xref: /openbmc/linux/arch/s390/kernel/setup.c (revision b9ccfda2)
1 /*
2  *  S390 version
3  *    Copyright IBM Corp. 1999, 2012
4  *    Author(s): Hartmut Penner (hp@de.ibm.com),
5  *               Martin Schwidefsky (schwidefsky@de.ibm.com)
6  *
7  *  Derived from "arch/i386/kernel/setup.c"
8  *    Copyright (C) 1995, Linus Torvalds
9  */
10 
11 /*
12  * This file handles the architecture-dependent parts of initialization
13  */
14 
15 #define KMSG_COMPONENT "setup"
16 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
17 
18 #include <linux/errno.h>
19 #include <linux/module.h>
20 #include <linux/sched.h>
21 #include <linux/kernel.h>
22 #include <linux/memblock.h>
23 #include <linux/mm.h>
24 #include <linux/stddef.h>
25 #include <linux/unistd.h>
26 #include <linux/ptrace.h>
27 #include <linux/user.h>
28 #include <linux/tty.h>
29 #include <linux/ioport.h>
30 #include <linux/delay.h>
31 #include <linux/init.h>
32 #include <linux/initrd.h>
33 #include <linux/bootmem.h>
34 #include <linux/root_dev.h>
35 #include <linux/console.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/device.h>
38 #include <linux/notifier.h>
39 #include <linux/pfn.h>
40 #include <linux/ctype.h>
41 #include <linux/reboot.h>
42 #include <linux/topology.h>
43 #include <linux/ftrace.h>
44 #include <linux/kexec.h>
45 #include <linux/crash_dump.h>
46 #include <linux/memory.h>
47 #include <linux/compat.h>
48 
49 #include <asm/ipl.h>
50 #include <asm/uaccess.h>
51 #include <asm/facility.h>
52 #include <asm/smp.h>
53 #include <asm/mmu_context.h>
54 #include <asm/cpcmd.h>
55 #include <asm/lowcore.h>
56 #include <asm/irq.h>
57 #include <asm/page.h>
58 #include <asm/ptrace.h>
59 #include <asm/sections.h>
60 #include <asm/ebcdic.h>
61 #include <asm/kvm_virtio.h>
62 #include <asm/diag.h>
63 #include <asm/os_info.h>
64 #include <asm/sclp.h>
65 #include "entry.h"
66 
67 long psw_kernel_bits	= PSW_DEFAULT_KEY | PSW_MASK_BASE | PSW_ASC_PRIMARY |
68 			  PSW_MASK_EA | PSW_MASK_BA;
69 long psw_user_bits	= PSW_MASK_DAT | PSW_MASK_IO | PSW_MASK_EXT |
70 			  PSW_DEFAULT_KEY | PSW_MASK_BASE | PSW_MASK_MCHECK |
71 			  PSW_MASK_PSTATE | PSW_ASC_HOME;
72 
73 /*
74  * User copy operations.
75  */
76 struct uaccess_ops uaccess;
77 EXPORT_SYMBOL(uaccess);
78 
79 /*
80  * Machine setup..
81  */
82 unsigned int console_mode = 0;
83 EXPORT_SYMBOL(console_mode);
84 
85 unsigned int console_devno = -1;
86 EXPORT_SYMBOL(console_devno);
87 
88 unsigned int console_irq = -1;
89 EXPORT_SYMBOL(console_irq);
90 
91 unsigned long elf_hwcap = 0;
92 char elf_platform[ELF_PLATFORM_SIZE];
93 
94 struct mem_chunk __initdata memory_chunk[MEMORY_CHUNKS];
95 
96 int __initdata memory_end_set;
97 unsigned long __initdata memory_end;
98 
99 unsigned long VMALLOC_START;
100 EXPORT_SYMBOL(VMALLOC_START);
101 
102 unsigned long VMALLOC_END;
103 EXPORT_SYMBOL(VMALLOC_END);
104 
105 struct page *vmemmap;
106 EXPORT_SYMBOL(vmemmap);
107 
108 /* An array with a pointer to the lowcore of every CPU. */
109 struct _lowcore *lowcore_ptr[NR_CPUS];
110 EXPORT_SYMBOL(lowcore_ptr);
111 
112 /*
113  * This is set up by the setup-routine at boot-time
114  * for S390 need to find out, what we have to setup
115  * using address 0x10400 ...
116  */
117 
118 #include <asm/setup.h>
119 
120 /*
121  * condev= and conmode= setup parameter.
