xref: /openbmc/linux/arch/s390/kernel/process.c (revision 8684014d)
1 /*
2  * This file handles the architecture dependent parts of process handling.
3  *
4  *    Copyright IBM Corp. 1999, 2009
5  *    Author(s): Martin Schwidefsky <schwidefsky@de.ibm.com>,
6  *		 Hartmut Penner <hp@de.ibm.com>,
7  *		 Denis Joseph Barrow,
8  */
9 
10 #include <linux/compiler.h>
11 #include <linux/cpu.h>
12 #include <linux/sched.h>
13 #include <linux/kernel.h>
14 #include <linux/mm.h>
15 #include <linux/elfcore.h>
16 #include <linux/smp.h>
17 #include <linux/slab.h>
18 #include <linux/interrupt.h>
19 #include <linux/tick.h>
20 #include <linux/personality.h>
21 #include <linux/syscalls.h>
22 #include <linux/compat.h>
23 #include <linux/kprobes.h>
24 #include <linux/random.h>
25 #include <linux/module.h>
26 #include <asm/io.h>
27 #include <asm/processor.h>
28 #include <asm/vtimer.h>
29 #include <asm/exec.h>
30 #include <asm/irq.h>
31 #include <asm/nmi.h>
32 #include <asm/smp.h>
33 #include <asm/switch_to.h>
34 #include <asm/runtime_instr.h>
35 #include "entry.h"
36 
37 asmlinkage void ret_from_fork(void) asm ("ret_from_fork");
38 
39 /*
40  * Return saved PC of a blocked thread. used in kernel/sched.
41  * resume in entry.S does not create a new stack frame, it
42  * just stores the registers %r6-%r15 to the frame given by
43  * schedule. We want to return the address of the caller of
44  * schedule, so we have to walk the backchain one time to
45  * find the frame schedule() store its return address.
46  */
47 unsigned long thread_saved_pc(struct task_struct *tsk)
48 {
49 	struct stack_frame *sf, *low, *high;
50 
51 	if (!tsk || !task_stack_page(tsk))
52 		return 0;
53 	low = task_stack_page(tsk);
54 	high = (struct stack_frame *) task_pt_regs(tsk);
55 	sf = (struct stack_frame *) (tsk->thread.ksp & PSW_ADDR_INSN);
56 	if (sf <= low || sf > high)
57 		return 0;
58 	sf = (struct stack_frame *) (sf->back_chain & PSW_ADDR_INSN);
59 	if (sf <= low || sf > high)
60 		return 0;
61 	return sf->gprs[8];
62 }
63 
64 extern void kernel_thread_starter(void);
65 
66 /*
67  * Free current thread data structures etc..
68  */
69 void exit_thread(void)
70 {
71 	exit_thread_runtime_instr();
72 }
73 
74 void flush_thread(void)
75 {
76 }
77 
78 void release_thread(struct task_struct *dead_task)
79 {
80 }
81 
82 int copy_thread(unsigned long clone_flags, unsigned long new_stackp,
83 		unsigned long arg, struct task_struct *p)
84 {
85 	struct thread_info *ti;
86 	struct fake_frame
87 	{
88 		struct stack_frame sf;
89 		struct pt_regs childregs;
90 	} *frame;
91 
92 	frame = container_of(task_pt_regs(p), struct fake_frame, childregs);
93 	p->thread.ksp = (unsigned long) frame;
94 	/* Save access registers to new thread structure. */
95 	save_access_regs(&p->thread.acrs[0]);
96 	/* start new process with ar4 pointing to the correct address space */
97 	p->thread.mm_segment = get_fs();
98 	/* Don't copy debug registers */
99 	memset(&p->thread.per_user, 0, sizeof(p->thread.per_user));
100 	memset(&p->thread.per_event, 0, sizeof(p->thread.per_event));
101 	clear_tsk_thread_flag(p, TIF_SINGLE_STEP);
102 	/* Initialize per thread user and system timer values */
103 	ti = task_thread_info(p);
104 	ti->user_timer = 0;
105 	ti->system_timer = 0;
106 
107 	frame->sf.back_chain = 0;
108 	/* new return point is ret_from_fork */
109 	frame->sf.gprs[8] = (unsigned long) ret_from_fork;
110 	/* fake return stack for resume(), don't go back to schedule */
111 	frame->sf.gprs[9] = (unsigned long) frame;
112 
113 	/* Store access registers to kernel stack of new process. */
114 	if (unlikely(p->flags & PF_KTHREAD)) {
115 		/* kernel thread */
116 		memset(&frame->childregs, 0, sizeof(struct pt_regs));
117 		frame->childregs.psw.mask = PSW_KERNEL_BITS | PSW_MASK_DAT |
118 				PSW_MASK_IO | PSW_MASK_EXT | PSW_MASK_MCHECK;
119 		frame->childregs.psw.addr = PSW_ADDR_AMODE |
120 				(unsigned long) kernel_thread_starter;
121 		frame->childregs.gprs[9] = new_stackp; /* function */
122 		frame->childregs.gprs[10] = arg;
123 		frame->childregs.gprs[11] = (unsigned long) do_exit;
124 		frame->childregs.orig_gpr2 = -1;
125 
126 		return 0;
127 	}
128 	frame->childregs = *current_pt_regs();
129 	frame->childregs.gprs[2] = 0;	/* child returns 0 on fork. */
130 	frame->childregs.flags = 0;
131 	if (new_stackp)
132 		frame->childregs.gprs[15] = new_stackp;
133 
134 	/* Don't copy runtime instrumentation info */
135 	p->thread.ri_cb = NULL;
136 	p->thread.ri_signum = 0;
137 	frame->childregs.psw.mask &= ~PSW_MASK_RI;
138 
139 #ifndef CONFIG_64BIT
140 	/*
141 	 * save fprs to current->thread.fp_regs to merge them with
142 	 * the emulated registers and then copy the result to the child.
