xref: /openbmc/linux/arch/s390/kernel/ptrace.c (revision baa7eb025ab14f3cba2e35c0a8648f9c9f01d24f)
1 /*
2  *  arch/s390/kernel/ptrace.c
3  *
4  *  S390 version
5  *    Copyright (C) 1999,2000 IBM Deutschland Entwicklung GmbH, IBM Corporation
6  *    Author(s): Denis Joseph Barrow (djbarrow@de.ibm.com,barrow_dj@yahoo.com),
7  *               Martin Schwidefsky (schwidefsky@de.ibm.com)
8  *
9  *  Based on PowerPC version
10  *    Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
11  *
12  *  Derived from "arch/m68k/kernel/ptrace.c"
13  *  Copyright (C) 1994 by Hamish Macdonald
14  *  Taken from linux/kernel/ptrace.c and modified for M680x0.
15  *  linux/kernel/ptrace.c is by Ross Biro 1/23/92, edited by Linus Torvalds
16  *
17  * Modified by Cort Dougan (cort@cs.nmt.edu)
18  *
19  *
20  * This file is subject to the terms and conditions of the GNU General
21  * Public License.  See the file README.legal in the main directory of
22  * this archive for more details.
23  */
24 
25 #include <linux/kernel.h>
26 #include <linux/sched.h>
27 #include <linux/mm.h>
28 #include <linux/smp.h>
29 #include <linux/errno.h>
30 #include <linux/ptrace.h>
31 #include <linux/user.h>
32 #include <linux/security.h>
33 #include <linux/audit.h>
34 #include <linux/signal.h>
35 #include <linux/elf.h>
36 #include <linux/regset.h>
37 #include <linux/tracehook.h>
38 #include <linux/seccomp.h>
39 #include <trace/syscall.h>
40 #include <asm/compat.h>
41 #include <asm/segment.h>
42 #include <asm/page.h>
43 #include <asm/pgtable.h>
44 #include <asm/pgalloc.h>
45 #include <asm/system.h>
46 #include <asm/uaccess.h>
47 #include <asm/unistd.h>
48 #include "entry.h"
49 
50 #ifdef CONFIG_COMPAT
51 #include "compat_ptrace.h"
52 #endif
53 
54 #define CREATE_TRACE_POINTS
55 #include <trace/events/syscalls.h>
56 
57 enum s390_regset {
58 	REGSET_GENERAL,
59 	REGSET_FP,
60 	REGSET_LAST_BREAK,
61 	REGSET_GENERAL_EXTENDED,
62 };
63 
64 static void
65 FixPerRegisters(struct task_struct *task)
66 {
67 	struct pt_regs *regs;
68 	per_struct *per_info;
69 	per_cr_words cr_words;
70 
71 	regs = task_pt_regs(task);
72 	per_info = (per_struct *) &task->thread.per_info;
73 	per_info->control_regs.bits.em_instruction_fetch =
74 		per_info->single_step | per_info->instruction_fetch;
75 
76 	if (per_info->single_step) {
77 		per_info->control_regs.bits.starting_addr = 0;
78 #ifdef CONFIG_COMPAT
79 		if (is_compat_task())
80 			per_info->control_regs.bits.ending_addr = 0x7fffffffUL;
81 		else
82 #endif
83 			per_info->control_regs.bits.ending_addr = PSW_ADDR_INSN;
84 	} else {
85 		per_info->control_regs.bits.starting_addr =
86 			per_info->starting_addr;
87 		per_info->control_regs.bits.ending_addr =
88 			per_info->ending_addr;
89 	}
90 	/*
91 	 * if any of the control reg tracing bits are on
92 	 * we switch on per in the psw
93 	 */
94 	if (per_info->control_regs.words.cr[0] & PER_EM_MASK)
95 		regs->psw.mask |= PSW_MASK_PER;
96 	else
97 		regs->psw.mask &= ~PSW_MASK_PER;
98 
99 	if (per_info->control_regs.bits.em_storage_alteration)
100 		per_info->control_regs.bits.storage_alt_space_ctl = 1;
101 	else
102 		per_info->control_regs.bits.storage_alt_space_ctl = 0;
103 
104 	if (task == current) {
105 		__ctl_store(cr_words, 9, 11);
106 		if (memcmp(&cr_words, &per_info->control_regs.words,
107 			   sizeof(cr_words)) != 0)
108 			__ctl_load(per_info->control_regs.words, 9, 11);
109 	}
110 }
111 
112 void user_enable_single_step(struct task_struct *task)
113 {
114 	task->thread.per_info.single_step = 1;
115 	FixPerRegisters(task);
116 }
117 
118 void user_disable_single_step(struct task_struct *task)
119 {
120 	task->thread.per_info.single_step = 0;
121 	FixPerRegisters(task);
122 }
123 
124 /*
125  * Called by kernel/ptrace.c when detaching..
126  *
127  * Make sure single step bits etc are not set.
128  */
129 void
130 ptrace_disable(struct task_struct *child)
131 {
132 	/* make sure the single step bit is not set. */
133 	user_disable_single_step(child);
134 }
135 
136 #ifndef CONFIG_64BIT
137 # define __ADDR_MASK 3
138 #else
139 # define __ADDR_MASK 7
140 #endif
141 
142 /*
143  * Read the word at offset addr from the user area of a process. The
144  * trouble here is that the information is littered over different
145  * locations. The process registers are found on the kernel stack,
146  * the floating point stuff and the trace settings are stored in
147  * the task structure. In addition the different structures in
148  * struct user contain pad bytes that should be read as zeroes.
