1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Performance event support for the System z CPU-measurement Sampling Facility 4 * 5 * Copyright IBM Corp. 2013, 2018 6 * Author(s): Hendrik Brueckner <brueckner@linux.vnet.ibm.com> 7 */ 8 #define KMSG_COMPONENT "cpum_sf" 9 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt 10 11 #include <linux/kernel.h> 12 #include <linux/kernel_stat.h> 13 #include <linux/perf_event.h> 14 #include <linux/percpu.h> 15 #include <linux/pid.h> 16 #include <linux/notifier.h> 17 #include <linux/export.h> 18 #include <linux/slab.h> 19 #include <linux/mm.h> 20 #include <linux/moduleparam.h> 21 #include <asm/cpu_mf.h> 22 #include <asm/irq.h> 23 #include <asm/debug.h> 24 #include <asm/timex.h> 25 26 /* Minimum number of sample-data-block-tables: 27 * At least one table is required for the sampling buffer structure. 28 * A single table contains up to 511 pointers to sample-data-blocks. 29 */ 30 #define CPUM_SF_MIN_SDBT 1 31 32 /* Number of sample-data-blocks per sample-data-block-table (SDBT): 33 * A table contains SDB pointers (8 bytes) and one table-link entry 34 * that points to the origin of the next SDBT. 35 */ 36 #define CPUM_SF_SDB_PER_TABLE ((PAGE_SIZE - 8) / 8) 37 38 /* Maximum page offset for an SDBT table-link entry: 39 * If this page offset is reached, a table-link entry to the next SDBT 40 * must be added. 41 */ 42 #define CPUM_SF_SDBT_TL_OFFSET (CPUM_SF_SDB_PER_TABLE * 8) 43 static inline int require_table_link(const void *sdbt) 44 { 45 return ((unsigned long) sdbt & ~PAGE_MASK) == CPUM_SF_SDBT_TL_OFFSET; 46 } 47 48 /* Minimum and maximum sampling buffer sizes: 49 * 50 * This number represents the maximum size of the sampling buffer taking 51 * the number of sample-data-block-tables into account. Note that these 52 * numbers apply to the basic-sampling function only. 53 * The maximum number of SDBs is increased by CPUM_SF_SDB_DIAG_FACTOR if 54 * the diagnostic-sampling function is active. 55 * 56 * Sampling buffer size Buffer characteristics 57 * --------------------------------------------------- 58 * 64KB == 16 pages (4KB per page) 59 * 1 page for SDB-tables 60 * 15 pages for SDBs 61 * 62 * 32MB == 8192 pages (4KB per page) 63 * 16 pages for SDB-tables 64 * 8176 pages for SDBs 65 */ 66 static unsigned long __read_mostly CPUM_SF_MIN_SDB = 15; 67 static unsigned long __read_mostly CPUM_SF_MAX_SDB = 8176; 68 static unsigned long __read_mostly CPUM_SF_SDB_DIAG_FACTOR = 1; 69 70 struct sf_buffer { 71 unsigned long *sdbt; /* Sample-data-block-table origin */ 72 /* buffer characteristics (required for buffer increments) */ 73 unsigned long num_sdb; /* Number of sample-data-blocks */ 74 unsigned long num_sdbt; /* Number of sample-data-block-tables */ 75 unsigned long *tail; /* last sample-data-block-table */ 76 }; 77 78 struct aux_buffer { 79 struct sf_buffer sfb; 80 unsigned long head; /* index of SDB of buffer head */ 81 unsigned long alert_mark; /* index of SDB of alert request position */ 82 unsigned long empty_mark; /* mark of SDB not marked full */ 83 unsigned long *sdb_index; /* SDB address for fast lookup */ 84 unsigned long *sdbt_index; /* SDBT address for fast lookup */ 85 }; 86 87 struct cpu_hw_sf { 88 /* CPU-measurement sampling information block */ 89 struct hws_qsi_info_block qsi; 90 /* CPU-measurement sampling control block */ 91 struct hws_lsctl_request_block lsctl; 92 struct sf_buffer sfb; /* Sampling buffer */ 93 unsigned int flags; /* Status flags */ 94 struct perf_event *event; /* Scheduled perf event */ 95 struct perf_output_handle handle; /* AUX buffer output handle */ 96 }; 97 static DEFINE_PER_CPU(struct cpu_hw_sf, cpu_hw_sf); 98 99 /* Debug feature */ 100 static debug_info_t *sfdbg; 101 102 /* 103 * sf_disable() - Switch off sampling facility 104 */ 105 static int sf_disable(void) 106 { 107 struct hws_lsctl_request_block sreq; 108 109 memset(&sreq, 0, sizeof(sreq)); 110 return lsctl(&sreq); 111 } 112 113 /* 114 * sf_buffer_available() - Check for an allocated sampling buffer 115 */ 116 static int sf_buffer_available(struct cpu_hw_sf *cpuhw) 117 { 118 return !!cpuhw->sfb.sdbt; 119 } 120 121 /* 122 * deallocate sampling facility buffer 123 */ 124 static void free_sampling_buffer(struct sf_buffer *sfb) 125 { 126 unsigned long *sdbt, *curr; 127 128 if (!sfb->sdbt) 129 return; 130 131 sdbt = sfb->sdbt; 132 curr = sdbt; 133 134 /* Free the SDBT after all SDBs are processed... */ 135 while (1) { 136 if (!*curr || !sdbt) 137 break; 138 139 /* Process table-link entries */ 140 if (is_link_entry(curr)) { 141 curr = get_next_sdbt(curr); 142 if (sdbt) 143 free_page((unsigned long) sdbt); 144 145 /* If the origin is reached, sampling buffer is freed */ 146 if (curr == sfb->sdbt) 147 break; 148 else 149 sdbt = curr; 150 } else { 151 /* Process SDB pointer */ 152 if (*curr) { 153 free_page(*curr); 154 curr++; 155 } 156 } 157 } 158 159 debug_sprintf_event(sfdbg, 5, "%s: freed sdbt %#lx\n", __func__, 160 (unsigned long)sfb->sdbt); 161 memset(sfb, 0, sizeof(*sfb)); 162 } 163 164 static int alloc_sample_data_block(unsigned long *sdbt, gfp_t gfp_flags) 165 { 166 unsigned long sdb, *trailer; 167 168 /* Allocate and initialize sample-data-block */ 169 sdb = get_zeroed_page(gfp_flags); 170 if (!sdb) 171 return -ENOMEM; 172 trailer = trailer_entry_ptr(sdb); 173 *trailer = SDB_TE_ALERT_REQ_MASK; 174 175 /* Link SDB into the sample-data-block-table */ 176 *sdbt = sdb; 177 178 return 0; 179 } 180 181 /* 182 * realloc_sampling_buffer() - extend sampler memory 183 * 184 * Allocates new sample-data-blocks and adds them to the specified sampling 185 * buffer memory. 186 * 187 * Important: This modifies the sampling buffer and must be called when the 188 * sampling facility is disabled. 189 * 190 * Returns zero on success, non-zero otherwise. 191 */ 192 static int realloc_sampling_buffer(struct sf_buffer *sfb, 193 unsigned long num_sdb, gfp_t gfp_flags) 194 { 195 int i, rc; 196 unsigned long *new, *tail, *tail_prev = NULL; 197 198 if (!sfb->sdbt || !sfb->tail) 199 return -EINVAL; 200 201 if (!is_link_entry(sfb->tail)) 202 return -EINVAL; 203 204 /* Append to the existing sampling buffer, overwriting the table-link 205 * register. 206 * The tail variables always points to the "tail" (last and table-link) 207 * entry in an SDB-table. 208 */ 209 tail = sfb->tail; 210 211 /* Do a sanity check whether the table-link entry points to 212 * the sampling buffer origin. 