1 /* 2 * Ptrace user space interface. 3 * 4 * Copyright IBM Corp. 1999, 2010 5 * Author(s): Denis Joseph Barrow 6 * Martin Schwidefsky (schwidefsky@de.ibm.com) 7 */ 8 9 #include <linux/kernel.h> 10 #include <linux/sched.h> 11 #include <linux/mm.h> 12 #include <linux/smp.h> 13 #include <linux/errno.h> 14 #include <linux/ptrace.h> 15 #include <linux/user.h> 16 #include <linux/security.h> 17 #include <linux/audit.h> 18 #include <linux/signal.h> 19 #include <linux/elf.h> 20 #include <linux/regset.h> 21 #include <linux/tracehook.h> 22 #include <linux/seccomp.h> 23 #include <linux/compat.h> 24 #include <trace/syscall.h> 25 #include <asm/segment.h> 26 #include <asm/page.h> 27 #include <asm/pgtable.h> 28 #include <asm/pgalloc.h> 29 #include <asm/uaccess.h> 30 #include <asm/unistd.h> 31 #include <asm/switch_to.h> 32 #include "entry.h" 33 34 #ifdef CONFIG_COMPAT 35 #include "compat_ptrace.h" 36 #endif 37 38 #define CREATE_TRACE_POINTS 39 #include <trace/events/syscalls.h> 40 41 void update_cr_regs(struct task_struct *task) 42 { 43 struct pt_regs *regs = task_pt_regs(task); 44 struct thread_struct *thread = &task->thread; 45 struct per_regs old, new; 46 47 /* Take care of the enable/disable of transactional execution. */ 48 if (MACHINE_HAS_TE) { 49 unsigned long cr, cr_new; 50 51 __ctl_store(cr, 0, 0); 52 /* Set or clear transaction execution TXC bit 8. */ 53 cr_new = cr | (1UL << 55); 54 if (task->thread.per_flags & PER_FLAG_NO_TE) 55 cr_new &= ~(1UL << 55); 56 if (cr_new != cr) 57 __ctl_load(cr_new, 0, 0); 58 /* Set or clear transaction execution TDC bits 62 and 63. */ 59 __ctl_store(cr, 2, 2); 60 cr_new = cr & ~3UL; 61 if (task->thread.per_flags & PER_FLAG_TE_ABORT_RAND) { 62 if (task->thread.per_flags & PER_FLAG_TE_ABORT_RAND_TEND) 63 cr_new |= 1UL; 64 else 65 cr_new |= 2UL; 66 } 67 if (cr_new != cr) 68 __ctl_load(cr_new, 2, 2); 69 } 70 /* Copy user specified PER registers */ 71 new.control = thread->per_user.control; 72 new.start = thread->per_user.start; 73 new.end = thread->per_user.end; 74 75 /* merge TIF_SINGLE_STEP into user specified PER registers. */ 76 if (test_tsk_thread_flag(task, TIF_SINGLE_STEP) || 77 test_tsk_thread_flag(task, TIF_UPROBE_SINGLESTEP)) { 78 if (test_tsk_thread_flag(task, TIF_BLOCK_STEP)) 79 new.control |= PER_EVENT_BRANCH; 80 else 81 new.control |= PER_EVENT_IFETCH; 82 new.control |= PER_CONTROL_SUSPENSION; 83 new.control |= PER_EVENT_TRANSACTION_END; 84 if (test_tsk_thread_flag(task, TIF_UPROBE_SINGLESTEP)) 85 new.control |= PER_EVENT_IFETCH; 86 new.start = 0; 87 new.end = -1UL; 88 } 89 90 /* Take care of the PER enablement bit in the PSW. */ 91 if (!(new.control & PER_EVENT_MASK)) { 92 regs->psw.mask &= ~PSW_MASK_PER; 93 return; 94 } 95 regs->psw.mask |= PSW_MASK_PER; 96 __ctl_store(old, 9, 11); 97 if (memcmp(&new, &old, sizeof(struct per_regs)) != 0) 98 __ctl_load(new, 9, 11); 99 } 100 101 void user_enable_single_step(struct task_struct *task) 102 { 103 clear_tsk_thread_flag(task, TIF_BLOCK_STEP); 104 set_tsk_thread_flag(task, TIF_SINGLE_STEP); 105 } 106 107 void user_disable_single_step(struct task_struct *task) 108 { 109 clear_tsk_thread_flag(task, TIF_BLOCK_STEP); 110 clear_tsk_thread_flag(task, TIF_SINGLE_STEP); 111 } 112 113 void user_enable_block_step(struct task_struct *task) 114 { 115 set_tsk_thread_flag(task, TIF_SINGLE_STEP); 116 set_tsk_thread_flag(task, TIF_BLOCK_STEP); 117 } 118 119 /* 120 * Called by kernel/ptrace.c when detaching.. 121 * 122 * Clear all debugging related fields. 123 */ 124 void ptrace_disable(struct task_struct *task) 125 { 126 memset(&task->thread.per_user, 0, sizeof(task->thread.per_user)); 127 memset(&task->thread.per_event, 0, sizeof(task->thread.per_event)); 128 clear_tsk_thread_flag(task, TIF_SINGLE_STEP); 129 clear_pt_regs_flag(task_pt_regs(task), PIF_PER_TRAP); 130 task->thread.per_flags = 0; 131 } 132 133 #define __ADDR_MASK 7 134 135 static inline unsigned long __peek_user_per(struct task_struct *child, 136 addr_t addr) 137 { 138 struct per_struct_kernel *dummy = NULL; 139 140 if (addr == (addr_t) &dummy->cr9) 141 /* Control bits of the active per set. */ 142 return test_thread_flag(TIF_SINGLE_STEP) ? 143 PER_EVENT_IFETCH : child->thread.per_user.control; 144 else if (addr == (addr_t) &dummy->cr10) 145 /* Start address of the active per set. */ 146 return test_thread_flag(TIF_SINGLE_STEP) ? 147 0 : child->thread.per_user.start; 148 else if (addr == (addr_t) &dummy->cr11) 149 /* End address of the active per set. */ 150 return test_thread_flag(TIF_SINGLE_STEP) ? 151 -1UL : child->thread.per_user.end; 152 else if (addr == (addr_t) &dummy->bits) 153 /* Single-step bit. */ 154 return test_thread_flag(TIF_SINGLE_STEP) ? 155 (1UL << (BITS_PER_LONG - 1)) : 0; 156 else if (addr == (addr_t) &dummy->starting_addr) 157 /* Start address of the user specified per set. */ 158 return child->thread.per_user.start; 159 else if (addr == (addr_t) &dummy->ending_addr) 160 /* End address of the user specified per set. */ 161 return child->thread.per_user.end; 162 else if (addr == (addr_t) &dummy->perc_atmid) 163 /* PER code, ATMID and AI of the last PER trap */ 164 return (unsigned long) 165 child->thread.per_event.cause << (BITS_PER_LONG - 16); 166 else if (addr == (addr_t) &dummy->address) 167 /* Address of the last PER trap */ 168 return child->thread.per_event.address; 169 else if (addr == (addr_t) &dummy->access_id) 170 /* Access id of the last PER trap */ 171 return (unsigned long) 172 child->thread.per_event.paid << (BITS_PER_LONG - 8); 173 return 0; 174 } 175 176 /* 177 * Read the word at offset addr from the user area of a process. The 178 * trouble here is that the information is littered over different 179 * locations. The process registers are found on the kernel stack, 180 * the floating point stuff and the trace settings are stored in 181 * the task structure. In addition the different structures in 182 * struct user contain pad bytes that should be read as zeroes. 