xref: /openbmc/linux/arch/s390/kernel/ptrace.c (revision 861e10be)
1 /*
2  *  Ptrace user space interface.
3  *
4  *    Copyright IBM Corp. 1999, 2010
5  *    Author(s): Denis Joseph Barrow
6  *               Martin Schwidefsky (schwidefsky@de.ibm.com)
7  */
8 
9 #include <linux/kernel.h>
10 #include <linux/sched.h>
11 #include <linux/mm.h>
12 #include <linux/smp.h>
13 #include <linux/errno.h>
14 #include <linux/ptrace.h>
15 #include <linux/user.h>
16 #include <linux/security.h>
17 #include <linux/audit.h>
18 #include <linux/signal.h>
19 #include <linux/elf.h>
20 #include <linux/regset.h>
21 #include <linux/tracehook.h>
22 #include <linux/seccomp.h>
23 #include <linux/compat.h>
24 #include <trace/syscall.h>
25 #include <asm/segment.h>
26 #include <asm/page.h>
27 #include <asm/pgtable.h>
28 #include <asm/pgalloc.h>
29 #include <asm/uaccess.h>
30 #include <asm/unistd.h>
31 #include <asm/switch_to.h>
32 #include "entry.h"
33 
34 #ifdef CONFIG_COMPAT
35 #include "compat_ptrace.h"
36 #endif
37 
38 #define CREATE_TRACE_POINTS
39 #include <trace/events/syscalls.h>
40 
41 enum s390_regset {
42 	REGSET_GENERAL,
43 	REGSET_FP,
44 	REGSET_LAST_BREAK,
45 	REGSET_TDB,
46 	REGSET_SYSTEM_CALL,
47 	REGSET_GENERAL_EXTENDED,
48 };
49 
50 void update_per_regs(struct task_struct *task)
51 {
52 	struct pt_regs *regs = task_pt_regs(task);
53 	struct thread_struct *thread = &task->thread;
54 	struct per_regs old, new;
55 
56 #ifdef CONFIG_64BIT
57 	/* Take care of the enable/disable of transactional execution. */
58 	if (MACHINE_HAS_TE) {
59 		unsigned long cr0, cr0_new;
60 
61 		__ctl_store(cr0, 0, 0);
62 		/* set or clear transaction execution bits 8 and 9. */
63 		if (task->thread.per_flags & PER_FLAG_NO_TE)
64 			cr0_new = cr0 & ~(3UL << 54);
65 		else
66 			cr0_new = cr0 | (3UL << 54);
67 		/* Only load control register 0 if necessary. */
68 		if (cr0 != cr0_new)
69 			__ctl_load(cr0_new, 0, 0);
70 	}
71 #endif
72 	/* Copy user specified PER registers */
73 	new.control = thread->per_user.control;
74 	new.start = thread->per_user.start;
75 	new.end = thread->per_user.end;
76 
77 	/* merge TIF_SINGLE_STEP into user specified PER registers. */
78 	if (test_tsk_thread_flag(task, TIF_SINGLE_STEP)) {
79 		new.control |= PER_EVENT_IFETCH;
80 #ifdef CONFIG_64BIT
81 		new.control |= PER_CONTROL_SUSPENSION;
82 		new.control |= PER_EVENT_TRANSACTION_END;
83 #endif
84 		new.start = 0;
85 		new.end = PSW_ADDR_INSN;
86 	}
87 
88 	/* Take care of the PER enablement bit in the PSW. */
89 	if (!(new.control & PER_EVENT_MASK)) {
90 		regs->psw.mask &= ~PSW_MASK_PER;
91 		return;
92 	}
93 	regs->psw.mask |= PSW_MASK_PER;
94 	__ctl_store(old, 9, 11);
95 	if (memcmp(&new, &old, sizeof(struct per_regs)) != 0)
96 		__ctl_load(new, 9, 11);
97 }
98 
99 void user_enable_single_step(struct task_struct *task)
100 {
101 	set_tsk_thread_flag(task, TIF_SINGLE_STEP);
102 	if (task == current)
103 		update_per_regs(task);
104 }
105 
106 void user_disable_single_step(struct task_struct *task)
107 {
108 	clear_tsk_thread_flag(task, TIF_SINGLE_STEP);
109 	if (task == current)
110 		update_per_regs(task);
111 }
112 
113 /*
114  * Called by kernel/ptrace.c when detaching..
115  *
116  * Clear all debugging related fields.
117  */
118 void ptrace_disable(struct task_struct *task)
119 {
120 	memset(&task->thread.per_user, 0, sizeof(task->thread.per_user));
121 	memset(&task->thread.per_event, 0, sizeof(task->thread.per_event));
122 	clear_tsk_thread_flag(task, TIF_SINGLE_STEP);
123 	clear_tsk_thread_flag(task, TIF_PER_TRAP);
124 	task->thread.per_flags = 0;
125 }
126 
127 #ifndef CONFIG_64BIT
128 # define __ADDR_MASK 3
129 #else
130 # define __ADDR_MASK 7
131 #endif
132 
133 static inline unsigned long __peek_user_per(struct task_struct *child,
134 					    addr_t addr)
135 {
136 	struct per_struct_kernel *dummy = NULL;
137 
138 	if (addr == (addr_t) &dummy->cr9)
139 		/* Control bits of the active per set. */
140 		return test_thread_flag(TIF_SINGLE_STEP) ?
141 			PER_EVENT_IFETCH : child->thread.per_user.control;
142 	else if (addr == (addr_t) &dummy->cr10)
143 		/* Start address of the active per set. */
144 		return test_thread_flag(TIF_SINGLE_STEP) ?
145 			0 : child->thread.per_user.start;
146 	else if (addr == (addr_t) &dummy->cr11)
147 		/* End address of the active per set. */
148 		return test_thread_flag(TIF_SINGLE_STEP) ?
149 			PSW_ADDR_INSN : child->thread.per_user.end;
150 	else if (addr == (addr_t) &dummy->bits)
151 		/* Single-step bit. */
152 		return test_thread_flag(TIF_SINGLE_STEP) ?
