xref: /openbmc/linux/arch/s390/kernel/process.c (revision abfbd895)
1 /*
2  * This file handles the architecture dependent parts of process handling.
3  *
4  *    Copyright IBM Corp. 1999, 2009
5  *    Author(s): Martin Schwidefsky <schwidefsky@de.ibm.com>,
6  *		 Hartmut Penner <hp@de.ibm.com>,
7  *		 Denis Joseph Barrow,
8  */
9 
10 #include <linux/compiler.h>
11 #include <linux/cpu.h>
12 #include <linux/sched.h>
13 #include <linux/kernel.h>
14 #include <linux/mm.h>
15 #include <linux/elfcore.h>
16 #include <linux/smp.h>
17 #include <linux/slab.h>
18 #include <linux/interrupt.h>
19 #include <linux/tick.h>
20 #include <linux/personality.h>
21 #include <linux/syscalls.h>
22 #include <linux/compat.h>
23 #include <linux/kprobes.h>
24 #include <linux/random.h>
25 #include <linux/module.h>
26 #include <linux/init_task.h>
27 #include <asm/io.h>
28 #include <asm/processor.h>
29 #include <asm/vtimer.h>
30 #include <asm/exec.h>
31 #include <asm/irq.h>
32 #include <asm/nmi.h>
33 #include <asm/smp.h>
34 #include <asm/switch_to.h>
35 #include <asm/runtime_instr.h>
36 #include "entry.h"
37 
38 asmlinkage void ret_from_fork(void) asm ("ret_from_fork");
39 
40 /* FPU save area for the init task */
41 __vector128 init_task_fpu_regs[__NUM_VXRS] __init_task_data;
42 
43 /*
44  * Return saved PC of a blocked thread. used in kernel/sched.
45  * resume in entry.S does not create a new stack frame, it
46  * just stores the registers %r6-%r15 to the frame given by
47  * schedule. We want to return the address of the caller of
48  * schedule, so we have to walk the backchain one time to
49  * find the frame schedule() store its return address.
50  */
51 unsigned long thread_saved_pc(struct task_struct *tsk)
52 {
53 	struct stack_frame *sf, *low, *high;
54 
55 	if (!tsk || !task_stack_page(tsk))
56 		return 0;
57 	low = task_stack_page(tsk);
58 	high = (struct stack_frame *) task_pt_regs(tsk);
59 	sf = (struct stack_frame *) (tsk->thread.ksp & PSW_ADDR_INSN);
60 	if (sf <= low || sf > high)
61 		return 0;
62 	sf = (struct stack_frame *) (sf->back_chain & PSW_ADDR_INSN);
63 	if (sf <= low || sf > high)
64 		return 0;
65 	return sf->gprs[8];
66 }
67 
68 extern void kernel_thread_starter(void);
69 
70 /*
71  * Free current thread data structures etc..
72  */
73 void exit_thread(void)
74 {
75 	exit_thread_runtime_instr();
76 }
77 
78 void flush_thread(void)
79 {
80 }
81 
82 void release_thread(struct task_struct *dead_task)
83 {
84 }
85 
86 void arch_release_task_struct(struct task_struct *tsk)
87 {
88 	/* Free either the floating-point or the vector register save area */
89 	kfree(tsk->thread.fpu.regs);
90 }
91 
92 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
93 {
94 	size_t fpu_regs_size;
95 
96 	*dst = *src;
97 
98 	/*
99 	 * If the vector extension is available, it is enabled for all tasks,
100 	 * and, thus, the FPU register save area must be allocated accordingly.
101 	 */
102 	fpu_regs_size = MACHINE_HAS_VX ? sizeof(__vector128) * __NUM_VXRS
103 				       : sizeof(freg_t) * __NUM_FPRS;
104 	dst->thread.fpu.regs = kzalloc(fpu_regs_size, GFP_KERNEL|__GFP_REPEAT);
105 	if (!dst->thread.fpu.regs)
106 		return -ENOMEM;
107 
108 	/*
109 	 * Save the floating-point or vector register state of the current
110 	 * task and set the CIF_FPU flag to lazy restore the FPU register
111 	 * state when returning to user space.
