferred_console("hvc", 0, NULL);
152 	} else if (CONSOLE_IS_3215 || CONSOLE_IS_SCLP)
153 		add_preferred_console("ttyS", 0, NULL);
154 	else if (CONSOLE_IS_3270)
155 		add_preferred_console("tty3270", 0, NULL);
156 }
157 
158 static int __init conmode_setup(char *str)
159 {
160 #if defined(CONFIG_SCLP_CONSOLE) || defined(CONFIG_SCLP_VT220_CONSOLE)
161 	if (strncmp(str, "hwc", 4) == 0 || strncmp(str, "sclp", 5) == 0)
162                 SET_CONSOLE_SCLP;
163 #endif
164 #if defined(CONFIG_TN3215_CONSOLE)
165 	if (strncmp(str, "3215", 5) == 0)
166 		SET_CONSOLE_3215;
167 #endif
168 #if defined(CONFIG_TN3270_CONSOLE)
169 	if (strncmp(str, "3270", 5) == 0)
170 		SET_CONSOLE_3270;
171 #endif
172 	set_preferred_console();
173         return 1;
174 }
175 
176 __setup("conmode=", conmode_setup);
177 
178 static void __init conmode_default(void)
179 {
180 	char query_buffer[1024];
181 	char *ptr;
182 
183         if (MACHINE_IS_VM) {
184 		cpcmd("QUERY CONSOLE", query_buffer, 1024, NULL);
185 		console_devno = simple_strtoul(query_buffer + 5, NULL, 16);
186 		ptr = strstr(query_buffer, "SUBCHANNEL =");
187 		console_irq = simple_strtoul(ptr + 13, NULL, 16);
188 		cpcmd("QUERY TERM", query_buffer, 1024, NULL);
189 		ptr = strstr(query_buffer, "CONMODE");
190 		/*
191 		 * Set the conmode to 3215 so that the device recognition
192 		 * will set the cu_type of the console to 3215. If the
193 		 * conmode is 3270 and we don't set it back then both
194 		 * 3215 and the 3270 driver will try to access the console
195 		 * device (3215 as console and 3270 as normal tty).
196 		 */
197 		cpcmd("TERM CONMODE 3215", NULL, 0, NULL);
198 		if (ptr == NULL) {
199 #if defined(CONFIG_SCLP_CONSOLE) || defined(CONFIG_SCLP_VT220_CONSOLE)
200 			SET_CONSOLE_SCLP;
201 #endif
202 			return;
203 		}
204 		if (strncmp(ptr + 8, "3270", 4) == 0) {
205 #if defined(CONFIG_TN3270_CONSOLE)
206 			SET_CONSOLE_3270;
207 #elif defined(CONFIG_TN3215_CONSOLE)
208 			SET_CONSOLE_3215;
209 #elif defined(CONFIG_SCLP_CONSOLE) || defined(CONFIG_SCLP_VT220_CONSOLE)
210 			SET_CONSOLE_SCLP;
211 #endif
212 		} else if (strncmp(ptr + 8, "3215", 4) == 0) {
213 #if defined(CONFIG_TN3215_CONSOLE)
214 			SET_CONSOLE_3215;
215 #elif defined(CONFIG_TN3270_CONSOLE)
216 			SET_CONSOLE_3270;
217 #elif defined(CONFIG_SCLP_CONSOLE) || defined(CONFIG_SCLP_VT220_CONSOLE)
218 			SET_CONSOLE_SCLP;
219 #endif
220 		}
221 	} else {
222 #if defined(CONFIG_SCLP_CONSOLE) || defined(CONFIG_SCLP_VT220_CONSOLE)
223 		SET_CONSOLE_SCLP;
224 #endif
225 	}
226 }
227 
228 #ifdef CONFIG_ZFCPDUMP
229 static void __init setup_zfcpdump(unsigned int console_devno)
230 {
231 	static char str[41];
232 
233 	if (ipl_info.type != IPL_TYPE_FCP_DUMP)
234 		return;
235 	if (OLDMEM_BASE)
236 		return;
237 	if (console_devno != -1)
238 		sprintf(str, " cio_ignore=all,!0.0.%04x,!0.0.%04x",
239 			ipl_info.data.fcp.dev_id.devno, console_devno);
240 	else
241 		sprintf(str, " cio_ignore=all,!0.0.%04x",
242 			ipl_info.data.fcp.dev_id.devno);
243 	strcat(boot_command_line, str);
244 	console_loglevel = 2;
245 }
246 #else
247 static inline void setup_zfcpdump(unsigned int console_devno) {}
248 #endif /* CONFIG_ZFCPDUMP */
249 
250  /*
251  * Reboot, halt and power_off stubs. They just call _machine_restart,
252  * _machine_halt or _machine_power_off.
253  */
254 
255 void machine_restart(char *command)
256 {
257 	if ((!in_interrupt() && !in_atomic()) || oops_in_progress)
258 		/*
259 		 * Only unblank the console if we are called in enabled
260 		 * context or a bust_spinlocks cleared the way for us.