122  */
123 
124 static int __init condev_setup(char *str)
125 {
126 	int vdev;
127 
128 	vdev = simple_strtoul(str, &str, 0);
129 	if (vdev >= 0 && vdev < 65536) {
130 		console_devno = vdev;
131 		console_irq = -1;
132 	}
133 	return 1;
134 }
135 
136 __setup("condev=", condev_setup);
137 
138 static void __init set_preferred_console(void)
139 {
140 	if (MACHINE_IS_KVM) {
141 		if (sclp_has_vt220())
142 			add_preferred_console("ttyS", 1, NULL);
143 		else if (sclp_has_linemode())
144 			add_preferred_console("ttyS", 0, NULL);
145 		else
146 			add_preferred_console("hvc", 0, NULL);
147 	} else if (CONSOLE_IS_3215 || CONSOLE_IS_SCLP)
148 		add_preferred_console("ttyS", 0, NULL);
149 	else if (CONSOLE_IS_3270)
150 		add_preferred_console("tty3270", 0, NULL);
151 }
152 
153 static int __init conmode_setup(char *str)
154 {
155 #if defined(CONFIG_SCLP_CONSOLE) || defined(CONFIG_SCLP_VT220_CONSOLE)
156 	if (strncmp(str, "hwc", 4) == 0 || strncmp(str, "sclp", 5) == 0)
157                 SET_CONSOLE_SCLP;
158 #endif
159 #if defined(CONFIG_TN3215_CONSOLE)
160 	if (strncmp(str, "3215", 5) == 0)
161 		SET_CONSOLE_3215;
162 #endif
163 #if defined(CONFIG_TN3270_CONSOLE)
164 	if (strncmp(str, "3270", 5) == 0)
165 		SET_CONSOLE_3270;
166 #endif
167 	set_preferred_console();
168         return 1;
169 }
170 
171 __setup("conmode=", conmode_setup);
172 
173 static void __init conmode_default(void)
174 {
175 	char query_buffer[1024];
176 	char *ptr;
177 
178         if (MACHINE_IS_VM) {
179 		cpcmd("QUERY CONSOLE", query_buffer, 1024, NULL);
180 		console_devno = simple_strtoul(query_buffer + 5, NULL, 16);
181 		ptr = strstr(query_buffer, "SUBCHANNEL =");
182 		console_irq = simple_strtoul(ptr + 13, NULL, 16);
183 		cpcmd("QUERY TERM", query_buffer, 1024, NULL);
184 		ptr = strstr(query_buffer, "CONMODE");
185 		/*
186 		 * Set the conmode to 3215 so that the device recognition
187 		 * will set the cu_type of the console to 3215. If the
188 		 * conmode is 3270 and we don't set it back then both
189 		 * 3215 and the 3270 driver will try to access the console
190 		 * device (3215 as console and 3270 as normal tty).
191 		 */
192 		cpcmd("TERM CONMODE 3215", NULL, 0, NULL);
193 		if (ptr == NULL) {
194 #if defined(CONFIG_SCLP_CONSOLE) || defined(CONFIG_SCLP_VT220_CONSOLE)
195 			SET_CONSOLE_SCLP;
196 #endif
197 			return;
198 		}
199 		if (strncmp(ptr + 8, "3270", 4) == 0) {
200 #if defined(CONFIG_TN3270_CONSOLE)
201 			SET_CONSOLE_3270;
202 #elif defined(CONFIG_TN3215_CONSOLE)
203 			SET_CONSOLE_3215;
204 #elif defined(CONFIG_SCLP_CONSOLE) || defined(CONFIG_SCLP_VT220_CONSOLE)
205 			SET_CONSOLE_SCLP;
206 #endif
207 		} else if (strncmp(ptr + 8, "3215", 4) == 0) {
208 #if defined(CONFIG_TN3215_CONSOLE)
209 			SET_CONSOLE_3215;
210 #elif defined(CONFIG_TN3270_CONSOLE)
211 			SET_CONSOLE_3270;
212 #elif defined(CONFIG_SCLP_CONSOLE) || defined(CONFIG_SCLP_VT220_CONSOLE)
213 			SET_CONSOLE_SCLP;
214 #endif
215 		}
216 	} else {
217 #if defined(CONFIG_SCLP_CONSOLE) || defined(CONFIG_SCLP_VT220_CONSOLE)
218 		SET_CONSOLE_SCLP;
219 #endif
220 	}
221 }
222 
223 #ifdef CONFIG_ZFCPDUMP
224 static void __init setup_zfcpdump(unsigned int console_devno)
225 {
226 	static char str[41];
227 
228 	if (ipl_info.type != IPL_TYPE_FCP_DUMP)
229 		return;
230 	if (OLDMEM_BASE)
231 		return;
232 	if (console_devno != -1)
233 		sprintf(str, " cio_ignore=all,!0.0.%04x,!0.0.%04x",
234 			ipl_info.data.fcp.dev_id.devno, console_devno);
235 	else
236 		sprintf(str, " cio_ignore=all,!0.0.%04x",
237 			ipl_info.data.fcp.dev_id.devno);
238 	strcat(boot_command_line, str);
239 	console_loglevel = 2;
240 }
241 #else
242 static inline void setup_zfcpdump(unsigned int console_devno) {}
243 #endif /* CONFIG_ZFCPDUMP */
244 
245  /*
246  * Reboot, halt and power_off stubs. They just call _machine_restart,
247  * _machine_halt or _machine_power_off.
248  */
249 
250 void machine_restart(char *command)
251 {
252 	if ((!in_interrupt() && !in_atomic()) || oops_in_progress)
253 		/*
254 		 * Only unblank the console if we are called in enabled
255 		 * context or a bust_spinlocks cleared the way for us.
256 		 */
257 		console_unblank();
258 	_machine_restart(command);
259 }
260 
261 void machine_halt(void)
262 {
263 	if (!in_interrupt() || oops_in_progress)
264 		/*
265 		 * Only unblank the console if we are called in enabled
266 		 * context or a bust_spinlocks cleared the way for us.
267 		 */
268 		console_unblank();
269 	_machine_halt();
270 }
271 
272 void machine_power_off(void)
273 {
274 	if (!in_interrupt() || oops_in_progress)
275 		/*
276 		 * Only unblank the console if we are called in enabled
277 		 * context or a bust_spinlocks cleared the way for us.
278 		 */
279 		console_unblank();
280 	_machine_power_off();
281 }
282 
283 /*
284  * Dummy power off function.
