1 /* 2 * Ptrace user space interface. 3 * 4 * Copyright IBM Corp. 1999, 2010 5 * Author(s): Denis Joseph Barrow 6 * Martin Schwidefsky (schwidefsky@de.ibm.com) 7 */ 8 9 #include <linux/kernel.h> 10 #include <linux/sched.h> 11 #include <linux/mm.h> 12 #include <linux/smp.h> 13 #include <linux/errno.h> 14 #include <linux/ptrace.h> 15 #include <linux/user.h> 16 #include <linux/security.h> 17 #include <linux/audit.h> 18 #include <linux/signal.h> 19 #include <linux/elf.h> 20 #include <linux/regset.h> 21 #include <linux/tracehook.h> 22 #include <linux/seccomp.h> 23 #include <linux/compat.h> 24 #include <trace/syscall.h> 25 #include <asm/segment.h> 26 #include <asm/page.h> 27 #include <asm/pgtable.h> 28 #include <asm/pgalloc.h> 29 #include <asm/uaccess.h> 30 #include <asm/unistd.h> 31 #include <asm/switch_to.h> 32 #include "entry.h" 33 34 #ifdef CONFIG_COMPAT 35 #include "compat_ptrace.h" 36 #endif 37 38 #define CREATE_TRACE_POINTS 39 #include <trace/events/syscalls.h> 40 41 void update_cr_regs(struct task_struct *task) 42 { 43 struct pt_regs *regs = task_pt_regs(task); 44 struct thread_struct *thread = &task->thread; 45 struct per_regs old, new; 46 47 /* Take care of the enable/disable of transactional execution. */ 48 if (MACHINE_HAS_TE || MACHINE_HAS_VX) { 49 unsigned long cr, cr_new; 50 51 __ctl_store(cr, 0, 0); 52 cr_new = cr; 53 if (MACHINE_HAS_TE) { 54 /* Set or clear transaction execution TXC bit 8. */ 55 cr_new |= (1UL << 55); 56 if (task->thread.per_flags & PER_FLAG_NO_TE) 57 cr_new &= ~(1UL << 55); 58 } 59 if (MACHINE_HAS_VX) { 60 /* Enable/disable of vector extension */ 61 cr_new &= ~(1UL << 17); 62 if (task->thread.vxrs) 63 cr_new |= (1UL << 17); 64 } 65 if (cr_new != cr) 66 __ctl_load(cr_new, 0, 0); 67 if (MACHINE_HAS_TE) { 68 /* Set/clear transaction execution TDC bits 62/63. */ 69 __ctl_store(cr, 2, 2); 70 cr_new = cr & ~3UL; 71 if (task->thread.per_flags & PER_FLAG_TE_ABORT_RAND) { 72 if (task->thread.per_flags & 73 PER_FLAG_TE_ABORT_RAND_TEND) 74 cr_new |= 1UL; 75 else 76 cr_new |= 2UL; 77 } 78 if (cr_new != cr) 79 __ctl_load(cr_new, 2, 2); 80 } 81 } 82 /* Copy user specified PER registers */ 83 new.control = thread->per_user.control; 84 new.start = thread->per_user.start; 85 new.end = thread->per_user.end; 86 87 /* merge TIF_SINGLE_STEP into user specified PER registers. */ 88 if (test_tsk_thread_flag(task, TIF_SINGLE_STEP) || 89 test_tsk_thread_flag(task, TIF_UPROBE_SINGLESTEP)) { 90 if (test_tsk_thread_flag(task, TIF_BLOCK_STEP)) 91 new.control |= PER_EVENT_BRANCH; 92 else 93 new.control |= PER_EVENT_IFETCH; 94 new.control |= PER_CONTROL_SUSPENSION; 95 new.control |= PER_EVENT_TRANSACTION_END; 96 if (test_tsk_thread_flag(task, TIF_UPROBE_SINGLESTEP)) 97 new.control |= PER_EVENT_IFETCH; 98 new.start = 0; 99 new.end = PSW_ADDR_INSN; 100 } 101 102 /* Take care of the PER enablement bit in the PSW. */ 103 if (!(new.control & PER_EVENT_MASK)) { 104 regs->psw.mask &= ~PSW_MASK_PER; 105 return; 106 } 107 regs->psw.mask |= PSW_MASK_PER; 108 __ctl_store(old, 9, 11); 109 if (memcmp(&new, &old, sizeof(struct per_regs)) != 0) 110 __ctl_load(new, 9, 11); 111 } 112 113 void user_enable_single_step(struct task_struct *task) 114 { 115 clear_tsk_thread_flag(task, TIF_BLOCK_STEP); 116 set_tsk_thread_flag(task, TIF_SINGLE_STEP); 117 } 118 119 void user_disable_single_step(struct task_struct *task) 120 { 121 clear_tsk_thread_flag(task, TIF_BLOCK_STEP); 122 clear_tsk_thread_flag(task, TIF_SINGLE_STEP); 123 } 124 125 void user_enable_block_step(struct task_struct *task) 126 { 127 set_tsk_thread_flag(task, TIF_SINGLE_STEP); 128 set_tsk_thread_flag(task, TIF_BLOCK_STEP); 129 } 130 131 /* 132 * Called by kernel/ptrace.c when detaching.. 133 * 134 * Clear all debugging related fields. 135 */ 136 void ptrace_disable(struct task_struct *task) 137 { 138 memset(&task->thread.per_user, 0, sizeof(task->thread.per_user)); 139 memset(&task->thread.per_event, 0, sizeof(task->thread.per_event)); 140 clear_tsk_thread_flag(task, TIF_SINGLE_STEP); 141 clear_pt_regs_flag(task_pt_regs(task), PIF_PER_TRAP); 142 task->thread.per_flags = 0; 143 } 144 145 #define __ADDR_MASK 7 146 147 static inline unsigned long __peek_user_per(struct task_struct *child, 148 addr_t addr) 149 { 150 struct per_struct_kernel *dummy = NULL; 151 152 if (addr == (addr_t) &dummy->cr9) 153 /* Control bits of the active per set. */ 154 return test_thread_flag(TIF_SINGLE_STEP) ? 155 PER_EVENT_IFETCH : child->thread.per_user.control; 156 else if (addr == (addr_t) &dummy->cr10) 157 /* Start address of the active per set. */ 158 return test_thread_flag(TIF_SINGLE_STEP) ? 159 0 : child->thread.per_user.start; 160 else if (addr == (addr_t) &dummy->cr11) 161 /* End address of the active per set. */ 162 return test_thread_flag(TIF_SINGLE_STEP) ? 163 PSW_ADDR_INSN : child->thread.per_user.end; 164 else if (addr == (addr_t) &dummy->bits) 165 /* Single-step bit. */ 166 return test_thread_flag(TIF_SINGLE_STEP) ? 167 (1UL << (BITS_PER_LONG - 1)) : 0; 168 else if (addr == (addr_t) &dummy->starting_addr) 169 /* Start address of the user specified per set. */ 170 return child->thread.per_user.start; 171 else if (addr == (addr_t) &dummy->ending_addr) 172 /* End address of the user specified per set. */ 173 return child->thread.per_user.end; 174 else if (addr == (addr_t) &dummy->perc_atmid) 175 /* PER code, ATMID and AI of the last PER trap */ 176 return (unsigned long) 177 child->thread.per_event.cause << (BITS_PER_LONG - 16); 178 else if (addr == (addr_t) &dummy->address) 179 /* Address of the last PER trap */ 180 return child->thread.per_event.address; 181 else if (addr == (addr_t) &dummy->access_id) 182 /* Access id of the last PER trap */ 183 return (unsigned long) 184 child->thread.per_event.paid << (BITS_PER_LONG - 8); 185 return 0; 186 } 187 188 /* 189 * Read the word at offset addr from the user area of a process. The 190 * trouble here is that the information is littered over different 191 * locations. The process registers are found on the kernel stack, 192 * the floating point stuff and the trace settings are stored in 193 * the task structure. In addition the different structures in 194 * struct user contain pad bytes that should be read as zeroes. 