xref: /openbmc/linux/arch/s390/kernel/process.c (revision baa7eb025ab14f3cba2e35c0a8648f9c9f01d24f)
1 /*
2  * This file handles the architecture dependent parts of process handling.
3  *
4  *    Copyright IBM Corp. 1999,2009
5  *    Author(s): Martin Schwidefsky <schwidefsky@de.ibm.com>,
6  *		 Hartmut Penner <hp@de.ibm.com>,
7  *		 Denis Joseph Barrow,
8  */
9 
10 #include <linux/compiler.h>
11 #include <linux/cpu.h>
12 #include <linux/errno.h>
13 #include <linux/sched.h>
14 #include <linux/kernel.h>
15 #include <linux/mm.h>
16 #include <linux/fs.h>
17 #include <linux/smp.h>
18 #include <linux/stddef.h>
19 #include <linux/slab.h>
20 #include <linux/unistd.h>
21 #include <linux/ptrace.h>
22 #include <linux/vmalloc.h>
23 #include <linux/user.h>
24 #include <linux/interrupt.h>
25 #include <linux/delay.h>
26 #include <linux/reboot.h>
27 #include <linux/init.h>
28 #include <linux/module.h>
29 #include <linux/notifier.h>
30 #include <linux/tick.h>
31 #include <linux/elfcore.h>
32 #include <linux/kernel_stat.h>
33 #include <linux/syscalls.h>
34 #include <linux/compat.h>
35 #include <asm/compat.h>
36 #include <asm/uaccess.h>
37 #include <asm/pgtable.h>
38 #include <asm/system.h>
39 #include <asm/io.h>
40 #include <asm/processor.h>
41 #include <asm/irq.h>
42 #include <asm/timer.h>
43 #include <asm/nmi.h>
44 #include "entry.h"
45 
46 asmlinkage void ret_from_fork(void) asm ("ret_from_fork");
47 
48 /*
49  * Return saved PC of a blocked thread. used in kernel/sched.
50  * resume in entry.S does not create a new stack frame, it
51  * just stores the registers %r6-%r15 to the frame given by
52  * schedule. We want to return the address of the caller of
53  * schedule, so we have to walk the backchain one time to
54  * find the frame schedule() store its return address.
55  */
56 unsigned long thread_saved_pc(struct task_struct *tsk)
57 {
58 	struct stack_frame *sf, *low, *high;
59 
60 	if (!tsk || !task_stack_page(tsk))
61 		return 0;
62 	low = task_stack_page(tsk);
63 	high = (struct stack_frame *) task_pt_regs(tsk);
64 	sf = (struct stack_frame *) (tsk->thread.ksp & PSW_ADDR_INSN);
65 	if (sf <= low || sf > high)
66 		return 0;
67 	sf = (struct stack_frame *) (sf->back_chain & PSW_ADDR_INSN);
68 	if (sf <= low || sf > high)
69 		return 0;
70 	return sf->gprs[8];
71 }
72 
73 /*
74  * The idle loop on a S390...