285  */
286 void (*pm_power_off)(void) = machine_power_off;
287 
288 static int __init early_parse_mem(char *p)
289 {
290 	memory_end = memparse(p, &p);
291 	memory_end_set = 1;
292 	return 0;
293 }
294 early_param("mem", early_parse_mem);
295 
296 static int __init parse_vmalloc(char *arg)
297 {
298 	if (!arg)
299 		return -EINVAL;
300 	VMALLOC_END = (memparse(arg, &arg) + PAGE_SIZE - 1) & PAGE_MASK;
301 	return 0;
302 }
303 early_param("vmalloc", parse_vmalloc);
304 
305 unsigned int user_mode = HOME_SPACE_MODE;
306 EXPORT_SYMBOL_GPL(user_mode);
307 
308 static int set_amode_primary(void)
309 {
310 	psw_kernel_bits = (psw_kernel_bits & ~PSW_MASK_ASC) | PSW_ASC_HOME;
311 	psw_user_bits = (psw_user_bits & ~PSW_MASK_ASC) | PSW_ASC_PRIMARY;
312 #ifdef CONFIG_COMPAT
313 	psw32_user_bits =
314 		(psw32_user_bits & ~PSW32_MASK_ASC) | PSW32_ASC_PRIMARY;
315 #endif
316 
317 	if (MACHINE_HAS_MVCOS) {
318 		memcpy(&uaccess, &uaccess_mvcos_switch, sizeof(uaccess));
319 		return 1;
320 	} else {
321 		memcpy(&uaccess, &uaccess_pt, sizeof(uaccess));
322 		return 0;
323 	}
324 }
325 
326 /*
327  * Switch kernel/user addressing modes?
328  */
329 static int __init early_parse_switch_amode(char *p)
330 {
331 	user_mode = PRIMARY_SPACE_MODE;
332 	return 0;
333 }
334 early_param("switch_amode", early_parse_switch_amode);
335 
336 static int __init early_parse_user_mode(char *p)
337 {
338 	if (p && strcmp(p, "primary") == 0)
339 		user_mode = PRIMARY_SPACE_MODE;
340 	else if (!p || strcmp(p, "home") == 0)
341 		user_mode = HOME_SPACE_MODE;
342 	else
343 		return 1;
344 	return 0;
345 }
346 early_param("user_mode", early_parse_user_mode);
347 
348 static void setup_addressing_mode(void)
349 {
350 	if (user_mode == PRIMARY_SPACE_MODE) {
351 		if (set_amode_primary())
352 			pr_info("Address spaces switched, "
353 				"mvcos available\n");
354 		else
355 			pr_info("Address spaces switched, "
356 				"mvcos not available\n");
357 	}
358 }
359 
360 void *restart_stack __attribute__((__section__(".data")));
361 
362 static void __init setup_lowcore(void)
363 {
364 	struct _lowcore *lc;
365 
366 	/*
367 	 * Setup lowcore for boot cpu
368 	 */
369 	BUILD_BUG_ON(sizeof(struct _lowcore) != LC_PAGES * 4096);
370 	lc = __alloc_bootmem_low(LC_PAGES * PAGE_SIZE, LC_PAGES * PAGE_SIZE, 0);
371 	lc->restart_psw.mask = psw_kernel_bits;
372 	lc->restart_psw.addr =
373 		PSW_ADDR_AMODE | (unsigned long) restart_int_handler;
374 	lc->external_new_psw.mask = psw_kernel_bits |
375 		PSW_MASK_DAT | PSW_MASK_MCHECK;
376 	lc->external_new_psw.addr =
377 		PSW_ADDR_AMODE | (unsigned long) ext_int_handler;
378 	lc->svc_new_psw.mask = psw_kernel_bits |
379 		PSW_MASK_DAT | PSW_MASK_IO | PSW_MASK_EXT | PSW_MASK_MCHECK;
380 	lc->svc_new_psw.addr = PSW_ADDR_AMODE | (unsigned long) system_call;
381 	lc->program_new_psw.mask = psw_kernel_bits |
382 		PSW_MASK_DAT | PSW_MASK_MCHECK;
383 	lc->program_new_psw.addr =
384 		PSW_ADDR_AMODE | (unsigned long) pgm_check_handler;
385 	lc->mcck_new_psw.mask = psw_kernel_bits;
386 	lc->mcck_new_psw.addr =
387 		PSW_ADDR_AMODE | (unsigned long) mcck_int_handler;
388 	lc->io_new_psw.mask = psw_kernel_bits |
389 		PSW_MASK_DAT | PSW_MASK_MCHECK;
390 	lc->io_new_psw.addr = PSW_ADDR_AMODE | (unsigned long) io_int_handler;
391 	lc->clock_comparator = -1ULL;
392 	lc->kernel_stack = ((unsigned long) &init_thread_union) + THREAD_SIZE;
393 	lc->async_stack = (unsigned long)
394 		__alloc_bootmem(ASYNC_SIZE, ASYNC_SIZE, 0) + ASYNC_SIZE;
395 	lc->panic_stack = (unsigned long)
396 		__alloc_bootmem(PAGE_SIZE, PAGE_SIZE, 0) + PAGE_SIZE;
397 	lc->current_task = (unsigned long) init_thread_union.thread_info.task;
398 	lc->thread_info = (unsigned long) &init_thread_union;
399 	lc->machine_flags = S390_lowcore.machine_flags;
400 	lc->stfl_fac_list = S390_lowcore.stfl_fac_list;
401 	memcpy(lc->stfle_fac_list, S390_lowcore.stfle_fac_list,
402 	       MAX_FACILITY_BIT/8);
403 #ifndef CONFIG_64BIT
404 	if (MACHINE_HAS_IEEE) {
405 		lc->extended_save_area_addr = (__u32)
406 			__alloc_bootmem_low(PAGE_SIZE, PAGE_SIZE, 0);
407 		/* enable extended save area */
408 		__ctl_set_bit(14, 29);
409 	}
410 #else
411 	lc->vdso_per_cpu_data = (unsigned long) &lc->paste[0];
412 #endif
413 	lc->sync_enter_timer = S390_lowcore.sync_enter_timer;
414 	lc->async_enter_timer = S390_lowcore.async_enter_timer;
415 	lc->exit_timer = S390_lowcore.exit_timer;
416 	lc->user_timer = S390_lowcore.user_timer;
417 	lc->system_timer = S390_lowcore.system_timer;
418 	lc->steal_timer = S390_lowcore.steal_timer;
419 	lc->last_update_timer = S390_lowcore.last_update_timer;
420 	lc->last_update_clock = S390_lowcore.last_update_clock;
421 	lc->ftrace_func = S390_lowcore.ftrace_func;
422 
423 	restart_stack = __alloc_bootmem(ASYNC_SIZE, ASYNC_SIZE, 0);
424 	restart_stack += ASYNC_SIZE;
425 
426 	/*
427 	 * Set up PSW restart to call ipl.c:do_restart(). Copy the relevant
428 	 * restart data to the absolute zero lowcore. This is necesary if
429 	 * PSW restart is done on an offline CPU that has lowcore zero.