261 		 */
262 		console_unblank();
263 	_machine_restart(command);
264 }
265 
266 void machine_halt(void)
267 {
268 	if (!in_interrupt() || oops_in_progress)
269 		/*
270 		 * Only unblank the console if we are called in enabled
271 		 * context or a bust_spinlocks cleared the way for us.
272 		 */
273 		console_unblank();
274 	_machine_halt();
275 }
276 
277 void machine_power_off(void)
278 {
279 	if (!in_interrupt() || oops_in_progress)
280 		/*
281 		 * Only unblank the console if we are called in enabled
282 		 * context or a bust_spinlocks cleared the way for us.
283 		 */
284 		console_unblank();
285 	_machine_power_off();
286 }
287 
288 /*
289  * Dummy power off function.
290  */
291 void (*pm_power_off)(void) = machine_power_off;
292 EXPORT_SYMBOL_GPL(pm_power_off);
293 
294 static int __init early_parse_mem(char *p)
295 {
296 	memory_end = memparse(p, &p);
297 	memory_end_set = 1;
298 	return 0;
299 }
300 early_param("mem", early_parse_mem);
301 
302 static int __init parse_vmalloc(char *arg)
303 {
304 	if (!arg)
305 		return -EINVAL;
306 	VMALLOC_END = (memparse(arg, &arg) + PAGE_SIZE - 1) & PAGE_MASK;
307 	return 0;
308 }
309 early_param("vmalloc", parse_vmalloc);
310 
311 unsigned int s390_user_mode = PRIMARY_SPACE_MODE;
312 EXPORT_SYMBOL_GPL(s390_user_mode);
313 
314 static void __init set_user_mode_primary(void)
315 {
316 	psw_kernel_bits = (psw_kernel_bits & ~PSW_MASK_ASC) | PSW_ASC_HOME;
317 	psw_user_bits = (psw_user_bits & ~PSW_MASK_ASC) | PSW_ASC_PRIMARY;
318 #ifdef CONFIG_COMPAT
319 	psw32_user_bits =
320 		(psw32_user_bits & ~PSW32_MASK_ASC) | PSW32_ASC_PRIMARY;
321 #endif
322 	uaccess = MACHINE_HAS_MVCOS ? uaccess_mvcos_switch : uaccess_pt;
323 }
324 
325 static int __init early_parse_user_mode(char *p)
326 {
327 	if (p && strcmp(p, "primary") == 0)
328 		s390_user_mode = PRIMARY_SPACE_MODE;
329 	else if (!p || strcmp(p, "home") == 0)
330 		s390_user_mode = HOME_SPACE_MODE;
331 	else
332 		return 1;
333 	return 0;
334 }
335 early_param("user_mode", early_parse_user_mode);
336 
337 static void __init setup_addressing_mode(void)
338 {
339 	if (s390_user_mode != PRIMARY_SPACE_MODE)
340 		return;
341 	set_user_mode_primary();
342 	if (MACHINE_HAS_MVCOS)
343 		pr_info("Address spaces switched, mvcos available\n");
344 	else
345 		pr_info("Address spaces switched, mvcos not available\n");
346 }
347 
348 void *restart_stack __attribute__((__section__(".data")));
349 
350 static void __init setup_lowcore(void)
351 {
352 	struct _lowcore *lc;
353 
354 	/*
355 	 * Setup lowcore for boot cpu
356 	 */
357 	BUILD_BUG_ON(sizeof(struct _lowcore) != LC_PAGES * 4096);
358 	lc = __alloc_bootmem_low(LC_PAGES * PAGE_SIZE, LC_PAGES * PAGE_SIZE, 0);
359 	lc->restart_psw.mask = psw_kernel_bits;
360 	lc->restart_psw.addr =
361 		PSW_ADDR_AMODE | (unsigned long) restart_int_handler;
362 	lc->external_new_psw.mask = psw_kernel_bits |
363 		PSW_MASK_DAT | PSW_MASK_MCHECK;
364 	lc->external_new_psw.addr =
365 		PSW_ADDR_AMODE | (unsigned long) ext_int_handler;
366 	lc->svc_new_psw.mask = psw_kernel_bits |
367 		PSW_MASK_DAT | PSW_MASK_IO | PSW_MASK_EXT | PSW_MASK_MCHECK;
368 	lc->svc_new_psw.addr = PSW_ADDR_AMODE | (unsigned long) system_call;
369 	lc->program_new_psw.mask = psw_kernel_bits |
370 		PSW_MASK_DAT | PSW_MASK_MCHECK;
371 	lc->program_new_psw.addr =
372 		PSW_ADDR_AMODE | (unsigned long) pgm_check_handler;
373 	lc->mcck_new_psw.mask = psw_kernel_bits;
374 	lc->mcck_new_psw.addr =
375 		PSW_ADDR_AMODE | (unsigned long) mcck_int_handler;
376 	lc->io_new_psw.mask = psw_kernel_bits |
377 		PSW_MASK_DAT | PSW_MASK_MCHECK;
378 	lc->io_new_psw.addr = PSW_ADDR_AMODE | (unsigned long) io_int_handler;
379 	lc->clock_comparator = -1ULL;
380 	lc->kernel_stack = ((unsigned long) &init_thread_union) + THREAD_SIZE;
381 	lc->async_stack = (unsigned long)
382 		__alloc_bootmem(ASYNC_SIZE, ASYNC_SIZE, 0) + ASYNC_SIZE;
383 	lc->panic_stack = (unsigned long)