213 */ 214 if (sfb->sdbt != get_next_sdbt(tail)) { 215 debug_sprintf_event(sfdbg, 3, "%s: " 216 "sampling buffer is not linked: origin %#lx" 217 " tail %#lx\n", __func__, 218 (unsigned long)sfb->sdbt, 219 (unsigned long)tail); 220 return -EINVAL; 221 } 222 223 /* Allocate remaining SDBs */ 224 rc = 0; 225 for (i = 0; i < num_sdb; i++) { 226 /* Allocate a new SDB-table if it is full. */ 227 if (require_table_link(tail)) { 228 new = (unsigned long *) get_zeroed_page(gfp_flags); 229 if (!new) { 230 rc = -ENOMEM; 231 break; 232 } 233 sfb->num_sdbt++; 234 /* Link current page to tail of chain */ 235 *tail = (unsigned long)(void *) new + 1; 236 tail_prev = tail; 237 tail = new; 238 } 239 240 /* Allocate a new sample-data-block. 241 * If there is not enough memory, stop the realloc process 242 * and simply use what was allocated. If this is a temporary 243 * issue, a new realloc call (if required) might succeed. 244 */ 245 rc = alloc_sample_data_block(tail, gfp_flags); 246 if (rc) { 247 /* Undo last SDBT. An SDBT with no SDB at its first 248 * entry but with an SDBT entry instead can not be 249 * handled by the interrupt handler code. 250 * Avoid this situation. 251 */ 252 if (tail_prev) { 253 sfb->num_sdbt--; 254 free_page((unsigned long) new); 255 tail = tail_prev; 256 } 257 break; 258 } 259 sfb->num_sdb++; 260 tail++; 261 tail_prev = new = NULL; /* Allocated at least one SBD */ 262 } 263 264 /* Link sampling buffer to its origin */ 265 *tail = (unsigned long) sfb->sdbt + 1; 266 sfb->tail = tail; 267 268 debug_sprintf_event(sfdbg, 4, "%s: new buffer" 269 " settings: sdbt %lu sdb %lu\n", __func__, 270 sfb->num_sdbt, sfb->num_sdb); 271 return rc; 272 } 273 274 /* 275 * allocate_sampling_buffer() - allocate sampler memory 276 * 277 * Allocates and initializes a sampling buffer structure using the 278 * specified number of sample-data-blocks (SDB). For each allocation, 279 * a 4K page is used. The number of sample-data-block-tables (SDBT) 280 * are calculated from SDBs. 281 * Also set the ALERT_REQ mask in each SDBs trailer. 282 * 283 * Returns zero on success, non-zero otherwise. 284 */ 285 static int alloc_sampling_buffer(struct sf_buffer *sfb, unsigned long num_sdb) 286 { 287 int rc; 288 289 if (sfb->sdbt) 290 return -EINVAL; 291 292 /* Allocate the sample-data-block-table origin */ 293 sfb->sdbt = (unsigned long *) get_zeroed_page(GFP_KERNEL); 294 if (!sfb->sdbt) 295 return -ENOMEM; 296 sfb->num_sdb = 0; 297 sfb->num_sdbt = 1; 298 299 /* Link the table origin to point to itself to prepare for 300 * realloc_sampling_buffer() invocation. 301 */ 302 sfb->tail = sfb->sdbt; 303 *sfb->tail = (unsigned long)(void *) sfb->sdbt + 1; 304 305 /* Allocate requested number of sample-data-blocks */ 306 rc = realloc_sampling_buffer(sfb, num_sdb, GFP_KERNEL); 307 if (rc) { 308 free_sampling_buffer(sfb); 309 debug_sprintf_event(sfdbg, 4, "%s: " 310 "realloc_sampling_buffer failed with rc %i\n", 311 __func__, rc); 312 } else 313 debug_sprintf_event(sfdbg, 4, 314 "%s: tear %#lx dear %#lx\n", __func__, 315 (unsigned long)sfb->sdbt, (unsigned long)*sfb->sdbt); 316 return rc; 317 } 318 319 static void sfb_set_limits(unsigned long min, unsigned long max) 320 { 321 struct hws_qsi_info_block si; 322 323 CPUM_SF_MIN_SDB = min; 324 CPUM_SF_MAX_SDB = max; 325 326 memset(&si, 0, sizeof(si)); 327 if (!qsi(&si)) 328 CPUM_SF_SDB_DIAG_FACTOR = DIV_ROUND_UP(si.dsdes, si.bsdes); 329 } 330 331 static unsigned long sfb_max_limit(struct hw_perf_event *hwc) 332 { 333 return SAMPL_DIAG_MODE(hwc) ? CPUM_SF_MAX_SDB * CPUM_SF_SDB_DIAG_FACTOR 334 : CPUM_SF_MAX_SDB; 335 } 336 337 static unsigned long sfb_pending_allocs(struct sf_buffer *sfb, 338 struct hw_perf_event *hwc) 339 { 340 if (!sfb->sdbt) 341 return SFB_ALLOC_REG(hwc); 342 if (SFB_ALLOC_REG(hwc) > sfb->num_sdb) 343 return SFB_ALLOC_REG(hwc) - sfb->num_sdb; 344 return 0; 345 } 346 347 static int sfb_has_pending_allocs(struct sf_buffer *sfb, 348 struct hw_perf_event *hwc) 349 { 350 return sfb_pending_allocs(sfb, hwc) > 0; 351 } 352 353 static void sfb_account_allocs(unsigned long num, struct hw_perf_event *hwc) 354 { 355 /* Limit the number of SDBs to not exceed the maximum */ 356 num = min_t(unsigned long, num, sfb_max_limit(hwc) - SFB_ALLOC_REG(hwc)); 357 if (num) 358 SFB_ALLOC_REG(hwc) += num; 359 } 360 361 static void sfb_init_allocs(unsigned long num, struct hw_perf_event *hwc) 362 { 363 SFB_ALLOC_REG(hwc) = 0; 364 sfb_account_allocs(num, hwc); 365 } 366 367 static void deallocate_buffers(struct cpu_hw_sf *cpuhw) 368 { 369 if (cpuhw->sfb.sdbt) 370 free_sampling_buffer(&cpuhw->sfb); 371 } 372 373 static int allocate_buffers(struct cpu_hw_sf *cpuhw, struct hw_perf_event *hwc) 374 { 375 unsigned long n_sdb, freq; 376 size_t sample_size; 377 378 /* Calculate sampling buffers using 4K pages 379 * 380 * 1. The sampling size is 32 bytes for basic sampling. This size 381 * is the same for all machine types. Diagnostic 382 * sampling uses auxlilary data buffer setup which provides the 383 * memory for SDBs using linux common code auxiliary trace 384 * setup. 385 * 386 * 2. Function alloc_sampling_buffer() sets the Alert Request 387 * Control indicator to trigger a measurement-alert to harvest 388 * sample-data-blocks (SDB). This is done per SDB. This 389 * measurement alert interrupt fires quick enough to handle 390 * one SDB, on very high frequency and work loads there might 391 * be 2 to 3 SBDs available for sample processing. 392 * Currently there is no need for setup alert request on every 393 * n-th page. This is counterproductive as one IRQ triggers 394 * a very high number of samples to be processed at one IRQ. 395 * 396 * 3. Use the sampling frequency as input. 397 * Compute the number of SDBs and ensure a minimum 398 * of CPUM_SF_MIN_SDB. Depending on frequency add some more 399 * SDBs to handle a higher sampling rate. 400 * Use a minimum of CPUM_SF_MIN_SDB and allow for 100 samples 401 * (one SDB) for every 10000 HZ frequency increment. 402 * 403 * 4. Compute the number of sample-data-block-tables (SDBT) and 404 * ensure a minimum of CPUM_SF_MIN_SDBT (one table can manage up 405 * to 511 SDBs). 