xref: /openbmc/linux/arch/s390/kernel/ptrace.c (revision 12eb4683)
1 /*
2  *  Ptrace user space interface.
3  *
4  *    Copyright IBM Corp. 1999, 2010
5  *    Author(s): Denis Joseph Barrow
6  *               Martin Schwidefsky (schwidefsky@de.ibm.com)
7  */
8 
9 #include <linux/kernel.h>
10 #include <linux/sched.h>
11 #include <linux/mm.h>
12 #include <linux/smp.h>
13 #include <linux/errno.h>
14 #include <linux/ptrace.h>
15 #include <linux/user.h>
16 #include <linux/security.h>
17 #include <linux/audit.h>
18 #include <linux/signal.h>
19 #include <linux/elf.h>
20 #include <linux/regset.h>
21 #include <linux/tracehook.h>
22 #include <linux/seccomp.h>
23 #include <linux/compat.h>
24 #include <trace/syscall.h>
25 #include <asm/segment.h>
26 #include <asm/page.h>
27 #include <asm/pgtable.h>
28 #include <asm/pgalloc.h>
29 #include <asm/uaccess.h>
30 #include <asm/unistd.h>
31 #include <asm/switch_to.h>
32 #include "entry.h"
33 
34 #ifdef CONFIG_COMPAT
35 #include "compat_ptrace.h"
36 #endif
37 
38 #define CREATE_TRACE_POINTS
39 #include <trace/events/syscalls.h>
40 
41 enum s390_regset {
42 	REGSET_GENERAL,
43 	REGSET_FP,
44 	REGSET_LAST_BREAK,
45 	REGSET_TDB,
46 	REGSET_SYSTEM_CALL,
47 	REGSET_GENERAL_EXTENDED,
48 };
49 
50 void update_cr_regs(struct task_struct *task)
51 {
52 	struct pt_regs *regs = task_pt_regs(task);
53 	struct thread_struct *thread = &task->thread;
54 	struct per_regs old, new;
55 
56 #ifdef CONFIG_64BIT
57 	/* Take care of the enable/disable of transactional execution. */
58 	if (MACHINE_HAS_TE) {
59 		unsigned long cr[3], cr_new[3];
60 
61 		__ctl_store(cr, 0, 2);
62 		cr_new[1] = cr[1];
63 		/* Set or clear transaction execution TXC bit 8. */
64 		if (task->thread.per_flags & PER_FLAG_NO_TE)
65 			cr_new[0] = cr[0] & ~(1UL << 55);
66 		else
67 			cr_new[0] = cr[0] | (1UL << 55);
68 		/* Set or clear transaction execution TDC bits 62 and 63. */
69 		cr_new[2] = cr[2] & ~3UL;
70 		if (task->thread.per_flags & PER_FLAG_TE_ABORT_RAND) {
71 			if (task->thread.per_flags & PER_FLAG_TE_ABORT_RAND_TEND)
72 				cr_new[2] |= 1UL;
73 			else
74 				cr_new[2] |= 2UL;
75 		}
76 		if (memcmp(&cr_new, &cr, sizeof(cr)))
77 			__ctl_load(cr_new, 0, 2);
78 	}
79 #endif
80 	/* Copy user specified PER registers */
81 	new.control = thread->per_user.control;
82 	new.start = thread->per_user.start;
83 	new.end = thread->per_user.end;
84 
85 	/* merge TIF_SINGLE_STEP into user specified PER registers. */
86 	if (test_tsk_thread_flag(task, TIF_SINGLE_STEP)) {
87 		new.control |= PER_EVENT_IFETCH;
88 #ifdef CONFIG_64BIT
89 		new.control |= PER_CONTROL_SUSPENSION;
90 		new.control |= PER_EVENT_TRANSACTION_END;
91 #endif
92 		new.start = 0;
93 		new.end = PSW_ADDR_INSN;
94 	}
95 
96 	/* Take care of the PER enablement bit in the PSW. */
97 	if (!(new.control & PER_EVENT_MASK)) {
98 		regs->psw.mask &= ~PSW_MASK_PER;
99 		return;
100 	}
101 	regs->psw.mask |= PSW_MASK_PER;
102 	__ctl_store(old, 9, 11);
103 	if (memcmp(&new, &old, sizeof(struct per_regs)) != 0)
104 		__ctl_load(new, 9, 11);
105 }
106 
107 void user_enable_single_step(struct task_struct *task)
108 {
109 	set_tsk_thread_flag(task, TIF_SINGLE_STEP);
110 	if (task == current)
111 		update_cr_regs(task);
112 }
113 
114 void user_disable_single_step(struct task_struct *task)
115 {
116 	clear_tsk_thread_flag(task, TIF_SINGLE_STEP);
117 	if (task == current)
118 		update_cr_regs(task);
119 }
120 
121 /*
122  * Called by kernel/ptrace.c when detaching..
123  *
124  * Clear all debugging related fields.
125  */
126 void ptrace_disable(struct task_struct *task)
127 {
128 	memset(&task->thread.per_user, 0, sizeof(task->thread.per_user));
129 	memset(&task->thread.per_event, 0, sizeof(task->thread.per_event));
130 	clear_tsk_thread_flag(task, TIF_SINGLE_STEP);
131 	clear_tsk_thread_flag(task, TIF_PER_TRAP);
132 	task->thread.per_flags = 0;
133 }
134 
135 #ifndef CONFIG_64BIT
136 # define __ADDR_MASK 3
137 #else
138 # define __ADDR_MASK 7
139 #endif
140 
141 static inline unsigned long __peek_user_per(struct task_struct *child,
142 					    addr_t addr)
143 {
144 	struct per_struct_kernel *dummy = NULL;
145 
146 	if (addr == (addr_t) &dummy->cr9)
147 		/* Control bits of the active per set. */
148 		return test_thread_flag(TIF_SINGLE_STEP) ?
149 			PER_EVENT_IFETCH : child->thread.per_user.control;
150 	else if (addr == (addr_t) &dummy->cr10)
151 		/* Start address of the active per set. */
152 		return test_thread_flag(TIF_SINGLE_STEP) ?
153 			0 : child->thread.per_user.start;
154 	else if (addr == (addr_t) &dummy->cr11)
155 		/* End address of the active per set. */
156 		return test_thread_flag(TIF_SINGLE_STEP) ?
157 			PSW_ADDR_INSN : child->thread.per_user.end;
158 	else if (addr == (addr_t) &dummy->bits)
159 		/* Single-step bit. */
160 		return test_thread_flag(TIF_SINGLE_STEP) ?
