xref: /openbmc/linux/arch/s390/kernel/ptrace.c (revision 63dc02bd)
1 /*
2  *  Ptrace user space interface.
3  *
4  *    Copyright IBM Corp. 1999,2010
5  *    Author(s): Denis Joseph Barrow
6  *               Martin Schwidefsky (schwidefsky@de.ibm.com)
7  */
8 
9 #include <linux/kernel.h>
10 #include <linux/sched.h>
11 #include <linux/mm.h>
12 #include <linux/smp.h>
13 #include <linux/errno.h>
14 #include <linux/ptrace.h>
15 #include <linux/user.h>
16 #include <linux/security.h>
17 #include <linux/audit.h>
18 #include <linux/signal.h>
19 #include <linux/elf.h>
20 #include <linux/regset.h>
21 #include <linux/tracehook.h>
22 #include <linux/seccomp.h>
23 #include <linux/compat.h>
24 #include <trace/syscall.h>
25 #include <asm/segment.h>
26 #include <asm/page.h>
27 #include <asm/pgtable.h>
28 #include <asm/pgalloc.h>
29 #include <asm/uaccess.h>
30 #include <asm/unistd.h>
31 #include <asm/switch_to.h>
32 #include "entry.h"
33 
34 #ifdef CONFIG_COMPAT
35 #include "compat_ptrace.h"
36 #endif
37 
38 #define CREATE_TRACE_POINTS
39 #include <trace/events/syscalls.h>
40 
41 enum s390_regset {
42 	REGSET_GENERAL,
43 	REGSET_FP,
44 	REGSET_LAST_BREAK,
45 	REGSET_SYSTEM_CALL,
46 	REGSET_GENERAL_EXTENDED,
47 };
48 
49 void update_per_regs(struct task_struct *task)
50 {
51 	struct pt_regs *regs = task_pt_regs(task);
52 	struct thread_struct *thread = &task->thread;
53 	struct per_regs old, new;
54 
55 	/* Copy user specified PER registers */
56 	new.control = thread->per_user.control;
57 	new.start = thread->per_user.start;
58 	new.end = thread->per_user.end;
59 
60 	/* merge TIF_SINGLE_STEP into user specified PER registers. */
61 	if (test_tsk_thread_flag(task, TIF_SINGLE_STEP)) {
62 		new.control |= PER_EVENT_IFETCH;
63 		new.start = 0;
64 		new.end = PSW_ADDR_INSN;
65 	}
66 
67 	/* Take care of the PER enablement bit in the PSW. */
68 	if (!(new.control & PER_EVENT_MASK)) {
69 		regs->psw.mask &= ~PSW_MASK_PER;
70 		return;
71 	}
72 	regs->psw.mask |= PSW_MASK_PER;
73 	__ctl_store(old, 9, 11);
74 	if (memcmp(&new, &old, sizeof(struct per_regs)) != 0)
75 		__ctl_load(new, 9, 11);
76 }
77 
78 void user_enable_single_step(struct task_struct *task)
79 {
80 	set_tsk_thread_flag(task, TIF_SINGLE_STEP);
81 	if (task == current)
82 		update_per_regs(task);
83 }
84 
85 void user_disable_single_step(struct task_struct *task)
86 {
87 	clear_tsk_thread_flag(task, TIF_SINGLE_STEP);
88 	if (task == current)
89 		update_per_regs(task);
90 }
91 
92 /*
93  * Called by kernel/ptrace.c when detaching..
94  *
95  * Clear all debugging related fields.
96  */
97 void ptrace_disable(struct task_struct *task)
98 {
99 	memset(&task->thread.per_user, 0, sizeof(task->thread.per_user));
100 	memset(&task->thread.per_event, 0, sizeof(task->thread.per_event));
101 	clear_tsk_thread_flag(task, TIF_SINGLE_STEP);
102 	clear_tsk_thread_flag(task, TIF_PER_TRAP);
103 }
104 
105 #ifndef CONFIG_64BIT
106 # define __ADDR_MASK 3
107 #else
108 # define __ADDR_MASK 7
109 #endif
110 
111 static inline unsigned long __peek_user_per(struct task_struct *child,
112 					    addr_t addr)
113 {
114 	struct per_struct_kernel *dummy = NULL;
115 
116 	if (addr == (addr_t) &dummy->cr9)
117 		/* Control bits of the active per set. */
118 		return test_thread_flag(TIF_SINGLE_STEP) ?
119 			PER_EVENT_IFETCH : child->thread.per_user.control;
120 	else if (addr == (addr_t) &dummy->cr10)
121 		/* Start address of the active per set. */
122 		return test_thread_flag(TIF_SINGLE_STEP) ?
123 			0 : child->thread.per_user.start;
124 	else if (addr == (addr_t) &dummy->cr11)
125 		/* End address of the active per set. */
126 		return test_thread_flag(TIF_SINGLE_STEP) ?
127 			PSW_ADDR_INSN : child->thread.per_user.end;
128 	else if (addr == (addr_t) &dummy->bits)
129 		/* Single-step bit. */
130 		return test_thread_flag(TIF_SINGLE_STEP) ?
131 			(1UL << (BITS_PER_LONG - 1)) : 0;
132 	else if (addr == (addr_t) &dummy->starting_addr)
133 		/* Start address of the user specified per set. */
134 		return child->thread.per_user.start;
135 	else if (addr == (addr_t) &dummy->ending_addr)
136 		/* End address of the user specified per set. */
137 		return child->thread.per_user.end;
138 	else if (addr == (addr_t) &dummy->perc_atmid)
139 		/* PER code, ATMID and AI of the last PER trap */
140 		return (unsigned long)
141 			child->thread.per_event.cause << (BITS_PER_LONG - 16);
142 	else if (addr == (addr_t) &dummy->address)
143 		/* Address of the last PER trap */
144 		return child->thread.per_event.address;
145 	else if (addr == (addr_t) &dummy->access_id)
146 		/* Access id of the last PER trap */
147 		return (unsigned long)
148 			child->thread.per_event.paid << (BITS_PER_LONG - 8);
149 	return 0;
150 }
151 
152 /*
153  * Read the word at offset addr from the user area of a process. The
154  * trouble here is that the information is littered over different
155  * locations. The process registers are found on the kernel stack,
156  * the floating point stuff and the trace settings are stored in
157  * the task structure. In addition the different structures in
158  * struct user contain pad bytes that should be read as zeroes.