384 		__alloc_bootmem(PAGE_SIZE, PAGE_SIZE, 0) + PAGE_SIZE;
385 	lc->current_task = (unsigned long) init_thread_union.thread_info.task;
386 	lc->thread_info = (unsigned long) &init_thread_union;
387 	lc->machine_flags = S390_lowcore.machine_flags;
388 	lc->stfl_fac_list = S390_lowcore.stfl_fac_list;
389 	memcpy(lc->stfle_fac_list, S390_lowcore.stfle_fac_list,
390 	       MAX_FACILITY_BIT/8);
391 #ifndef CONFIG_64BIT
392 	if (MACHINE_HAS_IEEE) {
393 		lc->extended_save_area_addr = (__u32)
394 			__alloc_bootmem_low(PAGE_SIZE, PAGE_SIZE, 0);
395 		/* enable extended save area */
396 		__ctl_set_bit(14, 29);
397 	}
398 #else
399 	lc->vdso_per_cpu_data = (unsigned long) &lc->paste[0];
400 #endif
401 	lc->sync_enter_timer = S390_lowcore.sync_enter_timer;
402 	lc->async_enter_timer = S390_lowcore.async_enter_timer;
403 	lc->exit_timer = S390_lowcore.exit_timer;
404 	lc->user_timer = S390_lowcore.user_timer;
405 	lc->system_timer = S390_lowcore.system_timer;
406 	lc->steal_timer = S390_lowcore.steal_timer;
407 	lc->last_update_timer = S390_lowcore.last_update_timer;
408 	lc->last_update_clock = S390_lowcore.last_update_clock;
409 	lc->ftrace_func = S390_lowcore.ftrace_func;
410 
411 	restart_stack = __alloc_bootmem(ASYNC_SIZE, ASYNC_SIZE, 0);
412 	restart_stack += ASYNC_SIZE;
413 
414 	/*
415 	 * Set up PSW restart to call ipl.c:do_restart(). Copy the relevant
416 	 * restart data to the absolute zero lowcore. This is necesary if
417 	 * PSW restart is done on an offline CPU that has lowcore zero.
418 	 */
419 	lc->restart_stack = (unsigned long) restart_stack;
420 	lc->restart_fn = (unsigned long) do_restart;
421 	lc->restart_data = 0;
422 	lc->restart_source = -1UL;
423 
424 	/* Setup absolute zero lowcore */
425 	mem_assign_absolute(S390_lowcore.restart_stack, lc->restart_stack);
426 	mem_assign_absolute(S390_lowcore.restart_fn, lc->restart_fn);
427 	mem_assign_absolute(S390_lowcore.restart_data, lc->restart_data);
428 	mem_assign_absolute(S390_lowcore.restart_source, lc->restart_source);
429 	mem_assign_absolute(S390_lowcore.restart_psw, lc->restart_psw);
430 
431 	set_prefix((u32)(unsigned long) lc);
432 	lowcore_ptr[0] = lc;
433 }
434 
435 static struct resource code_resource = {
436 	.name  = "Kernel code",
437 	.flags = IORESOURCE_BUSY | IORESOURCE_MEM,
438 };
439 
440 static struct resource data_resource = {
441 	.name = "Kernel data",
442 	.flags = IORESOURCE_BUSY | IORESOURCE_MEM,
443 };
444 
445 static struct resource bss_resource = {
446 	.name = "Kernel bss",
447 	.flags = IORESOURCE_BUSY | IORESOURCE_MEM,
448 };
449 
450 static struct resource __initdata *standard_resources[] = {
451 	&code_resource,
452 	&data_resource,
453 	&bss_resource,
454 };
455 
456 static void __init setup_resources(void)
457 {
458 	struct resource *res, *std_res, *sub_res;
459 	int i, j;
460 
461 	code_resource.start = (unsigned long) &_text;
462 	code_resource.end = (unsigned long) &_etext - 1;
463 	data_resource.start = (unsigned long) &_etext;
464 	data_resource.end = (unsigned long) &_edata - 1;
465 	bss_resource.start = (unsigned long) &__bss_start;
466 	bss_resource.end = (unsigned long) &__bss_stop - 1;
467 
468 	for (i = 0; i < MEMORY_CHUNKS; i++) {
469 		if (!memory_chunk[i].size)
470 			continue;
471 		if (memory_chunk[i].type == CHUNK_OLDMEM ||
472 		    memory_chunk[i].type == CHUNK_CRASHK)
473 			continue;
474 		res = alloc_bootmem_low(sizeof(*res));
475 		res->flags = IORESOURCE_BUSY | IORESOURCE_MEM;
476 		switch (memory_chunk[i].type) {
477 		case CHUNK_READ_WRITE:
478 		case CHUNK_CRASHK:
479 			res->name = "System RAM";
480 			break;
481 		case CHUNK_READ_ONLY:
482 			res->name = "System ROM";
483 			res->flags |= IORESOURCE_READONLY;
484 			break;
485 		default:
486 			res->name = "reserved";
487 		}
488 		res->start = memory_chunk[i].addr;
489 		res->end = res->start + memory_chunk[i].size - 1;
490 		request_resource(&iomem_resource, res);
491 