195 * Lovely... 196 */ 197 static unsigned long __peek_user(struct task_struct *child, addr_t addr) 198 { 199 struct user *dummy = NULL; 200 addr_t offset, tmp; 201 202 if (addr < (addr_t) &dummy->regs.acrs) { 203 /* 204 * psw and gprs are stored on the stack 205 */ 206 tmp = *(addr_t *)((addr_t) &task_pt_regs(child)->psw + addr); 207 if (addr == (addr_t) &dummy->regs.psw.mask) { 208 /* Return a clean psw mask. */ 209 tmp &= PSW_MASK_USER | PSW_MASK_RI; 210 tmp |= PSW_USER_BITS; 211 } 212 213 } else if (addr < (addr_t) &dummy->regs.orig_gpr2) { 214 /* 215 * access registers are stored in the thread structure 216 */ 217 offset = addr - (addr_t) &dummy->regs.acrs; 218 /* 219 * Very special case: old & broken 64 bit gdb reading 220 * from acrs[15]. Result is a 64 bit value. Read the 221 * 32 bit acrs[15] value and shift it by 32. Sick... 222 */ 223 if (addr == (addr_t) &dummy->regs.acrs[15]) 224 tmp = ((unsigned long) child->thread.acrs[15]) << 32; 225 else 226 tmp = *(addr_t *)((addr_t) &child->thread.acrs + offset); 227 228 } else if (addr == (addr_t) &dummy->regs.orig_gpr2) { 229 /* 230 * orig_gpr2 is stored on the kernel stack 231 */ 232 tmp = (addr_t) task_pt_regs(child)->orig_gpr2; 233 234 } else if (addr < (addr_t) &dummy->regs.fp_regs) { 235 /* 236 * prevent reads of padding hole between 237 * orig_gpr2 and fp_regs on s390. 238 */ 239 tmp = 0; 240 241 } else if (addr == (addr_t) &dummy->regs.fp_regs.fpc) { 242 /* 243 * floating point control reg. is in the thread structure 244 */ 245 tmp = child->thread.fp_regs.fpc; 246 tmp <<= BITS_PER_LONG - 32; 247 248 } else if (addr < (addr_t) (&dummy->regs.fp_regs + 1)) { 249 /* 250 * floating point regs. are either in child->thread.fp_regs 251 * or the child->thread.vxrs array 252 */ 253 offset = addr - (addr_t) &dummy->regs.fp_regs.fprs; 254 if (child->thread.vxrs) 255 tmp = *(addr_t *) 256 ((addr_t) child->thread.vxrs + 2*offset); 257 else 258 tmp = *(addr_t *) 259 ((addr_t) &child->thread.fp_regs.fprs + offset); 260 261 } else if (addr < (addr_t) (&dummy->regs.per_info + 1)) { 262 /* 263 * Handle access to the per_info structure. 264 */ 265 addr -= (addr_t) &dummy->regs.per_info; 266 tmp = __peek_user_per(child, addr); 267 268 } else 269 tmp = 0; 270 271 return tmp; 272 } 273 274 static int 275 peek_user(struct task_struct *child, addr_t addr, addr_t data) 276 { 277 addr_t tmp, mask; 278 279 /* 280 * Stupid gdb peeks/pokes the access registers in 64 bit with 281 * an alignment of 4. Programmers from hell... 282 */ 283 mask = __ADDR_MASK; 284 if (addr >= (addr_t) &((struct user *) NULL)->regs.acrs && 285 addr < (addr_t) &((struct user *) NULL)->regs.orig_gpr2) 286 mask = 3; 287 if ((addr & mask) || addr > sizeof(struct user) - __ADDR_MASK) 288 return -EIO; 289 290 tmp = __peek_user(child, addr); 291 return put_user(tmp, (addr_t __user *) data); 292 } 293 294 static inline void __poke_user_per(struct task_struct *child, 295 addr_t addr, addr_t data) 296 { 297 struct per_struct_kernel *dummy = NULL; 298 299 /* 300 * There are only three fields in the per_info struct that the 301 * debugger user can write to. 302 * 1) cr9: the debugger wants to set a new PER event mask 303 * 2) starting_addr: the debugger wants to set a new starting 304 * address to use with the PER event mask. 305 * 3) ending_addr: the debugger wants to set a new ending 306 * address to use with the PER event mask. 307 * The user specified PER event mask and the start and end 308 * addresses are used only if single stepping is not in effect. 309 * Writes to any other field in per_info are ignored. 310 */ 311 if (addr == (addr_t) &dummy->cr9) 312 /* PER event mask of the user specified per set. */ 313 child->thread.per_user.control = 314 data & (PER_EVENT_MASK | PER_CONTROL_MASK); 315 else if (addr == (addr_t) &dummy->starting_addr) 316 /* Starting address of the user specified per set. */ 317 child->thread.per_user.start = data; 318 else if (addr == (addr_t) &dummy->ending_addr) 319 /* Ending address of the user specified per set. */ 320 child->thread.per_user.end = data; 321 } 322 323 /* 324 * Write a word to the user area of a process at location addr. This 325 * operation does have an additional problem compared to peek_user. 326 * Stores to the program status word and on the floating point 327 * control register needs to get checked for validity. 328 */ 329 static int __poke_user(struct task_struct *child, addr_t addr, addr_t data) 330 { 331 struct user *dummy = NULL; 332 addr_t offset; 333 334 if (addr < (addr_t) &dummy->regs.acrs) { 335 /* 336 * psw and gprs are stored on the stack 337 */ 338 if (addr == (addr_t) &dummy->regs.psw.mask) { 339 unsigned long mask = PSW_MASK_USER; 340 341 mask |= is_ri_task(child) ? PSW_MASK_RI : 0; 342 if ((data ^ PSW_USER_BITS) & ~mask) 343 /* Invalid psw mask. */ 344 return -EINVAL; 345 if ((data & PSW_MASK_ASC) == PSW_ASC_HOME) 346 /* Invalid address-space-control bits */ 347 return -EINVAL; 348 if ((data & PSW_MASK_EA) && !