161 			(1UL << (BITS_PER_LONG - 1)) : 0;
162 	else if (addr == (addr_t) &dummy->starting_addr)
163 		/* Start address of the user specified per set. */
164 		return child->thread.per_user.start;
165 	else if (addr == (addr_t) &dummy->ending_addr)
166 		/* End address of the user specified per set. */
167 		return child->thread.per_user.end;
168 	else if (addr == (addr_t) &dummy->perc_atmid)
169 		/* PER code, ATMID and AI of the last PER trap */
170 		return (unsigned long)
171 			child->thread.per_event.cause << (BITS_PER_LONG - 16);
172 	else if (addr == (addr_t) &dummy->address)
173 		/* Address of the last PER trap */
174 		return child->thread.per_event.address;
175 	else if (addr == (addr_t) &dummy->access_id)
176 		/* Access id of the last PER trap */
177 		return (unsigned long)
178 			child->thread.per_event.paid << (BITS_PER_LONG - 8);
179 	return 0;
180 }
181 
182 /*
183  * Read the word at offset addr from the user area of a process. The
184  * trouble here is that the information is littered over different
185  * locations. The process registers are found on the kernel stack,
186  * the floating point stuff and the trace settings are stored in
187  * the task structure. In addition the different structures in
188  * struct user contain pad bytes that should be read as zeroes.
189  * Lovely...
190  */
191 static unsigned long __peek_user(struct task_struct *child, addr_t addr)
192 {
193 	struct user *dummy = NULL;
194 	addr_t offset, tmp;
195 
196 	if (addr < (addr_t) &dummy->regs.acrs) {
197 		/*
198 		 * psw and gprs are stored on the stack
199 		 */
200 		tmp = *(addr_t *)((addr_t) &task_pt_regs(child)->psw + addr);
201 		if (addr == (addr_t) &dummy->regs.psw.mask) {
202 			/* Return a clean psw mask. */
203 			tmp &= PSW_MASK_USER | PSW_MASK_RI;
204 			tmp |= PSW_USER_BITS;
205 		}
206 
207 	} else if (addr < (addr_t) &dummy->regs.orig_gpr2) {
208 		/*
209 		 * access registers are stored in the thread structure
210 		 */
211 		offset = addr - (addr_t) &dummy->regs.acrs;
212 #ifdef CONFIG_64BIT
213 		/*
214 		 * Very special case: old & broken 64 bit gdb reading
215 		 * from acrs[15]. Result is a 64 bit value. Read the
216 		 * 32 bit acrs[15] value and shift it by 32. Sick...
217 		 */
218 		if (addr == (addr_t) &dummy->regs.acrs[15])
219 			tmp = ((unsigned long) child->thread.acrs[15]) << 32;
220 		else
221 #endif
222 		tmp = *(addr_t *)((addr_t) &child->thread.acrs + offset);
223 
224 	} else if (addr == (addr_t) &dummy->regs.orig_gpr2) {
225 		/*
226 		 * orig_gpr2 is stored on the kernel stack
227 		 */
228 		tmp = (addr_t) task_pt_regs(child)->orig_gpr2;
229 
230 	} else if (addr < (addr_t) &dummy->regs.fp_regs) {
231 		/*
232 		 * prevent reads of padding hole between
233 		 * orig_gpr2 and fp_regs on s390.
234 		 */
235 		tmp = 0;
236 
237 	} else if (addr < (addr_t) (&dummy->regs.fp_regs + 1)) {
238 		/*
239 		 * floating point regs. are stored in the thread structure
240 		 */
241 		offset = addr - (addr_t) &dummy->regs.fp_regs;
242 		tmp = *(addr_t *)((addr_t) &child->thread.fp_regs + offset);
243 		if (addr == (addr_t) &dummy->regs.fp_regs.fpc)
244 			tmp <<= BITS_PER_LONG - 32;
245 
246 	} else if (addr < (addr_t) (&dummy->regs.per_info + 1)) {
247 		/*
248 		 * Handle access to the per_info structure.
249 		 */
250 		addr -= (addr_t) &dummy->regs.per_info;
251 		tmp = __peek_user_per(child, addr);
252 
253 	} else
254 		tmp = 0;
255 
256 	return tmp;
257 }
258 
259 static int
260 peek_user(struct task_struct *child, addr_t addr, addr_t data)
261 {
262 	addr_t tmp, mask;
263 
264 	/*
265 	 * Stupid gdb peeks/pokes the access registers in 64 bit with
266 	 * an alignment of 4. Programmers from hell...
267 	 */
268 	mask = __ADDR_MASK;
269 #ifdef CONFIG_64BIT
270 	if (addr >= (addr_t) &((struct user *) NULL)->regs.acrs &&
271 	    addr < (addr_t) &((struct user *) NULL)->regs.orig_gpr2)
272 		mask = 3;
273 #endif
274 	if ((addr & mask) || addr > sizeof(struct user) - __ADDR_MASK)
275 		return -EIO;
276 
277 	tmp = __peek_user(child, addr);
278 	return put_user(tmp, (addr_t __user *) data);
279 }
280 
281 static inline void __poke_user_per(struct task_struct *child,
282 				   addr_t addr, addr_t data)
283 {
284 	struct per_struct_kernel *dummy = NULL;
285 
286 	/*
287 	 * There are only three fields in the per_info struct that the
288 	 * debugger user can write to.
289 	 * 1) cr9: the debugger wants to set a new PER event mask
290 	 * 2) starting_addr: the debugger wants to set a new starting
291 	 *    address to use with the PER event mask.
292 	 * 3) ending_addr: the debugger wants to set a new ending
293 	 *    address to use with the PER event mask.
294 	 * The user specified PER event mask and the start and end
295 	 * addresses are used only if single stepping is not in effect.
296 	 * Writes to any other field in per_info are ignored.
297 	 */
298 	if (addr == (addr_t) &dummy->cr9)
299 		/* PER event mask of the user specified per set. */
300 		child->thread.per_user.control =
301 			data & (PER_EVENT_MASK | PER_CONTROL_MASK);
302 	else if (addr == (addr_t) &dummy->starting_addr)
303 		/* Starting address of the user specified per set. */
304 		child->thread.per_user.start = data;
305 	else if (addr == (addr_t) &dummy->ending_addr)
306 		/* Ending address of the user specified per set. */
307 		child->thread.per_user.end = data;
308 }
309 
310 /*
311  * Write a word to the user area of a process at location addr. This
312  * operation does have an additional problem compared to peek_user.
313  * Stores to the program status word and on the floating point
314  * control register needs to get checked for validity.
