xref: /openbmc/linux/arch/s390/kernel/ptrace.c (revision 0edbfea5)
1 /*
2  *  Ptrace user space interface.
3  *
4  *    Copyright IBM Corp. 1999, 2010
5  *    Author(s): Denis Joseph Barrow
6  *               Martin Schwidefsky (schwidefsky@de.ibm.com)
7  */
8 
9 #include <linux/kernel.h>
10 #include <linux/sched.h>
11 #include <linux/mm.h>
12 #include <linux/smp.h>
13 #include <linux/errno.h>
14 #include <linux/ptrace.h>
15 #include <linux/user.h>
16 #include <linux/security.h>
17 #include <linux/audit.h>
18 #include <linux/signal.h>
19 #include <linux/elf.h>
20 #include <linux/regset.h>
21 #include <linux/tracehook.h>
22 #include <linux/seccomp.h>
23 #include <linux/compat.h>
24 #include <trace/syscall.h>
25 #include <asm/segment.h>
26 #include <asm/page.h>
27 #include <asm/pgtable.h>
28 #include <asm/pgalloc.h>
29 #include <asm/uaccess.h>
30 #include <asm/unistd.h>
31 #include <asm/switch_to.h>
32 #include "entry.h"
33 
34 #ifdef CONFIG_COMPAT
35 #include "compat_ptrace.h"
36 #endif
37 
38 #define CREATE_TRACE_POINTS
39 #include <trace/events/syscalls.h>
40 
41 void update_cr_regs(struct task_struct *task)
42 {
43 	struct pt_regs *regs = task_pt_regs(task);
44 	struct thread_struct *thread = &task->thread;
45 	struct per_regs old, new;
46 
47 	/* Take care of the enable/disable of transactional execution. */
48 	if (MACHINE_HAS_TE) {
49 		unsigned long cr, cr_new;
50 
51 		__ctl_store(cr, 0, 0);
52 		/* Set or clear transaction execution TXC bit 8. */
53 		cr_new = cr | (1UL << 55);
54 		if (task->thread.per_flags & PER_FLAG_NO_TE)
55 			cr_new &= ~(1UL << 55);
56 		if (cr_new != cr)
57 			__ctl_load(cr_new, 0, 0);
58 		/* Set or clear transaction execution TDC bits 62 and 63. */
59 		__ctl_store(cr, 2, 2);
60 		cr_new = cr & ~3UL;
61 		if (task->thread.per_flags & PER_FLAG_TE_ABORT_RAND) {
62 			if (task->thread.per_flags & PER_FLAG_TE_ABORT_RAND_TEND)
63 				cr_new |= 1UL;
64 			else
65 				cr_new |= 2UL;
66 		}
67 		if (cr_new != cr)
68 			__ctl_load(cr_new, 2, 2);
69 	}
70 	/* Copy user specified PER registers */
71 	new.control = thread->per_user.control;
72 	new.start = thread->per_user.start;
73 	new.end = thread->per_user.end;
74 
75 	/* merge TIF_SINGLE_STEP into user specified PER registers. */
76 	if (test_tsk_thread_flag(task, TIF_SINGLE_STEP) ||
77 	    test_tsk_thread_flag(task, TIF_UPROBE_SINGLESTEP)) {
78 		if (test_tsk_thread_flag(task, TIF_BLOCK_STEP))
79 			new.control |= PER_EVENT_BRANCH;
80 		else
81 			new.control |= PER_EVENT_IFETCH;
82 		new.control |= PER_CONTROL_SUSPENSION;
83 		new.control |= PER_EVENT_TRANSACTION_END;
84 		if (test_tsk_thread_flag(task, TIF_UPROBE_SINGLESTEP))
85 			new.control |= PER_EVENT_IFETCH;
86 		new.start = 0;
87 		new.end = -1UL;
88 	}
89 
90 	/* Take care of the PER enablement bit in the PSW. */
91 	if (!(new.control & PER_EVENT_MASK)) {
92 		regs->psw.mask &= ~PSW_MASK_PER;
93 		return;
94 	}
95 	regs->psw.mask |= PSW_MASK_PER;
96 	__ctl_store(old, 9, 11);
97 	if (memcmp(&new, &old, sizeof(struct per_regs)) != 0)
98 		__ctl_load(new, 9, 11);
99 }
100 
101 void user_enable_single_step(struct task_struct *task)
102 {
103 	clear_tsk_thread_flag(task, TIF_BLOCK_STEP);
104 	set_tsk_thread_flag(task, TIF_SINGLE_STEP);
105 }
106 
107 void user_disable_single_step(struct task_struct *task)
108 {
109 	clear_tsk_thread_flag(task, TIF_BLOCK_STEP);
110 	clear_tsk_thread_flag(task, TIF_SINGLE_STEP);
111 }
112 
113 void user_enable_block_step(struct task_struct *task)
114 {
115 	set_tsk_thread_flag(task, TIF_SINGLE_STEP);
116 	set_tsk_thread_flag(task, TIF_BLOCK_STEP);
117 }
118 
119 /*
120  * Called by kernel/ptrace.c when detaching..
121  *
122  * Clear all debugging related fields.
123  */
124 void ptrace_disable(struct task_struct *task)
125 {
126 	memset(&task->thread.per_user, 0, sizeof(task->thread.per_user));
127 	memset(&task->thread.per_event, 0, sizeof(task->thread.per_event));
128 	clear_tsk_thread_flag(task, TIF_SINGLE_STEP);
129 	clear_pt_regs_flag(task_pt_regs(task), PIF_PER_TRAP);
130 	task->thread.per_flags = 0;
131 }
132 
133 #define __ADDR_MASK 7
134 
135 static inline unsigned long __peek_user_per(struct task_struct *child,
136 					    addr_t addr)
137 {
138 	struct per_struct_kernel *dummy = NULL;
139 
140 	if (addr == (addr_t) &dummy->cr9)
141 		/* Control bits of the active per set. */
142 		return test_thread_flag(TIF_SINGLE_STEP) ?
143 			PER_EVENT_IFETCH : child->thread.per_user.control;
144 	else if (addr == (addr_t) &dummy->cr10)
145 		/* Start address of the active per set. */
146 		return test_thread_flag(TIF_SINGLE_STEP) ?
147 			0 : child->thread.per_user.start;
148 	else if (addr == (addr_t) &dummy->cr11)
149 		/* End address of the active per set. */
150 		return test_thread_flag(TIF_SINGLE_STEP) ?
151 			-1UL : child->thread.per_user.end;
152 	else if (addr == (addr_t) &dummy->bits)
153 		/* Single-step bit. */
154 		return test_thread_flag(TIF_SINGLE_STEP) ?
155 			(1UL << (BITS_PER_LONG - 1)) : 0;
156 	else if (addr == (addr_t) &dummy->starting_addr)
157 		/* Start address of the user specified per set. */
158 		return child->thread.per_user.start;
159 	else if (addr == (addr_t) &dummy->ending_addr)
160 		/* End address of the user specified per set. */
161 		return child->thread.per_user.end;
162 	else if (addr == (addr_t) &dummy->perc_atmid)
163 		/* PER code, ATMID and AI of the last PER trap */
164 		return (unsigned long)
165 			child->thread.per_event.cause << (BITS_PER_LONG - 16);
166 	else if (addr == (addr_t) &dummy->address)
167 		/* Address of the last PER trap */
168 		return child->thread.per_event.address;
169 	else if (addr == (addr_t) &dummy->access_id)
170 		/* Access id of the last PER trap */
171 		return (unsigned long)
172 			child->thread.per_event.paid << (BITS_PER_LONG - 8);
173 	return 0;
174 }
175 
176 /*
177  * Read the word at offset addr from the user area of a process. The
178  * trouble here is that the information is littered over different
179  * locations. The process registers are found on the kernel stack,
180  * the floating point stuff and the trace settings are stored in
181  * the task structure. In addition the different structures in
182  * struct user contain pad bytes that should be read as zeroes.