492 		for (j = 0; j < ARRAY_SIZE(standard_resources); j++) {
493 			std_res = standard_resources[j];
494 			if (std_res->start < res->start ||
495 			    std_res->start > res->end)
496 				continue;
497 			if (std_res->end > res->end) {
498 				sub_res = alloc_bootmem_low(sizeof(*sub_res));
499 				*sub_res = *std_res;
500 				sub_res->end = res->end;
501 				std_res->start = res->end + 1;
502 				request_resource(res, sub_res);
503 			} else {
504 				request_resource(res, std_res);
505 			}
506 		}
507 	}
508 }
509 
510 unsigned long real_memory_size;
511 EXPORT_SYMBOL_GPL(real_memory_size);
512 
513 static void __init setup_memory_end(void)
514 {
515 	unsigned long vmax, vmalloc_size, tmp;
516 	int i;
517 
518 
519 #ifdef CONFIG_ZFCPDUMP
520 	if (ipl_info.type == IPL_TYPE_FCP_DUMP && !OLDMEM_BASE) {
521 		memory_end = ZFCPDUMP_HSA_SIZE;
522 		memory_end_set = 1;
523 	}
524 #endif
525 	real_memory_size = 0;
526 	memory_end &= PAGE_MASK;
527 
528 	/*
529 	 * Make sure all chunks are MAX_ORDER aligned so we don't need the
530 	 * extra checks that HOLES_IN_ZONE would require.
531 	 */
532 	for (i = 0; i < MEMORY_CHUNKS; i++) {
533 		unsigned long start, end;
534 		struct mem_chunk *chunk;
535 		unsigned long align;
536 
537 		chunk = &memory_chunk[i];
538 		align = 1UL << (MAX_ORDER + PAGE_SHIFT - 1);
539 		start = (chunk->addr + align - 1) & ~(align - 1);
540 		end = (chunk->addr + chunk->size) & ~(align - 1);
541 		if (start >= end)
542 			memset(chunk, 0, sizeof(*chunk));
543 		else {
544 			chunk->addr = start;
545 			chunk->size = end - start;
546 		}
547 		real_memory_size = max(real_memory_size,
548 				       chunk->addr + chunk->size);
549 	}
550 
551 	/* Choose kernel address space layout: 2, 3, or 4 levels. */
552 #ifdef CONFIG_64BIT
553 	vmalloc_size = VMALLOC_END ?: (128UL << 30) - MODULES_LEN;
554 	tmp = (memory_end ?: real_memory_size) / PAGE_SIZE;
555 	tmp = tmp * (sizeof(struct page) + PAGE_SIZE) + vmalloc_size;
556 	if (tmp <= (1UL << 42))
557 		vmax = 1UL << 42;	/* 3-level kernel page table */
558 	else
559 		vmax = 1UL << 53;	/* 4-level kernel page table */
560 	/* module area is at the end of the kernel address space. */
561 	MODULES_END = vmax;
562 	MODULES_VADDR = MODULES_END - MODULES_LEN;
563 	VMALLOC_END = MODULES_VADDR;
564 #else
565 	vmalloc_size = VMALLOC_END ?: 96UL << 20;
566 	vmax = 1UL << 31;		/* 2-level kernel page table */
567 	/* vmalloc area is at the end of the kernel address space. */
568 	VMALLOC_END = vmax;
569 #endif
570 	VMALLOC_START = vmax - vmalloc_size;
571 
572 	/* Split remaining virtual space between 1:1 mapping & vmemmap array */
573 	tmp = VMALLOC_START / (PAGE_SIZE + sizeof(struct page));
574 	tmp = VMALLOC_START - tmp * sizeof(struct page);
575 	tmp &= ~((vmax >> 11) - 1);	/* align to page table level */
576 	tmp = min(tmp, 1UL << MAX_PHYSMEM_BITS);
577 	vmemmap = (struct page *) tmp;
578 
579 	/* Take care that memory_end is set and <= vmemmap */
580 	memory_end = min(memory_end ?: real_memory_size, tmp);
581 
582 	/* Fixup memory chunk array to fit into 0..memory_end */
583 	for (i = 0; i < MEMORY_CHUNKS; i++) {
584 		struct mem_chunk *chunk = &memory_chunk[i];
585 
586 		if (chunk->addr >= memory_end) {
587 			memset(chunk, 0, sizeof(*chunk));
588 			continue;
589 		}
590 		if (chunk->addr + chunk->size > memory_end)
591 			chunk->size = memory_end - chunk->addr;
592 	}
593 }
594 
595 static void __init setup_vmcoreinfo(void)
596 {
597 	mem_assign_absolute(S390_lowcore.vmcore_info, paddr_vmcoreinfo_note());
598 }
599 
600 #ifdef CONFIG_CRASH_DUMP
601 
602 /*
603  * Find suitable location for crashkernel memory
604  */
605 static unsigned long __init find_crash_base(unsigned long crash_size,
606 					    char **msg)
607 {
608 	unsigned long crash_base;
609 	struct mem_chunk *chunk;
610 	int i;
611 
612 	if (memory_chunk[0].size < crash_size) {
613 		*msg = "first memory chunk must be at least crashkernel size";