(data & PSW_MASK_BA)) 349 /* Invalid addressing mode bits */ 350 return -EINVAL; 351 } 352 *(addr_t *)((addr_t) &task_pt_regs(child)->psw + addr) = data; 353 354 } else if (addr < (addr_t) (&dummy->regs.orig_gpr2)) { 355 /* 356 * access registers are stored in the thread structure 357 */ 358 offset = addr - (addr_t) &dummy->regs.acrs; 359 /* 360 * Very special case: old & broken 64 bit gdb writing 361 * to acrs[15] with a 64 bit value. Ignore the lower 362 * half of the value and write the upper 32 bit to 363 * acrs[15]. Sick... 364 */ 365 if (addr == (addr_t) &dummy->regs.acrs[15]) 366 child->thread.acrs[15] = (unsigned int) (data >> 32); 367 else 368 *(addr_t *)((addr_t) &child->thread.acrs + offset) = data; 369 370 } else if (addr == (addr_t) &dummy->regs.orig_gpr2) { 371 /* 372 * orig_gpr2 is stored on the kernel stack 373 */ 374 task_pt_regs(child)->orig_gpr2 = data; 375 376 } else if (addr < (addr_t) &dummy->regs.fp_regs) { 377 /* 378 * prevent writes of padding hole between 379 * orig_gpr2 and fp_regs on s390. 380 */ 381 return 0; 382 383 } else if (addr == (addr_t) &dummy->regs.fp_regs.fpc) { 384 /* 385 * floating point control reg. is in the thread structure 386 */ 387 if ((unsigned int) data != 0 || 388 test_fp_ctl(data >> (BITS_PER_LONG - 32))) 389 return -EINVAL; 390 child->thread.fp_regs.fpc = data >> (BITS_PER_LONG - 32); 391 392 } else if (addr < (addr_t) (&dummy->regs.fp_regs + 1)) { 393 /* 394 * floating point regs. are either in child->thread.fp_regs 395 * or the child->thread.vxrs array 396 */ 397 offset = addr - (addr_t) &dummy->regs.fp_regs.fprs; 398 if (child->thread.vxrs) 399 *(addr_t *)((addr_t) 400 child->thread.vxrs + 2*offset) = data; 401 else 402 *(addr_t *)((addr_t) 403 &child->thread.fp_regs.fprs + offset) = data; 404 405 } else if (addr < (addr_t) (&dummy->regs.per_info + 1)) { 406 /* 407 * Handle access to the per_info structure. 408 */ 409 addr -= (addr_t) &dummy->regs.per_info; 410 __poke_user_per(child, addr, data); 411 412 } 413 414 return 0; 415 } 416 417 static int poke_user(struct task_struct *child, addr_t addr, addr_t data) 418 { 419 addr_t mask; 420 421 /* 422 * Stupid gdb peeks/pokes the access registers in 64 bit with 423 * an alignment of 4. Programmers from hell indeed... 424 */ 425 mask = __ADDR_MASK; 426 if (addr >= (addr_t) &((struct user *) NULL)->regs.acrs && 427 addr < (addr_t) &((struct user *) NULL)->regs.orig_gpr2) 428 mask = 3; 429 if ((addr & mask) || addr > sizeof(struct user) - __ADDR_MASK) 430 return -EIO; 431 432 return __poke_user(child, addr, data); 433 } 434 435 long arch_ptrace(struct task_struct *child, long request, 436 unsigned long addr, unsigned long data) 437 { 438 ptrace_area parea; 439 int copied, ret; 440 441 switch (request) { 442 case PTRACE_PEEKUSR: 443 /* read the word at location addr in the USER area. */ 444 return peek_user(child, addr, data); 445 446 case PTRACE_POKEUSR: 447 /* write the word at location addr in the USER area */ 448 return poke_user(child, addr, data); 449 450 case PTRACE_PEEKUSR_AREA: 451 case PTRACE_POKEUSR_AREA: 452 if (copy_from_user(&parea, (void __force __user *) addr, 453 sizeof(parea))) 454 return -EFAULT; 455 addr = parea.kernel_addr; 456 data = parea.process_addr; 457 copied = 0; 458 while (copied < parea.len) { 459 if (request == PTRACE_PEEKUSR_AREA) 460 ret = peek_user(child, addr, data); 461 else { 462 addr_t utmp; 463 if (get_user(utmp, 464 (addr_t __force __user *) data)) 465 return -EFAULT; 466 ret = poke_user(child, addr, utmp); 467 } 468 if (ret) 469 return ret; 470 addr += sizeof(unsigned long); 471 data += sizeof(unsigned long); 472 copied += sizeof(unsigned long); 473 } 474 return 0; 475 case PTRACE_GET_LAST_BREAK: 476 put_user(task_thread_info(child)->last_break, 477 (unsigned long __user *) data); 478 return 0; 479 case PTRACE_ENABLE_TE: 480 if (!MACHINE_HAS_TE) 481 return -EIO; 482 child->thread.per_flags &= ~PER_FLAG_NO_TE; 483 return 0; 484 case PTRACE_DISABLE_TE: 485 if (!MACHINE_HAS_TE) 486 return -EIO; 487 child->thread.per_flags |= PER_FLAG_NO_TE; 488 child->thread.per_flags &= ~PER_FLAG_TE_ABORT_RAND; 489 return 0; 490 case PTRACE_TE_ABORT_RAND: 491 if (!MACHINE_HAS_TE || (child->thread.per_flags & PER_FLAG_NO_TE)) 492 return -EIO; 493 switch (data) { 494 case 0UL: 495 child->thread.per_flags &= ~PER_FLAG_TE_ABORT_RAND; 496 break; 497 case 1UL: 498 child->thread.per_flags |= PER_FLAG_TE_ABORT_RAND; 499 child->thread.per_flags |= PER_FLAG_TE_ABORT_RAND_TEND; 500 break; 501 case 2UL: 502 child->thread.per_flags |= PER_FLAG_TE_ABORT_RAND; 503 child->thread.per_flags &= ~PER_FLAG_TE_ABORT_RAND_TEND; 504 break; 505 default: 506 return -EINVAL; 507 } 508 return 0; 509 default: 510 /* Removing high order bit from addr (only for 31 bit). */ 511 addr &= PSW_ADDR_INSN; 512 return ptrace_request(child, request, addr, data); 513 } 514 } 515 516 #ifdef CONFIG_COMPAT 517 /* 518 * Now the fun part starts... a 31 bit program running in the 519 * 31 bit emulation tracing another program. PTRACE_PEEKTEXT, 520 * PTRACE_PEEKDATA, PTRACE_POKETEXT and PTRACE_POKEDATA are easy 521 * to handle, the difference to the 64 bit versions of the requests 522 * is that the access is done in multiples of 4 byte instead of 523 * 8 bytes (sizeof(unsigned long) on 31/64 bit). 524 * The ugly part are PTRACE_PEEKUSR, PTRACE_PEEKUSR_AREA, 525 * PTRACE_POKEUSR and PTRACE_POKEUSR_AREA. If the traced program 526 * is a 31 bit program too, the content of struct user can be 527 * emulated. A 31 bit program peeking into the struct user of 528 * a 64 bit program is a no-no. 529 */ 530 531 /* 532 * Same as peek_user_per but for a 31 bit program. 533 */ 534 static inline __u32 __peek_user_per_compat(struct task_struct *child, 535 addr_t addr) 536 { 537 struct compat_per_struct_kernel *dummy32 = NULL; 538 539 if (addr == (addr_t) &dummy32->cr9) 540 /* Control bits of the active per set. */ 541 return (__u32) test_thread_flag(TIF_SINGLE_STEP) ? 