159  * Lovely...
160  */
161 static unsigned long __peek_user(struct task_struct *child, addr_t addr)
162 {
163 	struct user *dummy = NULL;
164 	addr_t offset, tmp;
165 
166 	if (addr < (addr_t) &dummy->regs.acrs) {
167 		/*
168 		 * psw and gprs are stored on the stack
169 		 */
170 		tmp = *(addr_t *)((addr_t) &task_pt_regs(child)->psw + addr);
171 		if (addr == (addr_t) &dummy->regs.psw.mask)
172 			/* Return a clean psw mask. */
173 			tmp = psw_user_bits | (tmp & PSW_MASK_USER);
174 
175 	} else if (addr < (addr_t) &dummy->regs.orig_gpr2) {
176 		/*
177 		 * access registers are stored in the thread structure
178 		 */
179 		offset = addr - (addr_t) &dummy->regs.acrs;
180 #ifdef CONFIG_64BIT
181 		/*
182 		 * Very special case: old & broken 64 bit gdb reading
183 		 * from acrs[15]. Result is a 64 bit value. Read the
184 		 * 32 bit acrs[15] value and shift it by 32. Sick...
185 		 */
186 		if (addr == (addr_t) &dummy->regs.acrs[15])
187 			tmp = ((unsigned long) child->thread.acrs[15]) << 32;
188 		else
189 #endif
190 		tmp = *(addr_t *)((addr_t) &child->thread.acrs + offset);
191 
192 	} else if (addr == (addr_t) &dummy->regs.orig_gpr2) {
193 		/*
194 		 * orig_gpr2 is stored on the kernel stack
195 		 */
196 		tmp = (addr_t) task_pt_regs(child)->orig_gpr2;
197 
198 	} else if (addr < (addr_t) &dummy->regs.fp_regs) {
199 		/*
200 		 * prevent reads of padding hole between
201 		 * orig_gpr2 and fp_regs on s390.
202 		 */
203 		tmp = 0;
204 
205 	} else if (addr < (addr_t) (&dummy->regs.fp_regs + 1)) {
206 		/*
207 		 * floating point regs. are stored in the thread structure
208 		 */
209 		offset = addr - (addr_t) &dummy->regs.fp_regs;
210 		tmp = *(addr_t *)((addr_t) &child->thread.fp_regs + offset);
211 		if (addr == (addr_t) &dummy->regs.fp_regs.fpc)
212 			tmp &= (unsigned long) FPC_VALID_MASK
213 				<< (BITS_PER_LONG - 32);
214 
215 	} else if (addr < (addr_t) (&dummy->regs.per_info + 1)) {
216 		/*
217 		 * Handle access to the per_info structure.
218 		 */
219 		addr -= (addr_t) &dummy->regs.per_info;
220 		tmp = __peek_user_per(child, addr);
221 
222 	} else
223 		tmp = 0;
224 
225 	return tmp;
226 }
227 
228 static int
229 peek_user(struct task_struct *child, addr_t addr, addr_t data)
230 {
231 	addr_t tmp, mask;
232 
233 	/*
234 	 * Stupid gdb peeks/pokes the access registers in 64 bit with
235 	 * an alignment of 4. Programmers from hell...
236 	 */
237 	mask = __ADDR_MASK;
238 #ifdef CONFIG_64BIT
239 	if (addr >= (addr_t) &((struct user *) NULL)->regs.acrs &&
240 	    addr < (addr_t) &((struct user *) NULL)->regs.orig_gpr2)
241 		mask = 3;
242 #endif
243 	if ((addr & mask) || addr > sizeof(struct user) - __ADDR_MASK)
244 		return -EIO;
245 
246 	tmp = __peek_user(child, addr);
247 	return put_user(tmp, (addr_t __user *) data);
248 }
249 
250 static inline void __poke_user_per(struct task_struct *child,
251 				   addr_t addr, addr_t data)
252 {
253 	struct per_struct_kernel *dummy = NULL;
254 
255 	/*
256 	 * There are only three fields in the per_info struct that the
257 	 * debugger user can write to.
258 	 * 1) cr9: the debugger wants to set a new PER event mask
259 	 * 2) starting_addr: the debugger wants to set a new starting
260 	 *    address to use with the PER event mask.
261 	 * 3) ending_addr: the debugger wants to set a new ending
262 	 *    address to use with the PER event mask.
263 	 * The user specified PER event mask and the start and end
264 	 * addresses are used only if single stepping is not in effect.
265 	 * Writes to any other field in per_info are ignored.
266 	 */
267 	if (addr == (addr_t) &dummy->cr9)
268 		/* PER event mask of the user specified per set. */
269 		child->thread.per_user.control =
270 			data & (PER_EVENT_MASK | PER_CONTROL_MASK);
271 	else if (addr == (addr_t) &dummy->starting_addr)
272 		/* Starting address of the user specified per set. */
273 		child->thread.per_user.start = data;
274 	else if (addr == (addr_t) &dummy->ending_addr)
275 		/* Ending address of the user specified per set. */
276 		child->thread.per_user.end = data;
277 }
278 
279 /*
280  * Write a word to the user area of a process at location addr. This
281  * operation does have an additional problem compared to peek_user.
282  * Stores to the program status word and on the floating point
283  * control register needs to get checked for validity.
