xref: /openbmc/linux/arch/s390/kernel/process.c (revision 174cd4b1)
1 /*
2  * This file handles the architecture dependent parts of process handling.
3  *
4  *    Copyright IBM Corp. 1999, 2009
5  *    Author(s): Martin Schwidefsky <schwidefsky@de.ibm.com>,
6  *		 Hartmut Penner <hp@de.ibm.com>,
7  *		 Denis Joseph Barrow,
8  */
9 
10 #include <linux/elf-randomize.h>
11 #include <linux/compiler.h>
12 #include <linux/cpu.h>
13 #include <linux/sched.h>
14 #include <linux/kernel.h>
15 #include <linux/mm.h>
16 #include <linux/elfcore.h>
17 #include <linux/smp.h>
18 #include <linux/slab.h>
19 #include <linux/interrupt.h>
20 #include <linux/tick.h>
21 #include <linux/personality.h>
22 #include <linux/syscalls.h>
23 #include <linux/compat.h>
24 #include <linux/kprobes.h>
25 #include <linux/random.h>
26 #include <linux/export.h>
27 #include <linux/init_task.h>
28 #include <asm/io.h>
29 #include <asm/processor.h>
30 #include <asm/vtimer.h>
31 #include <asm/exec.h>
32 #include <asm/irq.h>
33 #include <asm/nmi.h>
34 #include <asm/smp.h>
35 #include <asm/switch_to.h>
36 #include <asm/runtime_instr.h>
37 #include "entry.h"
38 
39 asmlinkage void ret_from_fork(void) asm ("ret_from_fork");
40 
41 /*
42  * Return saved PC of a blocked thread. used in kernel/sched.
43  * resume in entry.S does not create a new stack frame, it
44  * just stores the registers %r6-%r15 to the frame given by
45  * schedule. We want to return the address of the caller of
46  * schedule, so we have to walk the backchain one time to
47  * find the frame schedule() store its return address.
48  */
49 unsigned long thread_saved_pc(struct task_struct *tsk)
50 {
51 	struct stack_frame *sf, *low, *high;
52 
53 	if (!tsk || !task_stack_page(tsk))
54 		return 0;
55 	low = task_stack_page(tsk);
56 	high = (struct stack_frame *) task_pt_regs(tsk);
57 	sf = (struct stack_frame *) tsk->thread.ksp;
58 	if (sf <= low || sf > high)
59 		return 0;
60 	sf = (struct stack_frame *) sf->back_chain;
61 	if (sf <= low || sf > high)
62 		return 0;
63 	return sf->gprs[8];
64 }
65 
66 extern void kernel_thread_starter(void);
67 
68 /*
69  * Free current thread data structures etc..
70  */
71 void exit_thread(struct task_struct *tsk)
72 {
73 	if (tsk == current)
74 		exit_thread_runtime_instr();
75 }
76 
77 void flush_thread(void)
78 {
79 }
80 
81 void release_thread(struct task_struct *dead_task)
82 {
83 }
84 
85 void arch_release_task_struct(struct task_struct *tsk)
86 {
87 }
88 
89 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
90 {
91 	/*
92 	 * Save the floating-point or vector register state of the current
93 	 * task and set the CIF_FPU flag to lazy restore the FPU register
94 	 * state when returning to user space.
95 	 */
96 	save_fpu_regs();
97 
98 	memcpy(dst, src, arch_task_struct_size);
99 	dst->thread.fpu.regs = dst->thread.fpu.fprs;
100 	return 0;
101 }
102 
103 int copy_thread_tls(unsigned long clone_flags, unsigned long new_stackp,
104 		    unsigned long arg, struct task_struct *p, unsigned long tls)
105 {
106 	struct fake_frame
107 	{
108 		struct stack_frame sf;
109 		struct pt_regs childregs;
110 	} *frame;
111 
112 	frame = container_of(task_pt_regs(p), struct fake_frame, childregs);
113 	p->thread.ksp = (unsigned long) frame;
114 	/* Save access registers to new thread structure. */
115 	save_access_regs(&p->thread.acrs[0]);
116 	/* start new process with ar4 pointing to the correct address space */
117 	p->thread.mm_segment = get_fs();
118 	/* Don't copy debug registers */
119 	memset(&p->thread.per_user, 0, sizeof(p->thread.per_user));
120 	memset(&p->thread.per_event, 0, sizeof(p->thread.per_event));
121 	clear_tsk_thread_flag(p, TIF_SINGLE_STEP);
122 	/* Initialize per thread user and system timer values */