149  * Lovely...
150  */
151 static unsigned long __peek_user(struct task_struct *child, addr_t addr)
152 {
153 	struct user *dummy = NULL;
154 	addr_t offset, tmp;
155 
156 	if (addr < (addr_t) &dummy->regs.acrs) {
157 		/*
158 		 * psw and gprs are stored on the stack
159 		 */
160 		tmp = *(addr_t *)((addr_t) &task_pt_regs(child)->psw + addr);
161 		if (addr == (addr_t) &dummy->regs.psw.mask)
162 			/* Remove per bit from user psw. */
163 			tmp &= ~PSW_MASK_PER;
164 
165 	} else if (addr < (addr_t) &dummy->regs.orig_gpr2) {
166 		/*
167 		 * access registers are stored in the thread structure
168 		 */
169 		offset = addr - (addr_t) &dummy->regs.acrs;
170 #ifdef CONFIG_64BIT
171 		/*
172 		 * Very special case: old & broken 64 bit gdb reading
173 		 * from acrs[15]. Result is a 64 bit value. Read the
174 		 * 32 bit acrs[15] value and shift it by 32. Sick...
175 		 */
176 		if (addr == (addr_t) &dummy->regs.acrs[15])
177 			tmp = ((unsigned long) child->thread.acrs[15]) << 32;
178 		else
179 #endif
180 		tmp = *(addr_t *)((addr_t) &child->thread.acrs + offset);
181 
182 	} else if (addr == (addr_t) &dummy->regs.orig_gpr2) {
183 		/*
184 		 * orig_gpr2 is stored on the kernel stack
185 		 */
186 		tmp = (addr_t) task_pt_regs(child)->orig_gpr2;
187 
188 	} else if (addr < (addr_t) &dummy->regs.fp_regs) {
189 		/*
190 		 * prevent reads of padding hole between
191 		 * orig_gpr2 and fp_regs on s390.
192 		 */
193 		tmp = 0;
194 
195 	} else if (addr < (addr_t) (&dummy->regs.fp_regs + 1)) {
196 		/*
197 		 * floating point regs. are stored in the thread structure
198 		 */
199 		offset = addr - (addr_t) &dummy->regs.fp_regs;
200 		tmp = *(addr_t *)((addr_t) &child->thread.fp_regs + offset);
201 		if (addr == (addr_t) &dummy->regs.fp_regs.fpc)
202 			tmp &= (unsigned long) FPC_VALID_MASK
203 				<< (BITS_PER_LONG - 32);
204 
205 	} else if (addr < (addr_t) (&dummy->regs.per_info + 1)) {
206 		/*
207 		 * per_info is found in the thread structure
208 		 */
209 		offset = addr - (addr_t) &dummy->regs.per_info;
210 		tmp = *(addr_t *)((addr_t) &child->thread.per_info + offset);
211 
212 	} else
213 		tmp = 0;
214 
215 	return tmp;
216 }
217 
218 static int
219 peek_user(struct task_struct *child, addr_t addr, addr_t data)
220 {
221 	addr_t tmp, mask;
222 
223 	/*
224 	 * Stupid gdb peeks/pokes the access registers in 64 bit with
225 	 * an alignment of 4. Programmers from hell...
226 	 */
227 	mask = __ADDR_MASK;
228 #ifdef CONFIG_64BIT
229 	if (addr >= (addr_t) &((struct user *) NULL)->regs.acrs &&
230 	    addr < (addr_t) &((struct user *) NULL)->regs.orig_gpr2)
231 		mask = 3;
232 #endif
233 	if ((addr & mask) || addr > sizeof(struct user) - __ADDR_MASK)
234 		return -EIO;
235 
236 	tmp = __peek_user(child, addr);
237 	return put_user(tmp, (addr_t __user *) data);
238 }
239 
240 /*
241  * Write a word to the user area of a process at location addr. This
242  * operation does have an additional problem compared to peek_user.
243  * Stores to the program status word and on the floating point
244  * control register needs to get checked for validity.
245  */
246 static int __poke_user(struct task_struct *child, addr_t addr, addr_t data)
247 {
248 	struct user *dummy = NULL;
249 	addr_t offset;
250 
251 	if (addr < (addr_t) &dummy->regs.acrs) {
252 		/*
253 		 * psw and gprs are stored on the stack
254 		 */
255 		if (addr == (addr_t) &dummy->regs.psw.mask &&
256 #ifdef CONFIG_COMPAT
257 		    data != PSW_MASK_MERGE(psw_user32_bits, data) &&
258 #endif
259 		    data != PSW_MASK_MERGE(psw_user_bits, data))
260 			/* Invalid psw mask. */
261 			return -EINVAL;
262 #ifndef CONFIG_64BIT
263 		if (addr == (addr_t) &dummy->regs.psw.addr)
264 			/* I'd like to reject addresses without the
265 			   high order bit but older gdb's rely on it */
266 			data |= PSW_ADDR_AMODE;
267 #endif
268 		*(addr_t *)((addr_t) &task_pt_regs(child)->psw + addr) = data;
269 
270 	} else if (addr < (addr_t) (&dummy->regs.orig_gpr2)) {
271 		/*
272 		 * access registers are stored in the thread structure
273 		 */
274 		offset = addr - (addr_t) &dummy->regs.acrs;
275 #ifdef CONFIG_64BIT
276 		/*
277 		 * Very special case: old & broken 64 bit gdb writing
278 		 * to acrs[15] with a 64 bit value. Ignore the lower
279 		 * half of the value and write the upper 32 bit to
280 		 * acrs[15]. Sick...