542 PER_EVENT_IFETCH : child->thread.per_user.control; 543 else if (addr == (addr_t) &dummy32->cr10) 544 /* Start address of the active per set. */ 545 return (__u32) test_thread_flag(TIF_SINGLE_STEP) ? 546 0 : child->thread.per_user.start; 547 else if (addr == (addr_t) &dummy32->cr11) 548 /* End address of the active per set. */ 549 return test_thread_flag(TIF_SINGLE_STEP) ? 550 PSW32_ADDR_INSN : child->thread.per_user.end; 551 else if (addr == (addr_t) &dummy32->bits) 552 /* Single-step bit. */ 553 return (__u32) test_thread_flag(TIF_SINGLE_STEP) ? 554 0x80000000 : 0; 555 else if (addr == (addr_t) &dummy32->starting_addr) 556 /* Start address of the user specified per set. */ 557 return (__u32) child->thread.per_user.start; 558 else if (addr == (addr_t) &dummy32->ending_addr) 559 /* End address of the user specified per set. */ 560 return (__u32) child->thread.per_user.end; 561 else if (addr == (addr_t) &dummy32->perc_atmid) 562 /* PER code, ATMID and AI of the last PER trap */ 563 return (__u32) child->thread.per_event.cause << 16; 564 else if (addr == (addr_t) &dummy32->address) 565 /* Address of the last PER trap */ 566 return (__u32) child->thread.per_event.address; 567 else if (addr == (addr_t) &dummy32->access_id) 568 /* Access id of the last PER trap */ 569 return (__u32) child->thread.per_event.paid << 24; 570 return 0; 571 } 572 573 /* 574 * Same as peek_user but for a 31 bit program. 575 */ 576 static u32 __peek_user_compat(struct task_struct *child, addr_t addr) 577 { 578 struct compat_user *dummy32 = NULL; 579 addr_t offset; 580 __u32 tmp; 581 582 if (addr < (addr_t) &dummy32->regs.acrs) { 583 struct pt_regs *regs = task_pt_regs(child); 584 /* 585 * psw and gprs are stored on the stack 586 */ 587 if (addr == (addr_t) &dummy32->regs.psw.mask) { 588 /* Fake a 31 bit psw mask. */ 589 tmp = (__u32)(regs->psw.mask >> 32); 590 tmp &= PSW32_MASK_USER | PSW32_MASK_RI; 591 tmp |= PSW32_USER_BITS; 592 } else if (addr == (addr_t) &dummy32->regs.psw.addr) { 593 /* Fake a 31 bit psw address. */ 594 tmp = (__u32) regs->psw.addr | 595 (__u32)(regs->psw.mask & PSW_MASK_BA); 596 } else { 597 /* gpr 0-15 */ 598 tmp = *(__u32 *)((addr_t) ®s->psw + addr*2 + 4); 599 } 600 } else if (addr < (addr_t) (&dummy32->regs.orig_gpr2)) { 601 /* 602 * access registers are stored in the thread structure 603 */ 604 offset = addr - (addr_t) &dummy32->regs.acrs; 605 tmp = *(__u32*)((addr_t) &child->thread.acrs + offset); 606 607 } else if (addr == (addr_t) (&dummy32->regs.orig_gpr2)) { 608 /* 609 * orig_gpr2 is stored on the kernel stack 610 */ 611 tmp = *(__u32*)((addr_t) &task_pt_regs(child)->orig_gpr2 + 4); 612 613 } else if (addr < (addr_t) &dummy32->regs.fp_regs) { 614 /* 615 * prevent reads of padding hole between 616 * orig_gpr2 and fp_regs on s390. 617 */ 618 tmp = 0; 619 620 } else if (addr == (addr_t) &dummy32->regs.fp_regs.fpc) { 621 /* 622 * floating point control reg. is in the thread structure 623 */ 624 tmp = child->thread.fp_regs.fpc; 625 626 } else if (addr < (addr_t) (&dummy32->regs.fp_regs + 1)) { 627 /* 628 * floating point regs. are either in child->thread.fp_regs 629 * or the child->thread.vxrs array 630 */ 631 offset = addr - (addr_t) &dummy32->regs.fp_regs.fprs; 632 if (child->thread.vxrs) 633 tmp = *(__u32 *) 634 ((addr_t) child->thread.vxrs + 2*offset); 635 else 636 tmp = *(__u32 *) 637 ((addr_t) &child->thread.fp_regs.fprs + offset); 638 639 } else if (addr < (addr_t) (&dummy32->regs.per_info + 1)) { 640 /* 641 * Handle access to the per_info structure. 642 */ 643 addr -= (addr_t) &dummy32->regs.per_info; 644 tmp = __peek_user_per_compat(child, addr); 645 646 } else 647 tmp = 0; 648 649 return tmp; 650 } 651 652 static int peek_user_compat(struct task_struct *child, 653 addr_t addr, addr_t data) 654 { 655 __u32 tmp; 656 657 if (!is_compat_task() || (addr & 3) || addr > sizeof(struct user) - 3) 658 return -EIO; 659 660 tmp = __peek_user_compat(child, addr); 661 return put_user(tmp, (__u32 __user *) data); 662 } 663 664 /* 665 * Same as poke_user_per but for a 31 bit program. 666 */ 667 static inline void __poke_user_per_compat(struct task_struct *child, 668 addr_t addr, __u32 data) 669 { 670 struct compat_per_struct_kernel *dummy32 = NULL; 671 672 if (addr == (addr_t) &dummy32->cr9) 673 /* PER event mask of the user specified per set. */ 674 child->thread.per_user.control = 675 data & (PER_EVENT_MASK | PER_CONTROL_MASK); 676 else if (addr == (addr_t) &dummy32->starting_addr) 677 /* Starting address of the user specified per set. */ 678 child->thread.per_user.start = data; 679 else if (addr == (addr_t) &dummy32->ending_addr) 680 /* Ending address of the user specified per set. */ 681 child->thread.per_user.end = data; 682 } 683 684 /* 685 * Same as poke_user but for a 31 bit program. 