406 */ 407 sample_size = sizeof(struct hws_basic_entry); 408 freq = sample_rate_to_freq(&cpuhw->qsi, SAMPL_RATE(hwc)); 409 n_sdb = CPUM_SF_MIN_SDB + DIV_ROUND_UP(freq, 10000); 410 411 /* If there is already a sampling buffer allocated, it is very likely 412 * that the sampling facility is enabled too. If the event to be 413 * initialized requires a greater sampling buffer, the allocation must 414 * be postponed. Changing the sampling buffer requires the sampling 415 * facility to be in the disabled state. So, account the number of 416 * required SDBs and let cpumsf_pmu_enable() resize the buffer just 417 * before the event is started. 418 */ 419 sfb_init_allocs(n_sdb, hwc); 420 if (sf_buffer_available(cpuhw)) 421 return 0; 422 423 debug_sprintf_event(sfdbg, 3, 424 "%s: rate %lu f %lu sdb %lu/%lu" 425 " sample_size %lu cpuhw %p\n", __func__, 426 SAMPL_RATE(hwc), freq, n_sdb, sfb_max_limit(hwc), 427 sample_size, cpuhw); 428 429 return alloc_sampling_buffer(&cpuhw->sfb, 430 sfb_pending_allocs(&cpuhw->sfb, hwc)); 431 } 432 433 static unsigned long min_percent(unsigned int percent, unsigned long base, 434 unsigned long min) 435 { 436 return min_t(unsigned long, min, DIV_ROUND_UP(percent * base, 100)); 437 } 438 439 static unsigned long compute_sfb_extent(unsigned long ratio, unsigned long base) 440 { 441 /* Use a percentage-based approach to extend the sampling facility 442 * buffer. Accept up to 5% sample data loss. 443 * Vary the extents between 1% to 5% of the current number of 444 * sample-data-blocks. 445 */ 446 if (ratio <= 5) 447 return 0; 448 if (ratio <= 25) 449 return min_percent(1, base, 1); 450 if (ratio <= 50) 451 return min_percent(1, base, 1); 452 if (ratio <= 75) 453 return min_percent(2, base, 2); 454 if (ratio <= 100) 455 return min_percent(3, base, 3); 456 if (ratio <= 250) 457 return min_percent(4, base, 4); 458 459 return min_percent(5, base, 8); 460 } 461 462 static void sfb_account_overflows(struct cpu_hw_sf *cpuhw, 463 struct hw_perf_event *hwc) 464 { 465 unsigned long ratio, num; 466 467 if (!OVERFLOW_REG(hwc)) 468 return; 469 470 /* The sample_overflow contains the average number of sample data 471 * that has been lost because sample-data-blocks were full. 472 * 473 * Calculate the total number of sample data entries that has been 474 * discarded. Then calculate the ratio of lost samples to total samples 475 * per second in percent. 476 */ 477 ratio = DIV_ROUND_UP(100 * OVERFLOW_REG(hwc) * cpuhw->sfb.num_sdb, 478 sample_rate_to_freq(&cpuhw->qsi, SAMPL_RATE(hwc))); 479 480 /* Compute number of sample-data-blocks */ 481 num = compute_sfb_extent(ratio, cpuhw->sfb.num_sdb); 482 if (num) 483 sfb_account_allocs(num, hwc); 484 485 debug_sprintf_event(sfdbg, 5, "%s: overflow %llu ratio %lu num %lu\n", 486 __func__, OVERFLOW_REG(hwc), ratio, num); 487 OVERFLOW_REG(hwc) = 0; 488 } 489 490 /* extend_sampling_buffer() - Extend sampling buffer 491 * @sfb: Sampling buffer structure (for local CPU) 492 * @hwc: Perf event hardware structure 493 * 494 * Use this function to extend the sampling buffer based on the overflow counter 495 * and postponed allocation extents stored in the specified Perf event hardware. 496 * 497 * Important: This function disables the sampling facility in order to safely 498 * change the sampling buffer structure. Do not call this function 499 * when the PMU is active. 500 */ 501 static void extend_sampling_buffer(struct sf_buffer *sfb, 502 struct hw_perf_event *hwc) 503 { 504 unsigned long num, num_old; 505 int rc; 506 507 num = sfb_pending_allocs(sfb, hwc); 508 if (!num) 509 return; 510 num_old = sfb->num_sdb; 511 512 /* Disable the sampling facility to reset any states and also 513 * clear pending measurement alerts. 514 */ 515 sf_disable(); 516 517 /* Extend the sampling buffer. 518 * This memory allocation typically happens in an atomic context when 519 * called by perf. Because this is a reallocation, it is fine if the 520 * new SDB-request cannot be satisfied immediately. 521 */ 522 rc = realloc_sampling_buffer(sfb, num, GFP_ATOMIC); 523 if (rc) 524 debug_sprintf_event(sfdbg, 5, "%s: realloc failed with rc %i\n", 525 __func__, rc); 526 527 if (sfb_has_pending_allocs(sfb, hwc)) 528 debug_sprintf_event(sfdbg, 5, "%s: " 529 "req %lu alloc %lu remaining %lu\n", 530 __func__, num, sfb->num_sdb - num_old, 531 sfb_pending_allocs(sfb, hwc)); 532 } 533 534 /* Number of perf events counting hardware events */ 535 static atomic_t num_events; 536 /* Used to avoid races in calling reserve/release_cpumf_hardware */ 537 static DEFINE_MUTEX(pmc_reserve_mutex); 538 539 #define PMC_INIT 0 540 #define PMC_RELEASE 1 541 #define PMC_FAILURE 2 542 static void setup_pmc_cpu(void *flags) 543 { 544 int err; 545 struct cpu_hw_sf *cpusf = this_cpu_ptr(&cpu_hw_sf); 546 547 err = 0; 548 switch (*((int *) flags)) { 549 case PMC_INIT: 550 memset(cpusf, 0, sizeof(*cpusf)); 551 err = qsi(&cpusf->qsi); 552 if (err) 553 break; 554 cpusf->flags |= PMU_F_RESERVED; 555 err = sf_disable(); 556 if (err) 557 pr_err("Switching off the sampling facility failed " 558 "with rc %i\n", err); 559 debug_sprintf_event(sfdbg, 5, 560 "%s: initialized: cpuhw %p\n", __func__, 561 cpusf); 562 break; 563 case PMC_RELEASE: 564 cpusf->flags &= ~PMU_F_RESERVED; 565 err = sf_disable(); 566 if (err) { 567 pr_err("Switching off the sampling facility failed " 568 "with rc %i\n", err); 569 } else 570 deallocate_buffers(cpusf); 571 debug_sprintf_event(sfdbg, 5, 572 "%s: released: cpuhw %p\n", __func__, 573 cpusf); 574 break; 575 } 576 if (err) 577 *((int *) flags) |= PMC_FAILURE; 578 } 579 580 static void release_pmc_hardware(void) 581 { 582 int flags = PMC_RELEASE; 583 584 irq_subclass_unregister(IRQ_SUBCLASS_MEASUREMENT_ALERT); 585 on_each_cpu(setup_pmc_cpu, &flags, 1); 586 } 587 588 static int reserve_pmc_hardware(void) 589 { 590 int flags = PMC_INIT; 591 592 on_each_cpu(setup_pmc_cpu, &flags, 1); 593 if (flags & PMC_FAILURE) { 594 release_pmc_hardware(); 595 return -ENODEV; 596 } 597 irq_subclass_register(IRQ_SUBCLASS_MEASUREMENT_ALERT); 598 599 return 0; 600 } 601 602 static void hw_perf_event_destroy(struct perf_event *event) 603 { 604 /* Release PMC if this is the last perf event */ 605 if (!atomic_add_unless(&num_events, -1, 1)) { 606 mutex_lock(&pmc_reserve_mutex); 607 if (atomic_dec_return(&num_events) == 0) 608 release_pmc_hardware(); 609 mutex_unlock(&pmc_reserve_mutex); 610 } 611 } 612 613 static void hw_init_period(struct hw_perf_event *hwc, u64 period) 614 { 615 hwc->sample_period = period; 616 hwc->last_period = hwc->sample_period; 617 local64_set(&hwc->period_left, hwc->sample_period); 618 } 619 620 static unsigned long hw_limit_rate(const struct hws_qsi_info_block *si, 621 unsigned long rate) 622 { 623 return clamp_t(unsigned long, rate, 624 si->min_sampl_rate, si->max_sampl_rate); 625 } 626 627 static u32 cpumsf_pid_type(struct perf_event *event, 628 u32 pid, enum pid_type type) 629 { 630 struct task_struct *tsk; 631 632 /* Idle process */ 633 if (!pid) 634 goto out; 635 636 tsk = find_task_by_pid_ns(pid, &init_pid_ns); 637 pid = -1; 638 if (tsk) { 639 /* 640 * Only top level events contain the pid namespace in which 641 * they are created. 