281 		 */
282 		if (addr == (addr_t) &dummy->regs.acrs[15])
283 			child->thread.acrs[15] = (unsigned int) (data >> 32);
284 		else
285 #endif
286 		*(addr_t *)((addr_t) &child->thread.acrs + offset) = data;
287 
288 	} else if (addr == (addr_t) &dummy->regs.orig_gpr2) {
289 		/*
290 		 * orig_gpr2 is stored on the kernel stack
291 		 */
292 		task_pt_regs(child)->orig_gpr2 = data;
293 
294 	} else if (addr < (addr_t) &dummy->regs.fp_regs) {
295 		/*
296 		 * prevent writes of padding hole between
297 		 * orig_gpr2 and fp_regs on s390.
298 		 */
299 		return 0;
300 
301 	} else if (addr < (addr_t) (&dummy->regs.fp_regs + 1)) {
302 		/*
303 		 * floating point regs. are stored in the thread structure
304 		 */
305 		if (addr == (addr_t) &dummy->regs.fp_regs.fpc &&
306 		    (data & ~((unsigned long) FPC_VALID_MASK
307 			      << (BITS_PER_LONG - 32))) != 0)
308 			return -EINVAL;
309 		offset = addr - (addr_t) &dummy->regs.fp_regs;
310 		*(addr_t *)((addr_t) &child->thread.fp_regs + offset) = data;
311 
312 	} else if (addr < (addr_t) (&dummy->regs.per_info + 1)) {
313 		/*
314 		 * per_info is found in the thread structure
315 		 */
316 		offset = addr - (addr_t) &dummy->regs.per_info;
317 		*(addr_t *)((addr_t) &child->thread.per_info + offset) = data;
318 
319 	}
320 
321 	FixPerRegisters(child);
322 	return 0;
323 }
324 
325 static int
326 poke_user(struct task_struct *child, addr_t addr, addr_t data)
327 {
328 	addr_t mask;
329 
330 	/*
331 	 * Stupid gdb peeks/pokes the access registers in 64 bit with
332 	 * an alignment of 4. Programmers from hell indeed...
333 	 */
334 	mask = __ADDR_MASK;
335 #ifdef CONFIG_64BIT
336 	if (addr >= (addr_t) &((struct user *) NULL)->regs.acrs &&
337 	    addr < (addr_t) &((struct user *) NULL)->regs.orig_gpr2)
338 		mask = 3;
339 #endif
340 	if ((addr & mask) || addr > sizeof(struct user) - __ADDR_MASK)
341 		return -EIO;
342 
343 	return __poke_user(child, addr, data);
344 }
345 
346 long arch_ptrace(struct task_struct *child, long request,
347 		 unsigned long addr, unsigned long data)
348 {
349 	ptrace_area parea;
350 	int copied, ret;
351 
352 	switch (request) {
353 	case PTRACE_PEEKUSR:
354 		/* read the word at location addr in the USER area. */
355 		return peek_user(child, addr, data);
356 
357 	case PTRACE_POKEUSR:
358 		/* write the word at location addr in the USER area */
359 		return poke_user(child, addr, data);
360 
361 	case PTRACE_PEEKUSR_AREA:
362 	case PTRACE_POKEUSR_AREA:
363 		if (copy_from_user(&parea, (void __force __user *) addr,
364 							sizeof(parea)))
365 			return -EFAULT;
366 		addr = parea.kernel_addr;
367 		data = parea.process_addr;
368 		copied = 0;
369 		while (copied < parea.len) {
370 			if (request == PTRACE_PEEKUSR_AREA)
371 				ret = peek_user(child, addr, data);
372 			else {
373 				addr_t utmp;
374 				if (get_user(utmp,
375 					     (addr_t __force __user *) data))
376 					return -EFAULT;
377 				ret = poke_user(child, addr, utmp);
378 			}
379 			if (ret)
380 				return ret;
381 			addr += sizeof(unsigned long);
382 			data += sizeof(unsigned long);
383 			copied += sizeof(unsigned long);
384 		}
385 		return 0;
386 	case PTRACE_GET_LAST_BREAK:
387 		put_user(task_thread_info(child)->last_break,
388 			 (unsigned long __user *) data);
389 		return 0;
390 	default:
391 		/* Removing high order bit from addr (only for 31 bit). */
392 		addr &= PSW_ADDR_INSN;
393 		return ptrace_request(child, request, addr, data);
394 	}
395 }
396 
397 #ifdef CONFIG_COMPAT
398 /*
399  * Now the fun part starts... a 31 bit program running in the
400  * 31 bit emulation tracing another program. PTRACE_PEEKTEXT,
401  * PTRACE_PEEKDATA, PTRACE_POKETEXT and PTRACE_POKEDATA are easy
402  * to handle, the difference to the 64 bit versions of the requests
403  * is that the access is done in multiples of 4 byte instead of
404  * 8 bytes (sizeof(unsigned long) on 31/64 bit).
405  * The ugly part are PTRACE_PEEKUSR, PTRACE_PEEKUSR_AREA,
406  * PTRACE_POKEUSR and PTRACE_POKEUSR_AREA. If the traced program
407  * is a 31 bit program too, the content of struct user can be
408  * emulated. A 31 bit program peeking into the struct user of
409  * a 64 bit program is a no-no.