183  * Lovely...
184  */
185 static unsigned long __peek_user(struct task_struct *child, addr_t addr)
186 {
187 	struct user *dummy = NULL;
188 	addr_t offset, tmp;
189 
190 	if (addr < (addr_t) &dummy->regs.acrs) {
191 		/*
192 		 * psw and gprs are stored on the stack
193 		 */
194 		tmp = *(addr_t *)((addr_t) &task_pt_regs(child)->psw + addr);
195 		if (addr == (addr_t) &dummy->regs.psw.mask) {
196 			/* Return a clean psw mask. */
197 			tmp &= PSW_MASK_USER | PSW_MASK_RI;
198 			tmp |= PSW_USER_BITS;
199 		}
200 
201 	} else if (addr < (addr_t) &dummy->regs.orig_gpr2) {
202 		/*
203 		 * access registers are stored in the thread structure
204 		 */
205 		offset = addr - (addr_t) &dummy->regs.acrs;
206 		/*
207 		 * Very special case: old & broken 64 bit gdb reading
208 		 * from acrs[15]. Result is a 64 bit value. Read the
209 		 * 32 bit acrs[15] value and shift it by 32. Sick...
210 		 */
211 		if (addr == (addr_t) &dummy->regs.acrs[15])
212 			tmp = ((unsigned long) child->thread.acrs[15]) << 32;
213 		else
214 			tmp = *(addr_t *)((addr_t) &child->thread.acrs + offset);
215 
216 	} else if (addr == (addr_t) &dummy->regs.orig_gpr2) {
217 		/*
218 		 * orig_gpr2 is stored on the kernel stack
219 		 */
220 		tmp = (addr_t) task_pt_regs(child)->orig_gpr2;
221 
222 	} else if (addr < (addr_t) &dummy->regs.fp_regs) {
223 		/*
224 		 * prevent reads of padding hole between
225 		 * orig_gpr2 and fp_regs on s390.
226 		 */
227 		tmp = 0;
228 
229 	} else if (addr == (addr_t) &dummy->regs.fp_regs.fpc) {
230 		/*
231 		 * floating point control reg. is in the thread structure
232 		 */
233 		tmp = child->thread.fpu.fpc;
234 		tmp <<= BITS_PER_LONG - 32;
235 
236 	} else if (addr < (addr_t) (&dummy->regs.fp_regs + 1)) {
237 		/*
238 		 * floating point regs. are either in child->thread.fpu
239 		 * or the child->thread.fpu.vxrs array
240 		 */
241 		offset = addr - (addr_t) &dummy->regs.fp_regs.fprs;
242 		if (MACHINE_HAS_VX)
243 			tmp = *(addr_t *)
244 			       ((addr_t) child->thread.fpu.vxrs + 2*offset);
245 		else
246 			tmp = *(addr_t *)
247 			       ((addr_t) child->thread.fpu.fprs + offset);
248 
249 	} else if (addr < (addr_t) (&dummy->regs.per_info + 1)) {
250 		/*
251 		 * Handle access to the per_info structure.
252 		 */
253 		addr -= (addr_t) &dummy->regs.per_info;
254 		tmp = __peek_user_per(child, addr);
255 
256 	} else
257 		tmp = 0;
258 
259 	return tmp;
260 }
261 
262 static int
263 peek_user(struct task_struct *child, addr_t addr, addr_t data)
264 {
265 	addr_t tmp, mask;
266 
267 	/*
268 	 * Stupid gdb peeks/pokes the access registers in 64 bit with
269 	 * an alignment of 4. Programmers from hell...
270 	 */
271 	mask = __ADDR_MASK;
272 	if (addr >= (addr_t) &((struct user *) NULL)->regs.acrs &&
273 	    addr < (addr_t) &((struct user *) NULL)->regs.orig_gpr2)
274 		mask = 3;
275 	if ((addr & mask) || addr > sizeof(struct user) - __ADDR_MASK)
276 		return -EIO;
277 
278 	tmp = __peek_user(child, addr);
279 	return put_user(tmp, (addr_t __user *) data);
280 }
281 
282 static inline void __poke_user_per(struct task_struct *child,
283 				   addr_t addr, addr_t data)
284 {
285 	struct per_struct_kernel *dummy = NULL;
286 
287 	/*
288 	 * There are only three fields in the per_info struct that the
289 	 * debugger user can write to.
290 	 * 1) cr9: the debugger wants to set a new PER event mask
291 	 * 2) starting_addr: the debugger wants to set a new starting
292 	 *    address to use with the PER event mask.
293 	 * 3) ending_addr: the debugger wants to set a new ending
294 	 *    address to use with the PER event mask.
295 	 * The user specified PER event mask and the start and end
296 	 * addresses are used only if single stepping is not in effect.
297 	 * Writes to any other field in per_info are ignored.
298 	 */
299 	if (addr == (addr_t) &dummy->cr9)
300 		/* PER event mask of the user specified per set. */
301 		child->thread.per_user.control =
302 			data & (PER_EVENT_MASK | PER_CONTROL_MASK);
303 	else if (addr == (addr_t) &dummy->starting_addr)
304 		/* Starting address of the user specified per set. */
305 		child->thread.per_user.start = data;
306 	else if (addr == (addr_t) &dummy->ending_addr)
307 		/* Ending address of the user specified per set. */
308 		child->thread.per_user.end = data;
309 }
310 
311 /*
312  * Write a word to the user area of a process at location addr. This
313  * operation does have an additional problem compared to peek_user.
314  * Stores to the program status word and on the floating point
315  * control register needs to get checked for validity.
316  */
317 static int __poke_user(struct task_struct *child, addr_t addr, addr_t data)
318 {
319 	struct user *dummy = NULL;
320 	addr_t offset;
321 
322 	if (addr < (addr_t) &dummy->regs.acrs) {
323 		/*
324 		 * psw and gprs are stored on the stack
325 		 */
326 		if (addr == (addr_t) &dummy->regs.psw.mask) {
327 			unsigned long mask = PSW_MASK_USER;
328 
329 			mask |= is_ri_task(child) ? PSW_MASK_RI : 0;
330 			if ((data ^ PSW_USER_BITS) & ~mask)
331 				/* Invalid psw mask. */
332 				return -EINVAL;
333 			if ((data & PSW_MASK_ASC) == PSW_ASC_HOME)
334 				/* Invalid address-space-control bits */
335 				return -EINVAL;
336 			if ((data & PSW_MASK_EA) && !(data & PSW_MASK_BA))
337 				/* Invalid addressing mode bits */
338 				return -EINVAL;
339 		}
340 		*(addr_t *)((addr_t) &task_pt_regs(child)->psw + addr) = data;
341 
342 	} else if (addr < (addr_t) (&dummy->regs.orig_gpr2)) {
343 		/*
344 		 * access registers are stored in the thread structure
345 		 */
346 		offset = addr - (addr_t) &dummy->regs.acrs;
347 		/*
348 		 * Very special case: old & broken 64 bit gdb writing
349 		 * to acrs[15] with a 64 bit value. Ignore the lower
350 		 * half of the value and write the upper 32 bit to
351 		 * acrs[15]. Sick...