284  */
285 static int __poke_user(struct task_struct *child, addr_t addr, addr_t data)
286 {
287 	struct user *dummy = NULL;
288 	addr_t offset;
289 
290 	if (addr < (addr_t) &dummy->regs.acrs) {
291 		/*
292 		 * psw and gprs are stored on the stack
293 		 */
294 		if (addr == (addr_t) &dummy->regs.psw.mask &&
295 		    ((data & ~PSW_MASK_USER) != psw_user_bits ||
296 		     ((data & PSW_MASK_EA) && !(data & PSW_MASK_BA))))
297 			/* Invalid psw mask. */
298 			return -EINVAL;
299 		*(addr_t *)((addr_t) &task_pt_regs(child)->psw + addr) = data;
300 
301 	} else if (addr < (addr_t) (&dummy->regs.orig_gpr2)) {
302 		/*
303 		 * access registers are stored in the thread structure
304 		 */
305 		offset = addr - (addr_t) &dummy->regs.acrs;
306 #ifdef CONFIG_64BIT
307 		/*
308 		 * Very special case: old & broken 64 bit gdb writing
309 		 * to acrs[15] with a 64 bit value. Ignore the lower
310 		 * half of the value and write the upper 32 bit to
311 		 * acrs[15]. Sick...
312 		 */
313 		if (addr == (addr_t) &dummy->regs.acrs[15])
314 			child->thread.acrs[15] = (unsigned int) (data >> 32);
315 		else
316 #endif
317 		*(addr_t *)((addr_t) &child->thread.acrs + offset) = data;
318 
319 	} else if (addr == (addr_t) &dummy->regs.orig_gpr2) {
320 		/*
321 		 * orig_gpr2 is stored on the kernel stack
322 		 */
323 		task_pt_regs(child)->orig_gpr2 = data;
324 
325 	} else if (addr < (addr_t) &dummy->regs.fp_regs) {
326 		/*
327 		 * prevent writes of padding hole between
328 		 * orig_gpr2 and fp_regs on s390.
329 		 */
330 		return 0;
331 
332 	} else if (addr < (addr_t) (&dummy->regs.fp_regs + 1)) {
333 		/*
334 		 * floating point regs. are stored in the thread structure
335 		 */
336 		if (addr == (addr_t) &dummy->regs.fp_regs.fpc &&
337 		    (data & ~((unsigned long) FPC_VALID_MASK
338 			      << (BITS_PER_LONG - 32))) != 0)
339 			return -EINVAL;
340 		offset = addr - (addr_t) &dummy->regs.fp_regs;
341 		*(addr_t *)((addr_t) &child->thread.fp_regs + offset) = data;
342 
343 	} else if (addr < (addr_t) (&dummy->regs.per_info + 1)) {
344 		/*
345 		 * Handle access to the per_info structure.
346 		 */
347 		addr -= (addr_t) &dummy->regs.per_info;
348 		__poke_user_per(child, addr, data);
349 
350 	}
351 
352 	return 0;
353 }
354 
355 static int poke_user(struct task_struct *child, addr_t addr, addr_t data)
356 {
357 	addr_t mask;
358 
359 	/*
360 	 * Stupid gdb peeks/pokes the access registers in 64 bit with
361 	 * an alignment of 4. Programmers from hell indeed...
362 	 */
363 	mask = __ADDR_MASK;
364 #ifdef CONFIG_64BIT
365 	if (addr >= (addr_t) &((struct user *) NULL)->regs.acrs &&
366 	    addr < (addr_t) &((struct user *) NULL)->regs.orig_gpr2)
367 		mask = 3;
368 #endif
369 	if ((addr & mask) || addr > sizeof(struct user) - __ADDR_MASK)
370 		return -EIO;
371 
372 	return __poke_user(child, addr, data);
373 }
374 
375 long arch_ptrace(struct task_struct *child, long request,
376 		 unsigned long addr, unsigned long data)
377 {
378 	ptrace_area parea;
379 	int copied, ret;
380 
381 	switch (request) {
382 	case PTRACE_PEEKUSR:
383 		/* read the word at location addr in the USER area. */
384 		return peek_user(child, addr, data);
385 
386 	case PTRACE_POKEUSR:
387 		/* write the word at location addr in the USER area */
388 		return poke_user(child, addr, data);
389 
390 	case PTRACE_PEEKUSR_AREA:
391 	case PTRACE_POKEUSR_AREA:
392 		if (copy_from_user(&parea, (void __force __user *) addr,
393 							sizeof(parea)))
394 			return -EFAULT;
395 		addr = parea.kernel_addr;
396 		data = parea.process_addr;
397 		copied = 0;
398 		while (copied < parea.len) {
399 			if (request == PTRACE_PEEKUSR_AREA)
400 				ret = peek_user(child, addr, data);
401 			else {
402 				addr_t utmp;
403 				if (get_user(utmp,
404 					     (addr_t __force __user *) data))
405 					return -EFAULT;
406 				ret = poke_user(child, addr, utmp);
407 			}
408 			if (ret)
409 				return ret;
410 			addr += sizeof(unsigned long);
411 			data += sizeof(unsigned long);
412 			copied += sizeof(unsigned long);
413 		}
414 		return 0;
415 	case PTRACE_GET_LAST_BREAK:
416 		put_user(task_thread_info(child)->last_break,
417 			 (unsigned long __user *) data);
418 		return 0;
419 	default:
420 		/* Removing high order bit from addr (only for 31 bit). */
421 		addr &= PSW_ADDR_INSN;
422 		return ptrace_request(child, request, addr, data);
423 	}
424 }
425 
426 #ifdef CONFIG_COMPAT
427 /*
428  * Now the fun part starts... a 31 bit program running in the
429  * 31 bit emulation tracing another program. PTRACE_PEEKTEXT,
430  * PTRACE_PEEKDATA, PTRACE_POKETEXT and PTRACE_POKEDATA are easy
431  * to handle, the difference to the 64 bit versions of the requests
432  * is that the access is done in multiples of 4 byte instead of
433  * 8 bytes (sizeof(unsigned long) on 31/64 bit).
434  * The ugly part are PTRACE_PEEKUSR, PTRACE_PEEKUSR_AREA,
435  * PTRACE_POKEUSR and PTRACE_POKEUSR_AREA. If the traced program
436  * is a 31 bit program too, the content of struct user can be
437  * emulated. A 31 bit program peeking into the struct user of
438  * a 64 bit program is a no-no.
439  */
440 
441 /*
442  * Same as peek_user_per but for a 31 bit program.
443  */
444 static inline __u32 __peek_user_per_compat(struct task_struct *child,
445 					   addr_t addr)
446 {
447 	struct compat_per_struct_kernel *dummy32 = NULL;
448 
449 	if (addr == (addr_t) &dummy32->cr9)
450 		/* Control bits of the active per set. */
451 		return (__u32) test_thread_flag(TIF_SINGLE_STEP) ?