614 		return 0;
615 	}
616 	if (OLDMEM_BASE && crash_size == OLDMEM_SIZE)
617 		return OLDMEM_BASE;
618 
619 	for (i = MEMORY_CHUNKS - 1; i >= 0; i--) {
620 		chunk = &memory_chunk[i];
621 		if (chunk->size == 0)
622 			continue;
623 		if (chunk->type != CHUNK_READ_WRITE)
624 			continue;
625 		if (chunk->size < crash_size)
626 			continue;
627 		crash_base = (chunk->addr + chunk->size) - crash_size;
628 		if (crash_base < crash_size)
629 			continue;
630 		if (crash_base < ZFCPDUMP_HSA_SIZE_MAX)
631 			continue;
632 		if (crash_base < (unsigned long) INITRD_START + INITRD_SIZE)
633 			continue;
634 		return crash_base;
635 	}
636 	*msg = "no suitable area found";
637 	return 0;
638 }
639 
640 /*
641  * Check if crash_base and crash_size is valid
642  */
643 static int __init verify_crash_base(unsigned long crash_base,
644 				    unsigned long crash_size,
645 				    char **msg)
646 {
647 	struct mem_chunk *chunk;
648 	int i;
649 
650 	/*
651 	 * Because we do the swap to zero, we must have at least 'crash_size'
652 	 * bytes free space before crash_base
653 	 */
654 	if (crash_size > crash_base) {
655 		*msg = "crashkernel offset must be greater than size";
656 		return -EINVAL;
657 	}
658 
659 	/* First memory chunk must be at least crash_size */
660 	if (memory_chunk[0].size < crash_size) {
661 		*msg = "first memory chunk must be at least crashkernel size";
662 		return -EINVAL;
663 	}
664 	/* Check if we fit into the respective memory chunk */
665 	for (i = 0; i < MEMORY_CHUNKS; i++) {
666 		chunk = &memory_chunk[i];
667 		if (chunk->size == 0)
668 			continue;
669 		if (crash_base < chunk->addr)
670 			continue;
671 		if (crash_base >= chunk->addr + chunk->size)
672 			continue;
673 		/* we have found the memory chunk */
674 		if (crash_base + crash_size > chunk->addr + chunk->size) {
675 			*msg = "selected memory chunk is too small for "
676 				"crashkernel memory";
677 			return -EINVAL;
678 		}
679 		return 0;
680 	}
681 	*msg = "invalid memory range specified";
682 	return -EINVAL;
683 }
684 
685 /*
686  * Reserve kdump memory by creating a memory hole in the mem_chunk array
687  */
688 static void __init reserve_kdump_bootmem(unsigned long addr, unsigned long size,
689 					 int type)
690 {
691 	create_mem_hole(memory_chunk, addr, size, type);
692 }
693 
694 /*
695  * When kdump is enabled, we have to ensure that no memory from
696  * the area [0 - crashkernel memory size] and
697  * [crashk_res.start - crashk_res.end] is set offline.
698  */
699 static int kdump_mem_notifier(struct notifier_block *nb,
700 			      unsigned long action, void *data)
701 {
702 	struct memory_notify *arg = data;
703 
704 	if (arg->start_pfn < PFN_DOWN(resource_size(&crashk_res)))
705 		return NOTIFY_BAD;
706 	if (arg->start_pfn > PFN_DOWN(crashk_res.end))
707 		return NOTIFY_OK;
708 	if (arg->start_pfn + arg->nr_pages - 1 < PFN_DOWN(crashk_res.start))
709 		return NOTIFY_OK;
710 	return NOTIFY_BAD;
711 }
712 
713 static struct notifier_block kdump_mem_nb = {
714 	.notifier_call = kdump_mem_notifier,
715 };
716 
717 #endif
718 
719 /*
720  * Make sure that oldmem, where the dump is stored, is protected
721  */
722 static void reserve_oldmem(void)
723 {
724 #ifdef CONFIG_CRASH_DUMP
725 	if (!OLDMEM_BASE)
726 		return;
727 
728 	reserve_kdump_bootmem(OLDMEM_BASE, OLDMEM_SIZE, CHUNK_OLDMEM);
729 	reserve_kdump_bootmem(OLDMEM_SIZE, memory_end - OLDMEM_SIZE,
730 			      CHUNK_OLDMEM);
731 	if (OLDMEM_BASE + OLDMEM_SIZE == real_memory_size)
732 		saved_max_pfn = PFN_DOWN(OLDMEM_BASE) - 1;
733 	else
734 		saved_max_pfn = PFN_DOWN(real_memory_size) - 1;
735 #endif
736 }
737 
738 /*
739  * Reserve memory for kdump kernel to be loaded with kexec
740  */
741 static void __init reserve_crashkernel(void)
742 {
743 #ifdef CONFIG_CRASH_DUMP
744 	unsigned long long crash_base, crash_size;
745 	char *msg = NULL;
746 	int rc;
747 
748 	rc = parse_crashkernel(boot_command_line, memory_end, &crash_size,