315  */
316 static int __poke_user(struct task_struct *child, addr_t addr, addr_t data)
317 {
318 	struct user *dummy = NULL;
319 	addr_t offset;
320 
321 	if (addr < (addr_t) &dummy->regs.acrs) {
322 		/*
323 		 * psw and gprs are stored on the stack
324 		 */
325 		if (addr == (addr_t) &dummy->regs.psw.mask) {
326 			unsigned long mask = PSW_MASK_USER;
327 
328 			mask |= is_ri_task(child) ? PSW_MASK_RI : 0;
329 			if ((data & ~mask) != PSW_USER_BITS)
330 				return -EINVAL;
331 			if ((data & PSW_MASK_EA) && !(data & PSW_MASK_BA))
332 				return -EINVAL;
333 		}
334 		*(addr_t *)((addr_t) &task_pt_regs(child)->psw + addr) = data;
335 
336 	} else if (addr < (addr_t) (&dummy->regs.orig_gpr2)) {
337 		/*
338 		 * access registers are stored in the thread structure
339 		 */
340 		offset = addr - (addr_t) &dummy->regs.acrs;
341 #ifdef CONFIG_64BIT
342 		/*
343 		 * Very special case: old & broken 64 bit gdb writing
344 		 * to acrs[15] with a 64 bit value. Ignore the lower
345 		 * half of the value and write the upper 32 bit to
346 		 * acrs[15]. Sick...
347 		 */
348 		if (addr == (addr_t) &dummy->regs.acrs[15])
349 			child->thread.acrs[15] = (unsigned int) (data >> 32);
350 		else
351 #endif
352 		*(addr_t *)((addr_t) &child->thread.acrs + offset) = data;
353 
354 	} else if (addr == (addr_t) &dummy->regs.orig_gpr2) {
355 		/*
356 		 * orig_gpr2 is stored on the kernel stack
357 		 */
358 		task_pt_regs(child)->orig_gpr2 = data;
359 
360 	} else if (addr < (addr_t) &dummy->regs.fp_regs) {
361 		/*
362 		 * prevent writes of padding hole between
363 		 * orig_gpr2 and fp_regs on s390.
364 		 */
365 		return 0;
366 
367 	} else if (addr < (addr_t) (&dummy->regs.fp_regs + 1)) {
368 		/*
369 		 * floating point regs. are stored in the thread structure
370 		 */
371 		if (addr == (addr_t) &dummy->regs.fp_regs.fpc)
372 			if ((unsigned int) data != 0 ||
373 			    test_fp_ctl(data >> (BITS_PER_LONG - 32)))
374 				return -EINVAL;
375 		offset = addr - (addr_t) &dummy->regs.fp_regs;
376 		*(addr_t *)((addr_t) &child->thread.fp_regs + offset) = data;
377 
378 	} else if (addr < (addr_t) (&dummy->regs.per_info + 1)) {
379 		/*
380 		 * Handle access to the per_info structure.
381 		 */
382 		addr -= (addr_t) &dummy->regs.per_info;
383 		__poke_user_per(child, addr, data);
384 
385 	}
386 
387 	return 0;
388 }
389 
390 static int poke_user(struct task_struct *child, addr_t addr, addr_t data)
391 {
392 	addr_t mask;
393 
394 	/*
395 	 * Stupid gdb peeks/pokes the access registers in 64 bit with
396 	 * an alignment of 4. Programmers from hell indeed...
397 	 */
398 	mask = __ADDR_MASK;
399 #ifdef CONFIG_64BIT
400 	if (addr >= (addr_t) &((struct user *) NULL)->regs.acrs &&
401 	    addr < (addr_t) &((struct user *) NULL)->regs.orig_gpr2)
402 		mask = 3;
403 #endif
404 	if ((addr & mask) || addr > sizeof(struct user) - __ADDR_MASK)
405 		return -EIO;
406 
407 	return __poke_user(child, addr, data);
408 }
409 
410 long arch_ptrace(struct task_struct *child, long request,
411 		 unsigned long addr, unsigned long data)
412 {
413 	ptrace_area parea;
414 	int copied, ret;
415 
416 	switch (request) {
417 	case PTRACE_PEEKUSR:
418 		/* read the word at location addr in the USER area. */
419 		return peek_user(child, addr, data);
420 
421 	case PTRACE_POKEUSR:
422 		/* write the word at location addr in the USER area */
423 		return poke_user(child, addr, data);
424 
425 	case PTRACE_PEEKUSR_AREA:
426 	case PTRACE_POKEUSR_AREA:
427 		if (copy_from_user(&parea, (void __force __user *) addr,
428 							sizeof(parea)))
429 			return -EFAULT;
430 		addr = parea.kernel_addr;
431 		data = parea.process_addr;
432 		copied = 0;
433 		while (copied < parea.len) {
434 			if (request == PTRACE_PEEKUSR_AREA)
435 				ret = peek_user(child, addr, data);
436 			else {
437 				addr_t utmp;
438 				if (get_user(utmp,
439 					     (addr_t __force __user *) data))
440 					return -EFAULT;
441 				ret = poke_user(child, addr, utmp);
442 			}
443 			if (ret)
444 				return ret;
445 			addr += sizeof(unsigned long);
446 			data += sizeof(unsigned long);
447 			copied += sizeof(unsigned long);
448 		}
449 		return 0;
450 	case PTRACE_GET_LAST_BREAK:
451 		put_user(task_thread_info(child)->last_break,
452 			 (unsigned long __user *) data);
453 		return 0;
454 	case PTRACE_ENABLE_TE:
455 		if (!MACHINE_HAS_TE)
456 			return -EIO;
457 		child->thread.per_flags &= ~PER_FLAG_NO_TE;
458 		return 0;
459 	case PTRACE_DISABLE_TE:
460 		if (!MACHINE_HAS_TE)
461 			return -EIO;
462 		child->thread.per_flags |= PER_FLAG_NO_TE;
463 		child->thread.per_flags &= ~PER_FLAG_TE_ABORT_RAND;
464 		return 0;
465 	case PTRACE_TE_ABORT_RAND:
466 		if (!MACHINE_HAS_TE || (child->thread.per_flags & PER_FLAG_NO_TE))
467 			return -EIO;
468 		switch (data) {
469 		case 0UL:
470 			child->thread.per_flags &= ~PER_FLAG_TE_ABORT_RAND;
471 			break;
472 		case 1UL:
473 			child->thread.per_flags |= PER_FLAG_TE_ABORT_RAND;
474 			child->thread.per_flags |= PER_FLAG_TE_ABORT_RAND_TEND;
475 			break;
476 		case 2UL:
477 			child->thread.per_flags |= PER_FLAG_TE_ABORT_RAND;
478 			child->thread.per_flags &= ~PER_FLAG_TE_ABORT_RAND_TEND;
479 			break;
480 		default:
481 			return -EINVAL;
482 		}
483 		return 0;
484 	default:
485 		/* Removing high order bit from addr (only for 31 bit). */
486 		addr &= PSW_ADDR_INSN;
487 		return ptrace_request(child, request, addr, data);
488 	}
489 }
490 
491 #ifdef CONFIG_COMPAT
492 /*
493  * Now the fun part starts... a 31 bit program running in the
494  * 31 bit emulation tracing another program. PTRACE_PEEKTEXT,
495  * PTRACE_PEEKDATA, PTRACE_POKETEXT and PTRACE_POKEDATA are easy
496  * to handle, the difference to the 64 bit versions of the requests
497  * is that the access is done in multiples of 4 byte instead of
498  * 8 bytes (sizeof(unsigned long) on 31/64 bit).