183 * Lovely... 184 */ 185 static unsigned long __peek_user(struct task_struct *child, addr_t addr) 186 { 187 struct user *dummy = NULL; 188 addr_t offset, tmp; 189 190 if (addr < (addr_t) &dummy->regs.acrs) { 191 /* 192 * psw and gprs are stored on the stack 193 */ 194 tmp = *(addr_t *)((addr_t) &task_pt_regs(child)->psw + addr); 195 if (addr == (addr_t) &dummy->regs.psw.mask) { 196 /* Return a clean psw mask. */ 197 tmp &= PSW_MASK_USER | PSW_MASK_RI; 198 tmp |= PSW_USER_BITS; 199 } 200 201 } else if (addr < (addr_t) &dummy->regs.orig_gpr2) { 202 /* 203 * access registers are stored in the thread structure 204 */ 205 offset = addr - (addr_t) &dummy->regs.acrs; 206 /* 207 * Very special case: old & broken 64 bit gdb reading 208 * from acrs[15]. Result is a 64 bit value. Read the 209 * 32 bit acrs[15] value and shift it by 32. Sick... 210 */ 211 if (addr == (addr_t) &dummy->regs.acrs[15]) 212 tmp = ((unsigned long) child->thread.acrs[15]) << 32; 213 else 214 tmp = *(addr_t *)((addr_t) &child->thread.acrs + offset); 215 216 } else if (addr == (addr_t) &dummy->regs.orig_gpr2) { 217 /* 218 * orig_gpr2 is stored on the kernel stack 219 */ 220 tmp = (addr_t) task_pt_regs(child)->orig_gpr2; 221 222 } else if (addr < (addr_t) &dummy->regs.fp_regs) { 223 /* 224 * prevent reads of padding hole between 225 * orig_gpr2 and fp_regs on s390. 226 */ 227 tmp = 0; 228 229 } else if (addr == (addr_t) &dummy->regs.fp_regs.fpc) { 230 /* 231 * floating point control reg. is in the thread structure 232 */ 233 tmp = child->thread.fpu.fpc; 234 tmp <<= BITS_PER_LONG - 32; 235 236 } else if (addr < (addr_t) (&dummy->regs.fp_regs + 1)) { 237 /* 238 * floating point regs. are either in child->thread.fpu 239 * or the child->thread.fpu.vxrs array 240 */ 241 offset = addr - (addr_t) &dummy->regs.fp_regs.fprs; 242 if (MACHINE_HAS_VX) 243 tmp = *(addr_t *) 244 ((addr_t) child->thread.fpu.vxrs + 2*offset); 245 else 246 tmp = *(addr_t *) 247 ((addr_t) child->thread.fpu.fprs + offset); 248 249 } else if (addr < (addr_t) (&dummy->regs.per_info + 1)) { 250 /* 251 * Handle access to the per_info structure. 252 */ 253 addr -= (addr_t) &dummy->regs.per_info; 254 tmp = __peek_user_per(child, addr); 255 256 } else 257 tmp = 0; 258 259 return tmp; 260 } 261 262 static int 263 peek_user(struct task_struct *child, addr_t addr, addr_t data) 264 { 265 addr_t tmp, mask; 266 267 /* 268 * Stupid gdb peeks/pokes the access registers in 64 bit with 269 * an alignment of 4. Programmers from hell... 270 */ 271 mask = __ADDR_MASK; 272 if (addr >= (addr_t) &((struct user *) NULL)->regs.acrs && 273 addr < (addr_t) &((struct user *) NULL)->regs.orig_gpr2) 274 mask = 3; 275 if ((addr & mask) || addr > sizeof(struct user) - __ADDR_MASK) 276 return -EIO; 277 278 tmp = __peek_user(child, addr); 279 return put_user(tmp, (addr_t __user *) data); 280 } 281 282 static inline void __poke_user_per(struct task_struct *child, 283 addr_t addr, addr_t data) 284 { 285 struct per_struct_kernel *dummy = NULL; 286 287 /* 288 * There are only three fields in the per_info struct that the 289 * debugger user can write to. 290 * 1) cr9: the debugger wants to set a new PER event mask 291 * 2) starting_addr: the debugger wants to set a new starting 292 * address to use with the PER event mask. 293 * 3) ending_addr: the debugger wants to set a new ending 294 * address to use with the PER event mask. 295 * The user specified PER event mask and the start and end 296 * addresses are used only if single stepping is not in effect. 297 * Writes to any other field in per_info are ignored. 298 */ 299 if (addr == (addr_t) &dummy->cr9) 300 /* PER event mask of the user specified per set. */ 301 child->thread.per_user.control = 302 data & (PER_EVENT_MASK | PER_CONTROL_MASK); 303 else if (addr == (addr_t) &dummy->starting_addr) 304 /* Starting address of the user specified per set. */ 305 child->thread.per_user.start = data; 306 else if (addr == (addr_t) &dummy->ending_addr) 307 /* Ending address of the user specified per set. */ 308 child->thread.per_user.end = data; 309 } 310 311 /* 312 * Write a word to the user area of a process at location addr. This 313 * operation does have an additional problem compared to peek_user. 314 * Stores to the program status word and on the floating point 315 * control register needs to get checked for validity. 316 */ 317 static int __poke_user(struct task_struct *child, addr_t addr, addr_t data) 318 { 319 struct user *dummy = NULL; 320 addr_t offset; 321 322 if (addr < (addr_t) &dummy->regs.acrs) { 323 /* 324 * psw and gprs are stored on the stack 325 */ 326 if (addr == (addr_t) &dummy->regs.psw.mask) { 327 unsigned long mask = PSW_MASK_USER; 328 329 mask |= is_ri_task(child) ? PSW_MASK_RI : 0; 330 if ((data ^ PSW_USER_BITS) & ~mask) 331 /* Invalid psw mask. */ 332 return -EINVAL; 333 if ((data & PSW_MASK_ASC) == PSW_ASC_HOME) 334 /* Invalid address-space-control bits */ 335 return -EINVAL; 336 if ((data & PSW_MASK_EA) && !