352 		 */
353 		if (addr == (addr_t) &dummy->regs.acrs[15])
354 			child->thread.acrs[15] = (unsigned int) (data >> 32);
355 		else
356 			*(addr_t *)((addr_t) &child->thread.acrs + offset) = data;
357 
358 	} else if (addr == (addr_t) &dummy->regs.orig_gpr2) {
359 		/*
360 		 * orig_gpr2 is stored on the kernel stack
361 		 */
362 		task_pt_regs(child)->orig_gpr2 = data;
363 
364 	} else if (addr < (addr_t) &dummy->regs.fp_regs) {
365 		/*
366 		 * prevent writes of padding hole between
367 		 * orig_gpr2 and fp_regs on s390.
368 		 */
369 		return 0;
370 
371 	} else if (addr == (addr_t) &dummy->regs.fp_regs.fpc) {
372 		/*
373 		 * floating point control reg. is in the thread structure
374 		 */
375 		if ((unsigned int) data != 0 ||
376 		    test_fp_ctl(data >> (BITS_PER_LONG - 32)))
377 			return -EINVAL;
378 		child->thread.fpu.fpc = data >> (BITS_PER_LONG - 32);
379 
380 	} else if (addr < (addr_t) (&dummy->regs.fp_regs + 1)) {
381 		/*
382 		 * floating point regs. are either in child->thread.fpu
383 		 * or the child->thread.fpu.vxrs array
384 		 */
385 		offset = addr - (addr_t) &dummy->regs.fp_regs.fprs;
386 		if (MACHINE_HAS_VX)
387 			*(addr_t *)((addr_t)
388 				child->thread.fpu.vxrs + 2*offset) = data;
389 		else
390 			*(addr_t *)((addr_t)
391 				child->thread.fpu.fprs + offset) = data;
392 
393 	} else if (addr < (addr_t) (&dummy->regs.per_info + 1)) {
394 		/*
395 		 * Handle access to the per_info structure.
396 		 */
397 		addr -= (addr_t) &dummy->regs.per_info;
398 		__poke_user_per(child, addr, data);
399 
400 	}
401 
402 	return 0;
403 }
404 
405 static int poke_user(struct task_struct *child, addr_t addr, addr_t data)
406 {
407 	addr_t mask;
408 
409 	/*
410 	 * Stupid gdb peeks/pokes the access registers in 64 bit with
411 	 * an alignment of 4. Programmers from hell indeed...
412 	 */
413 	mask = __ADDR_MASK;
414 	if (addr >= (addr_t) &((struct user *) NULL)->regs.acrs &&
415 	    addr < (addr_t) &((struct user *) NULL)->regs.orig_gpr2)
416 		mask = 3;
417 	if ((addr & mask) || addr > sizeof(struct user) - __ADDR_MASK)
418 		return -EIO;
419 
420 	return __poke_user(child, addr, data);
421 }
422 
423 long arch_ptrace(struct task_struct *child, long request,
424 		 unsigned long addr, unsigned long data)
425 {
426 	ptrace_area parea;
427 	int copied, ret;
428 
429 	switch (request) {
430 	case PTRACE_PEEKUSR:
431 		/* read the word at location addr in the USER area. */
432 		return peek_user(child, addr, data);
433 
434 	case PTRACE_POKEUSR:
435 		/* write the word at location addr in the USER area */
436 		return poke_user(child, addr, data);
437 
438 	case PTRACE_PEEKUSR_AREA:
439 	case PTRACE_POKEUSR_AREA:
440 		if (copy_from_user(&parea, (void __force __user *) addr,
441 							sizeof(parea)))
442 			return -EFAULT;
443 		addr = parea.kernel_addr;
444 		data = parea.process_addr;
445 		copied = 0;
446 		while (copied < parea.len) {
447 			if (request == PTRACE_PEEKUSR_AREA)
448 				ret = peek_user(child, addr, data);
449 			else {
450 				addr_t utmp;
451 				if (get_user(utmp,
452 					     (addr_t __force __user *) data))
453 					return -EFAULT;
454 				ret = poke_user(child, addr, utmp);
455 			}
456 			if (ret)
457 				return ret;
458 			addr += sizeof(unsigned long);
459 			data += sizeof(unsigned long);
460 			copied += sizeof(unsigned long);
461 		}
462 		return 0;
463 	case PTRACE_GET_LAST_BREAK:
464 		put_user(task_thread_info(child)->last_break,
465 			 (unsigned long __user *) data);
466 		return 0;
467 	case PTRACE_ENABLE_TE:
468 		if (!MACHINE_HAS_TE)
469 			return -EIO;
470 		child->thread.per_flags &= ~PER_FLAG_NO_TE;
471 		return 0;
472 	case PTRACE_DISABLE_TE:
473 		if (!MACHINE_HAS_TE)
474 			return -EIO;
475 		child->thread.per_flags |= PER_FLAG_NO_TE;
476 		child->thread.per_flags &= ~PER_FLAG_TE_ABORT_RAND;
477 		return 0;
478 	case PTRACE_TE_ABORT_RAND:
479 		if (!MACHINE_HAS_TE || (child->thread.per_flags & PER_FLAG_NO_TE))
480 			return -EIO;
481 		switch (data) {
482 		case 0UL:
483 			child->thread.per_flags &= ~PER_FLAG_TE_ABORT_RAND;
484 			break;
485 		case 1UL:
486 			child->thread.per_flags |= PER_FLAG_TE_ABORT_RAND;
487 			child->thread.per_flags |= PER_FLAG_TE_ABORT_RAND_TEND;
488 			break;
489 		case 2UL:
490 			child->thread.per_flags |= PER_FLAG_TE_ABORT_RAND;
491 			child->thread.per_flags &= ~PER_FLAG_TE_ABORT_RAND_TEND;
492 			break;
493 		default:
494 			return -EINVAL;
495 		}
496 		return 0;
497 	default:
498 		return ptrace_request(child, request, addr, data);
499 	}
500 }
501 
502 #ifdef CONFIG_COMPAT
503 /*
504  * Now the fun part starts... a 31 bit program running in the
505  * 31 bit emulation tracing another program. PTRACE_PEEKTEXT,
506  * PTRACE_PEEKDATA, PTRACE_POKETEXT and PTRACE_POKEDATA are easy
507  * to handle, the difference to the 64 bit versions of the requests
508  * is that the access is done in multiples of 4 byte instead of
509  * 8 bytes (sizeof(unsigned long) on 31/64 bit).
510  * The ugly part are PTRACE_PEEKUSR, PTRACE_PEEKUSR_AREA,
511  * PTRACE_POKEUSR and PTRACE_POKEUSR_AREA. If the traced program
512  * is a 31 bit program too, the content of struct user can be
513  * emulated. A 31 bit program peeking into the struct user of
514  * a 64 bit program is a no-no.
515  */
516 
517 /*
518  * Same as peek_user_per but for a 31 bit program.
519  */
520 static inline __u32 __peek_user_per_compat(struct task_struct *child,
521 					   addr_t addr)
522 {
523 	struct compat_per_struct_kernel *dummy32 = NULL;
524 
525 	if (addr == (addr_t) &dummy32->cr9)
526 		/* Control bits of the active per set. */
527 		return (__u32) test_thread_flag(TIF_SINGLE_STEP) ?