153 			(1UL << (BITS_PER_LONG - 1)) : 0;
154 	else if (addr == (addr_t) &dummy->starting_addr)
155 		/* Start address of the user specified per set. */
156 		return child->thread.per_user.start;
157 	else if (addr == (addr_t) &dummy->ending_addr)
158 		/* End address of the user specified per set. */
159 		return child->thread.per_user.end;
160 	else if (addr == (addr_t) &dummy->perc_atmid)
161 		/* PER code, ATMID and AI of the last PER trap */
162 		return (unsigned long)
163 			child->thread.per_event.cause << (BITS_PER_LONG - 16);
164 	else if (addr == (addr_t) &dummy->address)
165 		/* Address of the last PER trap */
166 		return child->thread.per_event.address;
167 	else if (addr == (addr_t) &dummy->access_id)
168 		/* Access id of the last PER trap */
169 		return (unsigned long)
170 			child->thread.per_event.paid << (BITS_PER_LONG - 8);
171 	return 0;
172 }
173 
174 /*
175  * Read the word at offset addr from the user area of a process. The
176  * trouble here is that the information is littered over different
177  * locations. The process registers are found on the kernel stack,
178  * the floating point stuff and the trace settings are stored in
179  * the task structure. In addition the different structures in
180  * struct user contain pad bytes that should be read as zeroes.
181  * Lovely...
182  */
183 static unsigned long __peek_user(struct task_struct *child, addr_t addr)
184 {
185 	struct user *dummy = NULL;
186 	addr_t offset, tmp;
187 
188 	if (addr < (addr_t) &dummy->regs.acrs) {
189 		/*
190 		 * psw and gprs are stored on the stack
191 		 */
192 		tmp = *(addr_t *)((addr_t) &task_pt_regs(child)->psw + addr);
193 		if (addr == (addr_t) &dummy->regs.psw.mask)
194 			/* Return a clean psw mask. */
195 			tmp = psw_user_bits | (tmp & PSW_MASK_USER);
196 
197 	} else if (addr < (addr_t) &dummy->regs.orig_gpr2) {
198 		/*
199 		 * access registers are stored in the thread structure
200 		 */
201 		offset = addr - (addr_t) &dummy->regs.acrs;
202 #ifdef CONFIG_64BIT
203 		/*
204 		 * Very special case: old & broken 64 bit gdb reading
205 		 * from acrs[15]. Result is a 64 bit value. Read the
206 		 * 32 bit acrs[15] value and shift it by 32. Sick...
207 		 */
208 		if (addr == (addr_t) &dummy->regs.acrs[15])
209 			tmp = ((unsigned long) child->thread.acrs[15]) << 32;
210 		else
211 #endif
212 		tmp = *(addr_t *)((addr_t) &child->thread.acrs + offset);
213 
214 	} else if (addr == (addr_t) &dummy->regs.orig_gpr2) {
215 		/*
216 		 * orig_gpr2 is stored on the kernel stack
217 		 */
218 		tmp = (addr_t) task_pt_regs(child)->orig_gpr2;
219 
220 	} else if (addr < (addr_t) &dummy->regs.fp_regs) {
221 		/*
222 		 * prevent reads of padding hole between
223 		 * orig_gpr2 and fp_regs on s390.
224 		 */
225 		tmp = 0;
226 
227 	} else if (addr < (addr_t) (&dummy->regs.fp_regs + 1)) {
228 		/*
229 		 * floating point regs. are stored in the thread structure
230 		 */
231 		offset = addr - (addr_t) &dummy->regs.fp_regs;
232 		tmp = *(addr_t *)((addr_t) &child->thread.fp_regs + offset);
233 		if (addr == (addr_t) &dummy->regs.fp_regs.fpc)
234 			tmp &= (unsigned long) FPC_VALID_MASK
235 				<< (BITS_PER_LONG - 32);
236 
237 	} else if (addr < (addr_t) (&dummy->regs.per_info + 1)) {
238 		/*
239 		 * Handle access to the per_info structure.
240 		 */
241 		addr -= (addr_t) &dummy->regs.per_info;
242 		tmp = __peek_user_per(child, addr);
243 
244 	} else
245 		tmp = 0;
246 
247 	return tmp;
248 }
249 
250 static int
251 peek_user(struct task_struct *child, addr_t addr, addr_t data)
252 {
253 	addr_t tmp, mask;
254 
255 	/*
256 	 * Stupid gdb peeks/pokes the access registers in 64 bit with
257 	 * an alignment of 4. Programmers from hell...
258 	 */
259 	mask = __ADDR_MASK;
260 #ifdef CONFIG_64BIT
261 	if (addr >= (addr_t) &((struct user *) NULL)->regs.acrs &&
262 	    addr < (addr_t) &((struct user *) NULL)->regs.orig_gpr2)
263 		mask = 3;
264 #endif
265 	if ((addr & mask) || addr > sizeof(struct user) - __ADDR_MASK)
266 		return -EIO;
267 
268 	tmp = __peek_user(child, addr);
269 	return put_user(tmp, (addr_t __user *) data);
270 }
271 
272 static inline void __poke_user_per(struct task_struct *child,
273 				   addr_t addr, addr_t data)
274 {
275 	struct per_struct_kernel *dummy = NULL;
276 
277 	/*
278 	 * There are only three fields in the per_info struct that the
279 	 * debugger user can write to.
280 	 * 1) cr9: the debugger wants to set a new PER event mask
281 	 * 2) starting_addr: the debugger wants to set a new starting
282 	 *    address to use with the PER event mask.
283 	 * 3) ending_addr: the debugger wants to set a new ending
284 	 *    address to use with the PER event mask.
285 	 * The user specified PER event mask and the start and end
286 	 * addresses are used only if single stepping is not in effect.
287 	 * Writes to any other field in per_info are ignored.
288 	 */
289 	if (addr == (addr_t) &dummy->cr9)
290 		/* PER event mask of the user specified per set. */
291 		child->thread.per_user.control =
292 			data & (PER_EVENT_MASK | PER_CONTROL_MASK);
293 	else if (addr == (addr_t) &dummy->starting_addr)
294 		/* Starting address of the user specified per set. */
295 		child->thread.per_user.start = data;
296 	else if (addr == (addr_t) &dummy->ending_addr)
297 		/* Ending address of the user specified per set. */
298 		child->thread.per_user.end = data;
299 }
300 
301 /*
302  * Write a word to the user area of a process at location addr. This
303  * operation does have an additional problem compared to peek_user.
304  * Stores to the program status word and on the floating point
305  * control register needs to get checked for validity.