499  * The ugly part are PTRACE_PEEKUSR, PTRACE_PEEKUSR_AREA,
500  * PTRACE_POKEUSR and PTRACE_POKEUSR_AREA. If the traced program
501  * is a 31 bit program too, the content of struct user can be
502  * emulated. A 31 bit program peeking into the struct user of
503  * a 64 bit program is a no-no.
504  */
505 
506 /*
507  * Same as peek_user_per but for a 31 bit program.
508  */
509 static inline __u32 __peek_user_per_compat(struct task_struct *child,
510 					   addr_t addr)
511 {
512 	struct compat_per_struct_kernel *dummy32 = NULL;
513 
514 	if (addr == (addr_t) &dummy32->cr9)
515 		/* Control bits of the active per set. */
516 		return (__u32) test_thread_flag(TIF_SINGLE_STEP) ?
517 			PER_EVENT_IFETCH : child->thread.per_user.control;
518 	else if (addr == (addr_t) &dummy32->cr10)
519 		/* Start address of the active per set. */
520 		return (__u32) test_thread_flag(TIF_SINGLE_STEP) ?
521 			0 : child->thread.per_user.start;
522 	else if (addr == (addr_t) &dummy32->cr11)
523 		/* End address of the active per set. */
524 		return test_thread_flag(TIF_SINGLE_STEP) ?
525 			PSW32_ADDR_INSN : child->thread.per_user.end;
526 	else if (addr == (addr_t) &dummy32->bits)
527 		/* Single-step bit. */
528 		return (__u32) test_thread_flag(TIF_SINGLE_STEP) ?
529 			0x80000000 : 0;
530 	else if (addr == (addr_t) &dummy32->starting_addr)
531 		/* Start address of the user specified per set. */
532 		return (__u32) child->thread.per_user.start;
533 	else if (addr == (addr_t) &dummy32->ending_addr)
534 		/* End address of the user specified per set. */
535 		return (__u32) child->thread.per_user.end;
536 	else if (addr == (addr_t) &dummy32->perc_atmid)
537 		/* PER code, ATMID and AI of the last PER trap */
538 		return (__u32) child->thread.per_event.cause << 16;
539 	else if (addr == (addr_t) &dummy32->address)
540 		/* Address of the last PER trap */
541 		return (__u32) child->thread.per_event.address;
542 	else if (addr == (addr_t) &dummy32->access_id)
543 		/* Access id of the last PER trap */
544 		return (__u32) child->thread.per_event.paid << 24;
545 	return 0;
546 }
547 
548 /*
549  * Same as peek_user but for a 31 bit program.
550  */
551 static u32 __peek_user_compat(struct task_struct *child, addr_t addr)
552 {
553 	struct compat_user *dummy32 = NULL;
554 	addr_t offset;
555 	__u32 tmp;
556 
557 	if (addr < (addr_t) &dummy32->regs.acrs) {
558 		struct pt_regs *regs = task_pt_regs(child);
559 		/*
560 		 * psw and gprs are stored on the stack
561 		 */
562 		if (addr == (addr_t) &dummy32->regs.psw.mask) {
563 			/* Fake a 31 bit psw mask. */
564 			tmp = (__u32)(regs->psw.mask >> 32);
565 			tmp &= PSW32_MASK_USER | PSW32_MASK_RI;
566 			tmp |= PSW32_USER_BITS;
567 		} else if (addr == (addr_t) &dummy32->regs.psw.addr) {
568 			/* Fake a 31 bit psw address. */
569 			tmp = (__u32) regs->psw.addr |
570 				(__u32)(regs->psw.mask & PSW_MASK_BA);
571 		} else {
572 			/* gpr 0-15 */
573 			tmp = *(__u32 *)((addr_t) &regs->psw + addr*2 + 4);
574 		}
575 	} else if (addr < (addr_t) (&dummy32->regs.orig_gpr2)) {
576 		/*
577 		 * access registers are stored in the thread structure
578 		 */
579 		offset = addr - (addr_t) &dummy32->regs.acrs;
580 		tmp = *(__u32*)((addr_t) &child->thread.acrs + offset);
581 
582 	} else if (addr == (addr_t) (&dummy32->regs.orig_gpr2)) {
583 		/*
584 		 * orig_gpr2 is stored on the kernel stack
585 		 */
586 		tmp = *(__u32*)((addr_t) &task_pt_regs(child)->orig_gpr2 + 4);
587 
588 	} else if (addr < (addr_t) &dummy32->regs.fp_regs) {
589 		/*
590 		 * prevent reads of padding hole between
591 		 * orig_gpr2 and fp_regs on s390.
592 		 */
593 		tmp = 0;
594 
595 	} else if (addr < (addr_t) (&dummy32->regs.fp_regs + 1)) {
596 		/*
597 		 * floating point regs. are stored in the thread structure
598 		 */
599 	        offset = addr - (addr_t) &dummy32->regs.fp_regs;
600 		tmp = *(__u32 *)((addr_t) &child->thread.fp_regs + offset);
601 
602 	} else if (addr < (addr_t) (&dummy32->regs.per_info + 1)) {
603 		/*
604 		 * Handle access to the per_info structure.
605 		 */
606 		addr -= (addr_t) &dummy32->regs.per_info;
607 		tmp = __peek_user_per_compat(child, addr);
608 
609 	} else
610 		tmp = 0;
611 
612 	return tmp;
613 }
614 
615 static int peek_user_compat(struct task_struct *child,
616 			    addr_t addr, addr_t data)
617 {
618 	__u32 tmp;
619 
620 	if (!is_compat_task() || (addr & 3) || addr > sizeof(struct user) - 3)
621 		return -EIO;
622 
623 	tmp = __peek_user_compat(child, addr);
624 	return put_user(tmp, (__u32 __user *) data);
625 }
626 
627 /*
628  * Same as poke_user_per but for a 31 bit program.
629  */
630 static inline void __poke_user_per_compat(struct task_struct *child,
631 					  addr_t addr, __u32 data)
632 {
633 	struct compat_per_struct_kernel *dummy32 = NULL;
634 
635 	if (addr == (addr_t) &dummy32->cr9)
636 		/* PER event mask of the user specified per set. */
637 		child->thread.per_user.control =
638 			data & (PER_EVENT_MASK | PER_CONTROL_MASK);
639 	else if (addr == (addr_t) &dummy32->starting_addr)
640 		/* Starting address of the user specified per set. */
641 		child->thread.per_user.start = data;
642 	else if (addr == (addr_t) &dummy32->ending_addr)
643 		/* Ending address of the user specified per set. */
644 		child->thread.per_user.end = data;
645 }
646 
647 /*
648  * Same as poke_user but for a 31 bit program.