430 	 */
431 	lc->restart_stack = (unsigned long) restart_stack;
432 	lc->restart_fn = (unsigned long) do_restart;
433 	lc->restart_data = 0;
434 	lc->restart_source = -1UL;
435 
436 	/* Setup absolute zero lowcore */
437 	mem_assign_absolute(S390_lowcore.restart_stack, lc->restart_stack);
438 	mem_assign_absolute(S390_lowcore.restart_fn, lc->restart_fn);
439 	mem_assign_absolute(S390_lowcore.restart_data, lc->restart_data);
440 	mem_assign_absolute(S390_lowcore.restart_source, lc->restart_source);
441 	mem_assign_absolute(S390_lowcore.restart_psw, lc->restart_psw);
442 
443 	set_prefix((u32)(unsigned long) lc);
444 	lowcore_ptr[0] = lc;
445 }
446 
447 static struct resource code_resource = {
448 	.name  = "Kernel code",
449 	.flags = IORESOURCE_BUSY | IORESOURCE_MEM,
450 };
451 
452 static struct resource data_resource = {
453 	.name = "Kernel data",
454 	.flags = IORESOURCE_BUSY | IORESOURCE_MEM,
455 };
456 
457 static struct resource bss_resource = {
458 	.name = "Kernel bss",
459 	.flags = IORESOURCE_BUSY | IORESOURCE_MEM,
460 };
461 
462 static struct resource __initdata *standard_resources[] = {
463 	&code_resource,
464 	&data_resource,
465 	&bss_resource,
466 };
467 
468 static void __init setup_resources(void)
469 {
470 	struct resource *res, *std_res, *sub_res;
471 	int i, j;
472 
473 	code_resource.start = (unsigned long) &_text;
474 	code_resource.end = (unsigned long) &_etext - 1;
475 	data_resource.start = (unsigned long) &_etext;
476 	data_resource.end = (unsigned long) &_edata - 1;
477 	bss_resource.start = (unsigned long) &__bss_start;
478 	bss_resource.end = (unsigned long) &__bss_stop - 1;
479 
480 	for (i = 0; i < MEMORY_CHUNKS; i++) {
481 		if (!memory_chunk[i].size)
482 			continue;
483 		if (memory_chunk[i].type == CHUNK_OLDMEM ||
484 		    memory_chunk[i].type == CHUNK_CRASHK)
485 			continue;
486 		res = alloc_bootmem_low(sizeof(*res));
487 		res->flags = IORESOURCE_BUSY | IORESOURCE_MEM;
488 		switch (memory_chunk[i].type) {
489 		case CHUNK_READ_WRITE:
490 		case CHUNK_CRASHK:
491 			res->name = "System RAM";
492 			break;
493 		case CHUNK_READ_ONLY:
494 			res->name = "System ROM";
495 			res->flags |= IORESOURCE_READONLY;
496 			break;
497 		default:
498 			res->name = "reserved";
499 		}
500 		res->start = memory_chunk[i].addr;
501 		res->end = res->start + memory_chunk[i].size - 1;
502 		request_resource(&iomem_resource, res);
503 
504 		for (j = 0; j < ARRAY_SIZE(standard_resources); j++) {
505 			std_res = standard_resources[j];
506 			if (std_res->start < res->start ||
507 			    std_res->start > res->end)
508 				continue;
509 			if (std_res->end > res->end) {
510 				sub_res = alloc_bootmem_low(sizeof(*sub_res));
511 				*sub_res = *std_res;
512 				sub_res->end = res->end;
513 				std_res->start = res->end + 1;
514 				request_resource(res, sub_res);
515 			} else {
516 				request_resource(res, std_res);
517 			}
518 		}
519 	}
520 }
521 
522 unsigned long real_memory_size;
523 EXPORT_SYMBOL_GPL(real_memory_size);
524 
525 static void __init setup_memory_end(void)
526 {
527 	unsigned long vmax, vmalloc_size, tmp;
528 	int i;
529 
530 
531 #ifdef CONFIG_ZFCPDUMP
532 	if (ipl_info.type == IPL_TYPE_FCP_DUMP && !OLDMEM_BASE) {
533 		memory_end = ZFCPDUMP_HSA_SIZE;
534 		memory_end_set = 1;
535 	}
536 #endif
537 	real_memory_size = 0;
538 	memory_end &= PAGE_MASK;
539 
540 	/*
541 	 * Make sure all chunks are MAX_ORDER aligned so we don't need the
542 	 * extra checks that HOLES_IN_ZONE would require.