306  */
307 static int __poke_user(struct task_struct *child, addr_t addr, addr_t data)
308 {
309 	struct user *dummy = NULL;
310 	addr_t offset;
311 
312 	if (addr < (addr_t) &dummy->regs.acrs) {
313 		/*
314 		 * psw and gprs are stored on the stack
315 		 */
316 		if (addr == (addr_t) &dummy->regs.psw.mask &&
317 		    ((data & ~PSW_MASK_USER) != psw_user_bits ||
318 		     ((data & PSW_MASK_EA) && !(data & PSW_MASK_BA))))
319 			/* Invalid psw mask. */
320 			return -EINVAL;
321 		*(addr_t *)((addr_t) &task_pt_regs(child)->psw + addr) = data;
322 
323 	} else if (addr < (addr_t) (&dummy->regs.orig_gpr2)) {
324 		/*
325 		 * access registers are stored in the thread structure
326 		 */
327 		offset = addr - (addr_t) &dummy->regs.acrs;
328 #ifdef CONFIG_64BIT
329 		/*
330 		 * Very special case: old & broken 64 bit gdb writing
331 		 * to acrs[15] with a 64 bit value. Ignore the lower
332 		 * half of the value and write the upper 32 bit to
333 		 * acrs[15]. Sick...
334 		 */
335 		if (addr == (addr_t) &dummy->regs.acrs[15])
336 			child->thread.acrs[15] = (unsigned int) (data >> 32);
337 		else
338 #endif
339 		*(addr_t *)((addr_t) &child->thread.acrs + offset) = data;
340 
341 	} else if (addr == (addr_t) &dummy->regs.orig_gpr2) {
342 		/*
343 		 * orig_gpr2 is stored on the kernel stack
344 		 */
345 		task_pt_regs(child)->orig_gpr2 = data;
346 
347 	} else if (addr < (addr_t) &dummy->regs.fp_regs) {
348 		/*
349 		 * prevent writes of padding hole between
350 		 * orig_gpr2 and fp_regs on s390.
351 		 */
352 		return 0;
353 
354 	} else if (addr < (addr_t) (&dummy->regs.fp_regs + 1)) {
355 		/*
356 		 * floating point regs. are stored in the thread structure
357 		 */
358 		if (addr == (addr_t) &dummy->regs.fp_regs.fpc &&
359 		    (data & ~((unsigned long) FPC_VALID_MASK
360 			      << (BITS_PER_LONG - 32))) != 0)
361 			return -EINVAL;
362 		offset = addr - (addr_t) &dummy->regs.fp_regs;
363 		*(addr_t *)((addr_t) &child->thread.fp_regs + offset) = data;
364 
365 	} else if (addr < (addr_t) (&dummy->regs.per_info + 1)) {
366 		/*
367 		 * Handle access to the per_info structure.
368 		 */
369 		addr -= (addr_t) &dummy->regs.per_info;
370 		__poke_user_per(child, addr, data);
371 
372 	}
373 
374 	return 0;
375 }
376 
377 static int poke_user(struct task_struct *child, addr_t addr, addr_t data)
378 {
379 	addr_t mask;
380 
381 	/*
382 	 * Stupid gdb peeks/pokes the access registers in 64 bit with
383 	 * an alignment of 4. Programmers from hell indeed...
384 	 */
385 	mask = __ADDR_MASK;
386 #ifdef CONFIG_64BIT
387 	if (addr >= (addr_t) &((struct user *) NULL)->regs.acrs &&
388 	    addr < (addr_t) &((struct user *) NULL)->regs.orig_gpr2)
389 		mask = 3;
390 #endif
391 	if ((addr & mask) || addr > sizeof(struct user) - __ADDR_MASK)
392 		return -EIO;
393 
394 	return __poke_user(child, addr, data);
395 }
396 
397 long arch_ptrace(struct task_struct *child, long request,
398 		 unsigned long addr, unsigned long data)
399 {
400 	ptrace_area parea;
401 	int copied, ret;
402 
403 	switch (request) {
404 	case PTRACE_PEEKUSR:
405 		/* read the word at location addr in the USER area. */
406 		return peek_user(child, addr, data);
407 
408 	case PTRACE_POKEUSR:
409 		/* write the word at location addr in the USER area */
410 		return poke_user(child, addr, data);
411 
412 	case PTRACE_PEEKUSR_AREA:
413 	case PTRACE_POKEUSR_AREA:
414 		if (copy_from_user(&parea, (void __force __user *) addr,
415 							sizeof(parea)))
416 			return -EFAULT;
417 		addr = parea.kernel_addr;
418 		data = parea.process_addr;
419 		copied = 0;
420 		while (copied < parea.len) {
421 			if (request == PTRACE_PEEKUSR_AREA)
422 				ret = peek_user(child, addr, data);
423 			else {
424 				addr_t utmp;
425 				if (get_user(utmp,
426 					     (addr_t __force __user *) data))
427 					return -EFAULT;
428 				ret = poke_user(child, addr, utmp);
429 			}
430 			if (ret)
431 				return ret;
432 			addr += sizeof(unsigned long);
433 			data += sizeof(unsigned long);
434 			copied += sizeof(unsigned long);
435 		}
436 		return 0;
437 	case PTRACE_GET_LAST_BREAK:
438 		put_user(task_thread_info(child)->last_break,
439 			 (unsigned long __user *) data);
440 		return 0;
441 	case PTRACE_ENABLE_TE:
442 		if (!MACHINE_HAS_TE)
443 			return -EIO;
444 		child->thread.per_flags &= ~PER_FLAG_NO_TE;
445 		return 0;
446 	case PTRACE_DISABLE_TE:
447 		if (!MACHINE_HAS_TE)
448 			return -EIO;
449 		child->thread.per_flags |= PER_FLAG_NO_TE;
450 		return 0;
451 	default:
452 		/* Removing high order bit from addr (only for 31 bit). */
453 		addr &= PSW_ADDR_INSN;
454 		return ptrace_request(child, request, addr, data);
455 	}
456 }
457 
458 #ifdef CONFIG_COMPAT
459 /*
460  * Now the fun part starts... a 31 bit program running in the
461  * 31 bit emulation tracing another program. PTRACE_PEEKTEXT,
462  * PTRACE_PEEKDATA, PTRACE_POKETEXT and PTRACE_POKEDATA are easy
463  * to handle, the difference to the 64 bit versions of the requests
464  * is that the access is done in multiples of 4 byte instead of
465  * 8 bytes (sizeof(unsigned long) on 31/64 bit).
466  * The ugly part are PTRACE_PEEKUSR, PTRACE_PEEKUSR_AREA,
467  * PTRACE_POKEUSR and PTRACE_POKEUSR_AREA. If the traced program
468  * is a 31 bit program too, the content of struct user can be
469  * emulated. A 31 bit program peeking into the struct user of
470  * a 64 bit program is a no-no.
471  */
472 
473 /*
474  * Same as peek_user_per but for a 31 bit program.