686 */ 687 static int __poke_user_compat(struct task_struct *child, 688 addr_t addr, addr_t data) 689 { 690 struct compat_user *dummy32 = NULL; 691 __u32 tmp = (__u32) data; 692 addr_t offset; 693 694 if (addr < (addr_t) &dummy32->regs.acrs) { 695 struct pt_regs *regs = task_pt_regs(child); 696 /* 697 * psw, gprs, acrs and orig_gpr2 are stored on the stack 698 */ 699 if (addr == (addr_t) &dummy32->regs.psw.mask) { 700 __u32 mask = PSW32_MASK_USER; 701 702 mask |= is_ri_task(child) ? PSW32_MASK_RI : 0; 703 /* Build a 64 bit psw mask from 31 bit mask. */ 704 if ((tmp ^ PSW32_USER_BITS) & ~mask) 705 /* Invalid psw mask. */ 706 return -EINVAL; 707 if ((data & PSW32_MASK_ASC) == PSW32_ASC_HOME) 708 /* Invalid address-space-control bits */ 709 return -EINVAL; 710 regs->psw.mask = (regs->psw.mask & ~PSW_MASK_USER) | 711 (regs->psw.mask & PSW_MASK_BA) | 712 (__u64)(tmp & mask) << 32; 713 } else if (addr == (addr_t) &dummy32->regs.psw.addr) { 714 /* Build a 64 bit psw address from 31 bit address. */ 715 regs->psw.addr = (__u64) tmp & PSW32_ADDR_INSN; 716 /* Transfer 31 bit amode bit to psw mask. */ 717 regs->psw.mask = (regs->psw.mask & ~PSW_MASK_BA) | 718 (__u64)(tmp & PSW32_ADDR_AMODE); 719 } else { 720 /* gpr 0-15 */ 721 *(__u32*)((addr_t) ®s->psw + addr*2 + 4) = tmp; 722 } 723 } else if (addr < (addr_t) (&dummy32->regs.orig_gpr2)) { 724 /* 725 * access registers are stored in the thread structure 726 */ 727 offset = addr - (addr_t) &dummy32->regs.acrs; 728 *(__u32*)((addr_t) &child->thread.acrs + offset) = tmp; 729 730 } else if (addr == (addr_t) (&dummy32->regs.orig_gpr2)) { 731 /* 732 * orig_gpr2 is stored on the kernel stack 733 */ 734 *(__u32*)((addr_t) &task_pt_regs(child)->orig_gpr2 + 4) = tmp; 735 736 } else if (addr < (addr_t) &dummy32->regs.fp_regs) { 737 /* 738 * prevent writess of padding hole between 739 * orig_gpr2 and fp_regs on s390. 740 */ 741 return 0; 742 743 } else if (addr == (addr_t) &dummy32->regs.fp_regs.fpc) { 744 /* 745 * floating point control reg. is in the thread structure 746 */ 747 if (test_fp_ctl(tmp)) 748 return -EINVAL; 749 child->thread.fp_regs.fpc = data; 750 751 } else if (addr < (addr_t) (&dummy32->regs.fp_regs + 1)) { 752 /* 753 * floating point regs. are either in child->thread.fp_regs 754 * or the child->thread.vxrs array 755 */ 756 offset = addr - (addr_t) &dummy32->regs.fp_regs.fprs; 757 if (child->thread.vxrs) 758 *(__u32 *)((addr_t) 759 child->thread.vxrs + 2*offset) = tmp; 760 else 761 *(__u32 *)((addr_t) 762 &child->thread.fp_regs.fprs + offset) = tmp; 763 764 } else if (addr < (addr_t) (&dummy32->regs.per_info + 1)) { 765 /* 766 * Handle access to the per_info structure. 767 */ 768 addr -= (addr_t) &dummy32->regs.per_info; 769 __poke_user_per_compat(child, addr, data); 770 } 771 772 return 0; 773 } 774 775 static int poke_user_compat(struct task_struct *child, 776 addr_t addr, addr_t data) 777 { 778 if (!is_compat_task() || (addr & 3) || 779 addr > sizeof(struct compat_user) - 3) 780 return -EIO; 781 782 return __poke_user_compat(child, addr, data); 783 } 784 785 long compat_arch_ptrace(struct task_struct *child, compat_long_t request, 786 compat_ulong_t caddr, compat_ulong_t cdata) 787 { 788 unsigned long addr = caddr; 789 unsigned long data = cdata; 790 compat_ptrace_area parea; 791 int copied, ret; 792 793 switch (request) { 794 case PTRACE_PEEKUSR: 795 /* read the word at location addr in the USER area. */ 796 return peek_user_compat(child, addr, data); 797 798 case PTRACE_POKEUSR: 799 /* write the word at location addr in the USER area */ 800 return poke_user_compat(child, addr, data); 801 802 case PTRACE_PEEKUSR_AREA: 803 case PTRACE_POKEUSR_AREA: 804 if (copy_from_user(&parea, (void __force __user *) addr, 805 sizeof(parea))) 806 return -EFAULT; 807 addr = parea.kernel_addr; 808 data = parea.process_addr; 809 copied = 0; 810 while (copied < parea.len) { 811 if (request == PTRACE_PEEKUSR_AREA) 812 ret = peek_user_compat(child, addr, data); 813 else { 814 __u32 utmp; 815 if (get_user(utmp, 816 (__u32 __force __user *) data)) 817 return -EFAULT; 818 ret = poke_user_compat(child, addr, utmp); 819 } 820 if (ret) 821 return ret; 822 addr += sizeof(unsigned int); 823 data += sizeof(unsigned int); 824 copied += sizeof(unsigned int); 825 } 826 return 0; 827 case PTRACE_GET_LAST_BREAK: 828 put_user(task_thread_info(child)->last_break, 829 (unsigned int __user *) data); 830 return 0; 831 } 832 return compat_ptrace_request(child, request, addr, data); 833 } 834 #endif 835 836 asmlinkage long do_syscall_trace_enter(struct pt_regs *regs) 837 { 838 long ret = 0; 839 840 /* Do the secure computing check first. */ 841 if (secure_computing()) { 842 /* seccomp failures shouldn't expose any additional code. */ 843 ret = -1; 844 goto out; 845 } 846 847 /* 848 * The sysc_tracesys code in entry.S stored the system 849 * call number to gprs[2]. 850 */ 851 if (test_thread_flag(TIF_SYSCALL_TRACE) && 852 (tracehook_report_syscall_entry(regs) || 853 regs->gprs[2] >= NR_syscalls)) { 854 /* 855 * Tracing decided this syscall should not happen or the 856 * debugger stored an invalid system call number. Skip 857 * the system call and the system call restart handling. 858 */ 859 clear_pt_regs_flag(regs, PIF_SYSCALL); 860 ret = -1; 861 } 862 863 if (unlikely(test_thread_flag(TIF_SYSCALL_TRACEPOINT))) 864 trace_sys_enter(regs, regs->gprs[2]); 865 866 audit_syscall_entry(regs->gprs[2], regs->orig_gpr2, 867 regs->gprs[3], regs->gprs[4], 868 regs->gprs[5]); 869 out: 870 return ret ?: regs->gprs[2]; 871 } 872 873 asmlinkage void do_syscall_trace_exit(struct pt_regs *regs) 874 { 875 audit_syscall_exit(regs); 876 877 if (unlikely(test_thread_flag(TIF_SYSCALL_TRACEPOINT))) 878 trace_sys_exit(regs, regs->gprs[2]); 879 880 if (test_thread_flag(TIF_SYSCALL_TRACE)) 881 tracehook_report_syscall_exit(regs, 0); 882 } 883 884 /* 885 * user_regset definitions. 