75  */
76 static void default_idle(void)
77 {
78 	/* CPU is going idle. */
79 #ifdef CONFIG_HOTPLUG_CPU
80 	if (cpu_is_offline(smp_processor_id())) {
81 		preempt_enable_no_resched();
82 		cpu_die();
83 	}
84 #endif
85 	local_irq_disable();
86 	if (need_resched()) {
87 		local_irq_enable();
88 		return;
89 	}
90 	local_mcck_disable();
91 	if (test_thread_flag(TIF_MCCK_PENDING)) {
92 		local_mcck_enable();
93 		local_irq_enable();
94 		s390_handle_mcck();
95 		return;
96 	}
97 	trace_hardirqs_on();
98 	/* Don't trace preempt off for idle. */
99 	stop_critical_timings();
100 	/* Stop virtual timer and halt the cpu. */
101 	vtime_stop_cpu();
102 	/* Reenable preemption tracer. */
103 	start_critical_timings();
104 }
105 
106 void cpu_idle(void)
107 {
108 	for (;;) {
109 		tick_nohz_stop_sched_tick(1);
110 		while (!need_resched())
111 			default_idle();
112 		tick_nohz_restart_sched_tick();
113 		preempt_enable_no_resched();
114 		schedule();
115 		preempt_disable();
116 	}
117 }
118 
119 extern void kernel_thread_starter(void);
120 
121 asm(
122 	".align 4\n"
123 	"kernel_thread_starter:\n"
124 	"    la    2,0(10)\n"
125 	"    basr  14,9\n"
126 	"    la    2,0\n"
127 	"    br    11\n");
128 
129 int kernel_thread(int (*fn)(void *), void * arg, unsigned long flags)
130 {
131 	struct pt_regs regs;
132 
133 	memset(&regs, 0, sizeof(regs));
134 	regs.psw.mask = psw_kernel_bits | PSW_MASK_IO | PSW_MASK_EXT;
135 	regs.psw.addr = (unsigned long) kernel_thread_starter | PSW_ADDR_AMODE;
136 	regs.gprs[9] = (unsigned long) fn;
137 	regs.gprs[10] = (unsigned long) arg;
138 	regs.gprs[11] = (unsigned long) do_exit;
139 	regs.orig_gpr2 = -1;
140 
141 	/* Ok, create the new process.. */
142 	return do_fork(flags | CLONE_VM | CLONE_UNTRACED,
143 		       0, &regs, 0, NULL, NULL);
144 }
145 EXPORT_SYMBOL(kernel_thread);
146 
147 /*
148  * Free current thread data structures etc..
149  */
150 void exit_thread(void)
151 {
152 }
153 
154 void flush_thread(void)
155 {
156 }
157 
158 void release_thread(struct task_struct *dead_task)
159 {
160 }
161 
162 int copy_thread(unsigned long clone_flags, unsigned long new_stackp,
163 		unsigned long unused,
164 		struct task_struct *p, struct pt_regs *regs)
165 {
166 	struct thread_info *ti;
167 	struct fake_frame
168 	{
169 		struct stack_frame sf;
170 		struct pt_regs childregs;
171 	} *frame;
172 
173 	frame = container_of(task_pt_regs(p), struct fake_frame, childregs);
174 	p->thread.ksp = (unsigned long) frame;
175 	/* Store access registers to kernel stack of new process. */
176 	frame->childregs = *regs;
177 	frame->childregs.gprs[2] = 0;	/* child returns 0 on fork. */
178 	frame->childregs.gprs[15] = new_stackp;
179 	frame->sf.back_chain = 0;
180 
181 	/* new return point is ret_from_fork */
182 	frame->sf.gprs[8] = (unsigned long) ret_from_fork;
183 
184 	/* fake return stack for resume(), don't go back to schedule */
185 	frame->sf.gprs[9] = (unsigned long) frame;
186 
187 	/* Save access registers to new thread structure. */
188 	save_access_regs(&p->thread.acrs[0]);
189 
190 #ifndef CONFIG_64BIT
191 	/*
192 	 * save fprs to current->thread.fp_regs to merge them with
193 	 * the emulated registers and then copy the result to the child.
194 	 */
195 	save_fp_regs(&current->thread.fp_regs);
196 	memcpy(&p->thread.fp_regs, &current->thread.fp_regs,
197 	       sizeof(s390_fp_regs));
198 	/* Set a new TLS ?  */
199 	if (clone_flags & CLONE_SETTLS)
200 		p->thread.acrs[0] = regs->gprs[6];
201 #else /* CONFIG_64BIT */
202 	/* Save the fpu registers to new thread structure. */
203 	save_fp_regs(&p->thread.fp_regs);
204 	/* Set a new TLS ?  */
205 	if (clone_flags & CLONE_SETTLS) {
206 		if (is_compat_task()) {
207 			p->thread.acrs[0] = (unsigned int) regs->gprs[6];
208 		} else {
209 			p->thread.acrs[0] = (unsigned int)(regs->gprs[6] >> 32);
210 			p->thread.acrs[1] = (unsigned int) regs->gprs[6];
211 		}
212 	}
213 #endif /* CONFIG_64BIT */
214 	/* start new process with ar4 pointing to the correct address space */
215 	p->thread.mm_segment = get_fs();
216 	/* Don't copy debug registers */
217 	memset(&p->thread.per_info, 0, sizeof(p->thread.per_info));
218 	clear_tsk_thread_flag(p, TIF_SINGLE_STEP);
219 	/* Initialize per thread user and system timer values */
220 	ti = task_thread_info(p);
221 	ti->user_timer = 0;
222 	ti->system_timer = 0;
223 	return 0;
224 }
225 
226 SYSCALL_DEFINE0(fork)
227 {
228 	struct pt_regs *regs = task_pt_regs(current);
229 	return do_fork(SIGCHLD, regs->gprs[15], regs, 0, NULL, NULL);
230 }
231 
232 SYSCALL_DEFINE4(clone, unsigned long, newsp, unsigned long, clone_flags,
233 		int __user *, parent_tidptr, int __user *, child_tidptr)
234 {
235 	struct pt_regs *regs = task_pt_regs(current);
236 
237 	if (!newsp)
238 		newsp = regs->gprs[15];
239 	return do_fork(clone_flags, newsp, regs, 0,
240 		       parent_tidptr, child_tidptr);
241 }
242 
243 /*
244  * This is trivial, and on the face of it looks like it
245  * could equally well be done in user mode.