475  */
476 static inline __u32 __peek_user_per_compat(struct task_struct *child,
477 					   addr_t addr)
478 {
479 	struct compat_per_struct_kernel *dummy32 = NULL;
480 
481 	if (addr == (addr_t) &dummy32->cr9)
482 		/* Control bits of the active per set. */
483 		return (__u32) test_thread_flag(TIF_SINGLE_STEP) ?
484 			PER_EVENT_IFETCH : child->thread.per_user.control;
485 	else if (addr == (addr_t) &dummy32->cr10)
486 		/* Start address of the active per set. */
487 		return (__u32) test_thread_flag(TIF_SINGLE_STEP) ?
488 			0 : child->thread.per_user.start;
489 	else if (addr == (addr_t) &dummy32->cr11)
490 		/* End address of the active per set. */
491 		return test_thread_flag(TIF_SINGLE_STEP) ?
492 			PSW32_ADDR_INSN : child->thread.per_user.end;
493 	else if (addr == (addr_t) &dummy32->bits)
494 		/* Single-step bit. */
495 		return (__u32) test_thread_flag(TIF_SINGLE_STEP) ?
496 			0x80000000 : 0;
497 	else if (addr == (addr_t) &dummy32->starting_addr)
498 		/* Start address of the user specified per set. */
499 		return (__u32) child->thread.per_user.start;
500 	else if (addr == (addr_t) &dummy32->ending_addr)
501 		/* End address of the user specified per set. */
502 		return (__u32) child->thread.per_user.end;
503 	else if (addr == (addr_t) &dummy32->perc_atmid)
504 		/* PER code, ATMID and AI of the last PER trap */
505 		return (__u32) child->thread.per_event.cause << 16;
506 	else if (addr == (addr_t) &dummy32->address)
507 		/* Address of the last PER trap */
508 		return (__u32) child->thread.per_event.address;
509 	else if (addr == (addr_t) &dummy32->access_id)
510 		/* Access id of the last PER trap */
511 		return (__u32) child->thread.per_event.paid << 24;
512 	return 0;
513 }
514 
515 /*
516  * Same as peek_user but for a 31 bit program.
517  */
518 static u32 __peek_user_compat(struct task_struct *child, addr_t addr)
519 {
520 	struct compat_user *dummy32 = NULL;
521 	addr_t offset;
522 	__u32 tmp;
523 
524 	if (addr < (addr_t) &dummy32->regs.acrs) {
525 		struct pt_regs *regs = task_pt_regs(child);
526 		/*
527 		 * psw and gprs are stored on the stack
528 		 */
529 		if (addr == (addr_t) &dummy32->regs.psw.mask) {
530 			/* Fake a 31 bit psw mask. */
531 			tmp = (__u32)(regs->psw.mask >> 32);
532 			tmp = psw32_user_bits | (tmp & PSW32_MASK_USER);
533 		} else if (addr == (addr_t) &dummy32->regs.psw.addr) {
534 			/* Fake a 31 bit psw address. */
535 			tmp = (__u32) regs->psw.addr |
536 				(__u32)(regs->psw.mask & PSW_MASK_BA);
537 		} else {
538 			/* gpr 0-15 */
539 			tmp = *(__u32 *)((addr_t) &regs->psw + addr*2 + 4);
540 		}
541 	} else if (addr < (addr_t) (&dummy32->regs.orig_gpr2)) {
542 		/*
543 		 * access registers are stored in the thread structure
544 		 */
545 		offset = addr - (addr_t) &dummy32->regs.acrs;
546 		tmp = *(__u32*)((addr_t) &child->thread.acrs + offset);
547 
548 	} else if (addr == (addr_t) (&dummy32->regs.orig_gpr2)) {
549 		/*
550 		 * orig_gpr2 is stored on the kernel stack
551 		 */
552 		tmp = *(__u32*)((addr_t) &task_pt_regs(child)->orig_gpr2 + 4);
553 
554 	} else if (addr < (addr_t) &dummy32->regs.fp_regs) {
555 		/*
556 		 * prevent reads of padding hole between
557 		 * orig_gpr2 and fp_regs on s390.
558 		 */
559 		tmp = 0;
560 
561 	} else if (addr < (addr_t) (&dummy32->regs.fp_regs + 1)) {
562 		/*
563 		 * floating point regs. are stored in the thread structure
564 		 */
565 	        offset = addr - (addr_t) &dummy32->regs.fp_regs;
566 		tmp = *(__u32 *)((addr_t) &child->thread.fp_regs + offset);
567 
568 	} else if (addr < (addr_t) (&dummy32->regs.per_info + 1)) {
569 		/*
570 		 * Handle access to the per_info structure.
571 		 */
572 		addr -= (addr_t) &dummy32->regs.per_info;
573 		tmp = __peek_user_per_compat(child, addr);
574 
575 	} else
576 		tmp = 0;
577 
578 	return tmp;
579 }
580 
581 static int peek_user_compat(struct task_struct *child,
582 			    addr_t addr, addr_t data)
583 {
584 	__u32 tmp;
585 
586 	if (!is_compat_task() || (addr & 3) || addr > sizeof(struct user) - 3)
587 		return -EIO;
588 
589 	tmp = __peek_user_compat(child, addr);
590 	return put_user(tmp, (__u32 __user *) data);
591 }
592 
593 /*
594  * Same as poke_user_per but for a 31 bit program.
595  */
596 static inline void __poke_user_per_compat(struct task_struct *child,
597 					  addr_t addr, __u32 data)
598 {
599 	struct compat_per_struct_kernel *dummy32 = NULL;
600 
601 	if (addr == (addr_t) &dummy32->cr9)
602 		/* PER event mask of the user specified per set. */
603 		child->thread.per_user.control =
604 			data & (PER_EVENT_MASK | PER_CONTROL_MASK);
605 	else if (addr == (addr_t) &dummy32->starting_addr)
606 		/* Starting address of the user specified per set. */
607 		child->thread.per_user.start = data;
608 	else if (addr == (addr_t) &dummy32->ending_addr)
609 		/* Ending address of the user specified per set. */
610 		child->thread.per_user.end = data;
611 }
612 
613 /*
614  * Same as poke_user but for a 31 bit program.