749 			       &crash_base);
750 	if (rc || crash_size == 0)
751 		return;
752 	crash_base = ALIGN(crash_base, KEXEC_CRASH_MEM_ALIGN);
753 	crash_size = ALIGN(crash_size, KEXEC_CRASH_MEM_ALIGN);
754 	if (register_memory_notifier(&kdump_mem_nb))
755 		return;
756 	if (!crash_base)
757 		crash_base = find_crash_base(crash_size, &msg);
758 	if (!crash_base) {
759 		pr_info("crashkernel reservation failed: %s\n", msg);
760 		unregister_memory_notifier(&kdump_mem_nb);
761 		return;
762 	}
763 	if (verify_crash_base(crash_base, crash_size, &msg)) {
764 		pr_info("crashkernel reservation failed: %s\n", msg);
765 		unregister_memory_notifier(&kdump_mem_nb);
766 		return;
767 	}
768 	if (!OLDMEM_BASE && MACHINE_IS_VM)
769 		diag10_range(PFN_DOWN(crash_base), PFN_DOWN(crash_size));
770 	crashk_res.start = crash_base;
771 	crashk_res.end = crash_base + crash_size - 1;
772 	insert_resource(&iomem_resource, &crashk_res);
773 	reserve_kdump_bootmem(crash_base, crash_size, CHUNK_CRASHK);
774 	pr_info("Reserving %lluMB of memory at %lluMB "
775 		"for crashkernel (System RAM: %luMB)\n",
776 		crash_size >> 20, crash_base >> 20, memory_end >> 20);
777 	os_info_crashkernel_add(crash_base, crash_size);
778 #endif
779 }
780 
781 static void __init setup_memory(void)
782 {
783         unsigned long bootmap_size;
784 	unsigned long start_pfn, end_pfn;
785 	int i;
786 
787 	/*
788 	 * partially used pages are not usable - thus
789 	 * we are rounding upwards:
790 	 */
791 	start_pfn = PFN_UP(__pa(&_end));
792 	end_pfn = max_pfn = PFN_DOWN(memory_end);
793 
794 #ifdef CONFIG_BLK_DEV_INITRD
795 	/*
796 	 * Move the initrd in case the bitmap of the bootmem allocater
797 	 * would overwrite it.
798 	 */
799 
800 	if (INITRD_START && INITRD_SIZE) {
801 		unsigned long bmap_size;
802 		unsigned long start;
803 
804 		bmap_size = bootmem_bootmap_pages(end_pfn - start_pfn + 1);
805 		bmap_size = PFN_PHYS(bmap_size);
806 
807 		if (PFN_PHYS(start_pfn) + bmap_size > INITRD_START) {
808 			start = PFN_PHYS(start_pfn) + bmap_size + PAGE_SIZE;
809 
810 #ifdef CONFIG_CRASH_DUMP
811 			if (OLDMEM_BASE) {
812 				/* Move initrd behind kdump oldmem */
813 				if (start + INITRD_SIZE > OLDMEM_BASE &&
814 				    start < OLDMEM_BASE + OLDMEM_SIZE)
815 					start = OLDMEM_BASE + OLDMEM_SIZE;
816 			}
817 #endif
818 			if (start + INITRD_SIZE > memory_end) {
819 				pr_err("initrd extends beyond end of "
820 				       "memory (0x%08lx > 0x%08lx) "
821 				       "disabling initrd\n",
822 				       start + INITRD_SIZE, memory_end);
823 				INITRD_START = INITRD_SIZE = 0;
824 			} else {
825 				pr_info("Moving initrd (0x%08lx -> "
826 					"0x%08lx, size: %ld)\n",
827 					INITRD_START, start, INITRD_SIZE);
828 				memmove((void *) start, (void *) INITRD_START,
829 					INITRD_SIZE);
830 				INITRD_START = start;
831 			}
832 		}
833 	}
834 #endif
835 
836 	/*
837 	 * Initialize the boot-time allocator
838 	 */
839 	bootmap_size = init_bootmem(start_pfn, end_pfn);
840 
841 	/*
842 	 * Register RAM areas with the bootmem allocator.
843 	 */
844 
845 	for (i = 0; i < MEMORY_CHUNKS && memory_chunk[i].size > 0; i++) {
846 		unsigned long start_chunk, end_chunk, pfn;
847 
848 		if (memory_chunk[i].type != CHUNK_READ_WRITE &&
849 		    memory_chunk[i].type != CHUNK_CRASHK)
850 			continue;
851 		start_chunk = PFN_DOWN(memory_chunk[i].addr);
852 		end_chunk = start_chunk + PFN_DOWN(memory_chunk[i].size);
853 		end_chunk = min(end_chunk, end_pfn);
854 		if (start_chunk >= end_chunk)
855 			continue;
856 		memblock_add_node(PFN_PHYS(start_chunk),
857 				  PFN_PHYS(end_chunk - start_chunk), 0);
858 		pfn = max(start_chunk, start_pfn);
859 		storage_key_init_range(PFN_PHYS(pfn), PFN_PHYS(end_chunk));
860 	}
861 
862 	psw_set_key(PAGE_DEFAULT_KEY);
863 
864 	free_bootmem_with_active_regions(0, max_pfn);
865 
866 	/*
867 	 * Reserve memory used for lowcore/command line/kernel image.