123 	p->thread.user_timer = 0;
124 	p->thread.system_timer = 0;
125 
126 	frame->sf.back_chain = 0;
127 	/* new return point is ret_from_fork */
128 	frame->sf.gprs[8] = (unsigned long) ret_from_fork;
129 	/* fake return stack for resume(), don't go back to schedule */
130 	frame->sf.gprs[9] = (unsigned long) frame;
131 
132 	/* Store access registers to kernel stack of new process. */
133 	if (unlikely(p->flags & PF_KTHREAD)) {
134 		/* kernel thread */
135 		memset(&frame->childregs, 0, sizeof(struct pt_regs));
136 		frame->childregs.psw.mask = PSW_KERNEL_BITS | PSW_MASK_DAT |
137 				PSW_MASK_IO | PSW_MASK_EXT | PSW_MASK_MCHECK;
138 		frame->childregs.psw.addr =
139 				(unsigned long) kernel_thread_starter;
140 		frame->childregs.gprs[9] = new_stackp; /* function */
141 		frame->childregs.gprs[10] = arg;
142 		frame->childregs.gprs[11] = (unsigned long) do_exit;
143 		frame->childregs.orig_gpr2 = -1;
144 
145 		return 0;
146 	}
147 	frame->childregs = *current_pt_regs();
148 	frame->childregs.gprs[2] = 0;	/* child returns 0 on fork. */
149 	frame->childregs.flags = 0;
150 	if (new_stackp)
151 		frame->childregs.gprs[15] = new_stackp;
152 
153 	/* Don't copy runtime instrumentation info */
154 	p->thread.ri_cb = NULL;
155 	frame->childregs.psw.mask &= ~PSW_MASK_RI;
156 
157 	/* Set a new TLS ?  */
158 	if (clone_flags & CLONE_SETTLS) {
159 		if (is_compat_task()) {
160 			p->thread.acrs[0] = (unsigned int)tls;
161 		} else {
162 			p->thread.acrs[0] = (unsigned int)(tls >> 32);
163 			p->thread.acrs[1] = (unsigned int)tls;
164 		}
165 	}
166 	return 0;
167 }
168 
169 asmlinkage void execve_tail(void)
170 {
171 	current->thread.fpu.fpc = 0;
172 	asm volatile("sfpc %0" : : "d" (0));
173 }
174 
175 /*
176  * fill in the FPU structure for a core dump.
177  */
178 int dump_fpu (struct pt_regs * regs, s390_fp_regs *fpregs)
179 {
180 	save_fpu_regs();
181 	fpregs->fpc = current->thread.fpu.fpc;
182 	fpregs->pad = 0;
183 	if (MACHINE_HAS_VX)
184 		convert_vx_to_fp((freg_t *)&fpregs->fprs,
185 				 current->thread.fpu.vxrs);
186 	else
187 		memcpy(&fpregs->fprs, current->thread.fpu.fprs,
188 		       sizeof(fpregs->fprs));
189 	return 1;
190 }
191 EXPORT_SYMBOL(dump_fpu);
192 
193 unsigned long get_wchan(struct task_struct *p)
194 {
195 	struct stack_frame *sf, *low, *high;
196 	unsigned long return_address;
197 	int count;
198 
199 	if (!p || p == current || p->state == TASK_RUNNING || !task_stack_page(p))
200 		return 0;
201 	low = task_stack_page(p);
202 	high = (struct stack_frame *) task_pt_regs(p);
203 	sf = (struct stack_frame *) p->thread.ksp;
204 	if (sf <= low || sf > high)
205 		return 0;
206 	for (count = 0; count < 16; count++) {
207 		sf = (struct stack_frame *) sf->back_chain;
208 		if (sf <= low || sf > high)
209 			return 0;
210 		return_address = sf->gprs[8];
211 		if (!in_sched_functions(return_address))
212 			return return_address;
213 	}
214 	return 0;
215 }
216 
217 unsigned long arch_align_stack(unsigned long sp)
218 {
219 	if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
220 		sp -= get_random_int() & ~PAGE_MASK;
221 	return sp & ~0xf;
222 }
223 
224 static inline unsigned long brk_rnd(void)
225 {
226 	return (get_random_int() & BRK_RND_MASK) << PAGE_SHIFT;
227 }
228 
229 unsigned long arch_randomize_brk(struct mm_struct *mm)
230 {
231 	unsigned long ret;
232 
233 	ret = PAGE_ALIGN(mm->brk + brk_rnd());
234 	return (ret > mm->brk) ? ret : mm->brk;
235 }
236 
237 void set_fs_fixup(void)
238 {
239 	struct pt_regs *regs = current_pt_regs();
240 	static bool warned;
241 
242 	set_fs(USER_DS);
243 	if (warned)
244 		return;
245 	WARN(1, "Unbalanced set_fs - int code: 0x%x\n", regs->int_code);
246 	show_registers(regs);
247 	warned = true;
248 }
249