642 */ 643 if (event->parent) 644 event = event->parent; 645 pid = __task_pid_nr_ns(tsk, type, event->ns); 646 /* 647 * See also 1d953111b648 648 * "perf/core: Don't report zero PIDs for exiting tasks". 649 */ 650 if (!pid && !pid_alive(tsk)) 651 pid = -1; 652 } 653 out: 654 return pid; 655 } 656 657 static void cpumsf_output_event_pid(struct perf_event *event, 658 struct perf_sample_data *data, 659 struct pt_regs *regs) 660 { 661 u32 pid; 662 struct perf_event_header header; 663 struct perf_output_handle handle; 664 665 /* 666 * Obtain the PID from the basic-sampling data entry and 667 * correct the data->tid_entry.pid value. 668 */ 669 pid = data->tid_entry.pid; 670 671 /* Protect callchain buffers, tasks */ 672 rcu_read_lock(); 673 674 perf_prepare_sample(&header, data, event, regs); 675 if (perf_output_begin(&handle, data, event, header.size)) 676 goto out; 677 678 /* Update the process ID (see also kernel/events/core.c) */ 679 data->tid_entry.pid = cpumsf_pid_type(event, pid, PIDTYPE_TGID); 680 data->tid_entry.tid = cpumsf_pid_type(event, pid, PIDTYPE_PID); 681 682 perf_output_sample(&handle, &header, data, event); 683 perf_output_end(&handle); 684 out: 685 rcu_read_unlock(); 686 } 687 688 static unsigned long getrate(bool freq, unsigned long sample, 689 struct hws_qsi_info_block *si) 690 { 691 unsigned long rate; 692 693 if (freq) { 694 rate = freq_to_sample_rate(si, sample); 695 rate = hw_limit_rate(si, rate); 696 } else { 697 /* The min/max sampling rates specifies the valid range 698 * of sample periods. If the specified sample period is 699 * out of range, limit the period to the range boundary. 700 */ 701 rate = hw_limit_rate(si, sample); 702 703 /* The perf core maintains a maximum sample rate that is 704 * configurable through the sysctl interface. Ensure the 705 * sampling rate does not exceed this value. This also helps 706 * to avoid throttling when pushing samples with 707 * perf_event_overflow(). 708 */ 709 if (sample_rate_to_freq(si, rate) > 710 sysctl_perf_event_sample_rate) { 711 debug_sprintf_event(sfdbg, 1, "%s: " 712 "Sampling rate exceeds maximum " 713 "perf sample rate\n", __func__); 714 rate = 0; 715 } 716 } 717 return rate; 718 } 719 720 /* The sampling information (si) contains information about the 721 * min/max sampling intervals and the CPU speed. So calculate the 722 * correct sampling interval and avoid the whole period adjust 723 * feedback loop. 724 * 725 * Since the CPU Measurement sampling facility can not handle frequency 726 * calculate the sampling interval when frequency is specified using 727 * this formula: 728 * interval := cpu_speed * 1000000 / sample_freq 729 * 730 * Returns errno on bad input and zero on success with parameter interval 731 * set to the correct sampling rate. 732 * 733 * Note: This function turns off freq bit to avoid calling function 734 * perf_adjust_period(). This causes frequency adjustment in the common 735 * code part which causes tremendous variations in the counter values. 736 */ 737 static int __hw_perf_event_init_rate(struct perf_event *event, 738 struct hws_qsi_info_block *si) 739 { 740 struct perf_event_attr *attr = &event->attr; 741 struct hw_perf_event *hwc = &event->hw; 742 unsigned long rate; 743 744 if (attr->freq) { 745 if (!attr->sample_freq) 746 return -EINVAL; 747 rate = getrate(attr->freq, attr->sample_freq, si); 748 attr->freq = 0; /* Don't call perf_adjust_period() */ 749 SAMPL_FLAGS(hwc) |= PERF_CPUM_SF_FREQ_MODE; 750 } else { 751 rate = getrate(attr->freq, attr->sample_period, si); 752 if (!rate) 753 return -EINVAL; 754 } 755 attr->sample_period = rate; 756 SAMPL_RATE(hwc) = rate; 757 hw_init_period(hwc, SAMPL_RATE(hwc)); 758 debug_sprintf_event(sfdbg, 4, "%s: cpu %d period %#llx freq %d,%#lx\n", 759 __func__, event->cpu, event->attr.sample_period, 760 event->attr.freq, SAMPLE_FREQ_MODE(hwc)); 761 return 0; 762 } 763 764 static int __hw_perf_event_init(struct perf_event *event) 765 { 766 struct cpu_hw_sf *cpuhw; 767 struct hws_qsi_info_block si; 768 struct perf_event_attr *attr = &event->attr; 769 struct hw_perf_event *hwc = &event->hw; 770 int cpu, err; 771 772 /* Reserve CPU-measurement sampling facility */ 773 err = 0; 774 if (!atomic_inc_not_zero(&num_events)) { 775 mutex_lock(&pmc_reserve_mutex); 776 if (atomic_read(&num_events) == 0 && reserve_pmc_hardware()) 777 err = -EBUSY; 778 else 779 atomic_inc(&num_events); 780 mutex_unlock(&pmc_reserve_mutex); 781 } 782 event->destroy = hw_perf_event_destroy; 783 784 if (err) 785 goto out; 786 787 /* Access per-CPU sampling information (query sampling info) */ 788 /* 789 * The event->cpu value can be -1 to count on every CPU, for example, 790 * when attaching to a task. If this is specified, use the query 791 * sampling info from the current CPU, otherwise use event->cpu to 792 * retrieve the per-CPU information. 793 * Later, cpuhw indicates whether to allocate sampling buffers for a 794 * particular CPU (cpuhw!=NULL) or each online CPU (cpuw==NULL). 795 */ 796 memset(&si, 0, sizeof(si)); 797 cpuhw = NULL; 798 if (event->cpu == -1) 799 qsi(&si); 800 else { 801 /* Event is pinned to a particular CPU, retrieve the per-CPU 802 * sampling structure for accessing the CPU-specific QSI. 803 */ 804 cpuhw = &per_cpu(cpu_hw_sf, event->cpu); 805 si = cpuhw->qsi; 806 } 807 808 /* Check sampling facility authorization and, if not authorized, 809 * fall back to other PMUs. It is safe to check any CPU because 810 * the authorization is identical for all configured CPUs. 811 */ 812 if (!si.as) { 813 err = -ENOENT; 814 goto out; 815 } 816 817 if (si.ribm & CPU_MF_SF_RIBM_NOTAV) { 818 pr_warn("CPU Measurement Facility sampling is temporarily not available\n"); 819 err = -EBUSY; 820 goto out; 821 } 822 823 /* Always enable basic sampling */ 824 SAMPL_FLAGS(hwc) = PERF_CPUM_SF_BASIC_MODE; 825 826 /* Check if diagnostic sampling is requested. Deny if the required 827 * sampling authorization is missing. 