615  */
616 static int __poke_user_compat(struct task_struct *child,
617 			      addr_t addr, addr_t data)
618 {
619 	struct compat_user *dummy32 = NULL;
620 	__u32 tmp = (__u32) data;
621 	addr_t offset;
622 
623 	if (addr < (addr_t) &dummy32->regs.acrs) {
624 		struct pt_regs *regs = task_pt_regs(child);
625 		/*
626 		 * psw, gprs, acrs and orig_gpr2 are stored on the stack
627 		 */
628 		if (addr == (addr_t) &dummy32->regs.psw.mask) {
629 			/* Build a 64 bit psw mask from 31 bit mask. */
630 			if ((tmp & ~PSW32_MASK_USER) != psw32_user_bits)
631 				/* Invalid psw mask. */
632 				return -EINVAL;
633 			regs->psw.mask = (regs->psw.mask & ~PSW_MASK_USER) |
634 				(regs->psw.mask & PSW_MASK_BA) |
635 				(__u64)(tmp & PSW32_MASK_USER) << 32;
636 		} else if (addr == (addr_t) &dummy32->regs.psw.addr) {
637 			/* Build a 64 bit psw address from 31 bit address. */
638 			regs->psw.addr = (__u64) tmp & PSW32_ADDR_INSN;
639 			/* Transfer 31 bit amode bit to psw mask. */
640 			regs->psw.mask = (regs->psw.mask & ~PSW_MASK_BA) |
641 				(__u64)(tmp & PSW32_ADDR_AMODE);
642 		} else {
643 			/* gpr 0-15 */
644 			*(__u32*)((addr_t) &regs->psw + addr*2 + 4) = tmp;
645 		}
646 	} else if (addr < (addr_t) (&dummy32->regs.orig_gpr2)) {
647 		/*
648 		 * access registers are stored in the thread structure
649 		 */
650 		offset = addr - (addr_t) &dummy32->regs.acrs;
651 		*(__u32*)((addr_t) &child->thread.acrs + offset) = tmp;
652 
653 	} else if (addr == (addr_t) (&dummy32->regs.orig_gpr2)) {
654 		/*
655 		 * orig_gpr2 is stored on the kernel stack
656 		 */
657 		*(__u32*)((addr_t) &task_pt_regs(child)->orig_gpr2 + 4) = tmp;
658 
659 	} else if (addr < (addr_t) &dummy32->regs.fp_regs) {
660 		/*
661 		 * prevent writess of padding hole between
662 		 * orig_gpr2 and fp_regs on s390.
663 		 */
664 		return 0;
665 
666 	} else if (addr < (addr_t) (&dummy32->regs.fp_regs + 1)) {
667 		/*
668 		 * floating point regs. are stored in the thread structure
669 		 */
670 		if (addr == (addr_t) &dummy32->regs.fp_regs.fpc &&
671 		    (tmp & ~FPC_VALID_MASK) != 0)
672 			/* Invalid floating point control. */
673 			return -EINVAL;
674 	        offset = addr - (addr_t) &dummy32->regs.fp_regs;
675 		*(__u32 *)((addr_t) &child->thread.fp_regs + offset) = tmp;
676 
677 	} else if (addr < (addr_t) (&dummy32->regs.per_info + 1)) {
678 		/*
679 		 * Handle access to the per_info structure.
680 		 */
681 		addr -= (addr_t) &dummy32->regs.per_info;
682 		__poke_user_per_compat(child, addr, data);
683 	}
684 
685 	return 0;
686 }
687 
688 static int poke_user_compat(struct task_struct *child,
689 			    addr_t addr, addr_t data)
690 {
691 	if (!is_compat_task() || (addr & 3) ||
692 	    addr > sizeof(struct compat_user) - 3)
693 		return -EIO;
694 
695 	return __poke_user_compat(child, addr, data);
696 }
697 
698 long compat_arch_ptrace(struct task_struct *child, compat_long_t request,
699 			compat_ulong_t caddr, compat_ulong_t cdata)
700 {
701 	unsigned long addr = caddr;
702 	unsigned long data = cdata;
703 	compat_ptrace_area parea;
704 	int copied, ret;
705 
706 	switch (request) {
707 	case PTRACE_PEEKUSR:
708 		/* read the word at location addr in the USER area. */
709 		return peek_user_compat(child, addr, data);
710 
711 	case PTRACE_POKEUSR:
712 		/* write the word at location addr in the USER area */
713 		return poke_user_compat(child, addr, data);
714 
715 	case PTRACE_PEEKUSR_AREA:
716 	case PTRACE_POKEUSR_AREA:
717 		if (copy_from_user(&parea, (void __force __user *) addr,
718 							sizeof(parea)))
719 			return -EFAULT;
720 		addr = parea.kernel_addr;
721 		data = parea.process_addr;
722 		copied = 0;
723 		while (copied < parea.len) {
724 			if (request == PTRACE_PEEKUSR_AREA)
725 				ret = peek_user_compat(child, addr, data);
726 			else {
727 				__u32 utmp;
728 				if (get_user(utmp,
729 					     (__u32 __force __user *) data))
730 					return -EFAULT;
731 				ret = poke_user_compat(child, addr, utmp);
732 			}
733 			if (ret)
734 				return ret;
735 			addr += sizeof(unsigned int);
736 			data += sizeof(unsigned int);
737 			copied += sizeof(unsigned int);
738 		}
739 		return 0;
740 	case PTRACE_GET_LAST_BREAK:
741 		put_user(task_thread_info(child)->last_break,
742 			 (unsigned int __user *) data);
743 		return 0;
744 	}
745 	return compat_ptrace_request(child, request, addr, data);
746 }
747 #endif
748 
749 asmlinkage long do_syscall_trace_enter(struct pt_regs *regs)
750 {
751 	long ret = 0;
752 
753 	/* Do the secure computing check first. */
754 	if (secure_computing(regs->gprs[2])) {
755 		/* seccomp failures shouldn't expose any additional code. */
756 		ret = -1;
757 		goto out;
758 	}
759 
760 	/*
761 	 * The sysc_tracesys code in entry.S stored the system
762 	 * call number to gprs[2].
763 	 */
764 	if (test_thread_flag(TIF_SYSCALL_TRACE) &&
765 	    (tracehook_report_syscall_entry(regs) ||
766 	     regs->gprs[2] >= NR_syscalls)) {
767 		/*
768 		 * Tracing decided this syscall should not happen or the
769 		 * debugger stored an invalid system call number. Skip
770 		 * the system call and the system call restart handling.
771 		 */
772 		clear_thread_flag(TIF_SYSCALL);
773 		ret = -1;
774 	}
775 
776 	if (unlikely(test_thread_flag(TIF_SYSCALL_TRACEPOINT)))
777 		trace_sys_enter(regs, regs->gprs[2]);
778 
779 	audit_syscall_entry(is_compat_task() ?