528 			PER_EVENT_IFETCH : child->thread.per_user.control;
529 	else if (addr == (addr_t) &dummy32->cr10)
530 		/* Start address of the active per set. */
531 		return (__u32) test_thread_flag(TIF_SINGLE_STEP) ?
532 			0 : child->thread.per_user.start;
533 	else if (addr == (addr_t) &dummy32->cr11)
534 		/* End address of the active per set. */
535 		return test_thread_flag(TIF_SINGLE_STEP) ?
536 			PSW32_ADDR_INSN : child->thread.per_user.end;
537 	else if (addr == (addr_t) &dummy32->bits)
538 		/* Single-step bit. */
539 		return (__u32) test_thread_flag(TIF_SINGLE_STEP) ?
540 			0x80000000 : 0;
541 	else if (addr == (addr_t) &dummy32->starting_addr)
542 		/* Start address of the user specified per set. */
543 		return (__u32) child->thread.per_user.start;
544 	else if (addr == (addr_t) &dummy32->ending_addr)
545 		/* End address of the user specified per set. */
546 		return (__u32) child->thread.per_user.end;
547 	else if (addr == (addr_t) &dummy32->perc_atmid)
548 		/* PER code, ATMID and AI of the last PER trap */
549 		return (__u32) child->thread.per_event.cause << 16;
550 	else if (addr == (addr_t) &dummy32->address)
551 		/* Address of the last PER trap */
552 		return (__u32) child->thread.per_event.address;
553 	else if (addr == (addr_t) &dummy32->access_id)
554 		/* Access id of the last PER trap */
555 		return (__u32) child->thread.per_event.paid << 24;
556 	return 0;
557 }
558 
559 /*
560  * Same as peek_user but for a 31 bit program.
561  */
562 static u32 __peek_user_compat(struct task_struct *child, addr_t addr)
563 {
564 	struct compat_user *dummy32 = NULL;
565 	addr_t offset;
566 	__u32 tmp;
567 
568 	if (addr < (addr_t) &dummy32->regs.acrs) {
569 		struct pt_regs *regs = task_pt_regs(child);
570 		/*
571 		 * psw and gprs are stored on the stack
572 		 */
573 		if (addr == (addr_t) &dummy32->regs.psw.mask) {
574 			/* Fake a 31 bit psw mask. */
575 			tmp = (__u32)(regs->psw.mask >> 32);
576 			tmp &= PSW32_MASK_USER | PSW32_MASK_RI;
577 			tmp |= PSW32_USER_BITS;
578 		} else if (addr == (addr_t) &dummy32->regs.psw.addr) {
579 			/* Fake a 31 bit psw address. */
580 			tmp = (__u32) regs->psw.addr |
581 				(__u32)(regs->psw.mask & PSW_MASK_BA);
582 		} else {
583 			/* gpr 0-15 */
584 			tmp = *(__u32 *)((addr_t) &regs->psw + addr*2 + 4);
585 		}
586 	} else if (addr < (addr_t) (&dummy32->regs.orig_gpr2)) {
587 		/*
588 		 * access registers are stored in the thread structure
589 		 */
590 		offset = addr - (addr_t) &dummy32->regs.acrs;
591 		tmp = *(__u32*)((addr_t) &child->thread.acrs + offset);
592 
593 	} else if (addr == (addr_t) (&dummy32->regs.orig_gpr2)) {
594 		/*
595 		 * orig_gpr2 is stored on the kernel stack
596 		 */
597 		tmp = *(__u32*)((addr_t) &task_pt_regs(child)->orig_gpr2 + 4);
598 
599 	} else if (addr < (addr_t) &dummy32->regs.fp_regs) {
600 		/*
601 		 * prevent reads of padding hole between
602 		 * orig_gpr2 and fp_regs on s390.
603 		 */
604 		tmp = 0;
605 
606 	} else if (addr == (addr_t) &dummy32->regs.fp_regs.fpc) {
607 		/*
608 		 * floating point control reg. is in the thread structure
609 		 */
610 		tmp = child->thread.fpu.fpc;
611 
612 	} else if (addr < (addr_t) (&dummy32->regs.fp_regs + 1)) {
613 		/*
614 		 * floating point regs. are either in child->thread.fpu
615 		 * or the child->thread.fpu.vxrs array
616 		 */
617 		offset = addr - (addr_t) &dummy32->regs.fp_regs.fprs;
618 		if (MACHINE_HAS_VX)
619 			tmp = *(__u32 *)
620 			       ((addr_t) child->thread.fpu.vxrs + 2*offset);
621 		else
622 			tmp = *(__u32 *)
623 			       ((addr_t) child->thread.fpu.fprs + offset);
624 
625 	} else if (addr < (addr_t) (&dummy32->regs.per_info + 1)) {
626 		/*
627 		 * Handle access to the per_info structure.
628 		 */
629 		addr -= (addr_t) &dummy32->regs.per_info;
630 		tmp = __peek_user_per_compat(child, addr);
631 
632 	} else
633 		tmp = 0;
634 
635 	return tmp;
636 }
637 
638 static int peek_user_compat(struct task_struct *child,
639 			    addr_t addr, addr_t data)
640 {
641 	__u32 tmp;
642 
643 	if (!is_compat_task() || (addr & 3) || addr > sizeof(struct user) - 3)
644 		return -EIO;
645 
646 	tmp = __peek_user_compat(child, addr);
647 	return put_user(tmp, (__u32 __user *) data);
648 }
649 
650 /*
651  * Same as poke_user_per but for a 31 bit program.
652  */
653 static inline void __poke_user_per_compat(struct task_struct *child,
654 					  addr_t addr, __u32 data)
655 {
656 	struct compat_per_struct_kernel *dummy32 = NULL;
657 
658 	if (addr == (addr_t) &dummy32->cr9)
659 		/* PER event mask of the user specified per set. */
660 		child->thread.per_user.control =
661 			data & (PER_EVENT_MASK | PER_CONTROL_MASK);
662 	else if (addr == (addr_t) &dummy32->starting_addr)
663 		/* Starting address of the user specified per set. */
664 		child->thread.per_user.start = data;
665 	else if (addr == (addr_t) &dummy32->ending_addr)
666 		/* Ending address of the user specified per set. */
667 		child->thread.per_user.end = data;
668 }
669 
670 /*
671  * Same as poke_user but for a 31 bit program.
