1 /* 2 * arch/s390/kernel/process.c 3 * 4 * S390 version 5 * Copyright (C) 1999 IBM Deutschland Entwicklung GmbH, IBM Corporation 6 * Author(s): Martin Schwidefsky (schwidefsky@de.ibm.com), 7 * Hartmut Penner (hp@de.ibm.com), 8 * Denis Joseph Barrow (djbarrow@de.ibm.com,barrow_dj@yahoo.com), 9 * 10 * Derived from "arch/i386/kernel/process.c" 11 * Copyright (C) 1995, Linus Torvalds 12 */ 13 14 /* 15 * This file handles the architecture-dependent parts of process handling.. 16 */ 17 18 #include <linux/compiler.h> 19 #include <linux/cpu.h> 20 #include <linux/errno.h> 21 #include <linux/sched.h> 22 #include <linux/kernel.h> 23 #include <linux/mm.h> 24 #include <linux/smp.h> 25 #include <linux/stddef.h> 26 #include <linux/unistd.h> 27 #include <linux/ptrace.h> 28 #include <linux/slab.h> 29 #include <linux/vmalloc.h> 30 #include <linux/user.h> 31 #include <linux/a.out.h> 32 #include <linux/interrupt.h> 33 #include <linux/delay.h> 34 #include <linux/reboot.h> 35 #include <linux/init.h> 36 #include <linux/module.h> 37 #include <linux/notifier.h> 38 39 #include <asm/uaccess.h> 40 #include <asm/pgtable.h> 41 #include <asm/system.h> 42 #include <asm/io.h> 43 #include <asm/processor.h> 44 #include <asm/irq.h> 45 #include <asm/timer.h> 46 47 asmlinkage void ret_from_fork(void) asm ("ret_from_fork"); 48 49 /* 50 * Return saved PC of a blocked thread. used in kernel/sched. 51 * resume in entry.S does not create a new stack frame, it 52 * just stores the registers %r6-%r15 to the frame given by 53 * schedule. We want to return the address of the caller of 54 * schedule, so we have to walk the backchain one time to 55 * find the frame schedule() store its return address. 56 */ 57 unsigned long thread_saved_pc(struct task_struct *tsk) 58 { 59 struct stack_frame *sf, *low, *high; 60 61 if (!tsk || !task_stack_page(tsk)) 62 return 0; 63 low = task_stack_page(tsk); 64 high = (struct stack_frame *) task_pt_regs(tsk); 65 sf = (struct stack_frame *) (tsk->thread.ksp & PSW_ADDR_INSN); 66 if (sf <= low || sf > high) 67 return 0; 68 sf = (struct stack_frame *) (sf->back_chain & PSW_ADDR_INSN); 69 if (sf <= low || sf > high) 70 return 0; 71 return sf->gprs[8]; 72 } 73 74 /* 75 * Need to know about CPUs going idle? 76 */ 77 static ATOMIC_NOTIFIER_HEAD(idle_chain); 78 79 int register_idle_notifier(struct notifier_block *nb) 80 { 81 return atomic_notifier_chain_register(&idle_chain, nb); 82 } 83 EXPORT_SYMBOL(register_idle_notifier); 84 85 int unregister_idle_notifier(struct notifier_block *nb) 86 { 87 return atomic_notifier_chain_unregister(&idle_chain, nb); 88 } 89 EXPORT_SYMBOL(unregister_idle_notifier); 90 91 void do_monitor_call(struct pt_regs *regs, long interruption_code) 92 { 93 /* disable monitor call class 0 */ 94 __ctl_clear_bit(8, 15); 95 96 atomic_notifier_call_chain(&idle_chain, S390_CPU_NOT_IDLE, 97 (void *)(long) smp_processor_id()); 98 } 99 100 extern void s390_handle_mcck(void); 101 /* 102 * The idle loop on a S390... 103 */ 104 static void default_idle(void) 105 { 106 int cpu, rc; 107 108 /* CPU is going idle. */ 109 cpu = smp_processor_id(); 110 111 local_irq_disable(); 112 if (need_resched()) { 113 local_irq_enable(); 114 return; 115 } 116 117 rc = atomic_notifier_call_chain(&idle_chain, 118 S390_CPU_IDLE, (void *)(long) cpu); 119 if (rc != NOTIFY_OK && rc != NOTIFY_DONE) 120 BUG(); 121 if (rc != NOTIFY_OK) { 122 local_irq_enable(); 123 return; 124 } 125 126 /* enable monitor call class 0 */ 127 __ctl_set_bit(8, 15); 128 129 #ifdef CONFIG_HOTPLUG_CPU 130 if (cpu_is_offline(cpu)) { 131 preempt_enable_no_resched(); 132 cpu_die(); 133 } 134 #endif 135 136 local_mcck_disable(); 137 if (test_thread_flag(TIF_MCCK_PENDING)) { 138 local_mcck_enable(); 139 local_irq_enable(); 140 s390_handle_mcck(); 141 return; 