828 */ 829 if (attr->config == PERF_EVENT_CPUM_SF_DIAG) { 830 if (!si.ad) { 831 err = -EPERM; 832 goto out; 833 } 834 SAMPL_FLAGS(hwc) |= PERF_CPUM_SF_DIAG_MODE; 835 } 836 837 /* Check and set other sampling flags */ 838 if (attr->config1 & PERF_CPUM_SF_FULL_BLOCKS) 839 SAMPL_FLAGS(hwc) |= PERF_CPUM_SF_FULL_BLOCKS; 840 841 err = __hw_perf_event_init_rate(event, &si); 842 if (err) 843 goto out; 844 845 /* Initialize sample data overflow accounting */ 846 hwc->extra_reg.reg = REG_OVERFLOW; 847 OVERFLOW_REG(hwc) = 0; 848 849 /* Use AUX buffer. No need to allocate it by ourself */ 850 if (attr->config == PERF_EVENT_CPUM_SF_DIAG) 851 return 0; 852 853 /* Allocate the per-CPU sampling buffer using the CPU information 854 * from the event. If the event is not pinned to a particular 855 * CPU (event->cpu == -1; or cpuhw == NULL), allocate sampling 856 * buffers for each online CPU. 857 */ 858 if (cpuhw) 859 /* Event is pinned to a particular CPU */ 860 err = allocate_buffers(cpuhw, hwc); 861 else { 862 /* Event is not pinned, allocate sampling buffer on 863 * each online CPU 864 */ 865 for_each_online_cpu(cpu) { 866 cpuhw = &per_cpu(cpu_hw_sf, cpu); 867 err = allocate_buffers(cpuhw, hwc); 868 if (err) 869 break; 870 } 871 } 872 873 /* If PID/TID sampling is active, replace the default overflow 874 * handler to extract and resolve the PIDs from the basic-sampling 875 * data entries. 876 */ 877 if (event->attr.sample_type & PERF_SAMPLE_TID) 878 if (is_default_overflow_handler(event)) 879 event->overflow_handler = cpumsf_output_event_pid; 880 out: 881 return err; 882 } 883 884 static bool is_callchain_event(struct perf_event *event) 885 { 886 u64 sample_type = event->attr.sample_type; 887 888 return sample_type & (PERF_SAMPLE_CALLCHAIN | PERF_SAMPLE_REGS_USER | 889 PERF_SAMPLE_STACK_USER); 890 } 891 892 static int cpumsf_pmu_event_init(struct perf_event *event) 893 { 894 int err; 895 896 /* No support for taken branch sampling */ 897 /* No support for callchain, stacks and registers */ 898 if (has_branch_stack(event) || is_callchain_event(event)) 899 return -EOPNOTSUPP; 900 901 switch (event->attr.type) { 902 case PERF_TYPE_RAW: 903 if ((event->attr.config != PERF_EVENT_CPUM_SF) && 904 (event->attr.config != PERF_EVENT_CPUM_SF_DIAG)) 905 return -ENOENT; 906 break; 907 case PERF_TYPE_HARDWARE: 908 /* Support sampling of CPU cycles in addition to the 909 * counter facility. However, the counter facility 910 * is more precise and, hence, restrict this PMU to 911 * sampling events only. 912 */ 913 if (event->attr.config != PERF_COUNT_HW_CPU_CYCLES) 914 return -ENOENT; 915 if (!is_sampling_event(event)) 916 return -ENOENT; 917 break; 918 default: 919 return -ENOENT; 920 } 921 922 /* Check online status of the CPU to which the event is pinned */ 923 if (event->cpu >= 0 && !cpu_online(event->cpu)) 924 return -ENODEV; 925 926 /* Force reset of idle/hv excludes regardless of what the 927 * user requested. 928 */ 929 if (event->attr.exclude_hv) 930 event->attr.exclude_hv = 0; 931 if (event->attr.exclude_idle) 932 event->attr.exclude_idle = 0; 933 934 err = __hw_perf_event_init(event); 935 if (unlikely(err)) 936 if (event->destroy) 937 event->destroy(event); 938 return err; 939 } 940 941 static void cpumsf_pmu_enable(struct pmu *pmu) 942 { 943 struct cpu_hw_sf *cpuhw = this_cpu_ptr(&cpu_hw_sf); 944 struct hw_perf_event *hwc; 945 int err; 946 947 if (cpuhw->flags & PMU_F_ENABLED) 948 return; 949 950 if (cpuhw->flags & PMU_F_ERR_MASK) 951 return; 952 953 /* Check whether to extent the sampling buffer. 954 * 955 * Two conditions trigger an increase of the sampling buffer for a 956 * perf event: 957 * 1. Postponed buffer allocations from the event initialization. 958 * 2. Sampling overflows that contribute to pending allocations. 959 * 960 * Note that the extend_sampling_buffer() function disables the sampling 961 * facility, but it can be fully re-enabled using sampling controls that 962 * have been saved in cpumsf_pmu_disable(). 963 */ 964 if (cpuhw->event) { 965 hwc = &cpuhw->event->hw; 966 if (!(SAMPL_DIAG_MODE(hwc))) { 967 /* 968 * Account number of overflow-designated 969 * buffer extents 970 */ 971 sfb_account_overflows(cpuhw, hwc); 972 extend_sampling_buffer(&cpuhw->sfb, hwc); 973 } 974 /* Rate may be adjusted with ioctl() */ 975 cpuhw->lsctl.interval = SAMPL_RATE(&cpuhw->event->hw); 976 } 977 978 /* (Re)enable the PMU and sampling facility */ 979 cpuhw->flags |= PMU_F_ENABLED; 980 barrier(); 981 982 err = lsctl(&cpuhw->lsctl); 983 if (err) { 984 cpuhw->flags &= ~PMU_F_ENABLED; 985 pr_err("Loading sampling controls failed: op %i err %i\n", 986 1, err); 987 return; 988 } 989 990 /* Load current program parameter */ 991 lpp(&S390_lowcore.lpp); 992 993 debug_sprintf_event(sfdbg, 6, "%s: es %i cs %i ed %i cd %i " 994 "interval %#lx tear %#lx dear %#lx\n", __func__, 995 cpuhw->lsctl.es, cpuhw->lsctl.cs, cpuhw->lsctl.ed, 996 cpuhw->lsctl.cd, cpuhw->lsctl.interval, 997 cpuhw->lsctl.tear, cpuhw->lsctl.dear); 998 } 999 1000 static void cpumsf_pmu_disable(struct pmu *pmu) 1001 { 1002 struct cpu_hw_sf *cpuhw = this_cpu_ptr(&cpu_hw_sf); 1003 struct hws_lsctl_request_block inactive; 1004 struct hws_qsi_info_block si; 1005 int err; 1006 1007 if (!(cpuhw->flags & PMU_F_ENABLED)) 1008 return; 1009 1010 if (cpuhw->flags & PMU_F_ERR_MASK) 1011 return; 1012 1013 /* Switch off sampling activation control */ 1014 inactive = cpuhw->lsctl; 1015 inactive.cs = 0; 1016 inactive.cd = 0; 1017 1018 err = lsctl(&inactive); 1019 if (err) { 1020 pr_err("Loading sampling controls failed: op %i err %i\n", 1021 2, err); 1022 return; 1023 } 1024 1025 /* Save state of TEAR and DEAR register contents */ 1026 err = qsi(&si); 1027 if (!err) { 1028 /* TEAR/DEAR values are valid only if the sampling facility is 1029 * enabled. Note that cpumsf_pmu_disable() might be called even 1030 * for a disabled sampling facility because cpumsf_pmu_enable() 1031 * controls the enable/disable state. 1032 */ 1033 if (si.es) { 1034 cpuhw->lsctl.tear = si.tear; 1035 cpuhw->lsctl.dear = si.dear; 1036 } 1037 } else 1038 debug_sprintf_event(sfdbg, 3, "%s: qsi() failed with err %i\n", 1039 __func__, err); 1040 1041 cpuhw->flags &= ~PMU_F_ENABLED; 1042 } 1043 1044 /* perf_exclude_event() - Filter event 1045 * @event: The perf event 1046 * @regs: pt_regs structure 1047 * @sde_regs: Sample-data-entry (sde) regs structure 1048 * 1049 * Filter perf events according to their exclude specification. 