1 /* 2 * This file handles the architecture dependent parts of process handling. 3 * 4 * Copyright IBM Corp. 1999, 2009 5 * Author(s): Martin Schwidefsky <schwidefsky@de.ibm.com>, 6 * Hartmut Penner <hp@de.ibm.com>, 7 * Denis Joseph Barrow, 8 */ 9 10 #include <linux/elf-randomize.h> 11 #include <linux/compiler.h> 12 #include <linux/cpu.h> 13 #include <linux/sched.h> 14 #include <linux/sched/debug.h> 15 #include <linux/sched/task.h> 16 #include <linux/sched/task_stack.h> 17 #include <linux/kernel.h> 18 #include <linux/mm.h> 19 #include <linux/elfcore.h> 20 #include <linux/smp.h> 21 #include <linux/slab.h> 22 #include <linux/interrupt.h> 23 #include <linux/tick.h> 24 #include <linux/personality.h> 25 #include <linux/syscalls.h> 26 #include <linux/compat.h> 27 #include <linux/kprobes.h> 28 #include <linux/random.h> 29 #include <linux/export.h> 30 #include <linux/init_task.h> 31 #include <asm/io.h> 32 #include <asm/processor.h> 33 #include <asm/vtimer.h> 34 #include <asm/exec.h> 35 #include <asm/irq.h> 36 #include <asm/nmi.h> 37 #include <asm/smp.h> 38 #include <asm/switch_to.h> 39 #include <asm/runtime_instr.h> 40 #include "entry.h" 41 42 asmlinkage void ret_from_fork(void) asm ("ret_from_fork"); 43 44 /* 45 * Return saved PC of a blocked thread. used in kernel/sched. 46 * resume in entry.S does not create a new stack frame, it 47 * just stores the registers %r6-%r15 to the frame given by 48 * schedule. We want to return the address of the caller of 49 * schedule, so we have to walk the backchain one time to 50 * find the frame schedule() store its return address. 51 */ 52 unsigned long thread_saved_pc(struct task_struct *tsk) 53 { 54 struct stack_frame *sf, *low, *high; 55 56 if (!tsk || !task_stack_page(tsk)) 57 return 0; 58 low = task_stack_page(tsk); 59 high = (struct stack_frame *) task_pt_regs(tsk); 60 sf = (struct stack_frame *) tsk->thread.ksp; 61 if (sf <= low || sf > high) 62 return 0; 63 sf = (struct stack_frame *) sf->back_chain; 64 if (sf <= low || sf > high) 65 return 0; 66 return sf->gprs[8]; 67 } 68 69 extern void kernel_thread_starter(void); 70 71 /* 72 * Free current thread data structures etc.. 73 */ 74 void exit_thread(struct task_struct *tsk) 75 { 76 if (tsk == current) 77 exit_thread_runtime_instr(); 78 } 79 80 void flush_thread(void) 81 { 82 } 83 84 void release_thread(struct task_struct *dead_task) 85 { 86 } 87 88 void arch_release_task_struct(struct task_struct *tsk) 89 { 90 } 91 92 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src) 93 { 94 /* 95 * Save the floating-point or vector register state of the current 96 * task and set the CIF_FPU flag to lazy restore the FPU register 97 * state when returning to user space. 98 */ 99 save_fpu_regs(); 100 101 memcpy(dst, src, arch_task_struct_size); 102 dst->thread.fpu.regs = dst->thread.fpu.fprs; 103 return 0; 104 } 105 106 int copy_thread_tls(unsigned long clone_flags, unsigned long new_stackp, 107 unsigned long arg, struct task_struct *p, unsigned long tls) 108 { 109 struct fake_frame 110 { 111 struct stack_frame sf; 112 struct pt_regs childregs; 113 } *frame; 114 115 frame = container_of(task_pt_regs(p), struct fake_frame, childregs); 116 p->thread.ksp = (unsigned long) frame; 117 /* Save access registers to new thread structure. */ 118 save_access_regs(&p->thread.acrs[0]); 119 /* start new process with ar4 pointing to the correct address space */ 120 p->thread.mm_segment = get_fs(); 121 /* Don't copy debug registers */ 122 memset(&p->thread.per_user, 0, sizeof(p->thread.per_user)); 123 memset(&p->thread.per_event, 0, sizeof(p->thread.per_event)); 124 clear_tsk_thread_flag(p, TIF_SINGLE_STEP); 125 /* Initialize per thread user and system timer values */ 126 p->thread.user_timer = 0; 127 p->thread.guest_timer = 0; 128 p->thread.system_timer = 0; 129 p->thread.hardirq_timer = 0; 130 p->thread.softirq_timer = 0; 131 132 frame->sf.back_chain = 0; 133 /* new return point is ret_from_fork */ 134 frame->sf.gprs[8] = (unsigned long) ret_from_fork; 135 /* fake return stack for resume(), don't go back to schedule */ 136 frame->sf.gprs[9] = (unsigned long) frame; 137 138 /* Store access registers to kernel stack of new process. */ 139 if (unlikely(p->flags & PF_KTHREAD)) { 140 /* kernel thread */ 141 memset(&frame->childregs, 0, sizeof(struct pt_regs)); 142 frame->childregs.psw.mask = PSW_KERNEL_BITS | PSW_MASK_DAT | 143 PSW_MASK_IO | PSW_MASK_EXT | PSW_MASK_MCHECK; 144 frame->childregs.psw.addr = 145 (unsigned long) kernel_thread_starter; 146 frame->childregs.gprs[9] = new_stackp; /* function */ 147 frame->childregs.gprs[10] = arg; 148 frame->childregs.gprs[11] = (unsigned long) do_exit; 149 frame->childregs.orig_gpr2 = -1; 150 151 return 0; 152 } 153 frame->childregs = *current_pt_regs(); 154 frame->childregs.gprs[2] = 0; /* child returns 0 on fork. */ 155 frame->childregs.flags = 0; 156 if (new_stackp) 157 frame->childregs.gprs[15] = new_stackp; 158 159 /* Don't copy runtime instrumentation info */ 160 p->thread.ri_cb = NULL; 161 frame->childregs.psw.mask &= ~PSW_MASK_RI; 162 163 /* Set a new TLS ? */ 164 if (clone_flags & CLONE_SETTLS) { 165 if (is_compat_task()) { 166 p->thread.acrs[0] = (unsigned int)tls; 167 } else { 168 p->thread.acrs[0] = (unsigned int)(tls >> 32); 169 p->thread.acrs[1] = (unsigned int)tls; 170 } 171 } 172 return 0; 173 } 174 175 asmlinkage void execve_tail(void) 176 { 177 current->thread.fpu.fpc = 0; 178 asm volatile("sfpc %0" : : "d" (0)); 179 } 180 181 /* 182 * fill in the FPU structure for a core dump. 183 */ 184 int dump_fpu (struct pt_regs * regs, s390_fp_regs *fpregs) 185 { 186 save_fpu_regs(); 187 fpregs->fpc = current->thread.fpu.fpc; 188 fpregs->pad = 0; 189 if (MACHINE_HAS_VX) 190 convert_vx_to_fp((freg_t *)&fpregs->fprs, 191 current->thread.fpu.vxrs); 192 else 193 memcpy(&fpregs->fprs, current->thread.fpu.fprs, 194 sizeof(fpregs->fprs)); 195 return 1; 196 } 197 EXPORT_SYMBOL(dump_fpu); 198 199 unsigned long get_wchan(struct task_struct *p) 200 { 201 struct stack_frame *sf, *low, *high; 202 unsigned long return_address; 203 int count; 204 205 if (!p || p == current || p->state == TASK_RUNNING || !task_stack_page(p)) 206 return 0; 207 low = task_stack_page(p); 208 high = (struct stack_frame *) task_pt_regs(p); 209 sf = (struct stack_frame *) p->thread.ksp; 210 if (sf <= low || sf > high) 211 return 0; 212 for (count = 0; count < 16; count++) { 213 sf = (struct stack_frame *) sf->back_chain; 214 if (sf <= low || sf > high) 215 return 0; 216 return_address = sf->gprs[8]; 217 if (!in_sched_functions(return_address)) 218 return return_address; 219 } 220 return 0; 221 } 222 223 unsigned long arch_align_stack(unsigned long sp) 224 { 225 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space) 226 sp -= get_random_int() & ~PAGE_MASK; 227 return sp & ~0xf; 228 } 229 230 static inline unsigned long brk_rnd(void) 231 { 232 return (get_random_int() & BRK_RND_MASK) << PAGE_SHIFT; 233 } 234 235 unsigned long arch_randomize_brk(struct mm_struct *mm) 236 { 237 unsigned long ret; 238 239 ret = PAGE_ALIGN(mm->brk + brk_rnd()); 240 return (ret > mm->brk) ? ret : mm->brk; 241 } 242 243 void set_fs_fixup(void) 244 { 245 struct pt_regs *regs = current_pt_regs(); 246 static bool warned; 247 248 set_fs(USER_DS); 249 if (warned) 250 return; 251 WARN(1, "Unbalanced set_fs - int code: 0x%x\n", regs->int_code); 252 show_registers(regs); 253 warned = true; 254 } 255