142 } 143 144 trace_hardirqs_on(); 145 /* Wait for external, I/O or machine check interrupt. */ 146 __load_psw_mask(psw_kernel_bits | PSW_MASK_WAIT | 147 PSW_MASK_IO | PSW_MASK_EXT); 148 } 149 150 void cpu_idle(void) 151 { 152 for (;;) { 153 while (!need_resched()) 154 default_idle(); 155 156 preempt_enable_no_resched(); 157 schedule(); 158 preempt_disable(); 159 } 160 } 161 162 void show_regs(struct pt_regs *regs) 163 { 164 struct task_struct *tsk = current; 165 166 printk("CPU: %d %s\n", task_thread_info(tsk)->cpu, print_tainted()); 167 printk("Process %s (pid: %d, task: %p, ksp: %p)\n", 168 current->comm, current->pid, (void *) tsk, 169 (void *) tsk->thread.ksp); 170 171 show_registers(regs); 172 /* Show stack backtrace if pt_regs is from kernel mode */ 173 if (!(regs->psw.mask & PSW_MASK_PSTATE)) 174 show_trace(NULL, (unsigned long *) regs->gprs[15]); 175 } 176 177 extern void kernel_thread_starter(void); 178 179 asm( 180 ".align 4\n" 181 "kernel_thread_starter:\n" 182 " la 2,0(10)\n" 183 " basr 14,9\n" 184 " la 2,0\n" 185 " br 11\n"); 186 187 int kernel_thread(int (*fn)(void *), void * arg, unsigned long flags) 188 { 189 struct pt_regs regs; 190 191 memset(®s, 0, sizeof(regs)); 192 regs.psw.mask = psw_kernel_bits | PSW_MASK_IO | PSW_MASK_EXT; 193 regs.psw.addr = (unsigned long) kernel_thread_starter | PSW_ADDR_AMODE; 194 regs.gprs[9] = (unsigned long) fn; 195 regs.gprs[10] = (unsigned long) arg; 196 regs.gprs[11] = (unsigned long) do_exit; 197 regs.orig_gpr2 = -1; 198 199 /* Ok, create the new process.. */ 200 return do_fork(flags | CLONE_VM | CLONE_UNTRACED, 201 0, ®s, 0, NULL, NULL); 202 } 203 204 /* 205 * Free current thread data structures etc.. 206 */ 207 void exit_thread(void) 208 { 209 } 210 211 void flush_thread(void) 212 { 213 clear_used_math(); 214 clear_tsk_thread_flag(current, TIF_USEDFPU); 215 } 216 217 void release_thread(struct task_struct *dead_task) 218 { 219 } 220 221 int copy_thread(int nr, unsigned long clone_flags, unsigned long new_stackp, 222 unsigned long unused, 223 struct task_struct * p, struct pt_regs * regs) 224 { 225 struct fake_frame 226 { 227 struct stack_frame sf; 228 struct pt_regs childregs; 229 } *frame; 230 231 frame = container_of(task_pt_regs(p), struct fake_frame, childregs); 232 p->thread.ksp = (unsigned long) frame; 233 /* Store access registers to kernel stack of new process. */ 234 frame->childregs = *regs; 235 frame->childregs.gprs[2] = 0; /* child returns 0 on fork. */ 236 frame->childregs.gprs[15] = new_stackp; 237 frame->sf.back_chain = 0; 238 239 /* new return point is ret_from_fork */ 240 frame->sf.gprs[8] = (unsigned long) ret_from_fork; 241 242 /* fake return stack for resume(), don't go back to schedule */ 243 frame->sf.gprs[9] = (unsigned long) frame; 244 245 /* Save access registers to new thread structure. */ 246 save_access_regs(&p->thread.acrs[0]); 247 248 #ifndef CONFIG_64BIT 249 /* 250 * save fprs to current->thread.fp_regs to merge them with 251 * the emulated registers and then copy the result to the child. 252 */ 253 save_fp_regs(¤t->thread.fp_regs); 254 memcpy(&p->thread.fp_regs, ¤t->thread.fp_regs, 255 sizeof(s390_fp_regs)); 256 p->thread.user_seg = __pa((unsigned long) p->mm->pgd) | _SEGMENT_TABLE; 257 /* Set a new TLS ? */ 258 if (clone_flags & CLONE_SETTLS) 259 p->thread.acrs[0] = regs->gprs[6]; 260 #else /* CONFIG_64BIT */ 261 /* Save the fpu registers to new thread structure. */ 262 save_fp_regs(&p->thread.fp_regs); 263 p->thread.user_seg = __pa((unsigned long) p->mm->pgd) | _REGION_TABLE; 264 /* Set a new TLS ? */ 265 if (clone_flags & CLONE_SETTLS) { 266 if (test_thread_flag(TIF_31BIT)) { 267 p->thread.acrs[0] = (unsigned int) regs->gprs[6]; 268 } else { 269 p->thread.acrs[0] = (unsigned int)(regs->gprs[6] >> 32); 270 