1050 * 1051 * Return non-zero if the event shall be excluded. 1052 */ 1053 static int perf_exclude_event(struct perf_event *event, struct pt_regs *regs, 1054 struct perf_sf_sde_regs *sde_regs) 1055 { 1056 if (event->attr.exclude_user && user_mode(regs)) 1057 return 1; 1058 if (event->attr.exclude_kernel && !user_mode(regs)) 1059 return 1; 1060 if (event->attr.exclude_guest && sde_regs->in_guest) 1061 return 1; 1062 if (event->attr.exclude_host && !sde_regs->in_guest) 1063 return 1; 1064 return 0; 1065 } 1066 1067 /* perf_push_sample() - Push samples to perf 1068 * @event: The perf event 1069 * @sample: Hardware sample data 1070 * 1071 * Use the hardware sample data to create perf event sample. The sample 1072 * is the pushed to the event subsystem and the function checks for 1073 * possible event overflows. If an event overflow occurs, the PMU is 1074 * stopped. 1075 * 1076 * Return non-zero if an event overflow occurred. 1077 */ 1078 static int perf_push_sample(struct perf_event *event, 1079 struct hws_basic_entry *basic) 1080 { 1081 int overflow; 1082 struct pt_regs regs; 1083 struct perf_sf_sde_regs *sde_regs; 1084 struct perf_sample_data data; 1085 1086 /* Setup perf sample */ 1087 perf_sample_data_init(&data, 0, event->hw.last_period); 1088 1089 /* Setup pt_regs to look like an CPU-measurement external interrupt 1090 * using the Program Request Alert code. The regs.int_parm_long 1091 * field which is unused contains additional sample-data-entry related 1092 * indicators. 1093 */ 1094 memset(®s, 0, sizeof(regs)); 1095 regs.int_code = 0x1407; 1096 regs.int_parm = CPU_MF_INT_SF_PRA; 1097 sde_regs = (struct perf_sf_sde_regs *) ®s.int_parm_long; 1098 1099 psw_bits(regs.psw).ia = basic->ia; 1100 psw_bits(regs.psw).dat = basic->T; 1101 psw_bits(regs.psw).wait = basic->W; 1102 psw_bits(regs.psw).pstate = basic->P; 1103 psw_bits(regs.psw).as = basic->AS; 1104 1105 /* 1106 * Use the hardware provided configuration level to decide if the 1107 * sample belongs to a guest or host. If that is not available, 1108 * fall back to the following heuristics: 1109 * A non-zero guest program parameter always indicates a guest 1110 * sample. Some early samples or samples from guests without 1111 * lpp usage would be misaccounted to the host. We use the asn 1112 * value as an addon heuristic to detect most of these guest samples. 1113 * If the value differs from 0xffff (the host value), we assume to 1114 * be a KVM guest. 1115 */ 1116 switch (basic->CL) { 1117 case 1: /* logical partition */ 1118 sde_regs->in_guest = 0; 1119 break; 1120 case 2: /* virtual machine */ 1121 sde_regs->in_guest = 1; 1122 break; 1123 default: /* old machine, use heuristics */ 1124 if (basic->gpp || basic->prim_asn != 0xffff) 1125 sde_regs->in_guest = 1; 1126 break; 1127 } 1128 1129 /* 1130 * Store the PID value from the sample-data-entry to be 1131 * processed and resolved by cpumsf_output_event_pid(). 1132 */ 1133 data.tid_entry.pid = basic->hpp & LPP_PID_MASK; 1134 1135 overflow = 0; 1136 if (perf_exclude_event(event, ®s, sde_regs)) 1137 goto out; 1138 if (perf_event_overflow(event, &data, ®s)) { 1139 overflow = 1; 1140 event->pmu->stop(event, 0); 1141 } 1142 perf_event_update_userpage(event); 1143 out: 1144 return overflow; 1145 } 1146 1147 static void perf_event_count_update(struct perf_event *event, u64 count) 1148 { 1149 local64_add(count, &event->count); 1150 } 1151 1152 /* hw_collect_samples() - Walk through a sample-data-block and collect samples 1153 * @event: The perf event 1154 * @sdbt: Sample-data-block table 1155 * @overflow: Event overflow counter 1156 * 1157 * Walks through a sample-data-block and collects sampling data entries that are 1158 * then pushed to the perf event subsystem. Depending on the sampling function, 1159 * there can be either basic-sampling or combined-sampling data entries. A 1160 * combined-sampling data entry consists of a basic- and a diagnostic-sampling 1161 * data entry. The sampling function is determined by the flags in the perf 1162 * event hardware structure. The function always works with a combined-sampling 1163 * data entry but ignores the the diagnostic portion if it is not available. 1164 * 1165 * Note that the implementation focuses on basic-sampling data entries and, if 1166 * such an entry is not valid, the entire combined-sampling data entry is 1167 * ignored. 1168 * 1169 * The overflow variables counts the number of samples that has been discarded 1170 * due to a perf event overflow. 1171 */ 1172 static void hw_collect_samples(struct perf_event *event, unsigned long *sdbt, 1173 unsigned long long *overflow) 1174 { 1175 struct hws_trailer_entry *te; 1176 struct hws_basic_entry *sample; 1177 1178 te = (struct hws_trailer_entry *) trailer_entry_ptr(*sdbt); 1179 sample = (struct hws_basic_entry *) *sdbt; 1180 while ((unsigned long *) sample < (unsigned long *) te) { 1181 /* Check for an empty sample */ 1182 if (!sample->def) 1183 break; 1184 1185 /* Update perf event period */ 1186 perf_event_count_update(event, SAMPL_RATE(&event->hw)); 1187 1188 /* Check whether sample is valid */ 1189 if (sample->def == 0x0001) { 1190 /* If an event overflow occurred, the PMU is stopped to 1191 * throttle event delivery. Remaining sample data is 1192 * discarded. 1193 */ 1194 if (!*overflow) { 1195 /* Check whether sample is consistent */ 1196 if (sample->I == 0 && sample->W == 0) { 1197 /* Deliver sample data to perf */ 1198 *overflow = perf_push_sample(event, 1199 sample); 1200 } 1201 } else 1202 /* Count discarded samples */ 1203 *overflow += 1; 1204 } else { 1205 debug_sprintf_event(sfdbg, 4, 1206 "%s: Found unknown" 1207 " sampling data entry: te->f %i" 1208 " basic.def %#4x (%p)\n", __func__, 1209 te->f, sample->def, sample); 1210 /* Sample slot is not yet written or other record. 1211 * 1212 * This condition can occur if the buffer was reused 1213 * from a combined basic- and diagnostic-sampling. 1214 * If only basic-sampling is then active, entries are 1215 * written into the larger diagnostic entries. 1216 * This is typically the case for sample-data-blocks 1217 * that are not full. Stop processing if the first 1218 * invalid format was detected. 1219 */ 1220 if (!te->f) 1221 break; 1222 } 1223 1224 /* Reset sample slot and advance to next sample */ 1225 sample->def = 0; 1226 sample++; 1227 } 1228 } 1229 1230 /* hw_perf_event_update() - Process sampling buffer 1231 * @event: The perf event 1232 * @flush_all: Flag to also flush partially filled sample-data-blocks 1233 * 1234 * Processes the sampling buffer and create perf event samples. 