452 			PER_EVENT_IFETCH : child->thread.per_user.control;
453 	else if (addr == (addr_t) &dummy32->cr10)
454 		/* Start address of the active per set. */
455 		return (__u32) test_thread_flag(TIF_SINGLE_STEP) ?
456 			0 : child->thread.per_user.start;
457 	else if (addr == (addr_t) &dummy32->cr11)
458 		/* End address of the active per set. */
459 		return test_thread_flag(TIF_SINGLE_STEP) ?
460 			PSW32_ADDR_INSN : child->thread.per_user.end;
461 	else if (addr == (addr_t) &dummy32->bits)
462 		/* Single-step bit. */
463 		return (__u32) test_thread_flag(TIF_SINGLE_STEP) ?
464 			0x80000000 : 0;
465 	else if (addr == (addr_t) &dummy32->starting_addr)
466 		/* Start address of the user specified per set. */
467 		return (__u32) child->thread.per_user.start;
468 	else if (addr == (addr_t) &dummy32->ending_addr)
469 		/* End address of the user specified per set. */
470 		return (__u32) child->thread.per_user.end;
471 	else if (addr == (addr_t) &dummy32->perc_atmid)
472 		/* PER code, ATMID and AI of the last PER trap */
473 		return (__u32) child->thread.per_event.cause << 16;
474 	else if (addr == (addr_t) &dummy32->address)
475 		/* Address of the last PER trap */
476 		return (__u32) child->thread.per_event.address;
477 	else if (addr == (addr_t) &dummy32->access_id)
478 		/* Access id of the last PER trap */
479 		return (__u32) child->thread.per_event.paid << 24;
480 	return 0;
481 }
482 
483 /*
484  * Same as peek_user but for a 31 bit program.
485  */
486 static u32 __peek_user_compat(struct task_struct *child, addr_t addr)
487 {
488 	struct compat_user *dummy32 = NULL;
489 	addr_t offset;
490 	__u32 tmp;
491 
492 	if (addr < (addr_t) &dummy32->regs.acrs) {
493 		struct pt_regs *regs = task_pt_regs(child);
494 		/*
495 		 * psw and gprs are stored on the stack
496 		 */
497 		if (addr == (addr_t) &dummy32->regs.psw.mask) {
498 			/* Fake a 31 bit psw mask. */
499 			tmp = (__u32)(regs->psw.mask >> 32);
500 			tmp = psw32_user_bits | (tmp & PSW32_MASK_USER);
501 		} else if (addr == (addr_t) &dummy32->regs.psw.addr) {
502 			/* Fake a 31 bit psw address. */
503 			tmp = (__u32) regs->psw.addr |
504 				(__u32)(regs->psw.mask & PSW_MASK_BA);
505 		} else {
506 			/* gpr 0-15 */
507 			tmp = *(__u32 *)((addr_t) &regs->psw + addr*2 + 4);
508 		}
509 	} else if (addr < (addr_t) (&dummy32->regs.orig_gpr2)) {
510 		/*
511 		 * access registers are stored in the thread structure
512 		 */
513 		offset = addr - (addr_t) &dummy32->regs.acrs;
514 		tmp = *(__u32*)((addr_t) &child->thread.acrs + offset);
515 
516 	} else if (addr == (addr_t) (&dummy32->regs.orig_gpr2)) {
517 		/*
518 		 * orig_gpr2 is stored on the kernel stack
519 		 */
520 		tmp = *(__u32*)((addr_t) &task_pt_regs(child)->orig_gpr2 + 4);
521 
522 	} else if (addr < (addr_t) &dummy32->regs.fp_regs) {
523 		/*
524 		 * prevent reads of padding hole between
525 		 * orig_gpr2 and fp_regs on s390.
526 		 */
527 		tmp = 0;
528 
529 	} else if (addr < (addr_t) (&dummy32->regs.fp_regs + 1)) {
530 		/*
531 		 * floating point regs. are stored in the thread structure
532 		 */
533 	        offset = addr - (addr_t) &dummy32->regs.fp_regs;
534 		tmp = *(__u32 *)((addr_t) &child->thread.fp_regs + offset);
535 
536 	} else if (addr < (addr_t) (&dummy32->regs.per_info + 1)) {
537 		/*
538 		 * Handle access to the per_info structure.
539 		 */
540 		addr -= (addr_t) &dummy32->regs.per_info;
541 		tmp = __peek_user_per_compat(child, addr);
542 
543 	} else
544 		tmp = 0;
545 
546 	return tmp;
547 }
548 
549 static int peek_user_compat(struct task_struct *child,
550 			    addr_t addr, addr_t data)
551 {
552 	__u32 tmp;
553 
554 	if (!is_compat_task() || (addr & 3) || addr > sizeof(struct user) - 3)
555 		return -EIO;
556 
557 	tmp = __peek_user_compat(child, addr);
558 	return put_user(tmp, (__u32 __user *) data);
559 }
560 
561 /*
562  * Same as poke_user_per but for a 31 bit program.
563  */
564 static inline void __poke_user_per_compat(struct task_struct *child,
565 					  addr_t addr, __u32 data)
566 {
567 	struct compat_per_struct_kernel *dummy32 = NULL;
568 
569 	if (addr == (addr_t) &dummy32->cr9)
570 		/* PER event mask of the user specified per set. */
571 		child->thread.per_user.control =
572 			data & (PER_EVENT_MASK | PER_CONTROL_MASK);
573 	else if (addr == (addr_t) &dummy32->starting_addr)
574 		/* Starting address of the user specified per set. */
575 		child->thread.per_user.start = data;
576 	else if (addr == (addr_t) &dummy32->ending_addr)
577 		/* Ending address of the user specified per set. */
578 		child->thread.per_user.end = data;
579 }
580 
581 /*
582  * Same as poke_user but for a 31 bit program.