410  */
411 
412 /*
413  * Same as peek_user but for a 31 bit program.
414  */
415 static u32 __peek_user_compat(struct task_struct *child, addr_t addr)
416 {
417 	struct user32 *dummy32 = NULL;
418 	per_struct32 *dummy_per32 = NULL;
419 	addr_t offset;
420 	__u32 tmp;
421 
422 	if (addr < (addr_t) &dummy32->regs.acrs) {
423 		/*
424 		 * psw and gprs are stored on the stack
425 		 */
426 		if (addr == (addr_t) &dummy32->regs.psw.mask) {
427 			/* Fake a 31 bit psw mask. */
428 			tmp = (__u32)(task_pt_regs(child)->psw.mask >> 32);
429 			tmp = PSW32_MASK_MERGE(psw32_user_bits, tmp);
430 		} else if (addr == (addr_t) &dummy32->regs.psw.addr) {
431 			/* Fake a 31 bit psw address. */
432 			tmp = (__u32) task_pt_regs(child)->psw.addr |
433 				PSW32_ADDR_AMODE31;
434 		} else {
435 			/* gpr 0-15 */
436 			tmp = *(__u32 *)((addr_t) &task_pt_regs(child)->psw +
437 					 addr*2 + 4);
438 		}
439 	} else if (addr < (addr_t) (&dummy32->regs.orig_gpr2)) {
440 		/*
441 		 * access registers are stored in the thread structure
442 		 */
443 		offset = addr - (addr_t) &dummy32->regs.acrs;
444 		tmp = *(__u32*)((addr_t) &child->thread.acrs + offset);
445 
446 	} else if (addr == (addr_t) (&dummy32->regs.orig_gpr2)) {
447 		/*
448 		 * orig_gpr2 is stored on the kernel stack
449 		 */
450 		tmp = *(__u32*)((addr_t) &task_pt_regs(child)->orig_gpr2 + 4);
451 
452 	} else if (addr < (addr_t) &dummy32->regs.fp_regs) {
453 		/*
454 		 * prevent reads of padding hole between
455 		 * orig_gpr2 and fp_regs on s390.
456 		 */
457 		tmp = 0;
458 
459 	} else if (addr < (addr_t) (&dummy32->regs.fp_regs + 1)) {
460 		/*
461 		 * floating point regs. are stored in the thread structure
462 		 */
463 	        offset = addr - (addr_t) &dummy32->regs.fp_regs;
464 		tmp = *(__u32 *)((addr_t) &child->thread.fp_regs + offset);
465 
466 	} else if (addr < (addr_t) (&dummy32->regs.per_info + 1)) {
467 		/*
468 		 * per_info is found in the thread structure
469 		 */
470 		offset = addr - (addr_t) &dummy32->regs.per_info;
471 		/* This is magic. See per_struct and per_struct32. */
472 		if ((offset >= (addr_t) &dummy_per32->control_regs &&
473 		     offset < (addr_t) (&dummy_per32->control_regs + 1)) ||
474 		    (offset >= (addr_t) &dummy_per32->starting_addr &&
475 		     offset <= (addr_t) &dummy_per32->ending_addr) ||
476 		    offset == (addr_t) &dummy_per32->lowcore.words.address)
477 			offset = offset*2 + 4;
478 		else
479 			offset = offset*2;
480 		tmp = *(__u32 *)((addr_t) &child->thread.per_info + offset);
481 
482 	} else
483 		tmp = 0;
484 
485 	return tmp;
486 }
487 
488 static int peek_user_compat(struct task_struct *child,
489 			    addr_t addr, addr_t data)
490 {
491 	__u32 tmp;
492 
493 	if (!is_compat_task() || (addr & 3) || addr > sizeof(struct user) - 3)
494 		return -EIO;
495 
496 	tmp = __peek_user_compat(child, addr);
497 	return put_user(tmp, (__u32 __user *) data);
498 }
499 
500 /*
501  * Same as poke_user but for a 31 bit program.
502  */
503 static int __poke_user_compat(struct task_struct *child,
504 			      addr_t addr, addr_t data)
505 {
506 	struct user32 *dummy32 = NULL;
507 	per_struct32 *dummy_per32 = NULL;
508 	__u32 tmp = (__u32) data;
509 	addr_t offset;
510 
511 	if (addr < (addr_t) &dummy32->regs.acrs) {
512 		/*
513 		 * psw, gprs, acrs and orig_gpr2 are stored on the stack
514 		 */
515 		if (addr == (addr_t) &dummy32->regs.psw.mask) {
516 			/* Build a 64 bit psw mask from 31 bit mask. */
517 			if (tmp != PSW32_MASK_MERGE(psw32_user_bits, tmp))
518 				/* Invalid psw mask. */
519 				return -EINVAL;
520 			task_pt_regs(child)->psw.mask =
521 				PSW_MASK_MERGE(psw_user32_bits, (__u64) tmp << 32);
522 		} else if (addr == (addr_t) &dummy32->regs.psw.addr) {
523 			/* Build a 64 bit psw address from 31 bit address. */
524 			task_pt_regs(child)->psw.addr =
525 				(__u64) tmp & PSW32_ADDR_INSN;
526 		} else {
527 			/* gpr 0-15 */
528 			*(__u32*)((addr_t) &task_pt_regs(child)->psw
529 				  + addr*2 + 4) = tmp;
530 		}
531 	} else if (addr < (addr_t) (&dummy32->regs.orig_gpr2)) {
532 		/*
533 		 * access registers are stored in the thread structure
534 		 */
535 		offset = addr - (addr_t) &dummy32->regs.acrs;
536 		*(__u32*)((addr_t) &child->thread.acrs + offset) = tmp;
537 
538 	} else if (addr == (addr_t) (&dummy32->regs.orig_gpr2)) {
539 		/*
540 		 * orig_gpr2 is stored on the kernel stack
541 		 */
542 		*(__u32*)((addr_t) &task_pt_regs(child)->orig_gpr2 + 4) = tmp;
543 
544 	} else if (addr < (addr_t) &dummy32->regs.fp_regs) {
545 		/*
546 		 * prevent writess of padding hole between
547 		 * orig_gpr2 and fp_regs on s390.