886 */ 887 888 static int s390_regs_get(struct task_struct *target, 889 const struct user_regset *regset, 890 unsigned int pos, unsigned int count, 891 void *kbuf, void __user *ubuf) 892 { 893 if (target == current) 894 save_access_regs(target->thread.acrs); 895 896 if (kbuf) { 897 unsigned long *k = kbuf; 898 while (count > 0) { 899 *k++ = __peek_user(target, pos); 900 count -= sizeof(*k); 901 pos += sizeof(*k); 902 } 903 } else { 904 unsigned long __user *u = ubuf; 905 while (count > 0) { 906 if (__put_user(__peek_user(target, pos), u++)) 907 return -EFAULT; 908 count -= sizeof(*u); 909 pos += sizeof(*u); 910 } 911 } 912 return 0; 913 } 914 915 static int s390_regs_set(struct task_struct *target, 916 const struct user_regset *regset, 917 unsigned int pos, unsigned int count, 918 const void *kbuf, const void __user *ubuf) 919 { 920 int rc = 0; 921 922 if (target == current) 923 save_access_regs(target->thread.acrs); 924 925 if (kbuf) { 926 const unsigned long *k = kbuf; 927 while (count > 0 && !rc) { 928 rc = __poke_user(target, pos, *k++); 929 count -= sizeof(*k); 930 pos += sizeof(*k); 931 } 932 } else { 933 const unsigned long __user *u = ubuf; 934 while (count > 0 && !rc) { 935 unsigned long word; 936 rc = __get_user(word, u++); 937 if (rc) 938 break; 939 rc = __poke_user(target, pos, word); 940 count -= sizeof(*u); 941 pos += sizeof(*u); 942 } 943 } 944 945 if (rc == 0 && target == current) 946 restore_access_regs(target->thread.acrs); 947 948 return rc; 949 } 950 951 static int s390_fpregs_get(struct task_struct *target, 952 const struct user_regset *regset, unsigned int pos, 953 unsigned int count, void *kbuf, void __user *ubuf) 954 { 955 if (target == current) { 956 save_fp_ctl(&target->thread.fp_regs.fpc); 957 save_fp_regs(target->thread.fp_regs.fprs); 958 } else if (target->thread.vxrs) { 959 int i; 960 961 for (i = 0; i < __NUM_VXRS_LOW; i++) 962 target->thread.fp_regs.fprs[i] = 963 *(freg_t *)(target->thread.vxrs + i); 964 } 965 return user_regset_copyout(&pos, &count, &kbuf, &ubuf, 966 &target->thread.fp_regs, 0, -1); 967 } 968 969 static int s390_fpregs_set(struct task_struct *target, 970 const struct user_regset *regset, unsigned int pos, 971 unsigned int count, const void *kbuf, 972 const void __user *ubuf) 973 { 974 int rc = 0; 975 976 if (target == current) { 977 save_fp_ctl(&target->thread.fp_regs.fpc); 978 save_fp_regs(target->thread.fp_regs.fprs); 979 } 980 981 /* If setting FPC, must validate it first. */ 982 if (count > 0 && pos < offsetof(s390_fp_regs, fprs)) { 983 u32 ufpc[2] = { target->thread.fp_regs.fpc, 0 }; 984 rc = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &ufpc, 985 0, offsetof(s390_fp_regs, fprs)); 986 if (rc) 987 return rc; 988 if (ufpc[1] != 0 || test_fp_ctl(ufpc[0])) 989 return -EINVAL; 990 target->thread.fp_regs.fpc = ufpc[0]; 991 } 992 993 if (rc == 0 && count > 0) 994 rc = user_regset_copyin(&pos, &count, &kbuf, &ubuf, 995 target->thread.fp_regs.fprs, 996 offsetof(s390_fp_regs, fprs), -1); 997 998 if (rc == 0) { 999 if (target == current) { 1000 restore_fp_ctl(&target->thread.fp_regs.fpc); 1001 restore_fp_regs(target->thread.fp_regs.fprs); 1002 } else if (target->thread.vxrs) { 1003 int i; 1004 1005 for (i = 0; i < __NUM_VXRS_LOW; i++) 1006 *(freg_t *)(target->thread.vxrs + i) = 1007 target->thread.fp_regs.fprs[i]; 1008 } 1009 } 1010 1011 return rc; 1012 } 1013 1014 static int s390_last_break_get(struct task_struct *target, 1015 const struct user_regset *regset, 1016 unsigned int pos, unsigned int count, 1017 void *kbuf, void __user *ubuf) 1018 { 1019 if (count > 0) { 1020 if (kbuf) { 1021 unsigned long *k = kbuf; 1022 *k = task_thread_info(target)->last_break; 1023 } else { 1024 unsigned long __user *u = ubuf; 1025 if (__put_user(task_thread_info(target)->last_break, u)) 1026 return -EFAULT; 1027 } 1028 } 1029 return 0; 1030 } 1031 1032 static int s390_last_break_set(struct task_struct *target, 1033 const struct user_regset *regset, 1034 unsigned int pos, unsigned int count, 1035 const void *kbuf, const void __user *ubuf) 1036 { 1037 return 0; 1038 } 1039 1040 static int s390_tdb_get(struct task_struct *target, 1041 const struct user_regset *regset, 1042 unsigned int pos, unsigned int count, 1043 void *kbuf, void __user *ubuf) 1044 { 1045 struct pt_regs *regs = task_pt_regs(target); 1046 unsigned char *data; 1047 1048 if (!(regs->int_code & 0x200)) 1049 return -ENODATA; 1050 data = target->thread.trap_tdb; 1051 return user_regset_copyout(&pos, &count, &kbuf, &ubuf, data, 0, 256); 1052 } 1053 1054 static int s390_tdb_set(struct task_struct *target, 1055 const struct user_regset *regset, 1056 unsigned int pos, unsigned int count, 1057 const void *kbuf, const void __user *ubuf) 1058 { 1059 return 0; 1060 } 1061 1062 static int s390_vxrs_low_get(struct task_struct *target, 1063 const struct user_regset *regset, 1064 unsigned int pos, unsigned int count, 1065 void *kbuf, void __user *ubuf) 1066 { 1067 __u64 vxrs[__NUM_VXRS_LOW]; 1068 int i; 1069 1070 if (!MACHINE_HAS_VX) 1071 return -ENODEV; 1072 if (target->thread.vxrs) { 1073 if (target == current) 1074 save_vx_regs(target->thread.vxrs); 1075 for (i = 0; i < __NUM_VXRS_LOW; i++) 1076 vxrs[i] = *((__u64 *)(target->thread.vxrs + i) + 1); 1077 } else 1078 memset(vxrs, 0, sizeof(vxrs)); 1079 return user_regset_copyout(&pos, &count, &kbuf, &ubuf, vxrs, 0, -1); 1080 } 1081 1082 static int s390_vxrs_low_set(struct task_struct *target, 1083 const struct user_regset *regset, 1084 unsigned int pos, unsigned int count, 1085 const void *kbuf, const void __user *ubuf) 1086 { 1087 __u64 vxrs[__NUM_VXRS_LOW]; 1088 int i, rc; 1089 1090 if (!MACHINE_HAS_VX) 1091 return -ENODEV; 1092 if (!target->thread.vxrs) { 1093 rc = alloc_vector_registers(target); 1094 if (rc) 1095 return rc; 1096 } else if (target == current) 1097 save_vx_regs(target->thread.vxrs); 1098 1099 rc = user_regset_copyin(&pos, &count, &kbuf, &ubuf, vxrs, 0, -1); 1100 if (rc == 0) { 1101 for (i = 0; i < __NUM_VXRS_LOW; i++) 1102 *((__u64 *)(target->thread.vxrs + i) + 1) = vxrs[i]; 1103 if (target == current) 1104 restore_vx_regs(target->thread.vxrs); 1105 } 1106 1107 return rc; 1108 } 1109 1110 static int s390_vxrs_high_get(struct task_struct *target, 1111 const struct user_regset *regset, 1112 unsigned int pos, unsigned int count, 1113 void *kbuf, void __user *ubuf) 