xref: /openbmc/linux/arch/s390/kernel/process.c (revision 05bcf503)
1 /*
2  * This file handles the architecture dependent parts of process handling.
3  *
4  *    Copyright IBM Corp. 1999, 2009
5  *    Author(s): Martin Schwidefsky <schwidefsky@de.ibm.com>,
6  *		 Hartmut Penner <hp@de.ibm.com>,
7  *		 Denis Joseph Barrow,
8  */
9 
10 #include <linux/compiler.h>
11 #include <linux/cpu.h>
12 #include <linux/sched.h>
13 #include <linux/kernel.h>
14 #include <linux/mm.h>
15 #include <linux/elfcore.h>
16 #include <linux/smp.h>
17 #include <linux/slab.h>
18 #include <linux/interrupt.h>
19 #include <linux/tick.h>
20 #include <linux/personality.h>
21 #include <linux/syscalls.h>
22 #include <linux/compat.h>
23 #include <linux/kprobes.h>
24 #include <linux/random.h>
25 #include <linux/module.h>
26 #include <asm/io.h>
27 #include <asm/processor.h>
28 #include <asm/vtimer.h>
29 #include <asm/exec.h>
30 #include <asm/irq.h>
31 #include <asm/nmi.h>
32 #include <asm/smp.h>
33 #include <asm/switch_to.h>
34 #include <asm/runtime_instr.h>
35 #include "entry.h"
36 
37 asmlinkage void ret_from_fork(void) asm ("ret_from_fork");
38 
39 /*
40  * Return saved PC of a blocked thread. used in kernel/sched.
41  * resume in entry.S does not create a new stack frame, it
42  * just stores the registers %r6-%r15 to the frame given by
43  * schedule. We want to return the address of the caller of
44  * schedule, so we have to walk the backchain one time to
45  * find the frame schedule() store its return address.
46  */
47 unsigned long thread_saved_pc(struct task_struct *tsk)
48 {
49 	struct stack_frame *sf, *low, *high;
50 
51 	if (!tsk || !task_stack_page(tsk))
52 		return 0;
53 	low = task_stack_page(tsk);
54 	high = (struct stack_frame *) task_pt_regs(tsk);
55 	sf = (struct stack_frame *) (tsk->thread.ksp & PSW_ADDR_INSN);
56 	if (sf <= low || sf > high)
57 		return 0;
58 	sf = (struct stack_frame *) (sf->back_chain & PSW_ADDR_INSN);
59 	if (sf <= low || sf > high)
60 		return 0;
61 	return sf->gprs[8];
62 }
63 
64 /*
65  * The idle loop on a S390...
66  */
67 static void default_idle(void)
68 {
69 	if (cpu_is_offline(smp_processor_id()))
70 		cpu_die();
71 	local_irq_disable();
72 	if (need_resched()) {
73 		local_irq_enable();
74 		return;
75 	}
76 	local_mcck_disable();
77 	if (test_thread_flag(TIF_MCCK_PENDING)) {
78 		local_mcck_enable();
79 		local_irq_enable();
80 		return;
81 	}
82 	/* Halt the cpu and keep track of cpu time accounting. */
83 	vtime_stop_cpu();
84 }
85 
86 void cpu_idle(void)
87 {
88 	for (;;) {
89 		tick_nohz_idle_enter();
90 		rcu_idle_enter();
91 		while (!need_resched() && !test_thread_flag(TIF_MCCK_PENDING))
92 			default_idle();
93 		rcu_idle_exit();
94 		tick_nohz_idle_exit();
95 		if (test_thread_flag(TIF_MCCK_PENDING))
96 			s390_handle_mcck();
97 		schedule_preempt_disabled();
98 	}
99 }
100 
101 extern void __kprobes kernel_thread_starter(void);
102 
103 /*
104  * Free current thread data structures etc..