649  */
650 static int __poke_user_compat(struct task_struct *child,
651 			      addr_t addr, addr_t data)
652 {
653 	struct compat_user *dummy32 = NULL;
654 	__u32 tmp = (__u32) data;
655 	addr_t offset;
656 
657 	if (addr < (addr_t) &dummy32->regs.acrs) {
658 		struct pt_regs *regs = task_pt_regs(child);
659 		/*
660 		 * psw, gprs, acrs and orig_gpr2 are stored on the stack
661 		 */
662 		if (addr == (addr_t) &dummy32->regs.psw.mask) {
663 			__u32 mask = PSW32_MASK_USER;
664 
665 			mask |= is_ri_task(child) ? PSW32_MASK_RI : 0;
666 			/* Build a 64 bit psw mask from 31 bit mask. */
667 			if ((tmp & ~mask) != PSW32_USER_BITS)
668 				/* Invalid psw mask. */
669 				return -EINVAL;
670 			regs->psw.mask = (regs->psw.mask & ~PSW_MASK_USER) |
671 				(regs->psw.mask & PSW_MASK_BA) |
672 				(__u64)(tmp & mask) << 32;
673 		} else if (addr == (addr_t) &dummy32->regs.psw.addr) {
674 			/* Build a 64 bit psw address from 31 bit address. */
675 			regs->psw.addr = (__u64) tmp & PSW32_ADDR_INSN;
676 			/* Transfer 31 bit amode bit to psw mask. */
677 			regs->psw.mask = (regs->psw.mask & ~PSW_MASK_BA) |
678 				(__u64)(tmp & PSW32_ADDR_AMODE);
679 		} else {
680 			/* gpr 0-15 */
681 			*(__u32*)((addr_t) &regs->psw + addr*2 + 4) = tmp;
682 		}
683 	} else if (addr < (addr_t) (&dummy32->regs.orig_gpr2)) {
684 		/*
685 		 * access registers are stored in the thread structure
686 		 */
687 		offset = addr - (addr_t) &dummy32->regs.acrs;
688 		*(__u32*)((addr_t) &child->thread.acrs + offset) = tmp;
689 
690 	} else if (addr == (addr_t) (&dummy32->regs.orig_gpr2)) {
691 		/*
692 		 * orig_gpr2 is stored on the kernel stack
693 		 */
694 		*(__u32*)((addr_t) &task_pt_regs(child)->orig_gpr2 + 4) = tmp;
695 
696 	} else if (addr < (addr_t) &dummy32->regs.fp_regs) {
697 		/*
698 		 * prevent writess of padding hole between
699 		 * orig_gpr2 and fp_regs on s390.
700 		 */
701 		return 0;
702 
703 	} else if (addr < (addr_t) (&dummy32->regs.fp_regs + 1)) {
704 		/*
705 		 * floating point regs. are stored in the thread structure
706 		 */
707 		if (addr == (addr_t) &dummy32->regs.fp_regs.fpc &&
708 		    test_fp_ctl(tmp))
709 			return -EINVAL;
710 	        offset = addr - (addr_t) &dummy32->regs.fp_regs;
711 		*(__u32 *)((addr_t) &child->thread.fp_regs + offset) = tmp;
712 
713 	} else if (addr < (addr_t) (&dummy32->regs.per_info + 1)) {
714 		/*
715 		 * Handle access to the per_info structure.
716 		 */
717 		addr -= (addr_t) &dummy32->regs.per_info;
718 		__poke_user_per_compat(child, addr, data);
719 	}
720 
721 	return 0;
722 }
723 
724 static int poke_user_compat(struct task_struct *child,
725 			    addr_t addr, addr_t data)
726 {
727 	if (!is_compat_task() || (addr & 3) ||
728 	    addr > sizeof(struct compat_user) - 3)
729 		return -EIO;
730 
731 	return __poke_user_compat(child, addr, data);
732 }
733 
734 long compat_arch_ptrace(struct task_struct *child, compat_long_t request,
735 			compat_ulong_t caddr, compat_ulong_t cdata)
736 {
737 	unsigned long addr = caddr;
738 	unsigned long data = cdata;
739 	compat_ptrace_area parea;
740 	int copied, ret;
741 
742 	switch (request) {
743 	case PTRACE_PEEKUSR:
744 		/* read the word at location addr in the USER area. */
745 		return peek_user_compat(child, addr, data);
746 
747 	case PTRACE_POKEUSR:
748 		/* write the word at location addr in the USER area */
749 		return poke_user_compat(child, addr, data);
750 
751 	case PTRACE_PEEKUSR_AREA:
752 	case PTRACE_POKEUSR_AREA:
753 		if (copy_from_user(&parea, (void __force __user *) addr,
754 							sizeof(parea)))
755 			return -EFAULT;
756 		addr = parea.kernel_addr;
757 		data = parea.process_addr;
758 		copied = 0;
759 		while (copied < parea.len) {
760 			if (request == PTRACE_PEEKUSR_AREA)
761 				ret = peek_user_compat(child, addr, data);
762 			else {
763 				__u32 utmp;
764 				if (get_user(utmp,
765 					     (__u32 __force __user *) data))
766 					return -EFAULT;
767 				ret = poke_user_compat(child, addr, utmp);
768 			}
769 			if (ret)
770 				return ret;
771 			addr += sizeof(unsigned int);
772 			data += sizeof(unsigned int);
773 			copied += sizeof(unsigned int);
774 		}
775 		return 0;
776 	case PTRACE_GET_LAST_BREAK:
777 		put_user(task_thread_info(child)->last_break,
778 			 (unsigned int __user *) data);
779 		return 0;
780 	}
781 	return compat_ptrace_request(child, request, addr, data);
782 }
783 #endif
784 
785 asmlinkage long do_syscall_trace_enter(struct pt_regs *regs)
786 {
787 	long ret = 0;
788 
789 	/* Do the secure computing check first. */
790 	if (secure_computing(regs->gprs[2])) {
791 		/* seccomp failures shouldn't expose any additional code. */
792 		ret = -1;
793 		goto out;
794 	}
795 
796 	/*
797 	 * The sysc_tracesys code in entry.S stored the system
798 	 * call number to gprs[2].
799 	 */
800 	if (test_thread_flag(TIF_SYSCALL_TRACE) &&
801 	    (tracehook_report_syscall_entry(regs) ||
802 	     regs->gprs[2] >= NR_syscalls)) {
803 		/*
804 		 * Tracing decided this syscall should not happen or the
805 		 * debugger stored an invalid system call number. Skip
806 		 * the system call and the system call restart handling.