1114 { 1115 __vector128 vxrs[__NUM_VXRS_HIGH]; 1116 1117 if (!MACHINE_HAS_VX) 1118 return -ENODEV; 1119 if (target->thread.vxrs) { 1120 if (target == current) 1121 save_vx_regs(target->thread.vxrs); 1122 memcpy(vxrs, target->thread.vxrs + __NUM_VXRS_LOW, 1123 sizeof(vxrs)); 1124 } else 1125 memset(vxrs, 0, sizeof(vxrs)); 1126 return user_regset_copyout(&pos, &count, &kbuf, &ubuf, vxrs, 0, -1); 1127 } 1128 1129 static int s390_vxrs_high_set(struct task_struct *target, 1130 const struct user_regset *regset, 1131 unsigned int pos, unsigned int count, 1132 const void *kbuf, const void __user *ubuf) 1133 { 1134 int rc; 1135 1136 if (!MACHINE_HAS_VX) 1137 return -ENODEV; 1138 if (!target->thread.vxrs) { 1139 rc = alloc_vector_registers(target); 1140 if (rc) 1141 return rc; 1142 } else if (target == current) 1143 save_vx_regs(target->thread.vxrs); 1144 1145 rc = user_regset_copyin(&pos, &count, &kbuf, &ubuf, 1146 target->thread.vxrs + __NUM_VXRS_LOW, 0, -1); 1147 if (rc == 0 && target == current) 1148 restore_vx_regs(target->thread.vxrs); 1149 1150 return rc; 1151 } 1152 1153 static int s390_system_call_get(struct task_struct *target, 1154 const struct user_regset *regset, 1155 unsigned int pos, unsigned int count, 1156 void *kbuf, void __user *ubuf) 1157 { 1158 unsigned int *data = &task_thread_info(target)->system_call; 1159 return user_regset_copyout(&pos, &count, &kbuf, &ubuf, 1160 data, 0, sizeof(unsigned int)); 1161 } 1162 1163 static int s390_system_call_set(struct task_struct *target, 1164 const struct user_regset *regset, 1165 unsigned int pos, unsigned int count, 1166 const void *kbuf, const void __user *ubuf) 1167 { 1168 unsigned int *data = &task_thread_info(target)->system_call; 1169 return user_regset_copyin(&pos, &count, &kbuf, &ubuf, 1170 data, 0, sizeof(unsigned int)); 1171 } 1172 1173 static const struct user_regset s390_regsets[] = { 1174 { 1175 .core_note_type = NT_PRSTATUS, 1176 .n = sizeof(s390_regs) / sizeof(long), 1177 .size = sizeof(long), 1178 .align = sizeof(long), 1179 .get = s390_regs_get, 1180 .set = s390_regs_set, 1181 }, 1182 { 1183 .core_note_type = NT_PRFPREG, 1184 .n = sizeof(s390_fp_regs) / sizeof(long), 1185 .size = sizeof(long), 1186 .align = sizeof(long), 1187 .get = s390_fpregs_get, 1188 .set = s390_fpregs_set, 1189 }, 1190 { 1191 .core_note_type = NT_S390_SYSTEM_CALL, 1192 .n = 1, 1193 .size = sizeof(unsigned int), 1194 .align = sizeof(unsigned int), 1195 .get = s390_system_call_get, 1196 .set = s390_system_call_set, 1197 }, 1198 { 1199 .core_note_type = NT_S390_LAST_BREAK, 1200 .n = 1, 1201 .size = sizeof(long), 1202 .align = sizeof(long), 1203 .get = s390_last_break_get, 1204 .set = s390_last_break_set, 1205 }, 1206 { 1207 .core_note_type = NT_S390_TDB, 1208 .n = 1, 1209 .size = 256, 1210 .align = 1, 1211 .get = s390_tdb_get, 1212 .set = s390_tdb_set, 1213 }, 1214 { 1215 .core_note_type = NT_S390_VXRS_LOW, 1216 .n = __NUM_VXRS_LOW, 1217 .size = sizeof(__u64), 1218 .align = sizeof(__u64), 1219 .get = s390_vxrs_low_get, 1220 .set = s390_vxrs_low_set, 1221 }, 1222 { 1223 .core_note_type = NT_S390_VXRS_HIGH, 1224 .n = __NUM_VXRS_HIGH, 1225 .size = sizeof(__vector128), 1226 .align = sizeof(__vector128), 1227 .get = s390_vxrs_high_get, 1228 .set = s390_vxrs_high_set, 1229 }, 1230 }; 1231 1232 static const struct user_regset_view user_s390_view = { 1233 .name = UTS_MACHINE, 1234 .e_machine = EM_S390, 1235 .regsets = s390_regsets, 1236 .n = ARRAY_SIZE(s390_regsets) 1237 }; 1238 1239 #ifdef CONFIG_COMPAT 1240 static int s390_compat_regs_get(struct task_struct *target, 1241 const struct user_regset *regset, 1242 unsigned int pos, unsigned int count, 1243 void *kbuf, void __user *ubuf) 1244 { 1245 if (target == current) 1246 save_access_regs(target->thread.acrs); 1247 1248 if (kbuf) { 1249 compat_ulong_t *k = kbuf; 1250 while (count > 0) { 1251 *k++ = __peek_user_compat(target, pos); 1252 count -= sizeof(*k); 1253 pos += sizeof(*k); 1254 } 1255 } else { 1256 compat_ulong_t __user *u = ubuf; 1257 while (count > 0) { 1258 if (__put_user(__peek_user_compat(target, pos), u++)) 1259 return -EFAULT; 1260 count -= sizeof(*u); 1261 pos += sizeof(*u); 1262 } 1263 } 1264 return 0; 1265 } 1266 1267 static int s390_compat_regs_set(struct task_struct *target, 1268 const struct user_regset *regset, 1269 unsigned int pos, unsigned int count, 1270 const void *kbuf, const void __user *ubuf) 1271 { 1272 int rc = 0; 1273 1274 if (target == current) 1275 save_access_regs(target->thread.acrs); 1276 1277 if (kbuf) { 1278 const compat_ulong_t *k = kbuf; 1279 while (count > 0 && !rc) { 1280 rc = __poke_user_compat(target, pos, *k++); 1281 count -= sizeof(*k); 1282 pos += sizeof(*k); 1283 } 1284 } else { 1285 const compat_ulong_t __user *u = ubuf; 1286 while (count > 0 && !rc) { 1287 compat_ulong_t word; 1288 rc = __get_user(word, u++); 1289 if (rc) 1290 break; 1291 rc = __poke_user_compat(target, pos, word); 1292 count -= sizeof(*u); 1293 pos += sizeof(*u); 1294 } 1295 } 1296 1297 if (rc == 0 && target == current) 1298 restore_access_regs(target->thread.acrs); 1299 1300 return rc; 1301 } 1302 1303 static int s390_compat_regs_high_get(struct task_struct *target, 1304 const struct user_regset *regset, 1305 unsigned int pos, unsigned int count, 1306 void *kbuf, void __user *ubuf) 1307 { 1308 compat_ulong_t *gprs_high; 1309 1310 gprs_high = (compat_ulong_t *) 1311 &task_pt_regs(target)->gprs[pos / sizeof(compat_ulong_t)]; 1312 if (kbuf) { 1313 compat_ulong_t *k = kbuf; 1314 while (count > 0) { 1315 *k++ = *gprs_high; 1316 gprs_high += 2; 1317 count -= sizeof(*k); 1318 } 1319 } else { 1320 compat_ulong_t __user *u = ubuf; 1321 while (count > 0) { 1322 if (__put_user(*gprs_high, u++)) 