672  */
673 static int __poke_user_compat(struct task_struct *child,
674 			      addr_t addr, addr_t data)
675 {
676 	struct compat_user *dummy32 = NULL;
677 	__u32 tmp = (__u32) data;
678 	addr_t offset;
679 
680 	if (addr < (addr_t) &dummy32->regs.acrs) {
681 		struct pt_regs *regs = task_pt_regs(child);
682 		/*
683 		 * psw, gprs, acrs and orig_gpr2 are stored on the stack
684 		 */
685 		if (addr == (addr_t) &dummy32->regs.psw.mask) {
686 			__u32 mask = PSW32_MASK_USER;
687 
688 			mask |= is_ri_task(child) ? PSW32_MASK_RI : 0;
689 			/* Build a 64 bit psw mask from 31 bit mask. */
690 			if ((tmp ^ PSW32_USER_BITS) & ~mask)
691 				/* Invalid psw mask. */
692 				return -EINVAL;
693 			if ((data & PSW32_MASK_ASC) == PSW32_ASC_HOME)
694 				/* Invalid address-space-control bits */
695 				return -EINVAL;
696 			regs->psw.mask = (regs->psw.mask & ~PSW_MASK_USER) |
697 				(regs->psw.mask & PSW_MASK_BA) |
698 				(__u64)(tmp & mask) << 32;
699 		} else if (addr == (addr_t) &dummy32->regs.psw.addr) {
700 			/* Build a 64 bit psw address from 31 bit address. */
701 			regs->psw.addr = (__u64) tmp & PSW32_ADDR_INSN;
702 			/* Transfer 31 bit amode bit to psw mask. */
703 			regs->psw.mask = (regs->psw.mask & ~PSW_MASK_BA) |
704 				(__u64)(tmp & PSW32_ADDR_AMODE);
705 		} else {
706 			/* gpr 0-15 */
707 			*(__u32*)((addr_t) &regs->psw + addr*2 + 4) = tmp;
708 		}
709 	} else if (addr < (addr_t) (&dummy32->regs.orig_gpr2)) {
710 		/*
711 		 * access registers are stored in the thread structure
712 		 */
713 		offset = addr - (addr_t) &dummy32->regs.acrs;
714 		*(__u32*)((addr_t) &child->thread.acrs + offset) = tmp;
715 
716 	} else if (addr == (addr_t) (&dummy32->regs.orig_gpr2)) {
717 		/*
718 		 * orig_gpr2 is stored on the kernel stack
719 		 */
720 		*(__u32*)((addr_t) &task_pt_regs(child)->orig_gpr2 + 4) = tmp;
721 
722 	} else if (addr < (addr_t) &dummy32->regs.fp_regs) {
723 		/*
724 		 * prevent writess of padding hole between
725 		 * orig_gpr2 and fp_regs on s390.
726 		 */
727 		return 0;
728 
729 	} else if (addr == (addr_t) &dummy32->regs.fp_regs.fpc) {
730 		/*
731 		 * floating point control reg. is in the thread structure
732 		 */
733 		if (test_fp_ctl(tmp))
734 			return -EINVAL;
735 		child->thread.fpu.fpc = data;
736 
737 	} else if (addr < (addr_t) (&dummy32->regs.fp_regs + 1)) {
738 		/*
739 		 * floating point regs. are either in child->thread.fpu
740 		 * or the child->thread.fpu.vxrs array
741 		 */
742 		offset = addr - (addr_t) &dummy32->regs.fp_regs.fprs;
743 		if (MACHINE_HAS_VX)
744 			*(__u32 *)((addr_t)
745 				child->thread.fpu.vxrs + 2*offset) = tmp;
746 		else
747 			*(__u32 *)((addr_t)
748 				child->thread.fpu.fprs + offset) = tmp;
749 
750 	} else if (addr < (addr_t) (&dummy32->regs.per_info + 1)) {
751 		/*
752 		 * Handle access to the per_info structure.
753 		 */
754 		addr -= (addr_t) &dummy32->regs.per_info;
755 		__poke_user_per_compat(child, addr, data);
756 	}
757 
758 	return 0;
759 }
760 
761 static int poke_user_compat(struct task_struct *child,
762 			    addr_t addr, addr_t data)
763 {
764 	if (!is_compat_task() || (addr & 3) ||
765 	    addr > sizeof(struct compat_user) - 3)
766 		return -EIO;
767 
768 	return __poke_user_compat(child, addr, data);
769 }
770 
771 long compat_arch_ptrace(struct task_struct *child, compat_long_t request,
772 			compat_ulong_t caddr, compat_ulong_t cdata)
773 {
774 	unsigned long addr = caddr;
775 	unsigned long data = cdata;
776 	compat_ptrace_area parea;
777 	int copied, ret;
778 
779 	switch (request) {
780 	case PTRACE_PEEKUSR:
781 		/* read the word at location addr in the USER area. */
782 		return peek_user_compat(child, addr, data);
783 
784 	case PTRACE_POKEUSR:
785 		/* write the word at location addr in the USER area */
786 		return poke_user_compat(child, addr, data);
787 
788 	case PTRACE_PEEKUSR_AREA:
789 	case PTRACE_POKEUSR_AREA:
790 		if (copy_from_user(&parea, (void __force __user *) addr,
791 							sizeof(parea)))
792 			return -EFAULT;
793 		addr = parea.kernel_addr;
794 		data = parea.process_addr;
795 		copied = 0;
796 		while (copied < parea.len) {
797 			if (request == PTRACE_PEEKUSR_AREA)
798 				ret = peek_user_compat(child, addr, data);
799 			else {
800 				__u32 utmp;
801 				if (get_user(utmp,
802 					     (__u32 __force __user *) data))
803 					return -EFAULT;
804 				ret = poke_user_compat(child, addr, utmp);
805 			}
806 			if (ret)
807 				return ret;
808 			addr += sizeof(unsigned int);
809 			data += sizeof(unsigned int);
810 			copied += sizeof(unsigned int);
811 		}
812 		return 0;
813 	case PTRACE_GET_LAST_BREAK:
814 		put_user(task_thread_info(child)->last_break,
815 			 (unsigned int __user *) data);
816 		return 0;
817 	}
818 	return compat_ptrace_request(child, request, addr, data);
819 }
820 #endif
821 
822 asmlinkage long do_syscall_trace_enter(struct pt_regs *regs)
823 {
824 	/*
825 	 * The sysc_tracesys code in entry.S stored the system
826 	 * call number to gprs[2].
827 	 */
828 	if (test_thread_flag(TIF_SYSCALL_TRACE) &&
829 	    (tracehook_report_syscall_entry(regs) ||
830 	     regs->gprs[2] >= NR_syscalls)) {
831 		/*
832 		 * Tracing decided this syscall should not happen or the
833 		 * debugger stored an invalid system call number. Skip
834 		 * the system call and the system call restart handling.
835 		 */
836 		clear_pt_regs_flag(regs, PIF_SYSCALL);
837 		return -1;
838 	}
839 
840 	/* Do the secure computing check after ptrace. */
841 	if (secure_computing(NULL)) {
842 		/* seccomp failures shouldn't expose any additional code. */
843 		return -1;
844 	}
845 
846 	if (unlikely(test_thread_flag(TIF_SYSCALL_TRACEPOINT)))
847 		trace_sys_enter(regs, regs->gprs[2]);
848 
849 	audit_syscall_entry(regs->gprs[2], regs->orig_gpr2,
850 			    regs->gprs[3], regs->gprs[4],
851 			    regs->gprs[5]);
852 
853 	return regs->gprs[2];
854 }
855 
856 asmlinkage void do_syscall_trace_exit(struct pt_regs *regs)
857 {
858 	audit_syscall_exit(regs);
859 
860 	if (unlikely(test_thread_flag(TIF_SYSCALL_TRACEPOINT)))
861 		trace_sys_exit(regs, regs->gprs[2]);
862 
863 	if (test_thread_flag(TIF_SYSCALL_TRACE))
864 		tracehook_report_syscall_exit(regs, 0);
865 }
866 
867 /*
868  * user_regset definitions.