(data & PSW_MASK_BA)) 337 /* Invalid addressing mode bits */ 338 return -EINVAL; 339 } 340 *(addr_t *)((addr_t) &task_pt_regs(child)->psw + addr) = data; 341 342 } else if (addr < (addr_t) (&dummy->regs.orig_gpr2)) { 343 /* 344 * access registers are stored in the thread structure 345 */ 346 offset = addr - (addr_t) &dummy->regs.acrs; 347 /* 348 * Very special case: old & broken 64 bit gdb writing 349 * to acrs[15] with a 64 bit value. Ignore the lower 350 * half of the value and write the upper 32 bit to 351 * acrs[15]. Sick... 352 */ 353 if (addr == (addr_t) &dummy->regs.acrs[15]) 354 child->thread.acrs[15] = (unsigned int) (data >> 32); 355 else 356 *(addr_t *)((addr_t) &child->thread.acrs + offset) = data; 357 358 } else if (addr == (addr_t) &dummy->regs.orig_gpr2) { 359 /* 360 * orig_gpr2 is stored on the kernel stack 361 */ 362 task_pt_regs(child)->orig_gpr2 = data; 363 364 } else if (addr < (addr_t) &dummy->regs.fp_regs) { 365 /* 366 * prevent writes of padding hole between 367 * orig_gpr2 and fp_regs on s390. 368 */ 369 return 0; 370 371 } else if (addr == (addr_t) &dummy->regs.fp_regs.fpc) { 372 /* 373 * floating point control reg. is in the thread structure 374 */ 375 if ((unsigned int) data != 0 || 376 test_fp_ctl(data >> (BITS_PER_LONG - 32))) 377 return -EINVAL; 378 child->thread.fpu.fpc = data >> (BITS_PER_LONG - 32); 379 380 } else if (addr < (addr_t) (&dummy->regs.fp_regs + 1)) { 381 /* 382 * floating point regs. are either in child->thread.fpu 383 * or the child->thread.fpu.vxrs array 384 */ 385 offset = addr - (addr_t) &dummy->regs.fp_regs.fprs; 386 if (MACHINE_HAS_VX) 387 *(addr_t *)((addr_t) 388 child->thread.fpu.vxrs + 2*offset) = data; 389 else 390 *(addr_t *)((addr_t) 391 child->thread.fpu.fprs + offset) = data; 392 393 } else if (addr < (addr_t) (&dummy->regs.per_info + 1)) { 394 /* 395 * Handle access to the per_info structure. 396 */ 397 addr -= (addr_t) &dummy->regs.per_info; 398 __poke_user_per(child, addr, data); 399 400 } 401 402 return 0; 403 } 404 405 static int poke_user(struct task_struct *child, addr_t addr, addr_t data) 406 { 407 addr_t mask; 408 409 /* 410 * Stupid gdb peeks/pokes the access registers in 64 bit with 411 * an alignment of 4. Programmers from hell indeed... 412 */ 413 mask = __ADDR_MASK; 414 if (addr >= (addr_t) &((struct user *) NULL)->regs.acrs && 415 addr < (addr_t) &((struct user *) NULL)->regs.orig_gpr2) 416 mask = 3; 417 if ((addr & mask) || addr > sizeof(struct user) - __ADDR_MASK) 418 return -EIO; 419 420 return __poke_user(child, addr, data); 421 } 422 423 long arch_ptrace(struct task_struct *child, long request, 424 unsigned long addr, unsigned long data) 425 { 426 ptrace_area parea; 427 int copied, ret; 428 429 switch (request) { 430 case PTRACE_PEEKUSR: 431 /* read the word at location addr in the USER area. */ 432 return peek_user(child, addr, data); 433 434 case PTRACE_POKEUSR: 435 /* write the word at location addr in the USER area */ 436 return poke_user(child, addr, data); 437 438 case PTRACE_PEEKUSR_AREA: 439 case PTRACE_POKEUSR_AREA: 440 if (copy_from_user(&parea, (void __force __user *) addr, 441 sizeof(parea))) 442 return -EFAULT; 443 addr = parea.kernel_addr; 444 data = parea.process_addr; 445 copied = 0; 446 while (copied < parea.len) { 447 if (request == PTRACE_PEEKUSR_AREA) 448 ret = peek_user(child, addr, data); 449 else { 450 addr_t utmp; 451 if (get_user(utmp, 452 (addr_t __force __user *) data)) 453 return -EFAULT; 454 ret = poke_user(child, addr, utmp); 455 } 456 if (ret) 457 return ret; 458 addr += sizeof(unsigned long); 459 data += sizeof(unsigned long); 460 copied += sizeof(unsigned long); 461 } 462 return 0; 463 case PTRACE_GET_LAST_BREAK: 464 put_user(task_thread_info(child)->last_break, 465 (unsigned long __user *) data); 466 return 0; 467 case PTRACE_ENABLE_TE: 468 if (!MACHINE_HAS_TE) 469 return -EIO; 470 child->thread.per_flags &= ~PER_FLAG_NO_TE; 471 return 0; 472 case PTRACE_DISABLE_TE: 473 if (!MACHINE_HAS_TE) 474 return -EIO; 475 child->thread.per_flags |= PER_FLAG_NO_TE; 476 child->thread.per_flags &= ~PER_FLAG_TE_ABORT_RAND; 477 return 0; 478 case PTRACE_TE_ABORT_RAND: 479 if (!MACHINE_HAS_TE || (child->thread.per_flags & PER_FLAG_NO_TE)) 480 return -EIO; 481 switch (data) { 482 case 0UL: 483 child->thread.per_flags &= ~PER_FLAG_TE_ABORT_RAND; 484 break; 485 case 1UL: 486 child->thread.per_flags |= PER_FLAG_TE_ABORT_RAND; 487 child->thread.per_flags |= PER_FLAG_TE_ABORT_RAND_TEND; 488 break; 489 case 2UL: 490 child->thread.per_flags |= PER_FLAG_TE_ABORT_RAND; 491 child->thread.per_flags &= ~PER_FLAG_TE_ABORT_RAND_TEND; 492 break; 493 default: 494 return -EINVAL; 495 } 496 return 0; 497 default: 498 return ptrace_request(child, request, addr, data); 499 } 500 } 501 502 #ifdef CONFIG_COMPAT 503 /* 504 * Now the fun part starts... a 31 bit program running in the 505 * 31 bit emulation tracing another program. PTRACE_PEEKTEXT, 506 * PTRACE_PEEKDATA, PTRACE_POKETEXT and PTRACE_POKEDATA are easy 507 * to handle, the difference to the 64 bit versions of the requests 508 * is that the access is done in multiples of 4 byte instead of 509 * 8 bytes (sizeof(unsigned long) on 31/64 bit). 510 * The ugly part are PTRACE_PEEKUSR, PTRACE_PEEKUSR_AREA, 511 * PTRACE_POKEUSR and PTRACE_POKEUSR_AREA. If the traced program 512 * is a 31 bit program too, the content of struct user can be 513 * emulated. A 31 bit program peeking into the struct user of 514 * a 64 bit program is a no-no. 515 */ 516 517 /* 518 * Same as peek_user_per but for a 31 bit program. 