780 				AUDIT_ARCH_S390 : AUDIT_ARCH_S390X,
781 			    regs->gprs[2], regs->orig_gpr2,
782 			    regs->gprs[3], regs->gprs[4],
783 			    regs->gprs[5]);
784 out:
785 	return ret ?: regs->gprs[2];
786 }
787 
788 asmlinkage void do_syscall_trace_exit(struct pt_regs *regs)
789 {
790 	audit_syscall_exit(regs);
791 
792 	if (unlikely(test_thread_flag(TIF_SYSCALL_TRACEPOINT)))
793 		trace_sys_exit(regs, regs->gprs[2]);
794 
795 	if (test_thread_flag(TIF_SYSCALL_TRACE))
796 		tracehook_report_syscall_exit(regs, 0);
797 }
798 
799 /*
800  * user_regset definitions.
801  */
802 
803 static int s390_regs_get(struct task_struct *target,
804 			 const struct user_regset *regset,
805 			 unsigned int pos, unsigned int count,
806 			 void *kbuf, void __user *ubuf)
807 {
808 	if (target == current)
809 		save_access_regs(target->thread.acrs);
810 
811 	if (kbuf) {
812 		unsigned long *k = kbuf;
813 		while (count > 0) {
814 			*k++ = __peek_user(target, pos);
815 			count -= sizeof(*k);
816 			pos += sizeof(*k);
817 		}
818 	} else {
819 		unsigned long __user *u = ubuf;
820 		while (count > 0) {
821 			if (__put_user(__peek_user(target, pos), u++))
822 				return -EFAULT;
823 			count -= sizeof(*u);
824 			pos += sizeof(*u);
825 		}
826 	}
827 	return 0;
828 }
829 
830 static int s390_regs_set(struct task_struct *target,
831 			 const struct user_regset *regset,
832 			 unsigned int pos, unsigned int count,
833 			 const void *kbuf, const void __user *ubuf)
834 {
835 	int rc = 0;
836 
837 	if (target == current)
838 		save_access_regs(target->thread.acrs);
839 
840 	if (kbuf) {
841 		const unsigned long *k = kbuf;
842 		while (count > 0 && !rc) {
843 			rc = __poke_user(target, pos, *k++);
844 			count -= sizeof(*k);
845 			pos += sizeof(*k);
846 		}
847 	} else {
848 		const unsigned long  __user *u = ubuf;
849 		while (count > 0 && !rc) {
850 			unsigned long word;
851 			rc = __get_user(word, u++);
852 			if (rc)
853 				break;
854 			rc = __poke_user(target, pos, word);
855 			count -= sizeof(*u);
856 			pos += sizeof(*u);
857 		}
858 	}
859 
860 	if (rc == 0 && target == current)
861 		restore_access_regs(target->thread.acrs);
862 
863 	return rc;
864 }
865 
866 static int s390_fpregs_get(struct task_struct *target,
867 			   const struct user_regset *regset, unsigned int pos,
868 			   unsigned int count, void *kbuf, void __user *ubuf)
869 {
870 	if (target == current)
871 		save_fp_regs(&target->thread.fp_regs);
872 
873 	return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
874 				   &target->thread.fp_regs, 0, -1);
875 }
876 
877 static int s390_fpregs_set(struct task_struct *target,
878 			   const struct user_regset *regset, unsigned int pos,
879 			   unsigned int count, const void *kbuf,
880 			   const void __user *ubuf)
881 {
882 	int rc = 0;
883 
884 	if (target == current)
885 		save_fp_regs(&target->thread.fp_regs);
886 
887 	/* If setting FPC, must validate it first. */
888 	if (count > 0 && pos < offsetof(s390_fp_regs, fprs)) {
889 		u32 fpc[2] = { target->thread.fp_regs.fpc, 0 };
890 		rc = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &fpc,
891 					0, offsetof(s390_fp_regs, fprs));
892 		if (rc)
893 			return rc;
894 		if ((fpc[0] & ~FPC_VALID_MASK) != 0 || fpc[1] != 0)
895 			return -EINVAL;
896 		target->thread.fp_regs.fpc = fpc[0];
897 	}
898 
899 	if (rc == 0 && count > 0)
900 		rc = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
901 					target->thread.fp_regs.fprs,
902 					offsetof(s390_fp_regs, fprs), -1);
903 
904 	if (rc == 0 && target == current)
905 		restore_fp_regs(&target->thread.fp_regs);
906 
907 	return rc;
908 }
909 
910 #ifdef CONFIG_64BIT
911 
912 static int s390_last_break_get(struct task_struct *target,
913 			       const struct user_regset *regset,
914 			       unsigned int pos, unsigned int count,
915 			       void *kbuf, void __user *ubuf)
916 {
917 	if (count > 0) {
918 		if (kbuf) {
919 			unsigned long *k = kbuf;
920 			*k = task_thread_info(target)->last_break;
921 		} else {
922 			unsigned long  __user *u = ubuf;
923 			if (__put_user(task_thread_info(target)->last_break, u))
924 				return -EFAULT;
925 		}
926 	}
927 	return 0;
928 }
929 
930 static int s390_last_break_set(struct task_struct *target,
931 			       const struct user_regset *regset,
932 			       unsigned int pos, unsigned int count,
933 			       const void *kbuf, const void __user *ubuf)
934 {
935 	return 0;
936 }
937 
938 static int s390_tdb_get(struct task_struct *target,
939 			const struct user_regset *regset,
940 			unsigned int pos, unsigned int count,
941 			void *kbuf, void __user *ubuf)
942 {
943 	struct pt_regs *regs = task_pt_regs(target);
944 	unsigned char *data;
945 
946 	if (!(regs->int_code & 0x200))
947 		return -ENODATA;
948 	data = target->thread.trap_tdb;
949 	return user_regset_copyout(&pos, &count, &kbuf, &ubuf, data, 0, 256);
950 }
951 
952 static int s390_tdb_set(struct task_struct *target,
953 			const struct user_regset *regset,
954 			unsigned int pos, unsigned int count,
955 			const void *kbuf, const void __user *ubuf)
956 {
957 	return 0;
958 }
959 
960 #endif
961 