105  */
106 void exit_thread(void)
107 {
108 	exit_thread_runtime_instr();
109 }
110 
111 void flush_thread(void)
112 {
113 }
114 
115 void release_thread(struct task_struct *dead_task)
116 {
117 }
118 
119 int copy_thread(unsigned long clone_flags, unsigned long new_stackp,
120 		unsigned long arg,
121 		struct task_struct *p, struct pt_regs *regs)
122 {
123 	struct thread_info *ti;
124 	struct fake_frame
125 	{
126 		struct stack_frame sf;
127 		struct pt_regs childregs;
128 	} *frame;
129 
130 	frame = container_of(task_pt_regs(p), struct fake_frame, childregs);
131 	p->thread.ksp = (unsigned long) frame;
132 	/* Save access registers to new thread structure. */
133 	save_access_regs(&p->thread.acrs[0]);
134 	/* start new process with ar4 pointing to the correct address space */
135 	p->thread.mm_segment = get_fs();
136 	/* Don't copy debug registers */
137 	memset(&p->thread.per_user, 0, sizeof(p->thread.per_user));
138 	memset(&p->thread.per_event, 0, sizeof(p->thread.per_event));
139 	clear_tsk_thread_flag(p, TIF_SINGLE_STEP);
140 	clear_tsk_thread_flag(p, TIF_PER_TRAP);
141 	/* Initialize per thread user and system timer values */
142 	ti = task_thread_info(p);
143 	ti->user_timer = 0;
144 	ti->system_timer = 0;
145 
146 	frame->sf.back_chain = 0;
147 	/* new return point is ret_from_fork */
148 	frame->sf.gprs[8] = (unsigned long) ret_from_fork;
149 	/* fake return stack for resume(), don't go back to schedule */
150 	frame->sf.gprs[9] = (unsigned long) frame;
151 
152 	/* Store access registers to kernel stack of new process. */
153 	if (unlikely(!regs)) {
154 		/* kernel thread */
155 		memset(&frame->childregs, 0, sizeof(struct pt_regs));
156 		frame->childregs.psw.mask = psw_kernel_bits | PSW_MASK_DAT |
157 				PSW_MASK_IO | PSW_MASK_EXT | PSW_MASK_MCHECK;
158 		frame->childregs.psw.addr = PSW_ADDR_AMODE |
159 				(unsigned long) kernel_thread_starter;
160 		frame->childregs.gprs[9] = new_stackp; /* function */
161 		frame->childregs.gprs[10] = arg;
162 		frame->childregs.gprs[11] = (unsigned long) do_exit;
163 		frame->childregs.orig_gpr2 = -1;
164 
165 		return 0;
166 	}
167 	frame->childregs = *regs;
168 	frame->childregs.gprs[2] = 0;	/* child returns 0 on fork. */
169 	frame->childregs.gprs[15] = new_stackp;
170 
171 	/* Don't copy runtime instrumentation info */
172 	p->thread.ri_cb = NULL;
173 	p->thread.ri_signum = 0;
174 	frame->childregs.psw.mask &= ~PSW_MASK_RI;
175 
176 #ifndef CONFIG_64BIT
177 	/*
178 	 * save fprs to current->thread.fp_regs to merge them with
179 	 * the emulated registers and then copy the result to the child.
180 	 */
181 	save_fp_regs(&current->thread.fp_regs);
182 	memcpy(&p->thread.fp_regs, &current->thread.fp_regs,
183 	       sizeof(s390_fp_regs));
184 	/* Set a new TLS ?  */
185 	if (clone_flags & CLONE_SETTLS)
186 		p->thread.acrs[0] = regs->gprs[6];
187 #else /* CONFIG_64BIT */
188 	/* Save the fpu registers to new thread structure. */
189 	save_fp_regs(&p->thread.fp_regs);
190 	/* Set a new TLS ?  */
191 	if (clone_flags & CLONE_SETTLS) {
192 		if (is_compat_task()) {
193 			p->thread.acrs[0] = (unsigned int) regs->gprs[6];
194 		} else {
195 			p->thread.acrs[0] = (unsigned int)(regs->gprs[6] >> 32);
196 			p->thread.acrs[1] = (unsigned int) regs->gprs[6];
197 		}
198 	}
199 #endif /* CONFIG_64BIT */
200 	return 0;
201 }
202 
203 SYSCALL_DEFINE0(fork)
204 {
205 	struct pt_regs *regs = task_pt_regs(current);
206 	return do_fork(SIGCHLD, regs->gprs[15], regs, 0, NULL, NULL);
207 }
208 
209 SYSCALL_DEFINE4(clone, unsigned long, newsp, unsigned long, clone_flags,
210 		int __user *, parent_tidptr, int __user *, child_tidptr)
211 {
212 	struct pt_regs *regs = task_pt_regs(current);
213 
214 	if (!newsp)
215 		newsp = regs->gprs[15];
216 	return do_fork(clone_flags, newsp, regs, 0,
217 		       parent_tidptr, child_tidptr);
218 }
219 
220 /*
221  * This is trivial, and on the face of it looks like it
222  * could equally well be done in user mode.