583  */
584 static int __poke_user_compat(struct task_struct *child,
585 			      addr_t addr, addr_t data)
586 {
587 	struct compat_user *dummy32 = NULL;
588 	__u32 tmp = (__u32) data;
589 	addr_t offset;
590 
591 	if (addr < (addr_t) &dummy32->regs.acrs) {
592 		struct pt_regs *regs = task_pt_regs(child);
593 		/*
594 		 * psw, gprs, acrs and orig_gpr2 are stored on the stack
595 		 */
596 		if (addr == (addr_t) &dummy32->regs.psw.mask) {
597 			/* Build a 64 bit psw mask from 31 bit mask. */
598 			if ((tmp & ~PSW32_MASK_USER) != psw32_user_bits)
599 				/* Invalid psw mask. */
600 				return -EINVAL;
601 			regs->psw.mask = (regs->psw.mask & ~PSW_MASK_USER) |
602 				(regs->psw.mask & PSW_MASK_BA) |
603 				(__u64)(tmp & PSW32_MASK_USER) << 32;
604 		} else if (addr == (addr_t) &dummy32->regs.psw.addr) {
605 			/* Build a 64 bit psw address from 31 bit address. */
606 			regs->psw.addr = (__u64) tmp & PSW32_ADDR_INSN;
607 			/* Transfer 31 bit amode bit to psw mask. */
608 			regs->psw.mask = (regs->psw.mask & ~PSW_MASK_BA) |
609 				(__u64)(tmp & PSW32_ADDR_AMODE);
610 		} else {
611 			/* gpr 0-15 */
612 			*(__u32*)((addr_t) &regs->psw + addr*2 + 4) = tmp;
613 		}
614 	} else if (addr < (addr_t) (&dummy32->regs.orig_gpr2)) {
615 		/*
616 		 * access registers are stored in the thread structure
617 		 */
618 		offset = addr - (addr_t) &dummy32->regs.acrs;
619 		*(__u32*)((addr_t) &child->thread.acrs + offset) = tmp;
620 
621 	} else if (addr == (addr_t) (&dummy32->regs.orig_gpr2)) {
622 		/*
623 		 * orig_gpr2 is stored on the kernel stack
624 		 */
625 		*(__u32*)((addr_t) &task_pt_regs(child)->orig_gpr2 + 4) = tmp;
626 
627 	} else if (addr < (addr_t) &dummy32->regs.fp_regs) {
628 		/*
629 		 * prevent writess of padding hole between
630 		 * orig_gpr2 and fp_regs on s390.
631 		 */
632 		return 0;
633 
634 	} else if (addr < (addr_t) (&dummy32->regs.fp_regs + 1)) {
635 		/*
636 		 * floating point regs. are stored in the thread structure
637 		 */
638 		if (addr == (addr_t) &dummy32->regs.fp_regs.fpc &&
639 		    (tmp & ~FPC_VALID_MASK) != 0)
640 			/* Invalid floating point control. */
641 			return -EINVAL;
642 	        offset = addr - (addr_t) &dummy32->regs.fp_regs;
643 		*(__u32 *)((addr_t) &child->thread.fp_regs + offset) = tmp;
644 
645 	} else if (addr < (addr_t) (&dummy32->regs.per_info + 1)) {
646 		/*
647 		 * Handle access to the per_info structure.
648 		 */
649 		addr -= (addr_t) &dummy32->regs.per_info;
650 		__poke_user_per_compat(child, addr, data);
651 	}
652 
653 	return 0;
654 }
655 
656 static int poke_user_compat(struct task_struct *child,
657 			    addr_t addr, addr_t data)
658 {
659 	if (!is_compat_task() || (addr & 3) ||
660 	    addr > sizeof(struct compat_user) - 3)
661 		return -EIO;
662 
663 	return __poke_user_compat(child, addr, data);
664 }
665 
666 long compat_arch_ptrace(struct task_struct *child, compat_long_t request,
667 			compat_ulong_t caddr, compat_ulong_t cdata)
668 {
669 	unsigned long addr = caddr;
670 	unsigned long data = cdata;
671 	compat_ptrace_area parea;
672 	int copied, ret;
673 
674 	switch (request) {
675 	case PTRACE_PEEKUSR:
676 		/* read the word at location addr in the USER area. */
677 		return peek_user_compat(child, addr, data);
678 
679 	case PTRACE_POKEUSR:
680 		/* write the word at location addr in the USER area */
681 		return poke_user_compat(child, addr, data);
682 
683 	case PTRACE_PEEKUSR_AREA:
684 	case PTRACE_POKEUSR_AREA:
685 		if (copy_from_user(&parea, (void __force __user *) addr,
686 							sizeof(parea)))
687 			return -EFAULT;
688 		addr = parea.kernel_addr;
689 		data = parea.process_addr;
690 		copied = 0;
691 		while (copied < parea.len) {
692 			if (request == PTRACE_PEEKUSR_AREA)
693 				ret = peek_user_compat(child, addr, data);
694 			else {
695 				__u32 utmp;
696 				if (get_user(utmp,
697 					     (__u32 __force __user *) data))
698 					return -EFAULT;
699 				ret = poke_user_compat(child, addr, utmp);
700 			}
701 			if (ret)
702 				return ret;
703 			addr += sizeof(unsigned int);
704 			data += sizeof(unsigned int);
705 			copied += sizeof(unsigned int);
706 		}
707 		return 0;
708 	case PTRACE_GET_LAST_BREAK:
709 		put_user(task_thread_info(child)->last_break,
710 			 (unsigned int __user *) data);
711 		return 0;
712 	}
713 	return compat_ptrace_request(child, request, addr, data);
714 }
715 #endif
716 
717 asmlinkage long do_syscall_trace_enter(struct pt_regs *regs)
718 {
719 	long ret = 0;
720 
721 	/* Do the secure computing check first. */
722 	secure_computing(regs->gprs[2]);
723 
724 	/*
725 	 * The sysc_tracesys code in entry.S stored the system
726 	 * call number to gprs[2].
727 	 */
728 	if (test_thread_flag(TIF_SYSCALL_TRACE) &&
729 	    (tracehook_report_syscall_entry(regs) ||
730 	     regs->gprs[2] >= NR_syscalls)) {
731 		/*
732 		 * Tracing decided this syscall should not happen or the
733 		 * debugger stored an invalid system call number. Skip
734 		 * the system call and the system call restart handling.