1323 return -EFAULT; 1324 gprs_high += 2; 1325 count -= sizeof(*u); 1326 } 1327 } 1328 return 0; 1329 } 1330 1331 static int s390_compat_regs_high_set(struct task_struct *target, 1332 const struct user_regset *regset, 1333 unsigned int pos, unsigned int count, 1334 const void *kbuf, const void __user *ubuf) 1335 { 1336 compat_ulong_t *gprs_high; 1337 int rc = 0; 1338 1339 gprs_high = (compat_ulong_t *) 1340 &task_pt_regs(target)->gprs[pos / sizeof(compat_ulong_t)]; 1341 if (kbuf) { 1342 const compat_ulong_t *k = kbuf; 1343 while (count > 0) { 1344 *gprs_high = *k++; 1345 *gprs_high += 2; 1346 count -= sizeof(*k); 1347 } 1348 } else { 1349 const compat_ulong_t __user *u = ubuf; 1350 while (count > 0 && !rc) { 1351 unsigned long word; 1352 rc = __get_user(word, u++); 1353 if (rc) 1354 break; 1355 *gprs_high = word; 1356 *gprs_high += 2; 1357 count -= sizeof(*u); 1358 } 1359 } 1360 1361 return rc; 1362 } 1363 1364 static int s390_compat_last_break_get(struct task_struct *target, 1365 const struct user_regset *regset, 1366 unsigned int pos, unsigned int count, 1367 void *kbuf, void __user *ubuf) 1368 { 1369 compat_ulong_t last_break; 1370 1371 if (count > 0) { 1372 last_break = task_thread_info(target)->last_break; 1373 if (kbuf) { 1374 unsigned long *k = kbuf; 1375 *k = last_break; 1376 } else { 1377 unsigned long __user *u = ubuf; 1378 if (__put_user(last_break, u)) 1379 return -EFAULT; 1380 } 1381 } 1382 return 0; 1383 } 1384 1385 static int s390_compat_last_break_set(struct task_struct *target, 1386 const struct user_regset *regset, 1387 unsigned int pos, unsigned int count, 1388 const void *kbuf, const void __user *ubuf) 1389 { 1390 return 0; 1391 } 1392 1393 static const struct user_regset s390_compat_regsets[] = { 1394 { 1395 .core_note_type = NT_PRSTATUS, 1396 .n = sizeof(s390_compat_regs) / sizeof(compat_long_t), 1397 .size = sizeof(compat_long_t), 1398 .align = sizeof(compat_long_t), 1399 .get = s390_compat_regs_get, 1400 .set = s390_compat_regs_set, 1401 }, 1402 { 1403 .core_note_type = NT_PRFPREG, 1404 .n = sizeof(s390_fp_regs) / sizeof(compat_long_t), 1405 .size = sizeof(compat_long_t), 1406 .align = sizeof(compat_long_t), 1407 .get = s390_fpregs_get, 1408 .set = s390_fpregs_set, 1409 }, 1410 { 1411 .core_note_type = NT_S390_SYSTEM_CALL, 1412 .n = 1, 1413 .size = sizeof(compat_uint_t), 1414 .align = sizeof(compat_uint_t), 1415 .get = s390_system_call_get, 1416 .set = s390_system_call_set, 1417 }, 1418 { 1419 .core_note_type = NT_S390_LAST_BREAK, 1420 .n = 1, 1421 .size = sizeof(long), 1422 .align = sizeof(long), 1423 .get = s390_compat_last_break_get, 1424 .set = s390_compat_last_break_set, 1425 }, 1426 { 1427 .core_note_type = NT_S390_TDB, 1428 .n = 1, 1429 .size = 256, 1430 .align = 1, 1431 .get = s390_tdb_get, 1432 .set = s390_tdb_set, 1433 }, 1434 { 1435 .core_note_type = NT_S390_VXRS_LOW, 1436 .n = __NUM_VXRS_LOW, 1437 .size = sizeof(__u64), 1438 .align = sizeof(__u64), 1439 .get = s390_vxrs_low_get, 1440 .set = s390_vxrs_low_set, 1441 }, 1442 { 1443 .core_note_type = NT_S390_VXRS_HIGH, 1444 .n = __NUM_VXRS_HIGH, 1445 .size = sizeof(__vector128), 1446 .align = sizeof(__vector128), 1447 .get = s390_vxrs_high_get, 1448 .set = s390_vxrs_high_set, 1449 }, 1450 { 1451 .core_note_type = NT_S390_HIGH_GPRS, 1452 .n = sizeof(s390_compat_regs_high) / sizeof(compat_long_t), 1453 .size = sizeof(compat_long_t), 1454 .align = sizeof(compat_long_t), 1455 .get = s390_compat_regs_high_get, 1456 .set = s390_compat_regs_high_set, 1457 }, 1458 }; 1459 1460 static const struct user_regset_view user_s390_compat_view = { 1461 .name = "s390", 1462 .e_machine = EM_S390, 1463 .regsets = s390_compat_regsets, 1464 .n = ARRAY_SIZE(s390_compat_regsets) 1465 }; 1466 #endif 1467 1468 const struct user_regset_view *task_user_regset_view(struct task_struct *task) 1469 { 1470 #ifdef CONFIG_COMPAT 1471 if (test_tsk_thread_flag(task, TIF_31BIT)) 1472 return &user_s390_compat_view; 1473 #endif 1474 return &user_s390_view; 1475 } 1476 1477 static const char *gpr_names[NUM_GPRS] = { 1478 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", 1479 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", 1480 }; 1481 1482 unsigned long regs_get_register(struct pt_regs *regs, unsigned int offset) 1483 { 1484 if (offset >= NUM_GPRS) 1485 return 0; 1486 return regs->gprs[offset]; 1487 } 1488 1489 int regs_query_register_offset(const char *name) 1490 { 1491 unsigned long offset; 1492 1493 if (!name || *name != 'r') 1494 return -EINVAL; 1495 if (kstrtoul(name + 1, 10, &offset)) 1496 return -EINVAL; 1497 if (offset >= NUM_GPRS) 1498 return -EINVAL; 1499 return offset; 1500 } 1501 1502 const char *regs_query_register_name(unsigned int offset) 1503 { 1504 if (offset >= NUM_GPRS) 1505 return NULL; 1506 return gpr_names[offset]; 1507 } 1508 1509 static int regs_within_kernel_stack(struct pt_regs *regs, unsigned long addr) 1510 { 1511 unsigned long ksp = kernel_stack_pointer(regs); 1512 1513 return (addr & ~(THREAD_SIZE - 1)) == (ksp & ~(THREAD_SIZE - 1)); 1514 } 1515 1516 /** 1517 * regs_get_kernel_stack_nth() - get Nth entry of the stack 1518 * @regs:pt_regs which contains kernel stack pointer. 1519 * @n:stack entry number. 1520 * 1521 * regs_get_kernel_stack_nth() returns @n th entry of the kernel stack which 1522 * is specifined by @regs. If the @n th entry is NOT in the kernel stack, 1523 * this returns 0. 1524 */ 1525 unsigned long regs_get_kernel_stack_nth(struct pt_regs *regs, unsigned int n) 1526 { 1527 unsigned long addr; 1528 1529 addr = kernel_stack_pointer(regs) + n * sizeof(long); 1530 if (!regs_within_kernel_stack(regs, addr)) 1531 return 0; 1532 return *(unsigned long *)addr; 1533 } 1534