519 */ 520 static inline __u32 __peek_user_per_compat(struct task_struct *child, 521 addr_t addr) 522 { 523 struct compat_per_struct_kernel *dummy32 = NULL; 524 525 if (addr == (addr_t) &dummy32->cr9) 526 /* Control bits of the active per set. */ 527 return (__u32) test_thread_flag(TIF_SINGLE_STEP) ? 528 PER_EVENT_IFETCH : child->thread.per_user.control; 529 else if (addr == (addr_t) &dummy32->cr10) 530 /* Start address of the active per set. */ 531 return (__u32) test_thread_flag(TIF_SINGLE_STEP) ? 532 0 : child->thread.per_user.start; 533 else if (addr == (addr_t) &dummy32->cr11) 534 /* End address of the active per set. */ 535 return test_thread_flag(TIF_SINGLE_STEP) ? 536 PSW32_ADDR_INSN : child->thread.per_user.end; 537 else if (addr == (addr_t) &dummy32->bits) 538 /* Single-step bit. */ 539 return (__u32) test_thread_flag(TIF_SINGLE_STEP) ? 540 0x80000000 : 0; 541 else if (addr == (addr_t) &dummy32->starting_addr) 542 /* Start address of the user specified per set. */ 543 return (__u32) child->thread.per_user.start; 544 else if (addr == (addr_t) &dummy32->ending_addr) 545 /* End address of the user specified per set. */ 546 return (__u32) child->thread.per_user.end; 547 else if (addr == (addr_t) &dummy32->perc_atmid) 548 /* PER code, ATMID and AI of the last PER trap */ 549 return (__u32) child->thread.per_event.cause << 16; 550 else if (addr == (addr_t) &dummy32->address) 551 /* Address of the last PER trap */ 552 return (__u32) child->thread.per_event.address; 553 else if (addr == (addr_t) &dummy32->access_id) 554 /* Access id of the last PER trap */ 555 return (__u32) child->thread.per_event.paid << 24; 556 return 0; 557 } 558 559 /* 560 * Same as peek_user but for a 31 bit program. 561 */ 562 static u32 __peek_user_compat(struct task_struct *child, addr_t addr) 563 { 564 struct compat_user *dummy32 = NULL; 565 addr_t offset; 566 __u32 tmp; 567 568 if (addr < (addr_t) &dummy32->regs.acrs) { 569 struct pt_regs *regs = task_pt_regs(child); 570 /* 571 * psw and gprs are stored on the stack 572 */ 573 if (addr == (addr_t) &dummy32->regs.psw.mask) { 574 /* Fake a 31 bit psw mask. */ 575 tmp = (__u32)(regs->psw.mask >> 32); 576 tmp &= PSW32_MASK_USER | PSW32_MASK_RI; 577 tmp |= PSW32_USER_BITS; 578 } else if (addr == (addr_t) &dummy32->regs.psw.addr) { 579 /* Fake a 31 bit psw address. */ 580 tmp = (__u32) regs->psw.addr | 581 (__u32)(regs->psw.mask & PSW_MASK_BA); 582 } else { 583 /* gpr 0-15 */ 584 tmp = *(__u32 *)((addr_t) ®s->psw + addr*2 + 4); 585 } 586 } else if (addr < (addr_t) (&dummy32->regs.orig_gpr2)) { 587 /* 588 * access registers are stored in the thread structure 589 */ 590 offset = addr - (addr_t) &dummy32->regs.acrs; 591 tmp = *(__u32*)((addr_t) &child->thread.acrs + offset); 592 593 } else if (addr == (addr_t) (&dummy32->regs.orig_gpr2)) { 594 /* 595 * orig_gpr2 is stored on the kernel stack 596 */ 597 tmp = *(__u32*)((addr_t) &task_pt_regs(child)->orig_gpr2 + 4); 598 599 } else if (addr < (addr_t) &dummy32->regs.fp_regs) { 600 /* 601 * prevent reads of padding hole between 602 * orig_gpr2 and fp_regs on s390. 603 */ 604 tmp = 0; 605 606 } else if (addr == (addr_t) &dummy32->regs.fp_regs.fpc) { 607 /* 608 * floating point control reg. is in the thread structure 609 */ 610 tmp = child->thread.fpu.fpc; 611 612 } else if (addr < (addr_t) (&dummy32->regs.fp_regs + 1)) { 613 /* 614 * floating point regs. are either in child->thread.fpu 615 * or the child->thread.fpu.vxrs array 616 */ 617 offset = addr - (addr_t) &dummy32->regs.fp_regs.fprs; 618 if (MACHINE_HAS_VX) 619 tmp = *(__u32 *) 620 ((addr_t) child->thread.fpu.vxrs + 2*offset); 621 else 622 tmp = *(__u32 *) 623 ((addr_t) child->thread.fpu.fprs + offset); 624 625 } else if (addr < (addr_t) (&dummy32->regs.per_info + 1)) { 626 /* 627 * Handle access to the per_info structure. 628 */ 629 addr -= (addr_t) &dummy32->regs.per_info; 630 tmp = __peek_user_per_compat(child, addr); 631 632 } else 633 tmp = 0; 634 635 return tmp; 636 } 637 638 static int peek_user_compat(struct task_struct *child, 639 addr_t addr, addr_t data) 640 { 641 __u32 tmp; 642 643 if (!is_compat_task() || (addr & 3) || addr > sizeof(struct user) - 3) 644 return -EIO; 645 646 tmp = __peek_user_compat(child, addr); 647 return put_user(tmp, (__u32 __user *) data); 648 } 649 650 /* 651 * Same as poke_user_per but for a 31 bit program. 652 */ 653 static inline void __poke_user_per_compat(struct task_struct *child, 654 addr_t addr, __u32 data) 655 { 656 struct compat_per_struct_kernel *dummy32 = NULL; 657 658 if (addr == (addr_t) &dummy32->cr9) 659 /* PER event mask of the user specified per set. */ 660 child->thread.per_user.control = 661 data & (PER_EVENT_MASK | PER_CONTROL_MASK); 662 else if (addr == (addr_t) &dummy32->starting_addr) 663 /* Starting address of the user specified per set. */ 664 child->thread.per_user.start = data; 665 else if (addr == (addr_t) &dummy32->ending_addr) 666 /* Ending address of the user specified per set. */ 667 child->thread.per_user.end = data; 668 } 669 670 /* 671 * Same as poke_user but for a 31 bit program. 