868 	 */
869 	reserve_bootmem(0, (unsigned long)_ehead, BOOTMEM_DEFAULT);
870 	reserve_bootmem((unsigned long)_stext,
871 			PFN_PHYS(start_pfn) - (unsigned long)_stext,
872 			BOOTMEM_DEFAULT);
873 	/*
874 	 * Reserve the bootmem bitmap itself as well. We do this in two
875 	 * steps (first step was init_bootmem()) because this catches
876 	 * the (very unlikely) case of us accidentally initializing the
877 	 * bootmem allocator with an invalid RAM area.
878 	 */
879 	reserve_bootmem(start_pfn << PAGE_SHIFT, bootmap_size,
880 			BOOTMEM_DEFAULT);
881 
882 #ifdef CONFIG_CRASH_DUMP
883 	if (crashk_res.start)
884 		reserve_bootmem(crashk_res.start,
885 				crashk_res.end - crashk_res.start + 1,
886 				BOOTMEM_DEFAULT);
887 	if (is_kdump_kernel())
888 		reserve_bootmem(elfcorehdr_addr - OLDMEM_BASE,
889 				PAGE_ALIGN(elfcorehdr_size), BOOTMEM_DEFAULT);
890 #endif
891 #ifdef CONFIG_BLK_DEV_INITRD
892 	if (INITRD_START && INITRD_SIZE) {
893 		if (INITRD_START + INITRD_SIZE <= memory_end) {
894 			reserve_bootmem(INITRD_START, INITRD_SIZE,
895 					BOOTMEM_DEFAULT);
896 			initrd_start = INITRD_START;
897 			initrd_end = initrd_start + INITRD_SIZE;
898 		} else {
899 			pr_err("initrd extends beyond end of "
900 			       "memory (0x%08lx > 0x%08lx) "
901 			       "disabling initrd\n",
902 			       initrd_start + INITRD_SIZE, memory_end);
903 			initrd_start = initrd_end = 0;
904 		}
905 	}
906 #endif
907 }
908 
909 /*
910  * Setup hardware capabilities.
911  */
912 static void __init setup_hwcaps(void)
913 {
914 	static const int stfl_bits[6] = { 0, 2, 7, 17, 19, 21 };
915 	struct cpuid cpu_id;
916 	int i;
917 
918 	/*
919 	 * The store facility list bits numbers as found in the principles
920 	 * of operation are numbered with bit 1UL<<31 as number 0 to
921 	 * bit 1UL<<0 as number 31.
922 	 *   Bit 0: instructions named N3, "backported" to esa-mode
923 	 *   Bit 2: z/Architecture mode is active
924 	 *   Bit 7: the store-facility-list-extended facility is installed
925 	 *   Bit 17: the message-security assist is installed
926 	 *   Bit 19: the long-displacement facility is installed
927 	 *   Bit 21: the extended-immediate facility is installed
928 	 *   Bit 22: extended-translation facility 3 is installed
929 	 *   Bit 30: extended-translation facility 3 enhancement facility
930 	 * These get translated to:
931 	 *   HWCAP_S390_ESAN3 bit 0, HWCAP_S390_ZARCH bit 1,
932 	 *   HWCAP_S390_STFLE bit 2, HWCAP_S390_MSA bit 3,
933 	 *   HWCAP_S390_LDISP bit 4, HWCAP_S390_EIMM bit 5 and
934 	 *   HWCAP_S390_ETF3EH bit 8 (22 && 30).
935 	 */
936 	for (i = 0; i < 6; i++)
937 		if (test_facility(stfl_bits[i]))
938 			elf_hwcap |= 1UL << i;
939 
940 	if (test_facility(22) && test_facility(30))
941 		elf_hwcap |= HWCAP_S390_ETF3EH;
942 
943 	/*
944 	 * Check for additional facilities with store-facility-list-extended.
945 	 * stfle stores doublewords (8 byte) with bit 1ULL<<63 as bit 0
946 	 * and 1ULL<<0 as bit 63. Bits 0-31 contain the same information
947 	 * as stored by stfl, bits 32-xxx contain additional facilities.
948 	 * How many facility words are stored depends on the number of
949 	 * doublewords passed to the instruction. The additional facilities
950 	 * are:
951 	 *   Bit 42: decimal floating point facility is installed
952 	 *   Bit 44: perform floating point operation facility is installed
953 	 * translated to:
954 	 *   HWCAP_S390_DFP bit 6 (42 && 44).
955 	 */
956 	if ((elf_hwcap & (1UL << 2)) && test_facility(42) && test_facility(44))
957 		elf_hwcap |= HWCAP_S390_DFP;
958 
959 	/*
960 	 * Huge page support HWCAP_S390_HPAGE is bit 7.