543 	 */
544 	for (i = 0; i < MEMORY_CHUNKS; i++) {
545 		unsigned long start, end;
546 		struct mem_chunk *chunk;
547 		unsigned long align;
548 
549 		chunk = &memory_chunk[i];
550 		align = 1UL << (MAX_ORDER + PAGE_SHIFT - 1);
551 		start = (chunk->addr + align - 1) & ~(align - 1);
552 		end = (chunk->addr + chunk->size) & ~(align - 1);
553 		if (start >= end)
554 			memset(chunk, 0, sizeof(*chunk));
555 		else {
556 			chunk->addr = start;
557 			chunk->size = end - start;
558 		}
559 		real_memory_size = max(real_memory_size,
560 				       chunk->addr + chunk->size);
561 	}
562 
563 	/* Choose kernel address space layout: 2, 3, or 4 levels. */
564 #ifdef CONFIG_64BIT
565 	vmalloc_size = VMALLOC_END ?: 128UL << 30;
566 	tmp = (memory_end ?: real_memory_size) / PAGE_SIZE;
567 	tmp = tmp * (sizeof(struct page) + PAGE_SIZE) + vmalloc_size;
568 	if (tmp <= (1UL << 42))
569 		vmax = 1UL << 42;	/* 3-level kernel page table */
570 	else
571 		vmax = 1UL << 53;	/* 4-level kernel page table */
572 #else
573 	vmalloc_size = VMALLOC_END ?: 96UL << 20;
574 	vmax = 1UL << 31;		/* 2-level kernel page table */
575 #endif
576 	/* vmalloc area is at the end of the kernel address space. */
577 	VMALLOC_END = vmax;
578 	VMALLOC_START = vmax - vmalloc_size;
579 
580 	/* Split remaining virtual space between 1:1 mapping & vmemmap array */
581 	tmp = VMALLOC_START / (PAGE_SIZE + sizeof(struct page));
582 	tmp = VMALLOC_START - tmp * sizeof(struct page);
583 	tmp &= ~((vmax >> 11) - 1);	/* align to page table level */
584 	tmp = min(tmp, 1UL << MAX_PHYSMEM_BITS);
585 	vmemmap = (struct page *) tmp;
586 
587 	/* Take care that memory_end is set and <= vmemmap */
588 	memory_end = min(memory_end ?: real_memory_size, tmp);
589 
590 	/* Fixup memory chunk array to fit into 0..memory_end */
591 	for (i = 0; i < MEMORY_CHUNKS; i++) {
592 		struct mem_chunk *chunk = &memory_chunk[i];
593 
594 		if (chunk->addr >= memory_end) {
595 			memset(chunk, 0, sizeof(*chunk));
596 			continue;
597 		}
598 		if (chunk->addr + chunk->size > memory_end)
599 			chunk->size = memory_end - chunk->addr;
600 	}
601 }
602 
603 static void __init setup_vmcoreinfo(void)
604 {
605 #ifdef CONFIG_KEXEC
606 	mem_assign_absolute(S390_lowcore.vmcore_info, paddr_vmcoreinfo_note());
607 #endif
608 }
609 
610 #ifdef CONFIG_CRASH_DUMP
611 
612 /*
613  * Find suitable location for crashkernel memory
614  */
615 static unsigned long __init find_crash_base(unsigned long crash_size,
616 					    char **msg)
617 {
618 	unsigned long crash_base;
619 	struct mem_chunk *chunk;
620 	int i;
621 
622 	if (memory_chunk[0].size < crash_size) {
623 		*msg = "first memory chunk must be at least crashkernel size";
624 		return 0;
625 	}
626 	if (OLDMEM_BASE && crash_size == OLDMEM_SIZE)
627 		return OLDMEM_BASE;
628 
629 	for (i = MEMORY_CHUNKS - 1; i >= 0; i--) {
630 		chunk = &memory_chunk[i];
631 		if (chunk->size == 0)
632 			continue;
633 		if (chunk->type != CHUNK_READ_WRITE)
634 			continue;
635 		if (chunk->size < crash_size)
636 			continue;
637 		crash_base = (chunk->addr + chunk->size) - crash_size;
638 		if (crash_base < crash_size)
639 			continue;
640 		if (crash_base < ZFCPDUMP_HSA_SIZE_MAX)
641 			continue;
642 		if (crash_base < (unsigned long) INITRD_START + INITRD_SIZE)
643 			continue;
644 		return crash_base;
645 	}
646 	*msg = "no suitable area found";
647 	return 0;
648 }
649 
650 /*
651  * Check if crash_base and crash_size is valid
652  */
653 static int __init verify_crash_base(unsigned long crash_base,
654 				    unsigned long crash_size,
655 				    char **msg)
656 {
657 	struct mem_chunk *chunk;
658 	int i;
659 
660 	/*
661 	 * Because we do the swap to zero, we must have at least 'crash_size'
662 	 * bytes free space before crash_base
663 	 */
664 	if (crash_size > crash_base) {
665 		*msg = "crashkernel offset must be greater than size";
666 		return -EINVAL;
667 	}
668 
669 	/* First memory chunk must be at least crash_size */
670 	if (memory_chunk[0].size < crash_size) {
671 		*msg = "first memory chunk must be at least crashkernel size";
672 		return -EINVAL;
673 	}
674 	/* Check if we fit into the respective memory chunk */
675 	for (i = 0; i < MEMORY_CHUNKS; i++) {
676 		chunk = &memory_chunk[i];
677 		if (chunk->size == 0)
678 			continue;
679 		if (crash_base < chunk->addr)
680 			continue;
681 		if (crash_base >= chunk->addr + chunk->size)
682 			continue;
683 		/* we have found the memory chunk */
684 		if (crash_base + crash_size > chunk->addr + chunk->size) {
685 			*msg = "selected memory chunk is too small for "
686 				"crashkernel memory";
687 			return -EINVAL;
688 		}
689 		return 0;
690 	}
691 	*msg = "invalid memory range specified";
692 	return -EINVAL;
693 }
694 
695 /*
696  * Reserve kdump memory by creating a memory hole in the mem_chunk array
697  */
698 static void __init reserve_kdump_bootmem(unsigned long addr, unsigned long size,
699 					 int type)
700 {
701 	create_mem_hole(memory_chunk, addr, size, type);
702 }
703 
704 /*
705  * When kdump is enabled, we have to ensure that no memory from
706  * the area [0 - crashkernel memory size] and
707  * [crashk_res.start - crashk_res.end] is set offline.