735 		 */
736 		clear_thread_flag(TIF_SYSCALL);
737 		ret = -1;
738 	}
739 
740 	if (unlikely(test_thread_flag(TIF_SYSCALL_TRACEPOINT)))
741 		trace_sys_enter(regs, regs->gprs[2]);
742 
743 	audit_syscall_entry(is_compat_task() ?
744 				AUDIT_ARCH_S390 : AUDIT_ARCH_S390X,
745 			    regs->gprs[2], regs->orig_gpr2,
746 			    regs->gprs[3], regs->gprs[4],
747 			    regs->gprs[5]);
748 	return ret ?: regs->gprs[2];
749 }
750 
751 asmlinkage void do_syscall_trace_exit(struct pt_regs *regs)
752 {
753 	audit_syscall_exit(regs);
754 
755 	if (unlikely(test_thread_flag(TIF_SYSCALL_TRACEPOINT)))
756 		trace_sys_exit(regs, regs->gprs[2]);
757 
758 	if (test_thread_flag(TIF_SYSCALL_TRACE))
759 		tracehook_report_syscall_exit(regs, 0);
760 }
761 
762 /*
763  * user_regset definitions.
764  */
765 
766 static int s390_regs_get(struct task_struct *target,
767 			 const struct user_regset *regset,
768 			 unsigned int pos, unsigned int count,
769 			 void *kbuf, void __user *ubuf)
770 {
771 	if (target == current)
772 		save_access_regs(target->thread.acrs);
773 
774 	if (kbuf) {
775 		unsigned long *k = kbuf;
776 		while (count > 0) {
777 			*k++ = __peek_user(target, pos);
778 			count -= sizeof(*k);
779 			pos += sizeof(*k);
780 		}
781 	} else {
782 		unsigned long __user *u = ubuf;
783 		while (count > 0) {
784 			if (__put_user(__peek_user(target, pos), u++))
785 				return -EFAULT;
786 			count -= sizeof(*u);
787 			pos += sizeof(*u);
788 		}
789 	}
790 	return 0;
791 }
792 
793 static int s390_regs_set(struct task_struct *target,
794 			 const struct user_regset *regset,
795 			 unsigned int pos, unsigned int count,
796 			 const void *kbuf, const void __user *ubuf)
797 {
798 	int rc = 0;
799 
800 	if (target == current)
801 		save_access_regs(target->thread.acrs);
802 
803 	if (kbuf) {
804 		const unsigned long *k = kbuf;
805 		while (count > 0 && !rc) {
806 			rc = __poke_user(target, pos, *k++);
807 			count -= sizeof(*k);
808 			pos += sizeof(*k);
809 		}
810 	} else {
811 		const unsigned long  __user *u = ubuf;
812 		while (count > 0 && !rc) {
813 			unsigned long word;
814 			rc = __get_user(word, u++);
815 			if (rc)
816 				break;
817 			rc = __poke_user(target, pos, word);
818 			count -= sizeof(*u);
819 			pos += sizeof(*u);
820 		}
821 	}
822 
823 	if (rc == 0 && target == current)
824 		restore_access_regs(target->thread.acrs);
825 
826 	return rc;
827 }
828 
829 static int s390_fpregs_get(struct task_struct *target,
830 			   const struct user_regset *regset, unsigned int pos,
831 			   unsigned int count, void *kbuf, void __user *ubuf)
832 {
833 	if (target == current)
834 		save_fp_regs(&target->thread.fp_regs);
835 
836 	return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
837 				   &target->thread.fp_regs, 0, -1);
838 }
839 
840 static int s390_fpregs_set(struct task_struct *target,
841 			   const struct user_regset *regset, unsigned int pos,
842 			   unsigned int count, const void *kbuf,
843 			   const void __user *ubuf)
844 {
845 	int rc = 0;
846 
847 	if (target == current)
848 		save_fp_regs(&target->thread.fp_regs);
849 
850 	/* If setting FPC, must validate it first. */
851 	if (count > 0 && pos < offsetof(s390_fp_regs, fprs)) {
852 		u32 fpc[2] = { target->thread.fp_regs.fpc, 0 };
853 		rc = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &fpc,
854 					0, offsetof(s390_fp_regs, fprs));
855 		if (rc)
856 			return rc;
857 		if ((fpc[0] & ~FPC_VALID_MASK) != 0 || fpc[1] != 0)
858 			return -EINVAL;
859 		target->thread.fp_regs.fpc = fpc[0];
860 	}
861 
862 	if (rc == 0 && count > 0)
863 		rc = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
864 					target->thread.fp_regs.fprs,
865 					offsetof(s390_fp_regs, fprs), -1);
866 
867 	if (rc == 0 && target == current)
868 		restore_fp_regs(&target->thread.fp_regs);
869 
870 	return rc;
871 }
872 
873 #ifdef CONFIG_64BIT
874 
875 static int s390_last_break_get(struct task_struct *target,
876 			       const struct user_regset *regset,
877 			       unsigned int pos, unsigned int count,
878 			       void *kbuf, void __user *ubuf)
879 {
880 	if (count > 0) {
881 		if (kbuf) {
882 			unsigned long *k = kbuf;
883 			*k = task_thread_info(target)->last_break;
884 		} else {
885 			unsigned long  __user *u = ubuf;
886 			if (__put_user(task_thread_info(target)->last_break, u))
887 				return -EFAULT;
888 		}
889 	}
890 	return 0;
891 }
892 
893 static int s390_last_break_set(struct task_struct *target,
894 			       const struct user_regset *regset,
895 			       unsigned int pos, unsigned int count,
896 			       const void *kbuf, const void __user *ubuf)
897 {
898 	return 0;
899 }
900 
901 #endif
902 
903 static int s390_system_call_get(struct task_struct *target,
904 				const struct user_regset *regset,
905 				unsigned int pos, unsigned int count,
906 				void *kbuf, void __user *ubuf)