869  */
870 
871 static int s390_regs_get(struct task_struct *target,
872 			 const struct user_regset *regset,
873 			 unsigned int pos, unsigned int count,
874 			 void *kbuf, void __user *ubuf)
875 {
876 	if (target == current)
877 		save_access_regs(target->thread.acrs);
878 
879 	if (kbuf) {
880 		unsigned long *k = kbuf;
881 		while (count > 0) {
882 			*k++ = __peek_user(target, pos);
883 			count -= sizeof(*k);
884 			pos += sizeof(*k);
885 		}
886 	} else {
887 		unsigned long __user *u = ubuf;
888 		while (count > 0) {
889 			if (__put_user(__peek_user(target, pos), u++))
890 				return -EFAULT;
891 			count -= sizeof(*u);
892 			pos += sizeof(*u);
893 		}
894 	}
895 	return 0;
896 }
897 
898 static int s390_regs_set(struct task_struct *target,
899 			 const struct user_regset *regset,
900 			 unsigned int pos, unsigned int count,
901 			 const void *kbuf, const void __user *ubuf)
902 {
903 	int rc = 0;
904 
905 	if (target == current)
906 		save_access_regs(target->thread.acrs);
907 
908 	if (kbuf) {
909 		const unsigned long *k = kbuf;
910 		while (count > 0 && !rc) {
911 			rc = __poke_user(target, pos, *k++);
912 			count -= sizeof(*k);
913 			pos += sizeof(*k);
914 		}
915 	} else {
916 		const unsigned long  __user *u = ubuf;
917 		while (count > 0 && !rc) {
918 			unsigned long word;
919 			rc = __get_user(word, u++);
920 			if (rc)
921 				break;
922 			rc = __poke_user(target, pos, word);
923 			count -= sizeof(*u);
924 			pos += sizeof(*u);
925 		}
926 	}
927 
928 	if (rc == 0 && target == current)
929 		restore_access_regs(target->thread.acrs);
930 
931 	return rc;
932 }
933 
934 static int s390_fpregs_get(struct task_struct *target,
935 			   const struct user_regset *regset, unsigned int pos,
936 			   unsigned int count, void *kbuf, void __user *ubuf)
937 {
938 	_s390_fp_regs fp_regs;
939 
940 	if (target == current)
941 		save_fpu_regs();
942 
943 	fp_regs.fpc = target->thread.fpu.fpc;
944 	fpregs_store(&fp_regs, &target->thread.fpu);
945 
946 	return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
947 				   &fp_regs, 0, -1);
948 }
949 
950 static int s390_fpregs_set(struct task_struct *target,
951 			   const struct user_regset *regset, unsigned int pos,
952 			   unsigned int count, const void *kbuf,
953 			   const void __user *ubuf)
954 {
955 	int rc = 0;
956 	freg_t fprs[__NUM_FPRS];
957 
958 	if (target == current)
959 		save_fpu_regs();
960 
961 	/* If setting FPC, must validate it first. */
962 	if (count > 0 && pos < offsetof(s390_fp_regs, fprs)) {
963 		u32 ufpc[2] = { target->thread.fpu.fpc, 0 };
964 		rc = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &ufpc,
965 					0, offsetof(s390_fp_regs, fprs));
966 		if (rc)
967 			return rc;
968 		if (ufpc[1] != 0 || test_fp_ctl(ufpc[0]))
969 			return -EINVAL;
970 		target->thread.fpu.fpc = ufpc[0];
971 	}
972 
973 	if (rc == 0 && count > 0)
974 		rc = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
975 					fprs, offsetof(s390_fp_regs, fprs), -1);
976 	if (rc)
977 		return rc;
978 
979 	if (MACHINE_HAS_VX)
980 		convert_fp_to_vx(target->thread.fpu.vxrs, fprs);
981 	else
982 		memcpy(target->thread.fpu.fprs, &fprs, sizeof(fprs));
983 
984 	return rc;
985 }
986 
987 static int s390_last_break_get(struct task_struct *target,
988 			       const struct user_regset *regset,
989 			       unsigned int pos, unsigned int count,
990 			       void *kbuf, void __user *ubuf)
991 {
992 	if (count > 0) {
993 		if (kbuf) {
994 			unsigned long *k = kbuf;
995 			*k = task_thread_info(target)->last_break;
996 		} else {
997 			unsigned long  __user *u = ubuf;
998 			if (__put_user(task_thread_info(target)->last_break, u))
999 				return -EFAULT;
1000 		}
1001 	}
1002 	return 0;
1003 }
1004 
1005 static int s390_last_break_set(struct task_struct *target,
1006 			       const struct user_regset *regset,
1007 			       unsigned int pos, unsigned int count,
1008 			       const void *kbuf, const void __user *ubuf)
1009 {
1010 	return 0;
1011 }
1012 
1013 static int s390_tdb_get(struct task_struct *target,
1014 			const struct user_regset *regset,
1015 			unsigned int pos, unsigned int count,
1016 			void *kbuf, void __user *ubuf)
1017 {
1018 	struct pt_regs *regs = task_pt_regs(target);
1019 	unsigned char *data;
1020 
1021 	if (!(regs->int_code & 0x200))
1022 		return -ENODATA;
1023 	data = target->thread.trap_tdb;
1024 	return user_regset_copyout(&pos, &count, &kbuf, &ubuf, data, 0, 256);
1025 }
1026 
1027 static int s390_tdb_set(struct task_struct *target,
1028 			const struct user_regset *regset,
1029 			unsigned int pos, unsigned int count,
1030 			const void *kbuf, const void __user *ubuf)
1031 {
1032 	return 0;
1033 }
1034 
1035 static int s390_vxrs_low_get(struct task_struct *target,
1036 			     const struct user_regset *regset,
1037 			     unsigned int pos, unsigned int count,
1038 			     void *kbuf, void __user *ubuf)
1039 {
1040 	__u64 vxrs[__NUM_VXRS_LOW];
1041 	int i;
1042 
1043 	if (!MACHINE_HAS_VX)
1044 		return -ENODEV;
1045 	if (target == current)
1046 		save_fpu_regs();
1047 	for (i = 0; i < __NUM_VXRS_LOW; i++)
1048 		vxrs[i] = *((__u64 *)(target->thread.fpu.vxrs + i) + 1);
1049 	return user_regset_copyout(&pos, &count, &kbuf, &ubuf, vxrs, 0, -1);
1050 }
1051 
1052 static int s390_vxrs_low_set(struct task_struct *target,
1053 			     const struct user_regset *regset,
1054 			     unsigned int pos, unsigned int count,
1055 			     const void *kbuf, const void __user *ubuf)
1056 {
1057 	__u64 vxrs[__NUM_VXRS_LOW];
1058 	int i, rc;
1059 
1060 	if (!MACHINE_HAS_VX)
1061 		return -ENODEV;
1062 	if (target == current)
1063 		save_fpu_regs();
1064 
1065 	rc = user_regset_copyin(&pos, &count, &kbuf, &ubuf, vxrs, 0, -1);
1066 	if (rc == 0)
1067 		for (i = 0; i < __NUM_VXRS_LOW; i++)
1068 			*((__u64 *)(target->thread.fpu.vxrs + i) + 1) = vxrs[i];
1069 
1070 	return rc;
1071 }
1072 
1073 static int s390_vxrs_high_get(struct task_struct *target,