708  */
709 static int kdump_mem_notifier(struct notifier_block *nb,
710 			      unsigned long action, void *data)
711 {
712 	struct memory_notify *arg = data;
713 
714 	if (arg->start_pfn < PFN_DOWN(resource_size(&crashk_res)))
715 		return NOTIFY_BAD;
716 	if (arg->start_pfn > PFN_DOWN(crashk_res.end))
717 		return NOTIFY_OK;
718 	if (arg->start_pfn + arg->nr_pages - 1 < PFN_DOWN(crashk_res.start))
719 		return NOTIFY_OK;
720 	return NOTIFY_BAD;
721 }
722 
723 static struct notifier_block kdump_mem_nb = {
724 	.notifier_call = kdump_mem_notifier,
725 };
726 
727 #endif
728 
729 /*
730  * Make sure that oldmem, where the dump is stored, is protected
731  */
732 static void reserve_oldmem(void)
733 {
734 #ifdef CONFIG_CRASH_DUMP
735 	if (!OLDMEM_BASE)
736 		return;
737 
738 	reserve_kdump_bootmem(OLDMEM_BASE, OLDMEM_SIZE, CHUNK_OLDMEM);
739 	reserve_kdump_bootmem(OLDMEM_SIZE, memory_end - OLDMEM_SIZE,
740 			      CHUNK_OLDMEM);
741 	if (OLDMEM_BASE + OLDMEM_SIZE == real_memory_size)
742 		saved_max_pfn = PFN_DOWN(OLDMEM_BASE) - 1;
743 	else
744 		saved_max_pfn = PFN_DOWN(real_memory_size) - 1;
745 #endif
746 }
747 
748 /*
749  * Reserve memory for kdump kernel to be loaded with kexec
750  */
751 static void __init reserve_crashkernel(void)
752 {
753 #ifdef CONFIG_CRASH_DUMP
754 	unsigned long long crash_base, crash_size;
755 	char *msg = NULL;
756 	int rc;
757 
758 	rc = parse_crashkernel(boot_command_line, memory_end, &crash_size,
759 			       &crash_base);
760 	if (rc || crash_size == 0)
761 		return;
762 	crash_base = ALIGN(crash_base, KEXEC_CRASH_MEM_ALIGN);
763 	crash_size = ALIGN(crash_size, KEXEC_CRASH_MEM_ALIGN);
764 	if (register_memory_notifier(&kdump_mem_nb))
765 		return;
766 	if (!crash_base)
767 		crash_base = find_crash_base(crash_size, &msg);
768 	if (!crash_base) {
769 		pr_info("crashkernel reservation failed: %s\n", msg);
770 		unregister_memory_notifier(&kdump_mem_nb);
771 		return;
772 	}
773 	if (verify_crash_base(crash_base, crash_size, &msg)) {
774 		pr_info("crashkernel reservation failed: %s\n", msg);
775 		unregister_memory_notifier(&kdump_mem_nb);
776 		return;
777 	}
778 	if (!OLDMEM_BASE && MACHINE_IS_VM)
779 		diag10_range(PFN_DOWN(crash_base), PFN_DOWN(crash_size));
780 	crashk_res.start = crash_base;
781 	crashk_res.end = crash_base + crash_size - 1;
782 	insert_resource(&iomem_resource, &crashk_res);
783 	reserve_kdump_bootmem(crash_base, crash_size, CHUNK_CRASHK);
784 	pr_info("Reserving %lluMB of memory at %lluMB "
785 		"for crashkernel (System RAM: %luMB)\n",
786 		crash_size >> 20, crash_base >> 20, memory_end >> 20);
787 	os_info_crashkernel_add(crash_base, crash_size);
788 #endif
789 }
790 
791 static void __init setup_memory(void)
792 {
793         unsigned long bootmap_size;
794 	unsigned long start_pfn, end_pfn;
795 	int i;
796 
797 	/*
798 	 * partially used pages are not usable - thus
799 	 * we are rounding upwards:
800 	 */
801 	start_pfn = PFN_UP(__pa(&_end));
802 	end_pfn = max_pfn = PFN_DOWN(memory_end);
803 
804 #ifdef CONFIG_BLK_DEV_INITRD
805 	/*
806 	 * Move the initrd in case the bitmap of the bootmem allocater
807 	 * would overwrite it.
808 	 */
809 
810 	if (INITRD_START && INITRD_SIZE) {
811 		unsigned long bmap_size;
812 		unsigned long start;
813 
814 		bmap_size = bootmem_bootmap_pages(end_pfn - start_pfn + 1);
815 		bmap_size = PFN_PHYS(bmap_size);
816 
817 		if (PFN_PHYS(start_pfn) + bmap_size > INITRD_START) {
818 			start = PFN_PHYS(start_pfn) + bmap_size + PAGE_SIZE;
819 
820 #ifdef CONFIG_CRASH_DUMP
821 			if (OLDMEM_BASE) {
822 				/* Move initrd behind kdump oldmem */
823 				if (start + INITRD_SIZE > OLDMEM_BASE &&
824 				    start < OLDMEM_BASE + OLDMEM_SIZE)
825 					start = OLDMEM_BASE + OLDMEM_SIZE;
826 			}
827 #endif
828 			if (start + INITRD_SIZE > memory_end) {
829 				pr_err("initrd extends beyond end of "
830 				       "memory (0x%08lx > 0x%08lx) "
831 				       "disabling initrd\n",
832 				       start + INITRD_SIZE, memory_end);
833 				INITRD_START = INITRD_SIZE = 0;
834 			} else {
835 				pr_info("Moving initrd (0x%08lx -> "
836 					"0x%08lx, size: %ld)\n",
837 					INITRD_START, start, INITRD_SIZE);
838 				memmove((void *) start, (void *) INITRD_START,
839 					INITRD_SIZE);
840 				INITRD_START = start;
841 			}
842 		}
843 	}
844 #endif
845 
846 	/*
847 	 * Initialize the boot-time allocator
848 	 */
849 	bootmap_size = init_bootmem(start_pfn, end_pfn);
850 
851 	/*
852 	 * Register RAM areas with the bootmem allocator.