548 		 */
549 		return 0;
550 
551 	} else if (addr < (addr_t) (&dummy32->regs.fp_regs + 1)) {
552 		/*
553 		 * floating point regs. are stored in the thread structure
554 		 */
555 		if (addr == (addr_t) &dummy32->regs.fp_regs.fpc &&
556 		    (tmp & ~FPC_VALID_MASK) != 0)
557 			/* Invalid floating point control. */
558 			return -EINVAL;
559 	        offset = addr - (addr_t) &dummy32->regs.fp_regs;
560 		*(__u32 *)((addr_t) &child->thread.fp_regs + offset) = tmp;
561 
562 	} else if (addr < (addr_t) (&dummy32->regs.per_info + 1)) {
563 		/*
564 		 * per_info is found in the thread structure.
565 		 */
566 		offset = addr - (addr_t) &dummy32->regs.per_info;
567 		/*
568 		 * This is magic. See per_struct and per_struct32.
569 		 * By incident the offsets in per_struct are exactly
570 		 * twice the offsets in per_struct32 for all fields.
571 		 * The 8 byte fields need special handling though,
572 		 * because the second half (bytes 4-7) is needed and
573 		 * not the first half.
574 		 */
575 		if ((offset >= (addr_t) &dummy_per32->control_regs &&
576 		     offset < (addr_t) (&dummy_per32->control_regs + 1)) ||
577 		    (offset >= (addr_t) &dummy_per32->starting_addr &&
578 		     offset <= (addr_t) &dummy_per32->ending_addr) ||
579 		    offset == (addr_t) &dummy_per32->lowcore.words.address)
580 			offset = offset*2 + 4;
581 		else
582 			offset = offset*2;
583 		*(__u32 *)((addr_t) &child->thread.per_info + offset) = tmp;
584 
585 	}
586 
587 	FixPerRegisters(child);
588 	return 0;
589 }
590 
591 static int poke_user_compat(struct task_struct *child,
592 			    addr_t addr, addr_t data)
593 {
594 	if (!is_compat_task() || (addr & 3) || addr > sizeof(struct user32) - 3)
595 		return -EIO;
596 
597 	return __poke_user_compat(child, addr, data);
598 }
599 
600 long compat_arch_ptrace(struct task_struct *child, compat_long_t request,
601 			compat_ulong_t caddr, compat_ulong_t cdata)
602 {
603 	unsigned long addr = caddr;
604 	unsigned long data = cdata;
605 	ptrace_area_emu31 parea;
606 	int copied, ret;
607 
608 	switch (request) {
609 	case PTRACE_PEEKUSR:
610 		/* read the word at location addr in the USER area. */
611 		return peek_user_compat(child, addr, data);
612 
613 	case PTRACE_POKEUSR:
614 		/* write the word at location addr in the USER area */
615 		return poke_user_compat(child, addr, data);
616 
617 	case PTRACE_PEEKUSR_AREA:
618 	case PTRACE_POKEUSR_AREA:
619 		if (copy_from_user(&parea, (void __force __user *) addr,
620 							sizeof(parea)))
621 			return -EFAULT;
622 		addr = parea.kernel_addr;
623 		data = parea.process_addr;
624 		copied = 0;
625 		while (copied < parea.len) {
626 			if (request == PTRACE_PEEKUSR_AREA)
627 				ret = peek_user_compat(child, addr, data);
628 			else {
629 				__u32 utmp;
630 				if (get_user(utmp,
631 					     (__u32 __force __user *) data))
632 					return -EFAULT;
633 				ret = poke_user_compat(child, addr, utmp);
634 			}
635 			if (ret)
636 				return ret;
637 			addr += sizeof(unsigned int);
638 			data += sizeof(unsigned int);
639 			copied += sizeof(unsigned int);
640 		}
641 		return 0;
642 	case PTRACE_GET_LAST_BREAK:
643 		put_user(task_thread_info(child)->last_break,
644 			 (unsigned int __user *) data);
645 		return 0;
646 	}
647 	return compat_ptrace_request(child, request, addr, data);
648 }
649 #endif
650 
651 asmlinkage long do_syscall_trace_enter(struct pt_regs *regs)
652 {
653 	long ret = 0;
654 
655 	/* Do the secure computing check first. */
656 	secure_computing(regs->gprs[2]);
657 
658 	/*
659 	 * The sysc_tracesys code in entry.S stored the system
660 	 * call number to gprs[2].
661 	 */
662 	if (test_thread_flag(TIF_SYSCALL_TRACE) &&
663 	    (tracehook_report_syscall_entry(regs) ||
664 	     regs->gprs[2] >= NR_syscalls)) {
665 		/*
666 		 * Tracing decided this syscall should not happen or the
667 		 * debugger stored an invalid system call number. Skip
668 		 * the system call and the system call restart handling.