p->thread.acrs[1] = (unsigned int) regs->gprs[6]; 271 } 272 } 273 #endif /* CONFIG_64BIT */ 274 /* start new process with ar4 pointing to the correct address space */ 275 p->thread.mm_segment = get_fs(); 276 /* Don't copy debug registers */ 277 memset(&p->thread.per_info,0,sizeof(p->thread.per_info)); 278 279 return 0; 280 } 281 282 asmlinkage long sys_fork(void) 283 { 284 struct pt_regs *regs = task_pt_regs(current); 285 return do_fork(SIGCHLD, regs->gprs[15], regs, 0, NULL, NULL); 286 } 287 288 asmlinkage long sys_clone(void) 289 { 290 struct pt_regs *regs = task_pt_regs(current); 291 unsigned long clone_flags; 292 unsigned long newsp; 293 int __user *parent_tidptr, *child_tidptr; 294 295 clone_flags = regs->gprs[3]; 296 newsp = regs->orig_gpr2; 297 parent_tidptr = (int __user *) regs->gprs[4]; 298 child_tidptr = (int __user *) regs->gprs[5]; 299 if (!newsp) 300 newsp = regs->gprs[15]; 301 return do_fork(clone_flags, newsp, regs, 0, 302 parent_tidptr, child_tidptr); 303 } 304 305 /* 306 * This is trivial, and on the face of it looks like it 307 * could equally well be done in user mode. 308 * 309 * Not so, for quite unobvious reasons - register pressure. 310 * In user mode vfork() cannot have a stack frame, and if 311 * done by calling the "clone()" system call directly, you 312 * do not have enough call-clobbered registers to hold all 313 * the information you need. 314 */ 315 asmlinkage long sys_vfork(void) 316 { 317 struct pt_regs *regs = task_pt_regs(current); 318 return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, 319 regs->gprs[15], regs, 0, NULL, NULL); 320 } 321 322 asmlinkage void execve_tail(void) 323 { 324 task_lock(current); 325 current->ptrace &= ~PT_DTRACE; 326 task_unlock(current); 327 current->thread.fp_regs.fpc = 0; 328 if (MACHINE_HAS_IEEE) 329 asm volatile("sfpc %0,%0" : : "d" (0)); 330 } 331 332 /* 333 * sys_execve() executes a new program. 334 */ 335 asmlinkage long sys_execve(void) 336 { 337 struct pt_regs *regs = task_pt_regs(current); 338 char *filename; 339 unsigned long result; 340 int rc; 341 342 filename = getname((char __user *) regs->orig_gpr2); 343 if (IS_ERR(filename)) { 344 result = PTR_ERR(filename); 345 goto out; 346 } 347 rc = do_execve(filename, (char __user * __user *) regs->gprs[3], 348 (char __user * __user *) regs->gprs[4], regs); 349 if (rc) { 350 result = rc; 351 goto out_putname; 352 } 353 execve_tail(); 354 result = regs->gprs[2]; 355 out_putname: 356 putname(filename); 357 out: 358 return result; 359 } 360 361 /* 362 * fill in the FPU structure for a core dump. 363 */ 364 int dump_fpu (struct pt_regs * regs, s390_fp_regs *fpregs) 365 { 366 #ifndef CONFIG_64BIT 367 /* 368 * save fprs to current->thread.fp_regs to merge them with 369 * the emulated registers and then copy the result to the dump. 370 */ 371 save_fp_regs(¤t->thread.fp_regs); 372 memcpy(fpregs, ¤t->thread.fp_regs, sizeof(s390_fp_regs)); 373 #else /* CONFIG_64BIT */ 374 save_fp_regs(fpregs); 375 #endif /* CONFIG_64BIT */ 376 return 1; 377 } 378 379 unsigned long get_wchan(struct task_struct *p) 380 { 381 struct stack_frame *sf, *low, *high; 382 unsigned long return_address; 383 int count; 384 385 if (!p || p == current || p->state == TASK_RUNNING || !task_stack_page(p)) 386 return 0; 387 low = task_stack_page(p); 388 high = (struct stack_frame *) task_pt_regs(p); 389 sf = (struct stack_frame *) (p->thread.ksp & PSW_ADDR_INSN); 390 if (sf <= low || sf > high) 391 return 0; 392 for (count = 0; count < 16; count++) { 393 sf = (struct stack_frame *) (sf->back_chain & PSW_ADDR_INSN); 394 if (sf <= low || sf > high) 395 return 0; 396 return_address = sf->gprs[8] & PSW_ADDR_INSN; 397 if (!in_sched_functions(return_address)) 398 return return_address; 399 } 400 return 0; 401 } 402 403