961 	 */
962 	if (MACHINE_HAS_HPAGE)
963 		elf_hwcap |= HWCAP_S390_HPAGE;
964 
965 #if defined(CONFIG_64BIT)
966 	/*
967 	 * 64-bit register support for 31-bit processes
968 	 * HWCAP_S390_HIGH_GPRS is bit 9.
969 	 */
970 	elf_hwcap |= HWCAP_S390_HIGH_GPRS;
971 
972 	/*
973 	 * Transactional execution support HWCAP_S390_TE is bit 10.
974 	 */
975 	if (test_facility(50) && test_facility(73))
976 		elf_hwcap |= HWCAP_S390_TE;
977 #endif
978 
979 	get_cpu_id(&cpu_id);
980 	switch (cpu_id.machine) {
981 	case 0x9672:
982 #if !defined(CONFIG_64BIT)
983 	default:	/* Use "g5" as default for 31 bit kernels. */
984 #endif
985 		strcpy(elf_platform, "g5");
986 		break;
987 	case 0x2064:
988 	case 0x2066:
989 #if defined(CONFIG_64BIT)
990 	default:	/* Use "z900" as default for 64 bit kernels. */
991 #endif
992 		strcpy(elf_platform, "z900");
993 		break;
994 	case 0x2084:
995 	case 0x2086:
996 		strcpy(elf_platform, "z990");
997 		break;
998 	case 0x2094:
999 	case 0x2096:
1000 		strcpy(elf_platform, "z9-109");
1001 		break;
1002 	case 0x2097:
1003 	case 0x2098:
1004 		strcpy(elf_platform, "z10");
1005 		break;
1006 	case 0x2817:
1007 	case 0x2818:
1008 		strcpy(elf_platform, "z196");
1009 		break;
1010 	case 0x2827:
1011 		strcpy(elf_platform, "zEC12");
1012 		break;
1013 	}
1014 }
1015 
1016 /*
1017  * Setup function called from init/main.c just after the banner
1018  * was printed.
1019  */
1020 
1021 void __init setup_arch(char **cmdline_p)
1022 {
1023         /*
1024          * print what head.S has found out about the machine
1025          */
1026 #ifndef CONFIG_64BIT
1027 	if (MACHINE_IS_VM)
1028 		pr_info("Linux is running as a z/VM "
1029 			"guest operating system in 31-bit mode\n");
1030 	else if (MACHINE_IS_LPAR)
1031 		pr_info("Linux is running natively in 31-bit mode\n");
1032 	if (MACHINE_HAS_IEEE)
1033 		pr_info("The hardware system has IEEE compatible "
1034 			"floating point units\n");
1035 	else
1036 		pr_info("The hardware system has no IEEE compatible "
1037 			"floating point units\n");
1038 #else /* CONFIG_64BIT */
1039 	if (MACHINE_IS_VM)
1040 		pr_info("Linux is running as a z/VM "
1041 			"guest operating system in 64-bit mode\n");
1042 	else if (MACHINE_IS_KVM)
1043 		pr_info("Linux is running under KVM in 64-bit mode\n");
1044 	else if (MACHINE_IS_LPAR)
1045 		pr_info("Linux is running natively in 64-bit mode\n");
1046 #endif /* CONFIG_64BIT */
1047 
1048 	/* Have one command line that is parsed and saved in /proc/cmdline */
1049 	/* boot_command_line has been already set up in early.c */
1050 	*cmdline_p = boot_command_line;
1051 
1052         ROOT_DEV = Root_RAM0;
1053 
1054 	init_mm.start_code = PAGE_OFFSET;
1055 	init_mm.end_code = (unsigned long) &_etext;
1056 	init_mm.end_data = (unsigned long) &_edata;
1057 	init_mm.brk = (unsigned long) &_end;
1058 
1059 	if (MACHINE_HAS_MVCOS)
1060 		memcpy(&uaccess, &uaccess_mvcos, sizeof(uaccess));
1061 	else
1062 		memcpy(&uaccess, &uaccess_std, sizeof(uaccess));
1063 
1064 	parse_early_param();
1065 
1066 	os_info_init();
1067 	setup_ipl();
1068 	setup_memory_end();
1069 	setup_addressing_mode();
1070 	reserve_oldmem();
1071 	reserve_crashkernel();
1072 	setup_memory();
1073 	setup_resources();
1074 	setup_vmcoreinfo();
1075 	setup_lowcore();
1076 
1077         cpu_init();
1078 	s390_init_cpu_topology();
1079 
1080 	/*
1081 	 * Setup capabilities (ELF_HWCAP & ELF_PLATFORM).
1082 	 */
1083 	setup_hwcaps();
1084 
1085 	/*
1086 	 * Create kernel page tables and switch to virtual addressing.
1087 	 */
1088         paging_init();
1089 
1090         /* Setup default console */
1091 	conmode_default();
1092 	set_preferred_console();
1093 
1094 	/* Setup zfcpdump support */
1095 	setup_zfcpdump(console_devno);
1096 }
1097