669 		 */
670 		regs->svcnr = 0;
671 		ret = -1;
672 	}
673 
674 	if (unlikely(test_thread_flag(TIF_SYSCALL_TRACEPOINT)))
675 		trace_sys_enter(regs, regs->gprs[2]);
676 
677 	if (unlikely(current->audit_context))
678 		audit_syscall_entry(is_compat_task() ?
679 					AUDIT_ARCH_S390 : AUDIT_ARCH_S390X,
680 				    regs->gprs[2], regs->orig_gpr2,
681 				    regs->gprs[3], regs->gprs[4],
682 				    regs->gprs[5]);
683 	return ret ?: regs->gprs[2];
684 }
685 
686 asmlinkage void do_syscall_trace_exit(struct pt_regs *regs)
687 {
688 	if (unlikely(current->audit_context))
689 		audit_syscall_exit(AUDITSC_RESULT(regs->gprs[2]),
690 				   regs->gprs[2]);
691 
692 	if (unlikely(test_thread_flag(TIF_SYSCALL_TRACEPOINT)))
693 		trace_sys_exit(regs, regs->gprs[2]);
694 
695 	if (test_thread_flag(TIF_SYSCALL_TRACE))
696 		tracehook_report_syscall_exit(regs, 0);
697 }
698 
699 /*
700  * user_regset definitions.
701  */
702 
703 static int s390_regs_get(struct task_struct *target,
704 			 const struct user_regset *regset,
705 			 unsigned int pos, unsigned int count,
706 			 void *kbuf, void __user *ubuf)
707 {
708 	if (target == current)
709 		save_access_regs(target->thread.acrs);
710 
711 	if (kbuf) {
712 		unsigned long *k = kbuf;
713 		while (count > 0) {
714 			*k++ = __peek_user(target, pos);
715 			count -= sizeof(*k);
716 			pos += sizeof(*k);
717 		}
718 	} else {
719 		unsigned long __user *u = ubuf;
720 		while (count > 0) {
721 			if (__put_user(__peek_user(target, pos), u++))
722 				return -EFAULT;
723 			count -= sizeof(*u);
724 			pos += sizeof(*u);
725 		}
726 	}
727 	return 0;
728 }
729 
730 static int s390_regs_set(struct task_struct *target,
731 			 const struct user_regset *regset,
732 			 unsigned int pos, unsigned int count,
733 			 const void *kbuf, const void __user *ubuf)
734 {
735 	int rc = 0;
736 
737 	if (target == current)
738 		save_access_regs(target->thread.acrs);
739 
740 	if (kbuf) {
741 		const unsigned long *k = kbuf;
742 		while (count > 0 && !rc) {
743 			rc = __poke_user(target, pos, *k++);
744 			count -= sizeof(*k);
745 			pos += sizeof(*k);
746 		}
747 	} else {
748 		const unsigned long  __user *u = ubuf;
749 		while (count > 0 && !rc) {
750 			unsigned long word;
751 			rc = __get_user(word, u++);
752 			if (rc)
753 				break;
754 			rc = __poke_user(target, pos, word);
755 			count -= sizeof(*u);
756 			pos += sizeof(*u);
757 		}
758 	}
759 
760 	if (rc == 0 && target == current)
761 		restore_access_regs(target->thread.acrs);
762 
763 	return rc;
764 }
765 
766 static int s390_fpregs_get(struct task_struct *target,
767 			   const struct user_regset *regset, unsigned int pos,
768 			   unsigned int count, void *kbuf, void __user *ubuf)
769 {
770 	if (target == current)
771 		save_fp_regs(&target->thread.fp_regs);
772 
773 	return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
774 				   &target->thread.fp_regs, 0, -1);
775 }
776 
777 static int s390_fpregs_set(struct task_struct *target,
778 			   const struct user_regset *regset, unsigned int pos,
779 			   unsigned int count, const void *kbuf,
780 			   const void __user *ubuf)
781 {
782 	int rc = 0;
783 
784 	if (target == current)
785 		save_fp_regs(&target->thread.fp_regs);
786 
787 	/* If setting FPC, must validate it first. */
788 	if (count > 0 && pos < offsetof(s390_fp_regs, fprs)) {
789 		u32 fpc[2] = { target->thread.fp_regs.fpc, 0 };
790 		rc = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &fpc,
791 					0, offsetof(s390_fp_regs, fprs));
792 		if (rc)
793 			return rc;
794 		if ((fpc[0] & ~FPC_VALID_MASK) != 0 || fpc[1] != 0)
795 			return -EINVAL;
796 		target->thread.fp_regs.fpc = fpc[0];
797 	}
798 
799 	if (rc == 0 && count > 0)
800 		rc = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
801 					target->thread.fp_regs.fprs,
802 					offsetof(s390_fp_regs, fprs), -1);
803 
804 	if (rc == 0 && target == current)
805 		restore_fp_regs(&target->thread.fp_regs);
806 
807 	return rc;
808 }
809 
810 #ifdef CONFIG_64BIT
811 
812 static int s390_last_break_get(struct task_struct *target,
813 			       const struct user_regset *regset,
814 			       unsigned int pos, unsigned int count,
815 			       void *kbuf, void __user *ubuf)
816 {
817 	if (count > 0) {