672 */ 673 static int __poke_user_compat(struct task_struct *child, 674 addr_t addr, addr_t data) 675 { 676 struct compat_user *dummy32 = NULL; 677 __u32 tmp = (__u32) data; 678 addr_t offset; 679 680 if (addr < (addr_t) &dummy32->regs.acrs) { 681 struct pt_regs *regs = task_pt_regs(child); 682 /* 683 * psw, gprs, acrs and orig_gpr2 are stored on the stack 684 */ 685 if (addr == (addr_t) &dummy32->regs.psw.mask) { 686 __u32 mask = PSW32_MASK_USER; 687 688 mask |= is_ri_task(child) ? PSW32_MASK_RI : 0; 689 /* Build a 64 bit psw mask from 31 bit mask. */ 690 if ((tmp ^ PSW32_USER_BITS) & ~mask) 691 /* Invalid psw mask. */ 692 return -EINVAL; 693 if ((data & PSW32_MASK_ASC) == PSW32_ASC_HOME) 694 /* Invalid address-space-control bits */ 695 return -EINVAL; 696 regs->psw.mask = (regs->psw.mask & ~PSW_MASK_USER) | 697 (regs->psw.mask & PSW_MASK_BA) | 698 (__u64)(tmp & mask) << 32; 699 } else if (addr == (addr_t) &dummy32->regs.psw.addr) { 700 /* Build a 64 bit psw address from 31 bit address. */ 701 regs->psw.addr = (__u64) tmp & PSW32_ADDR_INSN; 702 /* Transfer 31 bit amode bit to psw mask. */ 703 regs->psw.mask = (regs->psw.mask & ~PSW_MASK_BA) | 704 (__u64)(tmp & PSW32_ADDR_AMODE); 705 } else { 706 /* gpr 0-15 */ 707 *(__u32*)((addr_t) ®s->psw + addr*2 + 4) = tmp; 708 } 709 } else if (addr < (addr_t) (&dummy32->regs.orig_gpr2)) { 710 /* 711 * access registers are stored in the thread structure 712 */ 713 offset = addr - (addr_t) &dummy32->regs.acrs; 714 *(__u32*)((addr_t) &child->thread.acrs + offset) = tmp; 715 716 } else if (addr == (addr_t) (&dummy32->regs.orig_gpr2)) { 717 /* 718 * orig_gpr2 is stored on the kernel stack 719 */ 720 *(__u32*)((addr_t) &task_pt_regs(child)->orig_gpr2 + 4) = tmp; 721 722 } else if (addr < (addr_t) &dummy32->regs.fp_regs) { 723 /* 724 * prevent writess of padding hole between 725 * orig_gpr2 and fp_regs on s390. 726 */ 727 return 0; 728 729 } else if (addr == (addr_t) &dummy32->regs.fp_regs.fpc) { 730 /* 731 * floating point control reg. is in the thread structure 732 */ 733 if (test_fp_ctl(tmp)) 734 return -EINVAL; 735 child->thread.fpu.fpc = data; 736 737 } else if (addr < (addr_t) (&dummy32->regs.fp_regs + 1)) { 738 /* 739 * floating point regs. are either in child->thread.fpu 740 * or the child->thread.fpu.vxrs array 741 */ 742 offset = addr - (addr_t) &dummy32->regs.fp_regs.fprs; 743 if (MACHINE_HAS_VX) 744 *(__u32 *)((addr_t) 745 child->thread.fpu.vxrs + 2*offset) = tmp; 746 else 747 *(__u32 *)((addr_t) 748 child->thread.fpu.fprs + offset) = tmp; 749 750 } else if (addr < (addr_t) (&dummy32->regs.per_info + 1)) { 751 /* 752 * Handle access to the per_info structure. 753 */ 754 addr -= (addr_t) &dummy32->regs.per_info; 755 __poke_user_per_compat(child, addr, data); 756 } 757 758 return 0; 759 } 760 761 static int poke_user_compat(struct task_struct *child, 762 addr_t addr, addr_t data) 763 { 764 if (!is_compat_task() || (addr & 3) || 765 addr > sizeof(struct compat_user) - 3) 766 return -EIO; 767 768 return __poke_user_compat(child, addr, data); 769 } 770 771 long compat_arch_ptrace(struct task_struct *child, compat_long_t request, 772 compat_ulong_t caddr, compat_ulong_t cdata) 773 { 774 unsigned long addr = caddr; 775 unsigned long data = cdata; 776 compat_ptrace_area parea; 777 int copied, ret; 778 779 switch (request) { 780 case PTRACE_PEEKUSR: 781 /* read the word at location addr in the USER area. */ 782 return peek_user_compat(child, addr, data); 783 784 case PTRACE_POKEUSR: 785 /* write the word at location addr in the USER area */ 786 return poke_user_compat(child, addr, data); 787 788 case PTRACE_PEEKUSR_AREA: 789 case PTRACE_POKEUSR_AREA: 790 if (copy_from_user(&parea, (void __force __user *) addr, 791 sizeof(parea))) 792 return -EFAULT; 793 addr = parea.kernel_addr; 794 data = parea.process_addr; 795 copied = 0; 796 while (copied < parea.len) { 797 if (request == PTRACE_PEEKUSR_AREA) 798 ret = peek_user_compat(child, addr, data); 799 else { 800 __u32 utmp; 801 if (get_user(utmp, 802 (__u32 __force __user *) data)) 803 return -EFAULT; 804 ret = poke_user_compat(child, addr, utmp); 805 } 806 if (ret) 807 return ret; 808 addr += sizeof(unsigned int); 809 data += sizeof(unsigned int); 810 copied += sizeof(unsigned int); 811 } 812 return 0; 813 case PTRACE_GET_LAST_BREAK: 814 put_user(task_thread_info(child)->last_break, 815 (unsigned int __user *) data); 816 return 0; 817 } 818 return compat_ptrace_request(child, request, addr, data); 819 } 820 #endif 821 822 asmlinkage long do_syscall_trace_enter(struct pt_regs *regs) 823 { 824 /* 825 * The sysc_tracesys code in entry.S stored the system 826 * call number to gprs[2]. 827 */ 828 if (test_thread_flag(TIF_SYSCALL_TRACE) && 829 (tracehook_report_syscall_entry(regs) || 830 regs->gprs[2] >= NR_syscalls)) { 831 /* 832 * Tracing decided this syscall should not happen or the 833 * debugger stored an invalid system call number. Skip 834 * the system call and the system call restart handling. 835 */ 836 clear_pt_regs_flag(regs, PIF_SYSCALL); 837 return -1; 838 } 839 840 /* Do the secure computing check after ptrace. */ 841 if (secure_computing(NULL)) { 842 /* seccomp failures shouldn't expose any additional code. */ 843 return -1; 844 } 845 846 if (unlikely(test_thread_flag(TIF_SYSCALL_TRACEPOINT))) 847 trace_sys_enter(regs, regs->gprs[2]); 848 849 audit_syscall_entry(regs->gprs[2], regs->orig_gpr2, 850 regs->gprs[3], regs->gprs[4], 851 regs->gprs[5]); 852 853 return regs->gprs[2]; 854 } 855 856 asmlinkage void do_syscall_trace_exit(struct pt_regs *regs) 857 { 858 audit_syscall_exit(regs); 859 860 if (unlikely(test_thread_flag(TIF_SYSCALL_TRACEPOINT))) 861 trace_sys_exit(regs, regs->gprs[2]); 862 863 if (test_thread_flag(TIF_SYSCALL_TRACE)) 864 tracehook_report_syscall_exit(regs, 0); 865 } 866 867 /* 868 * user_regset definitions. 