807 		 */
808 		clear_thread_flag(TIF_SYSCALL);
809 		ret = -1;
810 	}
811 
812 	if (unlikely(test_thread_flag(TIF_SYSCALL_TRACEPOINT)))
813 		trace_sys_enter(regs, regs->gprs[2]);
814 
815 	audit_syscall_entry(is_compat_task() ?
816 				AUDIT_ARCH_S390 : AUDIT_ARCH_S390X,
817 			    regs->gprs[2], regs->orig_gpr2,
818 			    regs->gprs[3], regs->gprs[4],
819 			    regs->gprs[5]);
820 out:
821 	return ret ?: regs->gprs[2];
822 }
823 
824 asmlinkage void do_syscall_trace_exit(struct pt_regs *regs)
825 {
826 	audit_syscall_exit(regs);
827 
828 	if (unlikely(test_thread_flag(TIF_SYSCALL_TRACEPOINT)))
829 		trace_sys_exit(regs, regs->gprs[2]);
830 
831 	if (test_thread_flag(TIF_SYSCALL_TRACE))
832 		tracehook_report_syscall_exit(regs, 0);
833 }
834 
835 /*
836  * user_regset definitions.
837  */
838 
839 static int s390_regs_get(struct task_struct *target,
840 			 const struct user_regset *regset,
841 			 unsigned int pos, unsigned int count,
842 			 void *kbuf, void __user *ubuf)
843 {
844 	if (target == current)
845 		save_access_regs(target->thread.acrs);
846 
847 	if (kbuf) {
848 		unsigned long *k = kbuf;
849 		while (count > 0) {
850 			*k++ = __peek_user(target, pos);
851 			count -= sizeof(*k);
852 			pos += sizeof(*k);
853 		}
854 	} else {
855 		unsigned long __user *u = ubuf;
856 		while (count > 0) {
857 			if (__put_user(__peek_user(target, pos), u++))
858 				return -EFAULT;
859 			count -= sizeof(*u);
860 			pos += sizeof(*u);
861 		}
862 	}
863 	return 0;
864 }
865 
866 static int s390_regs_set(struct task_struct *target,
867 			 const struct user_regset *regset,
868 			 unsigned int pos, unsigned int count,
869 			 const void *kbuf, const void __user *ubuf)
870 {
871 	int rc = 0;
872 
873 	if (target == current)
874 		save_access_regs(target->thread.acrs);
875 
876 	if (kbuf) {
877 		const unsigned long *k = kbuf;
878 		while (count > 0 && !rc) {
879 			rc = __poke_user(target, pos, *k++);
880 			count -= sizeof(*k);
881 			pos += sizeof(*k);
882 		}
883 	} else {
884 		const unsigned long  __user *u = ubuf;
885 		while (count > 0 && !rc) {
886 			unsigned long word;
887 			rc = __get_user(word, u++);
888 			if (rc)
889 				break;
890 			rc = __poke_user(target, pos, word);
891 			count -= sizeof(*u);
892 			pos += sizeof(*u);
893 		}
894 	}
895 
896 	if (rc == 0 && target == current)
897 		restore_access_regs(target->thread.acrs);
898 
899 	return rc;
900 }
901 
902 static int s390_fpregs_get(struct task_struct *target,
903 			   const struct user_regset *regset, unsigned int pos,
904 			   unsigned int count, void *kbuf, void __user *ubuf)
905 {
906 	if (target == current) {
907 		save_fp_ctl(&target->thread.fp_regs.fpc);
908 		save_fp_regs(target->thread.fp_regs.fprs);
909 	}
910 
911 	return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
912 				   &target->thread.fp_regs, 0, -1);
913 }
914 
915 static int s390_fpregs_set(struct task_struct *target,
916 			   const struct user_regset *regset, unsigned int pos,
917 			   unsigned int count, const void *kbuf,
918 			   const void __user *ubuf)
919 {
920 	int rc = 0;
921 
922 	if (target == current) {
923 		save_fp_ctl(&target->thread.fp_regs.fpc);
924 		save_fp_regs(target->thread.fp_regs.fprs);
925 	}
926 
927 	/* If setting FPC, must validate it first. */
928 	if (count > 0 && pos < offsetof(s390_fp_regs, fprs)) {
929 		u32 ufpc[2] = { target->thread.fp_regs.fpc, 0 };
930 		rc = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &ufpc,
931 					0, offsetof(s390_fp_regs, fprs));
932 		if (rc)
933 			return rc;
934 		if (ufpc[1] != 0 || test_fp_ctl(ufpc[0]))
935 			return -EINVAL;
936 		target->thread.fp_regs.fpc = ufpc[0];
937 	}
938 
939 	if (rc == 0 && count > 0)
940 		rc = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
941 					target->thread.fp_regs.fprs,
942 					offsetof(s390_fp_regs, fprs), -1);
943 
944 	if (rc == 0 && target == current) {
945 		restore_fp_ctl(&target->thread.fp_regs.fpc);
946 		restore_fp_regs(target->thread.fp_regs.fprs);
947 	}
948 
949 	return rc;
950 }
951 
952 #ifdef CONFIG_64BIT
953 
954 static int s390_last_break_get(struct task_struct *target,
955 			       const struct user_regset *regset,
956 			       unsigned int pos, unsigned int count,
957 			       void *kbuf, void __user *ubuf)
958 {
959 	if (count > 0) {
960 		if (kbuf) {
961 			unsigned long *k = kbuf;
962 			*k = task_thread_info(target)->last_break;
963 		} else {
964 			unsigned long  __user *u = ubuf;
965 			if (__put_user(task_thread_info(target)->last_break, u))
966 				return -EFAULT;
967 		}
968 	}
969 	return 0;
970 }
971 
972 static int s390_last_break_set(struct task_struct *target,
973 			       const struct user_regset *regset,
974 			       unsigned int pos, unsigned int count,
975 			       const void *kbuf, const void __user *ubuf)
976 {
977 	return 0;
978 }
979 
980 static int s390_tdb_get(struct task_struct *target,
981 			const struct user_regset *regset,
982 			unsigned int pos, unsigned int count,
983 			void *kbuf, void __user *ubuf)
984 {
985 	struct pt_regs *regs = task_pt_regs(target);
986 	unsigned char *data;
987 
988 	if (!(regs->int_code & 0x200))
989 		return -ENODATA;
990 	data = target->thread.trap_tdb;
991 	return user_regset_copyout(&pos, &count, &kbuf, &ubuf, data, 0, 256);
992 }
993 