1074 			      const struct user_regset *regset,
1075 			      unsigned int pos, unsigned int count,
1076 			      void *kbuf, void __user *ubuf)
1077 {
1078 	__vector128 vxrs[__NUM_VXRS_HIGH];
1079 
1080 	if (!MACHINE_HAS_VX)
1081 		return -ENODEV;
1082 	if (target == current)
1083 		save_fpu_regs();
1084 	memcpy(vxrs, target->thread.fpu.vxrs + __NUM_VXRS_LOW, sizeof(vxrs));
1085 
1086 	return user_regset_copyout(&pos, &count, &kbuf, &ubuf, vxrs, 0, -1);
1087 }
1088 
1089 static int s390_vxrs_high_set(struct task_struct *target,
1090 			      const struct user_regset *regset,
1091 			      unsigned int pos, unsigned int count,
1092 			      const void *kbuf, const void __user *ubuf)
1093 {
1094 	int rc;
1095 
1096 	if (!MACHINE_HAS_VX)
1097 		return -ENODEV;
1098 	if (target == current)
1099 		save_fpu_regs();
1100 
1101 	rc = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1102 				target->thread.fpu.vxrs + __NUM_VXRS_LOW, 0, -1);
1103 	return rc;
1104 }
1105 
1106 static int s390_system_call_get(struct task_struct *target,
1107 				const struct user_regset *regset,
1108 				unsigned int pos, unsigned int count,
1109 				void *kbuf, void __user *ubuf)
1110 {
1111 	unsigned int *data = &task_thread_info(target)->system_call;
1112 	return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
1113 				   data, 0, sizeof(unsigned int));
1114 }
1115 
1116 static int s390_system_call_set(struct task_struct *target,
1117 				const struct user_regset *regset,
1118 				unsigned int pos, unsigned int count,
1119 				const void *kbuf, const void __user *ubuf)
1120 {
1121 	unsigned int *data = &task_thread_info(target)->system_call;
1122 	return user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1123 				  data, 0, sizeof(unsigned int));
1124 }
1125 
1126 static const struct user_regset s390_regsets[] = {
1127 	{
1128 		.core_note_type = NT_PRSTATUS,
1129 		.n = sizeof(s390_regs) / sizeof(long),
1130 		.size = sizeof(long),
1131 		.align = sizeof(long),
1132 		.get = s390_regs_get,
1133 		.set = s390_regs_set,
1134 	},
1135 	{
1136 		.core_note_type = NT_PRFPREG,
1137 		.n = sizeof(s390_fp_regs) / sizeof(long),
1138 		.size = sizeof(long),
1139 		.align = sizeof(long),
1140 		.get = s390_fpregs_get,
1141 		.set = s390_fpregs_set,
1142 	},
1143 	{
1144 		.core_note_type = NT_S390_SYSTEM_CALL,
1145 		.n = 1,
1146 		.size = sizeof(unsigned int),
1147 		.align = sizeof(unsigned int),
1148 		.get = s390_system_call_get,
1149 		.set = s390_system_call_set,
1150 	},
1151 	{
1152 		.core_note_type = NT_S390_LAST_BREAK,
1153 		.n = 1,
1154 		.size = sizeof(long),
1155 		.align = sizeof(long),
1156 		.get = s390_last_break_get,
1157 		.set = s390_last_break_set,
1158 	},
1159 	{
1160 		.core_note_type = NT_S390_TDB,
1161 		.n = 1,
1162 		.size = 256,
1163 		.align = 1,
1164 		.get = s390_tdb_get,
1165 		.set = s390_tdb_set,
1166 	},
1167 	{
1168 		.core_note_type = NT_S390_VXRS_LOW,
1169 		.n = __NUM_VXRS_LOW,
1170 		.size = sizeof(__u64),
1171 		.align = sizeof(__u64),
1172 		.get = s390_vxrs_low_get,
1173 		.set = s390_vxrs_low_set,
1174 	},
1175 	{
1176 		.core_note_type = NT_S390_VXRS_HIGH,
1177 		.n = __NUM_VXRS_HIGH,
1178 		.size = sizeof(__vector128),
1179 		.align = sizeof(__vector128),
1180 		.get = s390_vxrs_high_get,
1181 		.set = s390_vxrs_high_set,
1182 	},
1183 };
1184 
1185 static const struct user_regset_view user_s390_view = {
1186 	.name = UTS_MACHINE,
1187 	.e_machine = EM_S390,
1188 	.regsets = s390_regsets,
1189 	.n = ARRAY_SIZE(s390_regsets)
1190 };
1191 
1192 #ifdef CONFIG_COMPAT
1193 static int s390_compat_regs_get(struct task_struct *target,
1194 				const struct user_regset *regset,
1195 				unsigned int pos, unsigned int count,
1196 				void *kbuf, void __user *ubuf)
1197 {
1198 	if (target == current)
1199 		save_access_regs(target->thread.acrs);
1200 
1201 	if (kbuf) {
1202 		compat_ulong_t *k = kbuf;
1203 		while (count > 0) {
1204 			*k++ = __peek_user_compat(target, pos);
1205 			count -= sizeof(*k);
1206 			pos += sizeof(*k);
1207 		}
1208 	} else {
1209 		compat_ulong_t __user *u = ubuf;
1210 		while (count > 0) {
1211 			if (__put_user(__peek_user_compat(target, pos), u++))
1212 				return -EFAULT;
1213 			count -= sizeof(*u);
1214 			pos += sizeof(*u);
1215 		}
1216 	}
1217 	return 0;
1218 }
1219 
1220 static int s390_compat_regs_set(struct task_struct *target,
1221 				const struct user_regset *regset,
1222 				unsigned int pos, unsigned int count,
1223 				const void *kbuf, const void __user *ubuf)
1224 {
1225 	int rc = 0;
1226 
1227 	if (target == current)
1228 		save_access_regs(target->thread.acrs);
1229 
1230 	if (kbuf) {
1231 		const compat_ulong_t *k = kbuf;
1232 		while (count > 0 && !rc) {
1233 			rc = __poke_user_compat(target, pos, *k++);
1234 			count -= sizeof(*k);
1235 			pos += sizeof(*k);
1236 		}
1237 	} else {
1238 		const compat_ulong_t  __user *u = ubuf;
1239 		while (count > 0 && !rc) {
1240 			compat_ulong_t word;
1241 			rc = __get_user(word, u++);
1242 			if (rc)
1243 				break;
1244 			rc = __poke_user_compat(target, pos, word);
1245 			count -= sizeof(*u);
1246 			pos += sizeof(*u);
1247 		}
1248 	}
1249 
1250 	if (rc == 0 && target == current)
1251 		restore_access_regs(target->thread.acrs);
1252 
1253 	return rc;
1254 }
1255 
1256 static int s390_compat_regs_high_get(struct task_struct *target,
1257 				     const struct user_regset *regset,
1258 				     unsigned int pos, unsigned int count,
1259 				     void *kbuf, void __user *ubuf)
1260 {
1261 	compat_ulong_t *gprs_high;
1262 
1263 	gprs_high = (compat_ulong_t *)
1264 		&task_pt_regs(target)->gprs[pos / sizeof(compat_ulong_t)];
1265 	if (kbuf) {
1266 		compat_ulong_t *k = kbuf;
1267 		while (count > 0) {
1268 			*k++ = *gprs_high;
1269 			gprs_high += 2;
1270 			count -= sizeof(*k);
1271 		}
1272 	} else {
1273 		compat_ulong_t __user *u = ubuf;
1274 		while (count > 0) {
1275 			if (__put_user(*gprs_high, u++))
1276 				return -EFAULT;
1277 			gprs_high += 2;