853 	 */
854 
855 	for (i = 0; i < MEMORY_CHUNKS && memory_chunk[i].size > 0; i++) {
856 		unsigned long start_chunk, end_chunk, pfn;
857 
858 		if (memory_chunk[i].type != CHUNK_READ_WRITE &&
859 		    memory_chunk[i].type != CHUNK_CRASHK)
860 			continue;
861 		start_chunk = PFN_DOWN(memory_chunk[i].addr);
862 		end_chunk = start_chunk + PFN_DOWN(memory_chunk[i].size);
863 		end_chunk = min(end_chunk, end_pfn);
864 		if (start_chunk >= end_chunk)
865 			continue;
866 		memblock_add_node(PFN_PHYS(start_chunk),
867 				  PFN_PHYS(end_chunk - start_chunk), 0);
868 		pfn = max(start_chunk, start_pfn);
869 		for (; pfn < end_chunk; pfn++)
870 			page_set_storage_key(PFN_PHYS(pfn),
871 					     PAGE_DEFAULT_KEY, 0);
872 	}
873 
874 	psw_set_key(PAGE_DEFAULT_KEY);
875 
876 	free_bootmem_with_active_regions(0, max_pfn);
877 
878 	/*
879 	 * Reserve memory used for lowcore/command line/kernel image.
880 	 */
881 	reserve_bootmem(0, (unsigned long)_ehead, BOOTMEM_DEFAULT);
882 	reserve_bootmem((unsigned long)_stext,
883 			PFN_PHYS(start_pfn) - (unsigned long)_stext,
884 			BOOTMEM_DEFAULT);
885 	/*
886 	 * Reserve the bootmem bitmap itself as well. We do this in two
887 	 * steps (first step was init_bootmem()) because this catches
888 	 * the (very unlikely) case of us accidentally initializing the
889 	 * bootmem allocator with an invalid RAM area.
890 	 */
891 	reserve_bootmem(start_pfn << PAGE_SHIFT, bootmap_size,
892 			BOOTMEM_DEFAULT);
893 
894 #ifdef CONFIG_CRASH_DUMP
895 	if (crashk_res.start)
896 		reserve_bootmem(crashk_res.start,
897 				crashk_res.end - crashk_res.start + 1,
898 				BOOTMEM_DEFAULT);
899 	if (is_kdump_kernel())
900 		reserve_bootmem(elfcorehdr_addr - OLDMEM_BASE,
901 				PAGE_ALIGN(elfcorehdr_size), BOOTMEM_DEFAULT);
902 #endif
903 #ifdef CONFIG_BLK_DEV_INITRD
904 	if (INITRD_START && INITRD_SIZE) {
905 		if (INITRD_START + INITRD_SIZE <= memory_end) {
906 			reserve_bootmem(INITRD_START, INITRD_SIZE,
907 					BOOTMEM_DEFAULT);
908 			initrd_start = INITRD_START;
909 			initrd_end = initrd_start + INITRD_SIZE;
910 		} else {
911 			pr_err("initrd extends beyond end of "
912 			       "memory (0x%08lx > 0x%08lx) "
913 			       "disabling initrd\n",
914 			       initrd_start + INITRD_SIZE, memory_end);
915 			initrd_start = initrd_end = 0;
916 		}
917 	}
918 #endif
919 }
920 
921 /*
922  * Setup hardware capabilities.
923  */
924 static void __init setup_hwcaps(void)
925 {
926 	static const int stfl_bits[6] = { 0, 2, 7, 17, 19, 21 };
927 	struct cpuid cpu_id;
928 	int i;
929 
930 	/*
931 	 * The store facility list bits numbers as found in the principles
932 	 * of operation are numbered with bit 1UL<<31 as number 0 to
933 	 * bit 1UL<<0 as number 31.
934 	 *   Bit 0: instructions named N3, "backported" to esa-mode
935 	 *   Bit 2: z/Architecture mode is active
936 	 *   Bit 7: the store-facility-list-extended facility is installed
937 	 *   Bit 17: the message-security assist is installed
938 	 *   Bit 19: the long-displacement facility is installed
939 	 *   Bit 21: the extended-immediate facility is installed
940 	 *   Bit 22: extended-translation facility 3 is installed
941 	 *   Bit 30: extended-translation facility 3 enhancement facility
942 	 * These get translated to:
943 	 *   HWCAP_S390_ESAN3 bit 0, HWCAP_S390_ZARCH bit 1,
944 	 *   HWCAP_S390_STFLE bit 2, HWCAP_S390_MSA bit 3,
945 	 *   HWCAP_S390_LDISP bit 4, HWCAP_S390_EIMM bit 5 and
946 	 *   HWCAP_S390_ETF3EH bit 8 (22 && 30).