994 static int s390_tdb_set(struct task_struct *target,
995 			const struct user_regset *regset,
996 			unsigned int pos, unsigned int count,
997 			const void *kbuf, const void __user *ubuf)
998 {
999 	return 0;
1000 }
1001 
1002 #endif
1003 
1004 static int s390_system_call_get(struct task_struct *target,
1005 				const struct user_regset *regset,
1006 				unsigned int pos, unsigned int count,
1007 				void *kbuf, void __user *ubuf)
1008 {
1009 	unsigned int *data = &task_thread_info(target)->system_call;
1010 	return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
1011 				   data, 0, sizeof(unsigned int));
1012 }
1013 
1014 static int s390_system_call_set(struct task_struct *target,
1015 				const struct user_regset *regset,
1016 				unsigned int pos, unsigned int count,
1017 				const void *kbuf, const void __user *ubuf)
1018 {
1019 	unsigned int *data = &task_thread_info(target)->system_call;
1020 	return user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1021 				  data, 0, sizeof(unsigned int));
1022 }
1023 
1024 static const struct user_regset s390_regsets[] = {
1025 	[REGSET_GENERAL] = {
1026 		.core_note_type = NT_PRSTATUS,
1027 		.n = sizeof(s390_regs) / sizeof(long),
1028 		.size = sizeof(long),
1029 		.align = sizeof(long),
1030 		.get = s390_regs_get,
1031 		.set = s390_regs_set,
1032 	},
1033 	[REGSET_FP] = {
1034 		.core_note_type = NT_PRFPREG,
1035 		.n = sizeof(s390_fp_regs) / sizeof(long),
1036 		.size = sizeof(long),
1037 		.align = sizeof(long),
1038 		.get = s390_fpregs_get,
1039 		.set = s390_fpregs_set,
1040 	},
1041 #ifdef CONFIG_64BIT
1042 	[REGSET_LAST_BREAK] = {
1043 		.core_note_type = NT_S390_LAST_BREAK,
1044 		.n = 1,
1045 		.size = sizeof(long),
1046 		.align = sizeof(long),
1047 		.get = s390_last_break_get,
1048 		.set = s390_last_break_set,
1049 	},
1050 	[REGSET_TDB] = {
1051 		.core_note_type = NT_S390_TDB,
1052 		.n = 1,
1053 		.size = 256,
1054 		.align = 1,
1055 		.get = s390_tdb_get,
1056 		.set = s390_tdb_set,
1057 	},
1058 #endif
1059 	[REGSET_SYSTEM_CALL] = {
1060 		.core_note_type = NT_S390_SYSTEM_CALL,
1061 		.n = 1,
1062 		.size = sizeof(unsigned int),
1063 		.align = sizeof(unsigned int),
1064 		.get = s390_system_call_get,
1065 		.set = s390_system_call_set,
1066 	},
1067 };
1068 
1069 static const struct user_regset_view user_s390_view = {
1070 	.name = UTS_MACHINE,
1071 	.e_machine = EM_S390,
1072 	.regsets = s390_regsets,
1073 	.n = ARRAY_SIZE(s390_regsets)
1074 };
1075 
1076 #ifdef CONFIG_COMPAT
1077 static int s390_compat_regs_get(struct task_struct *target,
1078 				const struct user_regset *regset,
1079 				unsigned int pos, unsigned int count,
1080 				void *kbuf, void __user *ubuf)
1081 {
1082 	if (target == current)
1083 		save_access_regs(target->thread.acrs);
1084 
1085 	if (kbuf) {
1086 		compat_ulong_t *k = kbuf;
1087 		while (count > 0) {
1088 			*k++ = __peek_user_compat(target, pos);
1089 			count -= sizeof(*k);
1090 			pos += sizeof(*k);
1091 		}
1092 	} else {
1093 		compat_ulong_t __user *u = ubuf;
1094 		while (count > 0) {
1095 			if (__put_user(__peek_user_compat(target, pos), u++))
1096 				return -EFAULT;
1097 			count -= sizeof(*u);
1098 			pos += sizeof(*u);
1099 		}
1100 	}
1101 	return 0;
1102 }
1103 
1104 static int s390_compat_regs_set(struct task_struct *target,
1105 				const struct user_regset *regset,
1106 				unsigned int pos, unsigned int count,
1107 				const void *kbuf, const void __user *ubuf)
1108 {
1109 	int rc = 0;
1110 
1111 	if (target == current)
1112 		save_access_regs(target->thread.acrs);
1113 
1114 	if (kbuf) {
1115 		const compat_ulong_t *k = kbuf;
1116 		while (count > 0 && !rc) {
1117 			rc = __poke_user_compat(target, pos, *k++);
1118 			count -= sizeof(*k);
1119 			pos += sizeof(*k);
1120 		}
1121 	} else {
1122 		const compat_ulong_t  __user *u = ubuf;
1123 		while (count > 0 && !rc) {
1124 			compat_ulong_t word;
1125 			rc = __get_user(word, u++);
1126 			if (rc)
1127 				break;
1128 			rc = __poke_user_compat(target, pos, word);
1129 			count -= sizeof(*u);
1130 			pos += sizeof(*u);
1131 		}
1132 	}
1133 
1134 	if (rc == 0 && target == current)
1135 		restore_access_regs(target->thread.acrs);
1136 
1137 	return rc;
1138 }
1139 
1140 static int s390_compat_regs_high_get(struct task_struct *target,
1141 				     const struct user_regset *regset,
1142 				     unsigned int pos, unsigned int count,
1143 				     void *kbuf, void __user *ubuf)
1144 {
1145 	compat_ulong_t *gprs_high;
1146 
1147 	gprs_high = (compat_ulong_t *)
1148 		&task_pt_regs(target)->gprs[pos / sizeof(compat_ulong_t)];
1149 	if (kbuf) {
1150 		compat_ulong_t *k = kbuf;
1151 		while (count > 0) {
1152 			*k++ = *gprs_high;
1153 			gprs_high += 2;
1154 			count -= sizeof(*k);
1155 		}
1156 	} else {
1157 		compat_ulong_t __user *u = ubuf;
1158 		while (count > 0) {
1159 			if (__put_user(*gprs_high, u++))
1160 				return -EFAULT;
1161 			gprs_high += 2;
1162 			count -= sizeof(*u);
1163 		}
1164 	}
1165 	return 0;
1166 }
1167 
1168 static int s390_compat_regs_high_set(struct task_struct *target,
1169 				     const struct user_regset *regset,
1170 				     unsigned int pos, unsigned int count,
1171 				     const void *kbuf, const void __user *ubuf)
1172 {
1173 	compat_ulong_t *gprs_high;
1174 	int rc = 0;