818 		if (kbuf) {
819 			unsigned long *k = kbuf;
820 			*k = task_thread_info(target)->last_break;
821 		} else {
822 			unsigned long  __user *u = ubuf;
823 			if (__put_user(task_thread_info(target)->last_break, u))
824 				return -EFAULT;
825 		}
826 	}
827 	return 0;
828 }
829 
830 #endif
831 
832 static const struct user_regset s390_regsets[] = {
833 	[REGSET_GENERAL] = {
834 		.core_note_type = NT_PRSTATUS,
835 		.n = sizeof(s390_regs) / sizeof(long),
836 		.size = sizeof(long),
837 		.align = sizeof(long),
838 		.get = s390_regs_get,
839 		.set = s390_regs_set,
840 	},
841 	[REGSET_FP] = {
842 		.core_note_type = NT_PRFPREG,
843 		.n = sizeof(s390_fp_regs) / sizeof(long),
844 		.size = sizeof(long),
845 		.align = sizeof(long),
846 		.get = s390_fpregs_get,
847 		.set = s390_fpregs_set,
848 	},
849 #ifdef CONFIG_64BIT
850 	[REGSET_LAST_BREAK] = {
851 		.core_note_type = NT_S390_LAST_BREAK,
852 		.n = 1,
853 		.size = sizeof(long),
854 		.align = sizeof(long),
855 		.get = s390_last_break_get,
856 	},
857 #endif
858 };
859 
860 static const struct user_regset_view user_s390_view = {
861 	.name = UTS_MACHINE,
862 	.e_machine = EM_S390,
863 	.regsets = s390_regsets,
864 	.n = ARRAY_SIZE(s390_regsets)
865 };
866 
867 #ifdef CONFIG_COMPAT
868 static int s390_compat_regs_get(struct task_struct *target,
869 				const struct user_regset *regset,
870 				unsigned int pos, unsigned int count,
871 				void *kbuf, void __user *ubuf)
872 {
873 	if (target == current)
874 		save_access_regs(target->thread.acrs);
875 
876 	if (kbuf) {
877 		compat_ulong_t *k = kbuf;
878 		while (count > 0) {
879 			*k++ = __peek_user_compat(target, pos);
880 			count -= sizeof(*k);
881 			pos += sizeof(*k);
882 		}
883 	} else {
884 		compat_ulong_t __user *u = ubuf;
885 		while (count > 0) {
886 			if (__put_user(__peek_user_compat(target, pos), u++))
887 				return -EFAULT;
888 			count -= sizeof(*u);
889 			pos += sizeof(*u);
890 		}
891 	}
892 	return 0;
893 }
894 
895 static int s390_compat_regs_set(struct task_struct *target,
896 				const struct user_regset *regset,
897 				unsigned int pos, unsigned int count,
898 				const void *kbuf, const void __user *ubuf)
899 {
900 	int rc = 0;
901 
902 	if (target == current)
903 		save_access_regs(target->thread.acrs);
904 
905 	if (kbuf) {
906 		const compat_ulong_t *k = kbuf;
907 		while (count > 0 && !rc) {
908 			rc = __poke_user_compat(target, pos, *k++);
909 			count -= sizeof(*k);
910 			pos += sizeof(*k);
911 		}
912 	} else {
913 		const compat_ulong_t  __user *u = ubuf;
914 		while (count > 0 && !rc) {
915 			compat_ulong_t word;
916 			rc = __get_user(word, u++);
917 			if (rc)
918 				break;
919 			rc = __poke_user_compat(target, pos, word);
920 			count -= sizeof(*u);
921 			pos += sizeof(*u);
922 		}
923 	}
924 
925 	if (rc == 0 && target == current)
926 		restore_access_regs(target->thread.acrs);
927 
928 	return rc;
929 }
930 
931 static int s390_compat_regs_high_get(struct task_struct *target,
932 				     const struct user_regset *regset,
933 				     unsigned int pos, unsigned int count,
934 				     void *kbuf, void __user *ubuf)
935 {
936 	compat_ulong_t *gprs_high;
937 
938 	gprs_high = (compat_ulong_t *)
939 		&task_pt_regs(target)->gprs[pos / sizeof(compat_ulong_t)];
940 	if (kbuf) {
941 		compat_ulong_t *k = kbuf;
942 		while (count > 0) {
943 			*k++ = *gprs_high;
944 			gprs_high += 2;
945 			count -= sizeof(*k);
946 		}
947 	} else {
948 		compat_ulong_t __user *u = ubuf;
949 		while (count > 0) {
950 			if (__put_user(*gprs_high, u++))
951 				return -EFAULT;
952 			gprs_high += 2;
953 			count -= sizeof(*u);
954 		}
955 	}
956 	return 0;
957 }
958 
959 static int s390_compat_regs_high_set(struct task_struct *target,
960 				     const struct user_regset *regset,
961 				     unsigned int pos, unsigned int count,
962 				     const void *kbuf, const void __user *ubuf)
963 {
964 	compat_ulong_t *gprs_high;
965 	int rc = 0;
966 
967 	gprs_high = (compat_ulong_t *)
968 		&task_pt_regs(target)->gprs[pos / sizeof(compat_ulong_t)];
969 	if (kbuf) {
970 		const compat_ulong_t *k = kbuf;
971 		while (count > 0) {
972 			*gprs_high = *k++;
973 			*gprs_high += 2;
974 			count -= sizeof(*k);
975 		}
976 	} else {