947 	 */
948 	for (i = 0; i < 6; i++)
949 		if (test_facility(stfl_bits[i]))
950 			elf_hwcap |= 1UL << i;
951 
952 	if (test_facility(22) && test_facility(30))
953 		elf_hwcap |= HWCAP_S390_ETF3EH;
954 
955 	/*
956 	 * Check for additional facilities with store-facility-list-extended.
957 	 * stfle stores doublewords (8 byte) with bit 1ULL<<63 as bit 0
958 	 * and 1ULL<<0 as bit 63. Bits 0-31 contain the same information
959 	 * as stored by stfl, bits 32-xxx contain additional facilities.
960 	 * How many facility words are stored depends on the number of
961 	 * doublewords passed to the instruction. The additional facilities
962 	 * are:
963 	 *   Bit 42: decimal floating point facility is installed
964 	 *   Bit 44: perform floating point operation facility is installed
965 	 * translated to:
966 	 *   HWCAP_S390_DFP bit 6 (42 && 44).
967 	 */
968 	if ((elf_hwcap & (1UL << 2)) && test_facility(42) && test_facility(44))
969 		elf_hwcap |= HWCAP_S390_DFP;
970 
971 	/*
972 	 * Huge page support HWCAP_S390_HPAGE is bit 7.
973 	 */
974 	if (MACHINE_HAS_HPAGE)
975 		elf_hwcap |= HWCAP_S390_HPAGE;
976 
977 	/*
978 	 * 64-bit register support for 31-bit processes
979 	 * HWCAP_S390_HIGH_GPRS is bit 9.
980 	 */
981 	elf_hwcap |= HWCAP_S390_HIGH_GPRS;
982 
983 	get_cpu_id(&cpu_id);
984 	switch (cpu_id.machine) {
985 	case 0x9672:
986 #if !defined(CONFIG_64BIT)
987 	default:	/* Use "g5" as default for 31 bit kernels. */
988 #endif
989 		strcpy(elf_platform, "g5");
990 		break;
991 	case 0x2064:
992 	case 0x2066:
993 #if defined(CONFIG_64BIT)
994 	default:	/* Use "z900" as default for 64 bit kernels. */
995 #endif
996 		strcpy(elf_platform, "z900");
997 		break;
998 	case 0x2084:
999 	case 0x2086:
1000 		strcpy(elf_platform, "z990");
1001 		break;
1002 	case 0x2094:
1003 	case 0x2096:
1004 		strcpy(elf_platform, "z9-109");
1005 		break;
1006 	case 0x2097:
1007 	case 0x2098:
1008 		strcpy(elf_platform, "z10");
1009 		break;
1010 	case 0x2817:
1011 	case 0x2818:
1012 		strcpy(elf_platform, "z196");
1013 		break;
1014 	}
1015 }
1016 
1017 /*
1018  * Setup function called from init/main.c just after the banner
1019  * was printed.
1020  */
1021 
1022 void __init setup_arch(char **cmdline_p)
1023 {
1024         /*
1025          * print what head.S has found out about the machine
1026          */
1027 #ifndef CONFIG_64BIT
1028 	if (MACHINE_IS_VM)
1029 		pr_info("Linux is running as a z/VM "
1030 			"guest operating system in 31-bit mode\n");
1031 	else if (MACHINE_IS_LPAR)
1032 		pr_info("Linux is running natively in 31-bit mode\n");
1033 	if (MACHINE_HAS_IEEE)
1034 		pr_info("The hardware system has IEEE compatible "
1035 			"floating point units\n");
1036 	else
1037 		pr_info("The hardware system has no IEEE compatible "
1038 			"floating point units\n");
1039 #else /* CONFIG_64BIT */
1040 	if (MACHINE_IS_VM)
1041 		pr_info("Linux is running as a z/VM "
1042 			"guest operating system in 64-bit mode\n");
1043 	else if (MACHINE_IS_KVM)
1044 		pr_info("Linux is running under KVM in 64-bit mode\n");
1045 	else if (MACHINE_IS_LPAR)
1046 		pr_info("Linux is running natively in 64-bit mode\n");
1047 #endif /* CONFIG_64BIT */
1048 
1049 	/* Have one command line that is parsed and saved in /proc/cmdline */
1050 	/* boot_command_line has been already set up in early.c */
1051 	*cmdline_p = boot_command_line;
1052 
1053         ROOT_DEV = Root_RAM0;
1054 
1055 	init_mm.start_code = PAGE_OFFSET;
1056 	init_mm.end_code = (unsigned long) &_etext;
1057 	init_mm.end_data = (unsigned long) &_edata;
1058 	init_mm.brk = (unsigned long) &_end;
1059 
1060 	if (MACHINE_HAS_MVCOS)
1061 		memcpy(&uaccess, &uaccess_mvcos, sizeof(uaccess));
1062 	else
1063 		memcpy(&uaccess, &uaccess_std, sizeof(uaccess));
1064 
1065 	parse_early_param();
1066 
1067 	os_info_init();
1068 	setup_ipl();
1069 	setup_memory_end();
1070 	setup_addressing_mode();
1071 	reserve_oldmem();
1072 	reserve_crashkernel();
1073 	setup_memory();
1074 	setup_resources();
1075 	setup_vmcoreinfo();
1076 	setup_lowcore();
1077 
1078         cpu_init();
1079 	s390_init_cpu_topology();
1080 
1081 	/*
1082 	 * Setup capabilities (ELF_HWCAP & ELF_PLATFORM).
1083 	 */
1084 	setup_hwcaps();
1085 
1086 	/*
1087 	 * Create kernel page tables and switch to virtual addressing.
1088 	 */
1089         paging_init();
1090 
1091         /* Setup default console */
1092 	conmode_default();
1093 	set_preferred_console();
1094 
1095 	/* Setup zfcpdump support */
1096 	setup_zfcpdump(console_devno);
1097 }
1098