907 {
908 	unsigned int *data = &task_thread_info(target)->system_call;
909 	return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
910 				   data, 0, sizeof(unsigned int));
911 }
912 
913 static int s390_system_call_set(struct task_struct *target,
914 				const struct user_regset *regset,
915 				unsigned int pos, unsigned int count,
916 				const void *kbuf, const void __user *ubuf)
917 {
918 	unsigned int *data = &task_thread_info(target)->system_call;
919 	return user_regset_copyin(&pos, &count, &kbuf, &ubuf,
920 				  data, 0, sizeof(unsigned int));
921 }
922 
923 static const struct user_regset s390_regsets[] = {
924 	[REGSET_GENERAL] = {
925 		.core_note_type = NT_PRSTATUS,
926 		.n = sizeof(s390_regs) / sizeof(long),
927 		.size = sizeof(long),
928 		.align = sizeof(long),
929 		.get = s390_regs_get,
930 		.set = s390_regs_set,
931 	},
932 	[REGSET_FP] = {
933 		.core_note_type = NT_PRFPREG,
934 		.n = sizeof(s390_fp_regs) / sizeof(long),
935 		.size = sizeof(long),
936 		.align = sizeof(long),
937 		.get = s390_fpregs_get,
938 		.set = s390_fpregs_set,
939 	},
940 #ifdef CONFIG_64BIT
941 	[REGSET_LAST_BREAK] = {
942 		.core_note_type = NT_S390_LAST_BREAK,
943 		.n = 1,
944 		.size = sizeof(long),
945 		.align = sizeof(long),
946 		.get = s390_last_break_get,
947 		.set = s390_last_break_set,
948 	},
949 #endif
950 	[REGSET_SYSTEM_CALL] = {
951 		.core_note_type = NT_S390_SYSTEM_CALL,
952 		.n = 1,
953 		.size = sizeof(unsigned int),
954 		.align = sizeof(unsigned int),
955 		.get = s390_system_call_get,
956 		.set = s390_system_call_set,
957 	},
958 };
959 
960 static const struct user_regset_view user_s390_view = {
961 	.name = UTS_MACHINE,
962 	.e_machine = EM_S390,
963 	.regsets = s390_regsets,
964 	.n = ARRAY_SIZE(s390_regsets)
965 };
966 
967 #ifdef CONFIG_COMPAT
968 static int s390_compat_regs_get(struct task_struct *target,
969 				const struct user_regset *regset,
970 				unsigned int pos, unsigned int count,
971 				void *kbuf, void __user *ubuf)
972 {
973 	if (target == current)
974 		save_access_regs(target->thread.acrs);
975 
976 	if (kbuf) {
977 		compat_ulong_t *k = kbuf;
978 		while (count > 0) {
979 			*k++ = __peek_user_compat(target, pos);
980 			count -= sizeof(*k);
981 			pos += sizeof(*k);
982 		}
983 	} else {
984 		compat_ulong_t __user *u = ubuf;
985 		while (count > 0) {
986 			if (__put_user(__peek_user_compat(target, pos), u++))
987 				return -EFAULT;
988 			count -= sizeof(*u);
989 			pos += sizeof(*u);
990 		}
991 	}
992 	return 0;
993 }
994 
995 static int s390_compat_regs_set(struct task_struct *target,
996 				const struct user_regset *regset,
997 				unsigned int pos, unsigned int count,
998 				const void *kbuf, const void __user *ubuf)
999 {
1000 	int rc = 0;
1001 
1002 	if (target == current)
1003 		save_access_regs(target->thread.acrs);
1004 
1005 	if (kbuf) {
1006 		const compat_ulong_t *k = kbuf;
1007 		while (count > 0 && !rc) {
1008 			rc = __poke_user_compat(target, pos, *k++);
1009 			count -= sizeof(*k);
1010 			pos += sizeof(*k);
1011 		}
1012 	} else {
1013 		const compat_ulong_t  __user *u = ubuf;
1014 		while (count > 0 && !rc) {
1015 			compat_ulong_t word;
1016 			rc = __get_user(word, u++);
1017 			if (rc)
1018 				break;
1019 			rc = __poke_user_compat(target, pos, word);
1020 			count -= sizeof(*u);
1021 			pos += sizeof(*u);
1022 		}
1023 	}
1024 
1025 	if (rc == 0 && target == current)
1026 		restore_access_regs(target->thread.acrs);
1027 
1028 	return rc;
1029 }
1030 
1031 static int s390_compat_regs_high_get(struct task_struct *target,
1032 				     const struct user_regset *regset,
1033 				     unsigned int pos, unsigned int count,
1034 				     void *kbuf, void __user *ubuf)
1035 {
1036 	compat_ulong_t *gprs_high;
1037 
1038 	gprs_high = (compat_ulong_t *)
1039 		&task_pt_regs(target)->gprs[pos / sizeof(compat_ulong_t)];
1040 	if (kbuf) {
1041 		compat_ulong_t *k = kbuf;
1042 		while (count > 0) {
1043 			*k++ = *gprs_high;
1044 			gprs_high += 2;
1045 			count -= sizeof(*k);
1046 		}
1047 	} else {
1048 		compat_ulong_t __user *u = ubuf;
1049 		while (count > 0) {
1050 			if (__put_user(*gprs_high, u++))
1051 				return -EFAULT;
1052 			gprs_high += 2;
1053 			count -= sizeof(*u);
1054 		}
1055 	}
1056 	return 0;
1057 }
1058 
1059 static int s390_compat_regs_high_set(struct task_struct *target,
1060 				     const struct user_regset *regset,
1061 				     unsigned int pos, unsigned int count,
1062 				     const void *kbuf, const void __user *ubuf)
1063 {
1064 	compat_ulong_t *gprs_high;
1065 	int rc = 0;
1066 
1067 	gprs_high = (compat_ulong_t *)
1068 		&task_pt_regs(target)->gprs[pos / sizeof(compat_ulong_t)];
1069 	if (kbuf) {
1070 		const compat_ulong_t *k = kbuf;
1071 		while (count > 0) {
1072 			*gprs_high = *k++;
1073 			*gprs_high += 2;
1074 			count -= sizeof(*k);