962 static int s390_system_call_get(struct task_struct *target,
963 				const struct user_regset *regset,
964 				unsigned int pos, unsigned int count,
965 				void *kbuf, void __user *ubuf)
966 {
967 	unsigned int *data = &task_thread_info(target)->system_call;
968 	return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
969 				   data, 0, sizeof(unsigned int));
970 }
971 
972 static int s390_system_call_set(struct task_struct *target,
973 				const struct user_regset *regset,
974 				unsigned int pos, unsigned int count,
975 				const void *kbuf, const void __user *ubuf)
976 {
977 	unsigned int *data = &task_thread_info(target)->system_call;
978 	return user_regset_copyin(&pos, &count, &kbuf, &ubuf,
979 				  data, 0, sizeof(unsigned int));
980 }
981 
982 static const struct user_regset s390_regsets[] = {
983 	[REGSET_GENERAL] = {
984 		.core_note_type = NT_PRSTATUS,
985 		.n = sizeof(s390_regs) / sizeof(long),
986 		.size = sizeof(long),
987 		.align = sizeof(long),
988 		.get = s390_regs_get,
989 		.set = s390_regs_set,
990 	},
991 	[REGSET_FP] = {
992 		.core_note_type = NT_PRFPREG,
993 		.n = sizeof(s390_fp_regs) / sizeof(long),
994 		.size = sizeof(long),
995 		.align = sizeof(long),
996 		.get = s390_fpregs_get,
997 		.set = s390_fpregs_set,
998 	},
999 #ifdef CONFIG_64BIT
1000 	[REGSET_LAST_BREAK] = {
1001 		.core_note_type = NT_S390_LAST_BREAK,
1002 		.n = 1,
1003 		.size = sizeof(long),
1004 		.align = sizeof(long),
1005 		.get = s390_last_break_get,
1006 		.set = s390_last_break_set,
1007 	},
1008 	[REGSET_TDB] = {
1009 		.core_note_type = NT_S390_TDB,
1010 		.n = 1,
1011 		.size = 256,
1012 		.align = 1,
1013 		.get = s390_tdb_get,
1014 		.set = s390_tdb_set,
1015 	},
1016 #endif
1017 	[REGSET_SYSTEM_CALL] = {
1018 		.core_note_type = NT_S390_SYSTEM_CALL,
1019 		.n = 1,
1020 		.size = sizeof(unsigned int),
1021 		.align = sizeof(unsigned int),
1022 		.get = s390_system_call_get,
1023 		.set = s390_system_call_set,
1024 	},
1025 };
1026 
1027 static const struct user_regset_view user_s390_view = {
1028 	.name = UTS_MACHINE,
1029 	.e_machine = EM_S390,
1030 	.regsets = s390_regsets,
1031 	.n = ARRAY_SIZE(s390_regsets)
1032 };
1033 
1034 #ifdef CONFIG_COMPAT
1035 static int s390_compat_regs_get(struct task_struct *target,
1036 				const struct user_regset *regset,
1037 				unsigned int pos, unsigned int count,
1038 				void *kbuf, void __user *ubuf)
1039 {
1040 	if (target == current)
1041 		save_access_regs(target->thread.acrs);
1042 
1043 	if (kbuf) {
1044 		compat_ulong_t *k = kbuf;
1045 		while (count > 0) {
1046 			*k++ = __peek_user_compat(target, pos);
1047 			count -= sizeof(*k);
1048 			pos += sizeof(*k);
1049 		}
1050 	} else {
1051 		compat_ulong_t __user *u = ubuf;
1052 		while (count > 0) {
1053 			if (__put_user(__peek_user_compat(target, pos), u++))
1054 				return -EFAULT;
1055 			count -= sizeof(*u);
1056 			pos += sizeof(*u);
1057 		}
1058 	}
1059 	return 0;
1060 }
1061 
1062 static int s390_compat_regs_set(struct task_struct *target,
1063 				const struct user_regset *regset,
1064 				unsigned int pos, unsigned int count,
1065 				const void *kbuf, const void __user *ubuf)
1066 {
1067 	int rc = 0;
1068 
1069 	if (target == current)
1070 		save_access_regs(target->thread.acrs);
1071 
1072 	if (kbuf) {
1073 		const compat_ulong_t *k = kbuf;
1074 		while (count > 0 && !rc) {
1075 			rc = __poke_user_compat(target, pos, *k++);
1076 			count -= sizeof(*k);
1077 			pos += sizeof(*k);
1078 		}
1079 	} else {
1080 		const compat_ulong_t  __user *u = ubuf;
1081 		while (count > 0 && !rc) {
1082 			compat_ulong_t word;
1083 			rc = __get_user(word, u++);
1084 			if (rc)
1085 				break;
1086 			rc = __poke_user_compat(target, pos, word);
1087 			count -= sizeof(*u);
1088 			pos += sizeof(*u);
1089 		}
1090 	}
1091 
1092 	if (rc == 0 && target == current)
1093 		restore_access_regs(target->thread.acrs);
1094 
1095 	return rc;
1096 }
1097 
1098 static int s390_compat_regs_high_get(struct task_struct *target,
1099 				     const struct user_regset *regset,
1100 				     unsigned int pos, unsigned int count,
1101 				     void *kbuf, void __user *ubuf)
1102 {
1103 	compat_ulong_t *gprs_high;
1104 
1105 	gprs_high = (compat_ulong_t *)
1106 		&task_pt_regs(target)->gprs[pos / sizeof(compat_ulong_t)];
1107 	if (kbuf) {
1108 		compat_ulong_t *k = kbuf;
1109 		while (count > 0) {
1110 			*k++ = *gprs_high;
1111 			gprs_high += 2;
1112 			count -= sizeof(*k);
1113 		}
1114 	} else {
1115 		compat_ulong_t __user *u = ubuf;
1116 		while (count > 0) {
1117 			if (__put_user(*gprs_high, u++))
1118 				return -EFAULT;
1119 			gprs_high += 2;
1120 			count -= sizeof(*u);
1121 		}
1122 	}
1123 	return 0;
1124 }
1125 
1126 static int s390_compat_regs_high_set(struct task_struct *target,
1127 				     const struct user_regset *regset,
1128 				     unsigned int pos, unsigned int count,
1129 				     const void *kbuf, const void __user *ubuf)
1130 {
1131 	compat_ulong_t *gprs_high;
1132 	int rc = 0;
1133 
1134 	gprs_high = (compat_ulong_t *)
1135 		&task_pt_regs(target)->gprs[pos / sizeof(compat_ulong_t)];
1136 	if (kbuf) {
1137 		const compat_ulong_t *k = kbuf;