112 	 */
113 	save_fpu_regs();
114 	dst->thread.fpu.fpc = current->thread.fpu.fpc;
115 	memcpy(dst->thread.fpu.regs, current->thread.fpu.regs, fpu_regs_size);
116 
117 	return 0;
118 }
119 
120 int copy_thread(unsigned long clone_flags, unsigned long new_stackp,
121 		unsigned long arg, struct task_struct *p)
122 {
123 	struct thread_info *ti;
124 	struct fake_frame
125 	{
126 		struct stack_frame sf;
127 		struct pt_regs childregs;
128 	} *frame;
129 
130 	frame = container_of(task_pt_regs(p), struct fake_frame, childregs);
131 	p->thread.ksp = (unsigned long) frame;
132 	/* Save access registers to new thread structure. */
133 	save_access_regs(&p->thread.acrs[0]);
134 	/* start new process with ar4 pointing to the correct address space */
135 	p->thread.mm_segment = get_fs();
136 	/* Don't copy debug registers */
137 	memset(&p->thread.per_user, 0, sizeof(p->thread.per_user));
138 	memset(&p->thread.per_event, 0, sizeof(p->thread.per_event));
139 	clear_tsk_thread_flag(p, TIF_SINGLE_STEP);
140 	/* Initialize per thread user and system timer values */
141 	ti = task_thread_info(p);
142 	ti->user_timer = 0;
143 	ti->system_timer = 0;
144 
145 	frame->sf.back_chain = 0;
146 	/* new return point is ret_from_fork */
147 	frame->sf.gprs[8] = (unsigned long) ret_from_fork;
148 	/* fake return stack for resume(), don't go back to schedule */
149 	frame->sf.gprs[9] = (unsigned long) frame;
150 
151 	/* Store access registers to kernel stack of new process. */
152 	if (unlikely(p->flags & PF_KTHREAD)) {
153 		/* kernel thread */
154 		memset(&frame->childregs, 0, sizeof(struct pt_regs));
155 		frame->childregs.psw.mask = PSW_KERNEL_BITS | PSW_MASK_DAT |
156 				PSW_MASK_IO | PSW_MASK_EXT | PSW_MASK_MCHECK;
157 		frame->childregs.psw.addr = PSW_ADDR_AMODE |
158 				(unsigned long) kernel_thread_starter;
159 		frame->childregs.gprs[9] = new_stackp; /* function */
160 		frame->childregs.gprs[10] = arg;
161 		frame->childregs.gprs[11] = (unsigned long) do_exit;
162 		frame->childregs.orig_gpr2 = -1;
163 
164 		return 0;
165 	}
166 	frame->childregs = *current_pt_regs();
167 	frame->childregs.gprs[2] = 0;	/* child returns 0 on fork. */
168 	frame->childregs.flags = 0;
169 	if (new_stackp)
170 		frame->childregs.gprs[15] = new_stackp;
171 
172 	/* Don't copy runtime instrumentation info */
173 	p->thread.ri_cb = NULL;
174 	frame->childregs.psw.mask &= ~PSW_MASK_RI;
175 
176 	/* Set a new TLS ?  */
177 	if (clone_flags & CLONE_SETTLS) {
178 		unsigned long tls = frame->childregs.gprs[6];
179 		if (is_compat_task()) {
180 			p->thread.acrs[0] = (unsigned int)tls;
181 		} else {
182 			p->thread.acrs[0] = (unsigned int)(tls >> 32);
183 			p->thread.acrs[1] = (unsigned int)tls;
184 		}
185 	}
186 	return 0;
187 }
188 
189 asmlinkage void execve_tail(void)
190 {
191 	current->thread.fpu.fpc = 0;
192 	asm volatile("sfpc %0" : : "d" (0));
193 }
194 
195 /*
196  * fill in the FPU structure for a core dump.
197  */
198 int dump_fpu (struct pt_regs * regs, s390_fp_regs *fpregs)
199 {
200 	save_fpu_regs();
201 	fpregs->fpc = current->thread.fpu.fpc;
202 	fpregs->pad = 0;
203 	if (MACHINE_HAS_VX)
204 		convert_vx_to_fp((freg_t *)&fpregs->fprs,
205 				 current->thread.fpu.vxrs);
206 	else
207 		memcpy(&fpregs->fprs, current->thread.fpu.fprs,
208 		       sizeof(fpregs->fprs));
209 	return 1;
210 }
211 EXPORT_SYMBOL(dump_fpu);
212 
213 unsigned long get_wchan(struct task_struct *p)
214 {
215 	struct stack_frame *sf, *low, *high;
216 	unsigned long return_address;
217 	int count;
218 
219 	if (!p || p == current || p->state == TASK_RUNNING || !task_stack_page(p))
220 		return 0;
221 	low = task_stack_page(p);
222 	high = (struct stack_frame *) task_pt_regs(p);
223 	sf = (struct stack_frame *) (p->thread.ksp & PSW_ADDR_INSN);
224 	if (sf <= low || sf > high)
225 		return 0;
226 	for (count = 0; count < 16; count++) {
227 		sf = (struct stack_frame *) (sf->back_chain & PSW_ADDR_INSN);
228 		if (sf <= low || sf > high)
229 			return 0;
230 		return_address = sf->gprs[8] & PSW_ADDR_INSN;
231 		if (!in_sched_functions(return_address))
232 			return return_address;
233 	}
234 	return 0;
235 }
236 
237 unsigned long arch_align_stack(unsigned long sp)
238 {
239 	if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
240 		sp -= get_random_int() & ~PAGE_MASK;
241 	return sp & ~0xf;
242 }
243 
244 static inline unsigned long brk_rnd(void)
245 {
246 	return (get_random_int() & BRK_RND_MASK) << PAGE_SHIFT;
247 }
248 
249 unsigned long arch_randomize_brk(struct mm_struct *mm)
250 {
251 	unsigned long ret;
252 
253 	ret = PAGE_ALIGN(mm->brk + brk_rnd());
254 	return (ret > mm->brk) ? ret : mm->brk;
255 }
256