1075 		}
1076 	} else {
1077 		const compat_ulong_t  __user *u = ubuf;
1078 		while (count > 0 && !rc) {
1079 			unsigned long word;
1080 			rc = __get_user(word, u++);
1081 			if (rc)
1082 				break;
1083 			*gprs_high = word;
1084 			*gprs_high += 2;
1085 			count -= sizeof(*u);
1086 		}
1087 	}
1088 
1089 	return rc;
1090 }
1091 
1092 static int s390_compat_last_break_get(struct task_struct *target,
1093 				      const struct user_regset *regset,
1094 				      unsigned int pos, unsigned int count,
1095 				      void *kbuf, void __user *ubuf)
1096 {
1097 	compat_ulong_t last_break;
1098 
1099 	if (count > 0) {
1100 		last_break = task_thread_info(target)->last_break;
1101 		if (kbuf) {
1102 			unsigned long *k = kbuf;
1103 			*k = last_break;
1104 		} else {
1105 			unsigned long  __user *u = ubuf;
1106 			if (__put_user(last_break, u))
1107 				return -EFAULT;
1108 		}
1109 	}
1110 	return 0;
1111 }
1112 
1113 static int s390_compat_last_break_set(struct task_struct *target,
1114 				      const struct user_regset *regset,
1115 				      unsigned int pos, unsigned int count,
1116 				      const void *kbuf, const void __user *ubuf)
1117 {
1118 	return 0;
1119 }
1120 
1121 static const struct user_regset s390_compat_regsets[] = {
1122 	[REGSET_GENERAL] = {
1123 		.core_note_type = NT_PRSTATUS,
1124 		.n = sizeof(s390_compat_regs) / sizeof(compat_long_t),
1125 		.size = sizeof(compat_long_t),
1126 		.align = sizeof(compat_long_t),
1127 		.get = s390_compat_regs_get,
1128 		.set = s390_compat_regs_set,
1129 	},
1130 	[REGSET_FP] = {
1131 		.core_note_type = NT_PRFPREG,
1132 		.n = sizeof(s390_fp_regs) / sizeof(compat_long_t),
1133 		.size = sizeof(compat_long_t),
1134 		.align = sizeof(compat_long_t),
1135 		.get = s390_fpregs_get,
1136 		.set = s390_fpregs_set,
1137 	},
1138 	[REGSET_LAST_BREAK] = {
1139 		.core_note_type = NT_S390_LAST_BREAK,
1140 		.n = 1,
1141 		.size = sizeof(long),
1142 		.align = sizeof(long),
1143 		.get = s390_compat_last_break_get,
1144 		.set = s390_compat_last_break_set,
1145 	},
1146 	[REGSET_SYSTEM_CALL] = {
1147 		.core_note_type = NT_S390_SYSTEM_CALL,
1148 		.n = 1,
1149 		.size = sizeof(compat_uint_t),
1150 		.align = sizeof(compat_uint_t),
1151 		.get = s390_system_call_get,
1152 		.set = s390_system_call_set,
1153 	},
1154 	[REGSET_GENERAL_EXTENDED] = {
1155 		.core_note_type = NT_S390_HIGH_GPRS,
1156 		.n = sizeof(s390_compat_regs_high) / sizeof(compat_long_t),
1157 		.size = sizeof(compat_long_t),
1158 		.align = sizeof(compat_long_t),
1159 		.get = s390_compat_regs_high_get,
1160 		.set = s390_compat_regs_high_set,
1161 	},
1162 };
1163 
1164 static const struct user_regset_view user_s390_compat_view = {
1165 	.name = "s390",
1166 	.e_machine = EM_S390,
1167 	.regsets = s390_compat_regsets,
1168 	.n = ARRAY_SIZE(s390_compat_regsets)
1169 };
1170 #endif
1171 
1172 const struct user_regset_view *task_user_regset_view(struct task_struct *task)
1173 {
1174 #ifdef CONFIG_COMPAT
1175 	if (test_tsk_thread_flag(task, TIF_31BIT))
1176 		return &user_s390_compat_view;
1177 #endif
1178 	return &user_s390_view;
1179 }
1180 
1181 static const char *gpr_names[NUM_GPRS] = {
1182 	"r0", "r1",  "r2",  "r3",  "r4",  "r5",  "r6",  "r7",
1183 	"r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
1184 };
1185 
1186 unsigned long regs_get_register(struct pt_regs *regs, unsigned int offset)
1187 {
1188 	if (offset >= NUM_GPRS)
1189 		return 0;
1190 	return regs->gprs[offset];
1191 }
1192 
1193 int regs_query_register_offset(const char *name)
1194 {
1195 	unsigned long offset;
1196 
1197 	if (!name || *name != 'r')
1198 		return -EINVAL;
1199 	if (strict_strtoul(name + 1, 10, &offset))
1200 		return -EINVAL;
1201 	if (offset >= NUM_GPRS)
1202 		return -EINVAL;
1203 	return offset;
1204 }
1205 
1206 const char *regs_query_register_name(unsigned int offset)
1207 {
1208 	if (offset >= NUM_GPRS)
1209 		return NULL;
1210 	return gpr_names[offset];
1211 }
1212 
1213 static int regs_within_kernel_stack(struct pt_regs *regs, unsigned long addr)
1214 {
1215 	unsigned long ksp = kernel_stack_pointer(regs);
1216 
1217 	return (addr & ~(THREAD_SIZE - 1)) == (ksp & ~(THREAD_SIZE - 1));
1218 }
1219 
1220 /**
1221  * regs_get_kernel_stack_nth() - get Nth entry of the stack
1222  * @regs:pt_regs which contains kernel stack pointer.
1223  * @n:stack entry number.
1224  *
1225  * regs_get_kernel_stack_nth() returns @n th entry of the kernel stack which
1226  * is specifined by @regs. If the @n th entry is NOT in the kernel stack,
1227  * this returns 0.
1228  */
1229 unsigned long regs_get_kernel_stack_nth(struct pt_regs *regs, unsigned int n)
1230 {
1231 	unsigned long addr;
1232 
1233 	addr = kernel_stack_pointer(regs) + n * sizeof(long);
1234 	if (!regs_within_kernel_stack(regs, addr))
1235 		return 0;
1236 	return *(unsigned long *)addr;
1237 }
1238