143 	 */
144 	save_fp_ctl(&current->thread.fp_regs.fpc);
145 	save_fp_regs(current->thread.fp_regs.fprs);
146 	memcpy(&p->thread.fp_regs, &current->thread.fp_regs,
147 	       sizeof(s390_fp_regs));
148 	/* Set a new TLS ?  */
149 	if (clone_flags & CLONE_SETTLS)
150 		p->thread.acrs[0] = frame->childregs.gprs[6];
151 #else /* CONFIG_64BIT */
152 	/* Save the fpu registers to new thread structure. */
153 	save_fp_ctl(&p->thread.fp_regs.fpc);
154 	save_fp_regs(p->thread.fp_regs.fprs);
155 	p->thread.fp_regs.pad = 0;
156 	p->thread.vxrs = NULL;
157 	/* Set a new TLS ?  */
158 	if (clone_flags & CLONE_SETTLS) {
159 		unsigned long tls = frame->childregs.gprs[6];
160 		if (is_compat_task()) {
161 			p->thread.acrs[0] = (unsigned int)tls;
162 		} else {
163 			p->thread.acrs[0] = (unsigned int)(tls >> 32);
164 			p->thread.acrs[1] = (unsigned int)tls;
165 		}
166 	}
167 #endif /* CONFIG_64BIT */
168 	return 0;
169 }
170 
171 asmlinkage void execve_tail(void)
172 {
173 	current->thread.fp_regs.fpc = 0;
174 	if (MACHINE_HAS_IEEE)
175 		asm volatile("sfpc %0,%0" : : "d" (0));
176 }
177 
178 /*
179  * fill in the FPU structure for a core dump.
180  */
181 int dump_fpu (struct pt_regs * regs, s390_fp_regs *fpregs)
182 {
183 #ifndef CONFIG_64BIT
184 	/*
185 	 * save fprs to current->thread.fp_regs to merge them with
186 	 * the emulated registers and then copy the result to the dump.
187 	 */
188 	save_fp_ctl(&current->thread.fp_regs.fpc);
189 	save_fp_regs(current->thread.fp_regs.fprs);
190 	memcpy(fpregs, &current->thread.fp_regs, sizeof(s390_fp_regs));
191 #else /* CONFIG_64BIT */
192 	save_fp_ctl(&fpregs->fpc);
193 	save_fp_regs(fpregs->fprs);
194 #endif /* CONFIG_64BIT */
195 	return 1;
196 }
197 EXPORT_SYMBOL(dump_fpu);
198 
199 unsigned long get_wchan(struct task_struct *p)
200 {
201 	struct stack_frame *sf, *low, *high;
202 	unsigned long return_address;
203 	int count;
204 
205 	if (!p || p == current || p->state == TASK_RUNNING || !task_stack_page(p))
206 		return 0;
207 	low = task_stack_page(p);
208 	high = (struct stack_frame *) task_pt_regs(p);
209 	sf = (struct stack_frame *) (p->thread.ksp & PSW_ADDR_INSN);
210 	if (sf <= low || sf > high)
211 		return 0;
212 	for (count = 0; count < 16; count++) {
213 		sf = (struct stack_frame *) (sf->back_chain & PSW_ADDR_INSN);
214 		if (sf <= low || sf > high)
215 			return 0;
216 		return_address = sf->gprs[8] & PSW_ADDR_INSN;
217 		if (!in_sched_functions(return_address))
218 			return return_address;
219 	}
220 	return 0;
221 }
222 
223 unsigned long arch_align_stack(unsigned long sp)
224 {
225 	if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
226 		sp -= get_random_int() & ~PAGE_MASK;
227 	return sp & ~0xf;
228 }
229 
230 static inline unsigned long brk_rnd(void)
231 {
232 	/* 8MB for 32bit, 1GB for 64bit */
233 	if (is_32bit_task())
234 		return (get_random_int() & 0x7ffUL) << PAGE_SHIFT;
235 	else
236 		return (get_random_int() & 0x3ffffUL) << PAGE_SHIFT;
237 }
238 
239 unsigned long arch_randomize_brk(struct mm_struct *mm)
240 {
241 	unsigned long ret;
242 
243 	ret = PAGE_ALIGN(mm->brk + brk_rnd());
244 	return (ret > mm->brk) ? ret : mm->brk;
245 }
246 
247 unsigned long randomize_et_dyn(unsigned long base)
248 {
249 	unsigned long ret;
250 
251 	if (!(current->flags & PF_RANDOMIZE))
252 		return base;
253 	ret = PAGE_ALIGN(base + brk_rnd());
254 	return (ret > base) ? ret : base;
255 }
256