1138 		while (count > 0) {
1139 			*gprs_high = *k++;
1140 			*gprs_high += 2;
1141 			count -= sizeof(*k);
1142 		}
1143 	} else {
1144 		const compat_ulong_t  __user *u = ubuf;
1145 		while (count > 0 && !rc) {
1146 			unsigned long word;
1147 			rc = __get_user(word, u++);
1148 			if (rc)
1149 				break;
1150 			*gprs_high = word;
1151 			*gprs_high += 2;
1152 			count -= sizeof(*u);
1153 		}
1154 	}
1155 
1156 	return rc;
1157 }
1158 
1159 static int s390_compat_last_break_get(struct task_struct *target,
1160 				      const struct user_regset *regset,
1161 				      unsigned int pos, unsigned int count,
1162 				      void *kbuf, void __user *ubuf)
1163 {
1164 	compat_ulong_t last_break;
1165 
1166 	if (count > 0) {
1167 		last_break = task_thread_info(target)->last_break;
1168 		if (kbuf) {
1169 			unsigned long *k = kbuf;
1170 			*k = last_break;
1171 		} else {
1172 			unsigned long  __user *u = ubuf;
1173 			if (__put_user(last_break, u))
1174 				return -EFAULT;
1175 		}
1176 	}
1177 	return 0;
1178 }
1179 
1180 static int s390_compat_last_break_set(struct task_struct *target,
1181 				      const struct user_regset *regset,
1182 				      unsigned int pos, unsigned int count,
1183 				      const void *kbuf, const void __user *ubuf)
1184 {
1185 	return 0;
1186 }
1187 
1188 static const struct user_regset s390_compat_regsets[] = {
1189 	[REGSET_GENERAL] = {
1190 		.core_note_type = NT_PRSTATUS,
1191 		.n = sizeof(s390_compat_regs) / sizeof(compat_long_t),
1192 		.size = sizeof(compat_long_t),
1193 		.align = sizeof(compat_long_t),
1194 		.get = s390_compat_regs_get,
1195 		.set = s390_compat_regs_set,
1196 	},
1197 	[REGSET_FP] = {
1198 		.core_note_type = NT_PRFPREG,
1199 		.n = sizeof(s390_fp_regs) / sizeof(compat_long_t),
1200 		.size = sizeof(compat_long_t),
1201 		.align = sizeof(compat_long_t),
1202 		.get = s390_fpregs_get,
1203 		.set = s390_fpregs_set,
1204 	},
1205 	[REGSET_LAST_BREAK] = {
1206 		.core_note_type = NT_S390_LAST_BREAK,
1207 		.n = 1,
1208 		.size = sizeof(long),
1209 		.align = sizeof(long),
1210 		.get = s390_compat_last_break_get,
1211 		.set = s390_compat_last_break_set,
1212 	},
1213 	[REGSET_TDB] = {
1214 		.core_note_type = NT_S390_TDB,
1215 		.n = 1,
1216 		.size = 256,
1217 		.align = 1,
1218 		.get = s390_tdb_get,
1219 		.set = s390_tdb_set,
1220 	},
1221 	[REGSET_SYSTEM_CALL] = {
1222 		.core_note_type = NT_S390_SYSTEM_CALL,
1223 		.n = 1,
1224 		.size = sizeof(compat_uint_t),
1225 		.align = sizeof(compat_uint_t),
1226 		.get = s390_system_call_get,
1227 		.set = s390_system_call_set,
1228 	},
1229 	[REGSET_GENERAL_EXTENDED] = {
1230 		.core_note_type = NT_S390_HIGH_GPRS,
1231 		.n = sizeof(s390_compat_regs_high) / sizeof(compat_long_t),
1232 		.size = sizeof(compat_long_t),
1233 		.align = sizeof(compat_long_t),
1234 		.get = s390_compat_regs_high_get,
1235 		.set = s390_compat_regs_high_set,
1236 	},
1237 };
1238 
1239 static const struct user_regset_view user_s390_compat_view = {
1240 	.name = "s390",
1241 	.e_machine = EM_S390,
1242 	.regsets = s390_compat_regsets,
1243 	.n = ARRAY_SIZE(s390_compat_regsets)
1244 };
1245 #endif
1246 
1247 const struct user_regset_view *task_user_regset_view(struct task_struct *task)
1248 {
1249 #ifdef CONFIG_COMPAT
1250 	if (test_tsk_thread_flag(task, TIF_31BIT))
1251 		return &user_s390_compat_view;
1252 #endif
1253 	return &user_s390_view;
1254 }
1255 
1256 static const char *gpr_names[NUM_GPRS] = {
1257 	"r0", "r1",  "r2",  "r3",  "r4",  "r5",  "r6",  "r7",
1258 	"r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
1259 };
1260 
1261 unsigned long regs_get_register(struct pt_regs *regs, unsigned int offset)
1262 {
1263 	if (offset >= NUM_GPRS)
1264 		return 0;
1265 	return regs->gprs[offset];
1266 }
1267 
1268 int regs_query_register_offset(const char *name)
1269 {
1270 	unsigned long offset;
1271 
1272 	if (!name || *name != 'r')
1273 		return -EINVAL;
1274 	if (strict_strtoul(name + 1, 10, &offset))
1275 		return -EINVAL;
1276 	if (offset >= NUM_GPRS)
1277 		return -EINVAL;
1278 	return offset;
1279 }
1280 
1281 const char *regs_query_register_name(unsigned int offset)
1282 {
1283 	if (offset >= NUM_GPRS)
1284 		return NULL;
1285 	return gpr_names[offset];
1286 }
1287 
1288 static int regs_within_kernel_stack(struct pt_regs *regs, unsigned long addr)
1289 {
1290 	unsigned long ksp = kernel_stack_pointer(regs);
1291 
1292 	return (addr & ~(THREAD_SIZE - 1)) == (ksp & ~(THREAD_SIZE - 1));
1293 }
1294 
1295 /**
1296  * regs_get_kernel_stack_nth() - get Nth entry of the stack
1297  * @regs:pt_regs which contains kernel stack pointer.
1298  * @n:stack entry number.
1299  *
1300  * regs_get_kernel_stack_nth() returns @n th entry of the kernel stack which
1301  * is specifined by @regs. If the @n th entry is NOT in the kernel stack,
1302  * this returns 0.
1303  */
1304 unsigned long regs_get_kernel_stack_nth(struct pt_regs *regs, unsigned int n)
1305 {
1306 	unsigned long addr;
1307 
1308 	addr = kernel_stack_pointer(regs) + n * sizeof(long);
1309 	if (!regs_within_kernel_stack(regs, addr))
1310 		return 0;
1311 	return *(unsigned long *)addr;
1312 }
1313