1235 * The sampling buffer position are retrieved and saved in the TEAR_REG 1236 * register of the specified perf event. 1237 * 1238 * Only full sample-data-blocks are processed. Specify the flash_all flag 1239 * to also walk through partially filled sample-data-blocks. It is ignored 1240 * if PERF_CPUM_SF_FULL_BLOCKS is set. The PERF_CPUM_SF_FULL_BLOCKS flag 1241 * enforces the processing of full sample-data-blocks only (trailer entries 1242 * with the block-full-indicator bit set). 1243 */ 1244 static void hw_perf_event_update(struct perf_event *event, int flush_all) 1245 { 1246 struct hw_perf_event *hwc = &event->hw; 1247 struct hws_trailer_entry *te; 1248 unsigned long *sdbt; 1249 unsigned long long event_overflow, sampl_overflow, num_sdb, te_flags; 1250 int done; 1251 1252 /* 1253 * AUX buffer is used when in diagnostic sampling mode. 1254 * No perf events/samples are created. 1255 */ 1256 if (SAMPL_DIAG_MODE(&event->hw)) 1257 return; 1258 1259 if (flush_all && SDB_FULL_BLOCKS(hwc)) 1260 flush_all = 0; 1261 1262 sdbt = (unsigned long *) TEAR_REG(hwc); 1263 done = event_overflow = sampl_overflow = num_sdb = 0; 1264 while (!done) { 1265 /* Get the trailer entry of the sample-data-block */ 1266 te = (struct hws_trailer_entry *) trailer_entry_ptr(*sdbt); 1267 1268 /* Leave loop if no more work to do (block full indicator) */ 1269 if (!te->f) { 1270 done = 1; 1271 if (!flush_all) 1272 break; 1273 } 1274 1275 /* Check the sample overflow count */ 1276 if (te->overflow) 1277 /* Account sample overflows and, if a particular limit 1278 * is reached, extend the sampling buffer. 1279 * For details, see sfb_account_overflows(). 1280 */ 1281 sampl_overflow += te->overflow; 1282 1283 /* Timestamps are valid for full sample-data-blocks only */ 1284 debug_sprintf_event(sfdbg, 6, "%s: sdbt %#lx " 1285 "overflow %llu timestamp %#llx\n", 1286 __func__, (unsigned long)sdbt, te->overflow, 1287 (te->f) ? trailer_timestamp(te) : 0ULL); 1288 1289 /* Collect all samples from a single sample-data-block and 1290 * flag if an (perf) event overflow happened. If so, the PMU 1291 * is stopped and remaining samples will be discarded. 1292 */ 1293 hw_collect_samples(event, sdbt, &event_overflow); 1294 num_sdb++; 1295 1296 /* Reset trailer (using compare-double-and-swap) */ 1297 do { 1298 te_flags = te->flags & ~SDB_TE_BUFFER_FULL_MASK; 1299 te_flags |= SDB_TE_ALERT_REQ_MASK; 1300 } while (!cmpxchg_double(&te->flags, &te->overflow, 1301 te->flags, te->overflow, 1302 te_flags, 0ULL)); 1303 1304 /* Advance to next sample-data-block */ 1305 sdbt++; 1306 if (is_link_entry(sdbt)) 1307 sdbt = get_next_sdbt(sdbt); 1308 1309 /* Update event hardware registers */ 1310 TEAR_REG(hwc) = (unsigned long) sdbt; 1311 1312 /* Stop processing sample-data if all samples of the current 1313 * sample-data-block were flushed even if it was not full. 1314 */ 1315 if (flush_all && done) 1316 break; 1317 } 1318 1319 /* Account sample overflows in the event hardware structure */ 1320 if (sampl_overflow) 1321 OVERFLOW_REG(hwc) = DIV_ROUND_UP(OVERFLOW_REG(hwc) + 1322 sampl_overflow, 1 + num_sdb); 1323 1324 /* Perf_event_overflow() and perf_event_account_interrupt() limit 1325 * the interrupt rate to an upper limit. Roughly 1000 samples per 1326 * task tick. 1327 * Hitting this limit results in a large number 1328 * of throttled REF_REPORT_THROTTLE entries and the samples 1329 * are dropped. 1330 * Slightly increase the interval to avoid hitting this limit. 1331 */ 1332 if (event_overflow) { 1333 SAMPL_RATE(hwc) += DIV_ROUND_UP(SAMPL_RATE(hwc), 10); 1334 debug_sprintf_event(sfdbg, 1, "%s: rate adjustment %ld\n", 1335 __func__, 1336 DIV_ROUND_UP(SAMPL_RATE(hwc), 10)); 1337 } 1338 1339 if (sampl_overflow || event_overflow) 1340 debug_sprintf_event(sfdbg, 4, "%s: " 1341 "overflows: sample %llu event %llu" 1342 " total %llu num_sdb %llu\n", 1343 __func__, sampl_overflow, event_overflow, 1344 OVERFLOW_REG(hwc), num_sdb); 1345 } 1346 1347 #define AUX_SDB_INDEX(aux, i) ((i) % aux->sfb.num_sdb) 1348 #define AUX_SDB_NUM(aux, start, end) (end >= start ? end - start + 1 : 0) 1349 #define AUX_SDB_NUM_ALERT(aux) AUX_SDB_NUM(aux, aux->head, aux->alert_mark) 1350 #define AUX_SDB_NUM_EMPTY(aux) AUX_SDB_NUM(aux, aux->head, aux->empty_mark) 1351 1352 /* 1353 * Get trailer entry by index of SDB. 1354 */ 1355 static struct hws_trailer_entry *aux_sdb_trailer(struct aux_buffer *aux, 1356 unsigned long index) 1357 { 1358 unsigned long sdb; 1359 1360 index = AUX_SDB_INDEX(aux, index); 1361 sdb = aux->sdb_index[index]; 1362 return (struct hws_trailer_entry *)trailer_entry_ptr(sdb); 1363 } 1364 1365 /* 1366 * Finish sampling on the cpu. Called by cpumsf_pmu_del() with pmu 1367 * disabled. Collect the full SDBs in AUX buffer which have not reached 1368 * the point of alert indicator. And ignore the SDBs which are not 1369 * full. 1370 * 1371 * 1. Scan SDBs to see how much data is there and consume them. 1372 * 2. Remove alert indicator in the buffer. 1373 */ 1374 static void aux_output_end(struct perf_output_handle *handle) 1375 { 1376 unsigned long i, range_scan, idx; 1377 struct aux_buffer *aux; 1378 struct hws_trailer_entry *te; 1379 1380 aux = perf_get_aux(handle); 1381 if (!aux) 1382 return; 1383 1384 range_scan = AUX_SDB_NUM_ALERT(aux); 1385 for (i = 0, idx = aux->head; i < range_scan; i++, idx++) { 1386 te = aux_sdb_trailer(aux, idx); 1387 if (!(te->flags & SDB_TE_BUFFER_FULL_MASK)) 1388 break; 1389 } 1390 /* i is num of SDBs which are full */ 1391 perf_aux_output_end(handle, i << PAGE_SHIFT); 1392 1393 /* Remove alert indicators in the buffer */ 1394 te = aux_sdb_trailer(aux, aux->alert_mark); 1395 te->flags &= ~SDB_TE_ALERT_REQ_MASK; 1396 1397 debug_sprintf_event(sfdbg, 6, "%s: SDBs %ld range %ld head %ld\n", 1398 __func__, i, range_scan, aux->head); 1399 } 1400 1401 /* 1402 * Start sampling on the CPU. Called by cpumsf_pmu_add() when an event 1403 * is first added to the CPU or rescheduled again to the CPU. It is called 1404 * with pmu disabled. 1405 * 1406 * 1. Reset the trailer of SDBs to get ready for new data. 1407 * 2. Tell the hardware where to put the data by reset the SDBs buffer 1408 * head(tear/dear). 