869 */ 870 871 static int s390_regs_get(struct task_struct *target, 872 const struct user_regset *regset, 873 unsigned int pos, unsigned int count, 874 void *kbuf, void __user *ubuf) 875 { 876 if (target == current) 877 save_access_regs(target->thread.acrs); 878 879 if (kbuf) { 880 unsigned long *k = kbuf; 881 while (count > 0) { 882 *k++ = __peek_user(target, pos); 883 count -= sizeof(*k); 884 pos += sizeof(*k); 885 } 886 } else { 887 unsigned long __user *u = ubuf; 888 while (count > 0) { 889 if (__put_user(__peek_user(target, pos), u++)) 890 return -EFAULT; 891 count -= sizeof(*u); 892 pos += sizeof(*u); 893 } 894 } 895 return 0; 896 } 897 898 static int s390_regs_set(struct task_struct *target, 899 const struct user_regset *regset, 900 unsigned int pos, unsigned int count, 901 const void *kbuf, const void __user *ubuf) 902 { 903 int rc = 0; 904 905 if (target == current) 906 save_access_regs(target->thread.acrs); 907 908 if (kbuf) { 909 const unsigned long *k = kbuf; 910 while (count > 0 && !rc) { 911 rc = __poke_user(target, pos, *k++); 912 count -= sizeof(*k); 913 pos += sizeof(*k); 914 } 915 } else { 916 const unsigned long __user *u = ubuf; 917 while (count > 0 && !rc) { 918 unsigned long word; 919 rc = __get_user(word, u++); 920 if (rc) 921 break; 922 rc = __poke_user(target, pos, word); 923 count -= sizeof(*u); 924 pos += sizeof(*u); 925 } 926 } 927 928 if (rc == 0 && target == current) 929 restore_access_regs(target->thread.acrs); 930 931 return rc; 932 } 933 934 static int s390_fpregs_get(struct task_struct *target, 935 const struct user_regset *regset, unsigned int pos, 936 unsigned int count, void *kbuf, void __user *ubuf) 937 { 938 _s390_fp_regs fp_regs; 939 940 if (target == current) 941 save_fpu_regs(); 942 943 fp_regs.fpc = target->thread.fpu.fpc; 944 fpregs_store(&fp_regs, &target->thread.fpu); 945 946 return user_regset_copyout(&pos, &count, &kbuf, &ubuf, 947 &fp_regs, 0, -1); 948 } 949 950 static int s390_fpregs_set(struct task_struct *target, 951 const struct user_regset *regset, unsigned int pos, 952 unsigned int count, const void *kbuf, 953 const void __user *ubuf) 954 { 955 int rc = 0; 956 freg_t fprs[__NUM_FPRS]; 957 958 if (target == current) 959 save_fpu_regs(); 960 961 /* If setting FPC, must validate it first. */ 962 if (count > 0 && pos < offsetof(s390_fp_regs, fprs)) { 963 u32 ufpc[2] = { target->thread.fpu.fpc, 0 }; 964 rc = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &ufpc, 965 0, offsetof(s390_fp_regs, fprs)); 966 if (rc) 967 return rc; 968 if (ufpc[1] != 0 || test_fp_ctl(ufpc[0])) 969 return -EINVAL; 970 target->thread.fpu.fpc = ufpc[0]; 971 } 972 973 if (rc == 0 && count > 0) 974 rc = user_regset_copyin(&pos, &count, &kbuf, &ubuf, 975 fprs, offsetof(s390_fp_regs, fprs), -1); 976 if (rc) 977 return rc; 978 979 if (MACHINE_HAS_VX) 980 convert_fp_to_vx(target->thread.fpu.vxrs, fprs); 981 else 982 memcpy(target->thread.fpu.fprs, &fprs, sizeof(fprs)); 983 984 return rc; 985 } 986 987 static int s390_last_break_get(struct task_struct *target, 988 const struct user_regset *regset, 989 unsigned int pos, unsigned int count, 990 void *kbuf, void __user *ubuf) 991 { 992 if (count > 0) { 993 if (kbuf) { 994 unsigned long *k = kbuf; 995 *k = task_thread_info(target)->last_break; 996 } else { 997 unsigned long __user *u = ubuf; 998 if (__put_user(task_thread_info(target)->last_break, u)) 999 return -EFAULT; 1000 } 1001 } 1002 return 0; 1003 } 1004 1005 static int s390_last_break_set(struct task_struct *target, 1006 const struct user_regset *regset, 1007 unsigned int pos, unsigned int count, 1008 const void *kbuf, const void __user *ubuf) 1009 { 1010 return 0; 1011 } 1012 1013 static int s390_tdb_get(struct task_struct *target, 1014 const struct user_regset *regset, 1015 unsigned int pos, unsigned int count, 1016 void *kbuf, void __user *ubuf) 1017 { 1018 struct pt_regs *regs = task_pt_regs(target); 1019 unsigned char *data; 1020 1021 if (!(regs->int_code & 0x200)) 1022 return -ENODATA; 1023 data = target->thread.trap_tdb; 1024 return user_regset_copyout(&pos, &count, &kbuf, &ubuf, data, 0, 256); 1025 } 1026 1027 static int s390_tdb_set(struct task_struct *target, 1028 const struct user_regset *regset, 1029 unsigned int pos, unsigned int count, 1030 const void *kbuf, const void __user *ubuf) 1031 { 1032 return 0; 1033 } 1034 1035 static int s390_vxrs_low_get(struct task_struct *target, 1036 const struct user_regset *regset, 1037 unsigned int pos, unsigned int count, 1038 void *kbuf, void __user *ubuf) 1039 { 1040 __u64 vxrs[__NUM_VXRS_LOW]; 1041 int i; 1042 1043 if (!MACHINE_HAS_VX) 1044 return -ENODEV; 1045 if (target == current) 1046 save_fpu_regs(); 1047 for (i = 0; i < __NUM_VXRS_LOW; i++) 1048 vxrs[i] = *((__u64 *)(target->thread.fpu.vxrs + i) + 1); 1049 return user_regset_copyout(&pos, &count, &kbuf, &ubuf, vxrs, 0, -1); 1050 } 1051 1052 static int s390_vxrs_low_set(struct task_struct *target, 1053 const struct user_regset *regset, 1054 unsigned int pos, unsigned int count, 1055 const void *kbuf, const void __user *ubuf) 1056 { 1057 __u64 vxrs[__NUM_VXRS_LOW]; 1058 int i, rc; 1059 1060 if (!MACHINE_HAS_VX) 1061 return -ENODEV; 1062 if (target == current) 1063 save_fpu_regs(); 1064 1065 rc = user_regset_copyin(&pos, &count, &kbuf, &ubuf, vxrs, 0, -1); 1066 if (rc == 0) 1067 for (i = 0; i < __NUM_VXRS_LOW; i++) 1068 *((__u64 *)(target->thread.fpu.vxrs + i) + 1) = vxrs[i]; 1069 1070 return rc; 1071 } 1072 1073 static int s390_vxrs_high_get(struct task_struct *target, 1074 const struct user_regset *regset, 1075 unsigned int pos, unsigned int count, 1076 void *kbuf, void __user *ubuf) 1077 { 1078 __vector128 vxrs[__NUM_VXRS_HIGH]; 1079 