977 		const compat_ulong_t  __user *u = ubuf;
978 		while (count > 0 && !rc) {
979 			unsigned long word;
980 			rc = __get_user(word, u++);
981 			if (rc)
982 				break;
983 			*gprs_high = word;
984 			*gprs_high += 2;
985 			count -= sizeof(*u);
986 		}
987 	}
988 
989 	return rc;
990 }
991 
992 static int s390_compat_last_break_get(struct task_struct *target,
993 				      const struct user_regset *regset,
994 				      unsigned int pos, unsigned int count,
995 				      void *kbuf, void __user *ubuf)
996 {
997 	compat_ulong_t last_break;
998 
999 	if (count > 0) {
1000 		last_break = task_thread_info(target)->last_break;
1001 		if (kbuf) {
1002 			unsigned long *k = kbuf;
1003 			*k = last_break;
1004 		} else {
1005 			unsigned long  __user *u = ubuf;
1006 			if (__put_user(last_break, u))
1007 				return -EFAULT;
1008 		}
1009 	}
1010 	return 0;
1011 }
1012 
1013 static const struct user_regset s390_compat_regsets[] = {
1014 	[REGSET_GENERAL] = {
1015 		.core_note_type = NT_PRSTATUS,
1016 		.n = sizeof(s390_compat_regs) / sizeof(compat_long_t),
1017 		.size = sizeof(compat_long_t),
1018 		.align = sizeof(compat_long_t),
1019 		.get = s390_compat_regs_get,
1020 		.set = s390_compat_regs_set,
1021 	},
1022 	[REGSET_FP] = {
1023 		.core_note_type = NT_PRFPREG,
1024 		.n = sizeof(s390_fp_regs) / sizeof(compat_long_t),
1025 		.size = sizeof(compat_long_t),
1026 		.align = sizeof(compat_long_t),
1027 		.get = s390_fpregs_get,
1028 		.set = s390_fpregs_set,
1029 	},
1030 	[REGSET_LAST_BREAK] = {
1031 		.core_note_type = NT_S390_LAST_BREAK,
1032 		.n = 1,
1033 		.size = sizeof(long),
1034 		.align = sizeof(long),
1035 		.get = s390_compat_last_break_get,
1036 	},
1037 	[REGSET_GENERAL_EXTENDED] = {
1038 		.core_note_type = NT_S390_HIGH_GPRS,
1039 		.n = sizeof(s390_compat_regs_high) / sizeof(compat_long_t),
1040 		.size = sizeof(compat_long_t),
1041 		.align = sizeof(compat_long_t),
1042 		.get = s390_compat_regs_high_get,
1043 		.set = s390_compat_regs_high_set,
1044 	},
1045 };
1046 
1047 static const struct user_regset_view user_s390_compat_view = {
1048 	.name = "s390",
1049 	.e_machine = EM_S390,
1050 	.regsets = s390_compat_regsets,
1051 	.n = ARRAY_SIZE(s390_compat_regsets)
1052 };
1053 #endif
1054 
1055 const struct user_regset_view *task_user_regset_view(struct task_struct *task)
1056 {
1057 #ifdef CONFIG_COMPAT
1058 	if (test_tsk_thread_flag(task, TIF_31BIT))
1059 		return &user_s390_compat_view;
1060 #endif
1061 	return &user_s390_view;
1062 }
1063 
1064 static const char *gpr_names[NUM_GPRS] = {
1065 	"r0", "r1",  "r2",  "r3",  "r4",  "r5",  "r6",  "r7",
1066 	"r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
1067 };
1068 
1069 unsigned long regs_get_register(struct pt_regs *regs, unsigned int offset)
1070 {
1071 	if (offset >= NUM_GPRS)
1072 		return 0;
1073 	return regs->gprs[offset];
1074 }
1075 
1076 int regs_query_register_offset(const char *name)
1077 {
1078 	unsigned long offset;
1079 
1080 	if (!name || *name != 'r')
1081 		return -EINVAL;
1082 	if (strict_strtoul(name + 1, 10, &offset))
1083 		return -EINVAL;
1084 	if (offset >= NUM_GPRS)
1085 		return -EINVAL;
1086 	return offset;
1087 }
1088 
1089 const char *regs_query_register_name(unsigned int offset)
1090 {
1091 	if (offset >= NUM_GPRS)
1092 		return NULL;
1093 	return gpr_names[offset];
1094 }
1095 
1096 static int regs_within_kernel_stack(struct pt_regs *regs, unsigned long addr)
1097 {
1098 	unsigned long ksp = kernel_stack_pointer(regs);
1099 
1100 	return (addr & ~(THREAD_SIZE - 1)) == (ksp & ~(THREAD_SIZE - 1));
1101 }
1102 
1103 /**
1104  * regs_get_kernel_stack_nth() - get Nth entry of the stack
1105  * @regs:pt_regs which contains kernel stack pointer.
1106  * @n:stack entry number.
1107  *
1108  * regs_get_kernel_stack_nth() returns @n th entry of the kernel stack which
1109  * is specifined by @regs. If the @n th entry is NOT in the kernel stack,
1110  * this returns 0.
1111  */
1112 unsigned long regs_get_kernel_stack_nth(struct pt_regs *regs, unsigned int n)
1113 {
1114 	unsigned long addr;
1115 
1116 	addr = kernel_stack_pointer(regs) + n * sizeof(long);
1117 	if (!regs_within_kernel_stack(regs, addr))
1118 		return 0;
1119 	return *(unsigned long *)addr;
1120 }
1121