1175 
1176 	gprs_high = (compat_ulong_t *)
1177 		&task_pt_regs(target)->gprs[pos / sizeof(compat_ulong_t)];
1178 	if (kbuf) {
1179 		const compat_ulong_t *k = kbuf;
1180 		while (count > 0) {
1181 			*gprs_high = *k++;
1182 			*gprs_high += 2;
1183 			count -= sizeof(*k);
1184 		}
1185 	} else {
1186 		const compat_ulong_t  __user *u = ubuf;
1187 		while (count > 0 && !rc) {
1188 			unsigned long word;
1189 			rc = __get_user(word, u++);
1190 			if (rc)
1191 				break;
1192 			*gprs_high = word;
1193 			*gprs_high += 2;
1194 			count -= sizeof(*u);
1195 		}
1196 	}
1197 
1198 	return rc;
1199 }
1200 
1201 static int s390_compat_last_break_get(struct task_struct *target,
1202 				      const struct user_regset *regset,
1203 				      unsigned int pos, unsigned int count,
1204 				      void *kbuf, void __user *ubuf)
1205 {
1206 	compat_ulong_t last_break;
1207 
1208 	if (count > 0) {
1209 		last_break = task_thread_info(target)->last_break;
1210 		if (kbuf) {
1211 			unsigned long *k = kbuf;
1212 			*k = last_break;
1213 		} else {
1214 			unsigned long  __user *u = ubuf;
1215 			if (__put_user(last_break, u))
1216 				return -EFAULT;
1217 		}
1218 	}
1219 	return 0;
1220 }
1221 
1222 static int s390_compat_last_break_set(struct task_struct *target,
1223 				      const struct user_regset *regset,
1224 				      unsigned int pos, unsigned int count,
1225 				      const void *kbuf, const void __user *ubuf)
1226 {
1227 	return 0;
1228 }
1229 
1230 static const struct user_regset s390_compat_regsets[] = {
1231 	[REGSET_GENERAL] = {
1232 		.core_note_type = NT_PRSTATUS,
1233 		.n = sizeof(s390_compat_regs) / sizeof(compat_long_t),
1234 		.size = sizeof(compat_long_t),
1235 		.align = sizeof(compat_long_t),
1236 		.get = s390_compat_regs_get,
1237 		.set = s390_compat_regs_set,
1238 	},
1239 	[REGSET_FP] = {
1240 		.core_note_type = NT_PRFPREG,
1241 		.n = sizeof(s390_fp_regs) / sizeof(compat_long_t),
1242 		.size = sizeof(compat_long_t),
1243 		.align = sizeof(compat_long_t),
1244 		.get = s390_fpregs_get,
1245 		.set = s390_fpregs_set,
1246 	},
1247 	[REGSET_LAST_BREAK] = {
1248 		.core_note_type = NT_S390_LAST_BREAK,
1249 		.n = 1,
1250 		.size = sizeof(long),
1251 		.align = sizeof(long),
1252 		.get = s390_compat_last_break_get,
1253 		.set = s390_compat_last_break_set,
1254 	},
1255 	[REGSET_TDB] = {
1256 		.core_note_type = NT_S390_TDB,
1257 		.n = 1,
1258 		.size = 256,
1259 		.align = 1,
1260 		.get = s390_tdb_get,
1261 		.set = s390_tdb_set,
1262 	},
1263 	[REGSET_SYSTEM_CALL] = {
1264 		.core_note_type = NT_S390_SYSTEM_CALL,
1265 		.n = 1,
1266 		.size = sizeof(compat_uint_t),
1267 		.align = sizeof(compat_uint_t),
1268 		.get = s390_system_call_get,
1269 		.set = s390_system_call_set,
1270 	},
1271 	[REGSET_GENERAL_EXTENDED] = {
1272 		.core_note_type = NT_S390_HIGH_GPRS,
1273 		.n = sizeof(s390_compat_regs_high) / sizeof(compat_long_t),
1274 		.size = sizeof(compat_long_t),
1275 		.align = sizeof(compat_long_t),
1276 		.get = s390_compat_regs_high_get,
1277 		.set = s390_compat_regs_high_set,
1278 	},
1279 };
1280 
1281 static const struct user_regset_view user_s390_compat_view = {
1282 	.name = "s390",
1283 	.e_machine = EM_S390,
1284 	.regsets = s390_compat_regsets,
1285 	.n = ARRAY_SIZE(s390_compat_regsets)
1286 };
1287 #endif
1288 
1289 const struct user_regset_view *task_user_regset_view(struct task_struct *task)
1290 {
1291 #ifdef CONFIG_COMPAT
1292 	if (test_tsk_thread_flag(task, TIF_31BIT))
1293 		return &user_s390_compat_view;
1294 #endif
1295 	return &user_s390_view;
1296 }
1297 
1298 static const char *gpr_names[NUM_GPRS] = {
1299 	"r0", "r1",  "r2",  "r3",  "r4",  "r5",  "r6",  "r7",
1300 	"r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
1301 };
1302 
1303 unsigned long regs_get_register(struct pt_regs *regs, unsigned int offset)
1304 {
1305 	if (offset >= NUM_GPRS)
1306 		return 0;
1307 	return regs->gprs[offset];
1308 }
1309 
1310 int regs_query_register_offset(const char *name)
1311 {
1312 	unsigned long offset;
1313 
1314 	if (!name || *name != 'r')
1315 		return -EINVAL;
1316 	if (kstrtoul(name + 1, 10, &offset))
1317 		return -EINVAL;
1318 	if (offset >= NUM_GPRS)
1319 		return -EINVAL;
1320 	return offset;
1321 }
1322 
1323 const char *regs_query_register_name(unsigned int offset)
1324 {
1325 	if (offset >= NUM_GPRS)
1326 		return NULL;
1327 	return gpr_names[offset];
1328 }
1329 
1330 static int regs_within_kernel_stack(struct pt_regs *regs, unsigned long addr)
1331 {
1332 	unsigned long ksp = kernel_stack_pointer(regs);
1333 
1334 	return (addr & ~(THREAD_SIZE - 1)) == (ksp & ~(THREAD_SIZE - 1));
1335 }
1336 
1337 /**
1338  * regs_get_kernel_stack_nth() - get Nth entry of the stack
1339  * @regs:pt_regs which contains kernel stack pointer.
1340  * @n:stack entry number.
1341  *
1342  * regs_get_kernel_stack_nth() returns @n th entry of the kernel stack which
1343  * is specifined by @regs. If the @n th entry is NOT in the kernel stack,
1344  * this returns 0.
1345  */
1346 unsigned long regs_get_kernel_stack_nth(struct pt_regs *regs, unsigned int n)
1347 {
1348 	unsigned long addr;
1349 
1350 	addr = kernel_stack_pointer(regs) + n * sizeof(long);
1351 	if (!regs_within_kernel_stack(regs, addr))
1352 		return 0;
1353 	return *(unsigned long *)addr;
1354 }
1355