223  *
224  * Not so, for quite unobvious reasons - register pressure.
225  * In user mode vfork() cannot have a stack frame, and if
226  * done by calling the "clone()" system call directly, you
227  * do not have enough call-clobbered registers to hold all
228  * the information you need.
229  */
230 SYSCALL_DEFINE0(vfork)
231 {
232 	struct pt_regs *regs = task_pt_regs(current);
233 	return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD,
234 		       regs->gprs[15], regs, 0, NULL, NULL);
235 }
236 
237 asmlinkage void execve_tail(void)
238 {
239 	current->thread.fp_regs.fpc = 0;
240 	if (MACHINE_HAS_IEEE)
241 		asm volatile("sfpc %0,%0" : : "d" (0));
242 }
243 
244 /*
245  * fill in the FPU structure for a core dump.
246  */
247 int dump_fpu (struct pt_regs * regs, s390_fp_regs *fpregs)
248 {
249 #ifndef CONFIG_64BIT
250 	/*
251 	 * save fprs to current->thread.fp_regs to merge them with
252 	 * the emulated registers and then copy the result to the dump.
253 	 */
254 	save_fp_regs(&current->thread.fp_regs);
255 	memcpy(fpregs, &current->thread.fp_regs, sizeof(s390_fp_regs));
256 #else /* CONFIG_64BIT */
257 	save_fp_regs(fpregs);
258 #endif /* CONFIG_64BIT */
259 	return 1;
260 }
261 EXPORT_SYMBOL(dump_fpu);
262 
263 unsigned long get_wchan(struct task_struct *p)
264 {
265 	struct stack_frame *sf, *low, *high;
266 	unsigned long return_address;
267 	int count;
268 
269 	if (!p || p == current || p->state == TASK_RUNNING || !task_stack_page(p))
270 		return 0;
271 	low = task_stack_page(p);
272 	high = (struct stack_frame *) task_pt_regs(p);
273 	sf = (struct stack_frame *) (p->thread.ksp & PSW_ADDR_INSN);
274 	if (sf <= low || sf > high)
275 		return 0;
276 	for (count = 0; count < 16; count++) {
277 		sf = (struct stack_frame *) (sf->back_chain & PSW_ADDR_INSN);
278 		if (sf <= low || sf > high)
279 			return 0;
280 		return_address = sf->gprs[8] & PSW_ADDR_INSN;
281 		if (!in_sched_functions(return_address))
282 			return return_address;
283 	}
284 	return 0;
285 }
286 
287 unsigned long arch_align_stack(unsigned long sp)
288 {
289 	if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
290 		sp -= get_random_int() & ~PAGE_MASK;
291 	return sp & ~0xf;
292 }
293 
294 static inline unsigned long brk_rnd(void)
295 {
296 	/* 8MB for 32bit, 1GB for 64bit */
297 	if (is_32bit_task())
298 		return (get_random_int() & 0x7ffUL) << PAGE_SHIFT;
299 	else
300 		return (get_random_int() & 0x3ffffUL) << PAGE_SHIFT;
301 }
302 
303 unsigned long arch_randomize_brk(struct mm_struct *mm)
304 {
305 	unsigned long ret = PAGE_ALIGN(mm->brk + brk_rnd());
306 
307 	if (ret < mm->brk)
308 		return mm->brk;
309 	return ret;
310 }
311 
312 unsigned long randomize_et_dyn(unsigned long base)
313 {
314 	unsigned long ret = PAGE_ALIGN(base + brk_rnd());
315 
316 	if (!(current->flags & PF_RANDOMIZE))
317 		return base;
318 	if (ret < base)
319 		return base;
320 	return ret;
321 }
322