1278 			count -= sizeof(*u);
1279 		}
1280 	}
1281 	return 0;
1282 }
1283 
1284 static int s390_compat_regs_high_set(struct task_struct *target,
1285 				     const struct user_regset *regset,
1286 				     unsigned int pos, unsigned int count,
1287 				     const void *kbuf, const void __user *ubuf)
1288 {
1289 	compat_ulong_t *gprs_high;
1290 	int rc = 0;
1291 
1292 	gprs_high = (compat_ulong_t *)
1293 		&task_pt_regs(target)->gprs[pos / sizeof(compat_ulong_t)];
1294 	if (kbuf) {
1295 		const compat_ulong_t *k = kbuf;
1296 		while (count > 0) {
1297 			*gprs_high = *k++;
1298 			*gprs_high += 2;
1299 			count -= sizeof(*k);
1300 		}
1301 	} else {
1302 		const compat_ulong_t  __user *u = ubuf;
1303 		while (count > 0 && !rc) {
1304 			unsigned long word;
1305 			rc = __get_user(word, u++);
1306 			if (rc)
1307 				break;
1308 			*gprs_high = word;
1309 			*gprs_high += 2;
1310 			count -= sizeof(*u);
1311 		}
1312 	}
1313 
1314 	return rc;
1315 }
1316 
1317 static int s390_compat_last_break_get(struct task_struct *target,
1318 				      const struct user_regset *regset,
1319 				      unsigned int pos, unsigned int count,
1320 				      void *kbuf, void __user *ubuf)
1321 {
1322 	compat_ulong_t last_break;
1323 
1324 	if (count > 0) {
1325 		last_break = task_thread_info(target)->last_break;
1326 		if (kbuf) {
1327 			unsigned long *k = kbuf;
1328 			*k = last_break;
1329 		} else {
1330 			unsigned long  __user *u = ubuf;
1331 			if (__put_user(last_break, u))
1332 				return -EFAULT;
1333 		}
1334 	}
1335 	return 0;
1336 }
1337 
1338 static int s390_compat_last_break_set(struct task_struct *target,
1339 				      const struct user_regset *regset,
1340 				      unsigned int pos, unsigned int count,
1341 				      const void *kbuf, const void __user *ubuf)
1342 {
1343 	return 0;
1344 }
1345 
1346 static const struct user_regset s390_compat_regsets[] = {
1347 	{
1348 		.core_note_type = NT_PRSTATUS,
1349 		.n = sizeof(s390_compat_regs) / sizeof(compat_long_t),
1350 		.size = sizeof(compat_long_t),
1351 		.align = sizeof(compat_long_t),
1352 		.get = s390_compat_regs_get,
1353 		.set = s390_compat_regs_set,
1354 	},
1355 	{
1356 		.core_note_type = NT_PRFPREG,
1357 		.n = sizeof(s390_fp_regs) / sizeof(compat_long_t),
1358 		.size = sizeof(compat_long_t),
1359 		.align = sizeof(compat_long_t),
1360 		.get = s390_fpregs_get,
1361 		.set = s390_fpregs_set,
1362 	},
1363 	{
1364 		.core_note_type = NT_S390_SYSTEM_CALL,
1365 		.n = 1,
1366 		.size = sizeof(compat_uint_t),
1367 		.align = sizeof(compat_uint_t),
1368 		.get = s390_system_call_get,
1369 		.set = s390_system_call_set,
1370 	},
1371 	{
1372 		.core_note_type = NT_S390_LAST_BREAK,
1373 		.n = 1,
1374 		.size = sizeof(long),
1375 		.align = sizeof(long),
1376 		.get = s390_compat_last_break_get,
1377 		.set = s390_compat_last_break_set,
1378 	},
1379 	{
1380 		.core_note_type = NT_S390_TDB,
1381 		.n = 1,
1382 		.size = 256,
1383 		.align = 1,
1384 		.get = s390_tdb_get,
1385 		.set = s390_tdb_set,
1386 	},
1387 	{
1388 		.core_note_type = NT_S390_VXRS_LOW,
1389 		.n = __NUM_VXRS_LOW,
1390 		.size = sizeof(__u64),
1391 		.align = sizeof(__u64),
1392 		.get = s390_vxrs_low_get,
1393 		.set = s390_vxrs_low_set,
1394 	},
1395 	{
1396 		.core_note_type = NT_S390_VXRS_HIGH,
1397 		.n = __NUM_VXRS_HIGH,
1398 		.size = sizeof(__vector128),
1399 		.align = sizeof(__vector128),
1400 		.get = s390_vxrs_high_get,
1401 		.set = s390_vxrs_high_set,
1402 	},
1403 	{
1404 		.core_note_type = NT_S390_HIGH_GPRS,
1405 		.n = sizeof(s390_compat_regs_high) / sizeof(compat_long_t),
1406 		.size = sizeof(compat_long_t),
1407 		.align = sizeof(compat_long_t),
1408 		.get = s390_compat_regs_high_get,
1409 		.set = s390_compat_regs_high_set,
1410 	},
1411 };
1412 
1413 static const struct user_regset_view user_s390_compat_view = {
1414 	.name = "s390",
1415 	.e_machine = EM_S390,
1416 	.regsets = s390_compat_regsets,
1417 	.n = ARRAY_SIZE(s390_compat_regsets)
1418 };
1419 #endif
1420 
1421 const struct user_regset_view *task_user_regset_view(struct task_struct *task)
1422 {
1423 #ifdef CONFIG_COMPAT
1424 	if (test_tsk_thread_flag(task, TIF_31BIT))
1425 		return &user_s390_compat_view;
1426 #endif
1427 	return &user_s390_view;
1428 }
1429 
1430 static const char *gpr_names[NUM_GPRS] = {
1431 	"r0", "r1",  "r2",  "r3",  "r4",  "r5",  "r6",  "r7",
1432 	"r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
1433 };
1434 
1435 unsigned long regs_get_register(struct pt_regs *regs, unsigned int offset)
1436 {
1437 	if (offset >= NUM_GPRS)
1438 		return 0;
1439 	return regs->gprs[offset];
1440 }
1441 
1442 int regs_query_register_offset(const char *name)
1443 {
1444 	unsigned long offset;
1445 
1446 	if (!name || *name != 'r')
1447 		return -EINVAL;
1448 	if (kstrtoul(name + 1, 10, &offset))
1449 		return -EINVAL;
1450 	if (offset >= NUM_GPRS)
1451 		return -EINVAL;
1452 	return offset;
1453 }
1454 
1455 const char *regs_query_register_name(unsigned int offset)
1456 {
1457 	if (offset >= NUM_GPRS)
1458 		return NULL;
1459 	return gpr_names[offset];
1460 }
1461 
1462 static int regs_within_kernel_stack(struct pt_regs *regs, unsigned long addr)
1463 {
1464 	unsigned long ksp = kernel_stack_pointer(regs);
1465 
1466 	return (addr & ~(THREAD_SIZE - 1)) == (ksp & ~(THREAD_SIZE - 1));
1467 }
1468 
1469 /**
1470  * regs_get_kernel_stack_nth() - get Nth entry of the stack
1471  * @regs:pt_regs which contains kernel stack pointer.
1472  * @n:stack entry number.
1473  *
1474  * regs_get_kernel_stack_nth() returns @n th entry of the kernel stack which
1475  * is specifined by @regs. If the @n th entry is NOT in the kernel stack,
1476  * this returns 0.
1477  */
1478 unsigned long regs_get_kernel_stack_nth(struct pt_regs *regs, unsigned int n)
1479 {
1480 	unsigned long addr;
1481 
1482 	addr = kernel_stack_pointer(regs) + n * sizeof(long);
1483 	if (!regs_within_kernel_stack(regs, addr))
1484 		return 0;
1485 	return *(unsigned long *)addr;
1486 }
1487