1080 if (!MACHINE_HAS_VX) 1081 return -ENODEV; 1082 if (target == current) 1083 save_fpu_regs(); 1084 memcpy(vxrs, target->thread.fpu.vxrs + __NUM_VXRS_LOW, sizeof(vxrs)); 1085 1086 return user_regset_copyout(&pos, &count, &kbuf, &ubuf, vxrs, 0, -1); 1087 } 1088 1089 static int s390_vxrs_high_set(struct task_struct *target, 1090 const struct user_regset *regset, 1091 unsigned int pos, unsigned int count, 1092 const void *kbuf, const void __user *ubuf) 1093 { 1094 int rc; 1095 1096 if (!MACHINE_HAS_VX) 1097 return -ENODEV; 1098 if (target == current) 1099 save_fpu_regs(); 1100 1101 rc = user_regset_copyin(&pos, &count, &kbuf, &ubuf, 1102 target->thread.fpu.vxrs + __NUM_VXRS_LOW, 0, -1); 1103 return rc; 1104 } 1105 1106 static int s390_system_call_get(struct task_struct *target, 1107 const struct user_regset *regset, 1108 unsigned int pos, unsigned int count, 1109 void *kbuf, void __user *ubuf) 1110 { 1111 unsigned int *data = &task_thread_info(target)->system_call; 1112 return user_regset_copyout(&pos, &count, &kbuf, &ubuf, 1113 data, 0, sizeof(unsigned int)); 1114 } 1115 1116 static int s390_system_call_set(struct task_struct *target, 1117 const struct user_regset *regset, 1118 unsigned int pos, unsigned int count, 1119 const void *kbuf, const void __user *ubuf) 1120 { 1121 unsigned int *data = &task_thread_info(target)->system_call; 1122 return user_regset_copyin(&pos, &count, &kbuf, &ubuf, 1123 data, 0, sizeof(unsigned int)); 1124 } 1125 1126 static const struct user_regset s390_regsets[] = { 1127 { 1128 .core_note_type = NT_PRSTATUS, 1129 .n = sizeof(s390_regs) / sizeof(long), 1130 .size = sizeof(long), 1131 .align = sizeof(long), 1132 .get = s390_regs_get, 1133 .set = s390_regs_set, 1134 }, 1135 { 1136 .core_note_type = NT_PRFPREG, 1137 .n = sizeof(s390_fp_regs) / sizeof(long), 1138 .size = sizeof(long), 1139 .align = sizeof(long), 1140 .get = s390_fpregs_get, 1141 .set = s390_fpregs_set, 1142 }, 1143 { 1144 .core_note_type = NT_S390_SYSTEM_CALL, 1145 .n = 1, 1146 .size = sizeof(unsigned int), 1147 .align = sizeof(unsigned int), 1148 .get = s390_system_call_get, 1149 .set = s390_system_call_set, 1150 }, 1151 { 1152 .core_note_type = NT_S390_LAST_BREAK, 1153 .n = 1, 1154 .size = sizeof(long), 1155 .align = sizeof(long), 1156 .get = s390_last_break_get, 1157 .set = s390_last_break_set, 1158 }, 1159 { 1160 .core_note_type = NT_S390_TDB, 1161 .n = 1, 1162 .size = 256, 1163 .align = 1, 1164 .get = s390_tdb_get, 1165 .set = s390_tdb_set, 1166 }, 1167 { 1168 .core_note_type = NT_S390_VXRS_LOW, 1169 .n = __NUM_VXRS_LOW, 1170 .size = sizeof(__u64), 1171 .align = sizeof(__u64), 1172 .get = s390_vxrs_low_get, 1173 .set = s390_vxrs_low_set, 1174 }, 1175 { 1176 .core_note_type = NT_S390_VXRS_HIGH, 1177 .n = __NUM_VXRS_HIGH, 1178 .size = sizeof(__vector128), 1179 .align = sizeof(__vector128), 1180 .get = s390_vxrs_high_get, 1181 .set = s390_vxrs_high_set, 1182 }, 1183 }; 1184 1185 static const struct user_regset_view user_s390_view = { 1186 .name = UTS_MACHINE, 1187 .e_machine = EM_S390, 1188 .regsets = s390_regsets, 1189 .n = ARRAY_SIZE(s390_regsets) 1190 }; 1191 1192 #ifdef CONFIG_COMPAT 1193 static int s390_compat_regs_get(struct task_struct *target, 1194 const struct user_regset *regset, 1195 unsigned int pos, unsigned int count, 1196 void *kbuf, void __user *ubuf) 1197 { 1198 if (target == current) 1199 save_access_regs(target->thread.acrs); 1200 1201 if (kbuf) { 1202 compat_ulong_t *k = kbuf; 1203 while (count > 0) { 1204 *k++ = __peek_user_compat(target, pos); 1205 count -= sizeof(*k); 1206 pos += sizeof(*k); 1207 } 1208 } else { 1209 compat_ulong_t __user *u = ubuf; 1210 while (count > 0) { 1211 if (__put_user(__peek_user_compat(target, pos), u++)) 1212 return -EFAULT; 1213 count -= sizeof(*u); 1214 pos += sizeof(*u); 1215 } 1216 } 1217 return 0; 1218 } 1219 1220 static int s390_compat_regs_set(struct task_struct *target, 1221 const struct user_regset *regset, 1222 unsigned int pos, unsigned int count, 1223 const void *kbuf, const void __user *ubuf) 1224 { 1225 int rc = 0; 1226 1227 if (target == current) 1228 save_access_regs(target->thread.acrs); 1229 1230 if (kbuf) { 1231 const compat_ulong_t *k = kbuf; 1232 while (count > 0 && !rc) { 1233 rc = __poke_user_compat(target, pos, *k++); 1234 count -= sizeof(*k); 1235 pos += sizeof(*k); 1236 } 1237 } else { 1238 const compat_ulong_t __user *u = ubuf; 1239 while (count > 0 && !rc) { 1240 compat_ulong_t word; 1241 rc = __get_user(word, u++); 1242 if (rc) 1243 break; 1244 rc = __poke_user_compat(target, pos, word); 1245 count -= sizeof(*u); 1246 pos += sizeof(*u); 1247 } 1248 } 1249 1250 if (rc == 0 && target == current) 1251 restore_access_regs(target->thread.acrs); 1252 1253 return rc; 1254 } 1255 1256 static int s390_compat_regs_high_get(struct task_struct *target, 1257 const struct user_regset *regset, 1258 unsigned int pos, unsigned int count, 1259 void *kbuf, void __user *ubuf) 1260 { 1261 compat_ulong_t *gprs_high; 1262 1263 gprs_high = (compat_ulong_t *) 1264 &task_pt_regs(target)->gprs[pos / sizeof(compat_ulong_t)]; 1265 if (kbuf) { 1266 compat_ulong_t *k = kbuf; 1267 while (count > 0) { 1268 *k++ = *gprs_high; 1269 gprs_high += 2; 1270 count -= sizeof(*k); 1271 } 1272 } else { 1273 compat_ulong_t __user *u = ubuf; 1274 while (count > 0) { 1275 if (__put_user(*gprs_high, u++)) 1276 return -EFAULT; 1277 gprs_high += 2; 1278 count -= sizeof(*u); 1279 } 1280 } 1281 return 0; 1282 } 1283 1284 static int s390_compat_regs_high_set(struct task_struct *target, 1285 const struct user_regset *regset, 1286 unsigned int pos, unsigned int count, 1287 const void *kbuf, const void __user *ubuf) 1288 { 1289 compat_ulong_t *gprs_high; 1290 int rc = 0; 1291 1292 gprs_high = (compat_ulong_t *) 1293 &task_pt_regs(target)->gprs[pos / sizeof(compat_ulong_t)]; 1294 if (kbuf) { 1295 const compat_ulong_t *k = kbuf; 1296 while (count > 0) { 1297 *gprs_high = *k++; 1298 *gprs_high += 2; 1299 count -= sizeof(*k); 1300 } 1301 } else { 1302 const compat_ulong_t __user *u = ubuf; 1303 while (count > 0 && !rc) { 1304 unsigned long word; 1305 rc = __get_user(word, u++); 1306 if (rc) 1307 break; 1308 *gprs_high = word; 1309 *gprs_high += 2; 1310 count -= sizeof(*u); 1311 } 1312 } 1313 1314 return rc; 1315 } 1316 1317 static int s390_compat_last_break_get(struct task_struct *target, 1318 const struct user_regset *regset, 1319 unsigned int pos, unsigned int count, 1320 void *kbuf, void __user *ubuf) 1321 { 1322 compat_ulong_t last_break; 1323 1324 if (count > 0) { 1325 last_break = task_thread_info(target)->last_break; 1326 if (kbuf) { 1327 unsigned long *k = kbuf; 1328 *k = last_break; 1329 } else { 1330 unsigned long __user *u = ubuf; 1331 if (__put_user(last_break, u)) 1332 return -EFAULT; 1333 } 1334 } 1335 return 0; 1336 } 1337 1338 static int s390_compat_last_break_set(struct task_struct *target, 1339 const struct user_regset *regset, 1340 unsigned int pos, unsigned int count, 1341 const void *kbuf, const void __user *ubuf) 1342 { 1343 return 0; 1344 } 1345 1346 static const struct user_regset s390_compat_regsets[] = { 1347 { 1348 .core_note_type = NT_PRSTATUS, 1349 .n = sizeof(s390_compat_regs) / sizeof(compat_long_t), 1350 .size = sizeof(compat_long_t), 1351 .align = sizeof(compat_long_t), 1352 .get = s390_compat_regs_get, 1353 .set = s390_compat_regs_set, 1354 }, 1355 { 1356 .core_note_type = NT_PRFPREG, 1357 .n = sizeof(s390_fp_regs) / sizeof(compat_long_t), 1358 .size = sizeof(compat_long_t), 1359 .align = sizeof(compat_long_t), 1360 .get = s390_fpregs_get, 1361 .set = s390_fpregs_set, 1362 }, 1363 { 1364 .core_note_type = NT_S390_SYSTEM_CALL, 1365 .n = 1, 1366 .size = sizeof(compat_uint_t), 1367 .align = sizeof(compat_uint_t), 1368 .get = s390_system_call_get, 1369 .set = s390_system_call_set, 1370 }, 1371 { 1372 .core_note_type = NT_S390_LAST_BREAK, 1373 .n = 1, 1374 .size = sizeof(long), 1375 .align = sizeof(long), 1376 .get = s390_compat_last_break_get, 1377 .set = s390_compat_last_break_set, 1378 }, 1379 { 1380 .core_note_type = NT_S390_TDB, 1381 .n = 1, 1382 .size = 256, 1383 .align = 1, 1384 .get = s390_tdb_get, 1385 .set = s390_tdb_set, 1386 }, 1387 { 1388 .core_note_type = NT_S390_VXRS_LOW, 1389 .n = __NUM_VXRS_LOW, 1390 .size = sizeof(__u64), 1391 .align = sizeof(__u64), 1392 .get = s390_vxrs_low_get, 1393 .set = s390_vxrs_low_set, 1394 }, 1395 { 1396 .core_note_type = NT_S390_VXRS_HIGH, 1397 .n = __NUM_VXRS_HIGH, 1398 .size = sizeof(__vector128), 1399 .align = sizeof(__vector128), 1400 .get = s390_vxrs_high_get, 1401 .set = s390_vxrs_high_set, 1402 }, 1403 { 1404 .core_note_type = NT_S390_HIGH_GPRS, 1405 .n = sizeof(s390_compat_regs_high) / sizeof(compat_long_t), 1406 .size = sizeof(compat_long_t), 1407 .align = sizeof(compat_long_t), 1408 .get = s390_compat_regs_high_get, 1409 .set = s390_compat_regs_high_set, 1410 }, 1411 }; 1412 1413 static const struct user_regset_view user_s390_compat_view = { 1414 .name = "s390", 1415 .e_machine = EM_S390, 1416 .regsets = s390_compat_regsets, 1417 .n = ARRAY_SIZE(s390_compat_regsets) 1418 }; 1419 #endif 1420 1421 const struct user_regset_view *task_user_regset_view(struct task_struct *task) 1422 { 1423 #ifdef CONFIG_COMPAT 1424 if (test_tsk_thread_flag(task, TIF_31BIT)) 1425 return &user_s390_compat_view; 1426 #endif 1427 return &user_s390_view; 1428 } 1429 1430 static const char *gpr_names[NUM_GPRS] = { 1431 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", 1432 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", 1433 }; 1434 1435 unsigned long regs_get_register(struct pt_regs *regs, unsigned int offset) 1436 { 1437 if (offset >= NUM_GPRS) 1438 return 0; 1439 return regs->gprs[offset]; 1440 } 1441 1442 int regs_query_register_offset(const char *name) 1443 { 1444 unsigned long offset; 1445 1446 if (!name || *name != 'r') 1447 return -EINVAL; 1448 if (kstrtoul(name + 1, 10, &offset)) 1449 return -EINVAL; 1450 if (offset >= NUM_GPRS) 1451 return -EINVAL; 1452 return offset; 1453 } 1454 1455 const char *regs_query_register_name(unsigned int offset) 1456 { 1457 if (offset >= NUM_GPRS) 1458 return NULL; 1459 return gpr_names[offset]; 1460 } 1461 1462 static int regs_within_kernel_stack(struct pt_regs *regs, unsigned long addr) 1463 { 1464 unsigned long ksp = kernel_stack_pointer(regs); 1465 1466 return (addr & ~(THREAD_SIZE - 1)) == (ksp & ~(THREAD_SIZE - 1)); 1467 } 1468 1469 /** 1470 * regs_get_kernel_stack_nth() - get Nth entry of the stack 1471 * @regs:pt_regs which contains kernel stack pointer. 1472 * @n:stack entry number. 1473 * 1474 * regs_get_kernel_stack_nth() returns @n th entry of the kernel stack which 1475 * is specifined by @regs. If the @n th entry is NOT in the kernel stack, 1476 * this returns 0. 1477 */ 1478 unsigned long regs_get_kernel_stack_nth(struct pt_regs *regs, unsigned int n) 1479 { 1480 unsigned long addr; 1481 1482 addr = kernel_stack_pointer(regs) + n * sizeof(long); 1483 if (!regs_within_kernel_stack(regs, addr)) 1484 return 0; 1485 return *(unsigned long *)addr; 1486 } 1487