246  *
247  * Not so, for quite unobvious reasons - register pressure.
248  * In user mode vfork() cannot have a stack frame, and if
249  * done by calling the "clone()" system call directly, you
250  * do not have enough call-clobbered registers to hold all
251  * the information you need.
252  */
253 SYSCALL_DEFINE0(vfork)
254 {
255 	struct pt_regs *regs = task_pt_regs(current);
256 	return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD,
257 		       regs->gprs[15], regs, 0, NULL, NULL);
258 }
259 
260 asmlinkage void execve_tail(void)
261 {
262 	current->thread.fp_regs.fpc = 0;
263 	if (MACHINE_HAS_IEEE)
264 		asm volatile("sfpc %0,%0" : : "d" (0));
265 }
266 
267 /*
268  * sys_execve() executes a new program.
269  */
270 SYSCALL_DEFINE3(execve, const char __user *, name,
271 		const char __user *const __user *, argv,
272 		const char __user *const __user *, envp)
273 {
274 	struct pt_regs *regs = task_pt_regs(current);
275 	char *filename;
276 	long rc;
277 
278 	filename = getname(name);
279 	rc = PTR_ERR(filename);
280 	if (IS_ERR(filename))
281 		return rc;
282 	rc = do_execve(filename, argv, envp, regs);
283 	if (rc)
284 		goto out;
285 	execve_tail();
286 	rc = regs->gprs[2];
287 out:
288 	putname(filename);
289 	return rc;
290 }
291 
292 /*
293  * fill in the FPU structure for a core dump.
294  */
295 int dump_fpu (struct pt_regs * regs, s390_fp_regs *fpregs)
296 {
297 #ifndef CONFIG_64BIT
298 	/*
299 	 * save fprs to current->thread.fp_regs to merge them with
300 	 * the emulated registers and then copy the result to the dump.
301 	 */
302 	save_fp_regs(&current->thread.fp_regs);
303 	memcpy(fpregs, &current->thread.fp_regs, sizeof(s390_fp_regs));
304 #else /* CONFIG_64BIT */
305 	save_fp_regs(fpregs);
306 #endif /* CONFIG_64BIT */
307 	return 1;
308 }
309 EXPORT_SYMBOL(dump_fpu);
310 
311 unsigned long get_wchan(struct task_struct *p)
312 {
313 	struct stack_frame *sf, *low, *high;
314 	unsigned long return_address;
315 	int count;
316 
317 	if (!p || p == current || p->state == TASK_RUNNING || !task_stack_page(p))
318 		return 0;
319 	low = task_stack_page(p);
320 	high = (struct stack_frame *) task_pt_regs(p);
321 	sf = (struct stack_frame *) (p->thread.ksp & PSW_ADDR_INSN);
322 	if (sf <= low || sf > high)
323 		return 0;
324 	for (count = 0; count < 16; count++) {
325 		sf = (struct stack_frame *) (sf->back_chain & PSW_ADDR_INSN);
326 		if (sf <= low || sf > high)
327 			return 0;
328 		return_address = sf->gprs[8] & PSW_ADDR_INSN;
329 		if (!in_sched_functions(return_address))
330 			return return_address;
331 	}
332 	return 0;
333 }
334