1409 */ 1410 static int aux_output_begin(struct perf_output_handle *handle, 1411 struct aux_buffer *aux, 1412 struct cpu_hw_sf *cpuhw) 1413 { 1414 unsigned long range; 1415 unsigned long i, range_scan, idx; 1416 unsigned long head, base, offset; 1417 struct hws_trailer_entry *te; 1418 1419 if (WARN_ON_ONCE(handle->head & ~PAGE_MASK)) 1420 return -EINVAL; 1421 1422 aux->head = handle->head >> PAGE_SHIFT; 1423 range = (handle->size + 1) >> PAGE_SHIFT; 1424 if (range <= 1) 1425 return -ENOMEM; 1426 1427 /* 1428 * SDBs between aux->head and aux->empty_mark are already ready 1429 * for new data. range_scan is num of SDBs not within them. 1430 */ 1431 debug_sprintf_event(sfdbg, 6, 1432 "%s: range %ld head %ld alert %ld empty %ld\n", 1433 __func__, range, aux->head, aux->alert_mark, 1434 aux->empty_mark); 1435 if (range > AUX_SDB_NUM_EMPTY(aux)) { 1436 range_scan = range - AUX_SDB_NUM_EMPTY(aux); 1437 idx = aux->empty_mark + 1; 1438 for (i = 0; i < range_scan; i++, idx++) { 1439 te = aux_sdb_trailer(aux, idx); 1440 te->flags &= ~(SDB_TE_BUFFER_FULL_MASK | 1441 SDB_TE_ALERT_REQ_MASK); 1442 te->overflow = 0; 1443 } 1444 /* Save the position of empty SDBs */ 1445 aux->empty_mark = aux->head + range - 1; 1446 } 1447 1448 /* Set alert indicator */ 1449 aux->alert_mark = aux->head + range/2 - 1; 1450 te = aux_sdb_trailer(aux, aux->alert_mark); 1451 te->flags = te->flags | SDB_TE_ALERT_REQ_MASK; 1452 1453 /* Reset hardware buffer head */ 1454 head = AUX_SDB_INDEX(aux, aux->head); 1455 base = aux->sdbt_index[head / CPUM_SF_SDB_PER_TABLE]; 1456 offset = head % CPUM_SF_SDB_PER_TABLE; 1457 cpuhw->lsctl.tear = base + offset * sizeof(unsigned long); 1458 cpuhw->lsctl.dear = aux->sdb_index[head]; 1459 1460 debug_sprintf_event(sfdbg, 6, "%s: head %ld alert %ld empty %ld " 1461 "index %ld tear %#lx dear %#lx\n", __func__, 1462 aux->head, aux->alert_mark, aux->empty_mark, 1463 head / CPUM_SF_SDB_PER_TABLE, 1464 cpuhw->lsctl.tear, cpuhw->lsctl.dear); 1465 1466 return 0; 1467 } 1468 1469 /* 1470 * Set alert indicator on SDB at index @alert_index while sampler is running. 1471 * 1472 * Return true if successfully. 1473 * Return false if full indicator is already set by hardware sampler. 1474 */ 1475 static bool aux_set_alert(struct aux_buffer *aux, unsigned long alert_index, 1476 unsigned long long *overflow) 1477 { 1478 unsigned long long orig_overflow, orig_flags, new_flags; 1479 struct hws_trailer_entry *te; 1480 1481 te = aux_sdb_trailer(aux, alert_index); 1482 do { 1483 orig_flags = te->flags; 1484 *overflow = orig_overflow = te->overflow; 1485 if (orig_flags & SDB_TE_BUFFER_FULL_MASK) { 1486 /* 1487 * SDB is already set by hardware. 1488 * Abort and try to set somewhere 1489 * behind. 1490 */ 1491 return false; 1492 } 1493 new_flags = orig_flags | SDB_TE_ALERT_REQ_MASK; 1494 } while (!cmpxchg_double(&te->flags, &te->overflow, 1495 orig_flags, orig_overflow, 1496 new_flags, 0ULL)); 1497 return true; 1498 } 1499 1500 /* 1501 * aux_reset_buffer() - Scan and setup SDBs for new samples 1502 * @aux: The AUX buffer to set 1503 * @range: The range of SDBs to scan started from aux->head 1504 * @overflow: Set to overflow count 1505 * 1506 * Set alert indicator on the SDB at index of aux->alert_mark. If this SDB is 1507 * marked as empty, check if it is already set full by the hardware sampler. 1508 * If yes, that means new data is already there before we can set an alert 1509 * indicator. Caller should try to set alert indicator to some position behind. 1510 * 1511 * Scan the SDBs in AUX buffer from behind aux->empty_mark. They are used 1512 * previously and have already been consumed by user space. Reset these SDBs 1513 * (clear full indicator and alert indicator) for new data. 1514 * If aux->alert_mark fall in this area, just set it. Overflow count is 1515 * recorded while scanning. 1516 * 1517 * SDBs between aux->head and aux->empty_mark are already reset at last time. 1518 * and ready for new samples. So scanning on this area could be skipped. 1519 * 1520 * Return true if alert indicator is set successfully and false if not. 1521 */ 1522 static bool aux_reset_buffer(struct aux_buffer *aux, unsigned long range, 1523 unsigned long long *overflow) 1524 { 1525 unsigned long long orig_overflow, orig_flags, new_flags; 1526 unsigned long i, range_scan, idx, idx_old; 1527 struct hws_trailer_entry *te; 1528 1529 debug_sprintf_event(sfdbg, 6, "%s: range %ld head %ld alert %ld " 1530 "empty %ld\n", __func__, range, aux->head, 1531 aux->alert_mark, aux->empty_mark); 1532 if (range <= AUX_SDB_NUM_EMPTY(aux)) 1533 /* 1534 * No need to scan. All SDBs in range are marked as empty. 1535 * Just set alert indicator. Should check race with hardware 1536 * sampler. 1537 */ 1538 return aux_set_alert(aux, aux->alert_mark, overflow); 1539 1540 if (aux->alert_mark <= aux->empty_mark) 1541 /* 1542 * Set alert indicator on empty SDB. Should check race 1543 * with hardware sampler. 1544 */ 1545 if (!aux_set_alert(aux, aux->alert_mark, overflow)) 1546 return false; 1547 1548 /* 1549 * Scan the SDBs to clear full and alert indicator used previously. 1550 * Start scanning from one SDB behind empty_mark. If the new alert 1551 * indicator fall into this range, set it. 1552 */ 1553 range_scan = range - AUX_SDB_NUM_EMPTY(aux); 1554 idx_old = idx = aux->empty_mark + 1; 1555 for (i = 0; i < range_scan; i++, idx++) { 1556 te = aux_sdb_trailer(aux, idx); 1557 do { 1558 orig_flags = te->flags; 1559 orig_overflow = te->overflow; 1560 new_flags = orig_flags & ~SDB_TE_BUFFER_FULL_MASK; 1561 if (idx == aux->alert_mark) 1562 new_flags |= SDB_TE_ALERT_REQ_MASK; 1563 else 1564 new_flags &= ~SDB_TE_ALERT_REQ_MASK; 1565 } while (!cmpxchg_double(&te->flags, &te->overflow, 1566 orig_flags, orig_overflow, 1567 new_flags, 0ULL)); 1568 *overflow += orig_overflow; 1569 } 1570 1571 /* Update empty_mark to new position */ 1572 aux->empty_mark = aux->head + range - 1; 1573 1574 debug_sprintf_event(sfdbg, 6, "%s: range_scan %ld idx %ld..%ld " 1575 "empty %ld\n", __func__, range_scan, idx_old, 1576 idx - 1, aux->empty_mark); 1577 return true; 1578 } 1579 1580 /* 1581 * Measurement alert handler for diagnostic mode sampling. 1582 */ 1583 static void hw_collect_aux(struct cpu_hw_sf *cpuhw) 1584 { 1585 struct aux_buffer *aux; 1586 int done = 0; 1587 unsigned long range = 0, size; 1588 unsigned long long overflow = 0; 1589 struct perf_output_handle *handle = &cpuhw->handle; 1590 unsigned long num_sdb; 1591 1592 aux = perf_get_aux(handle); 1593 if (WARN_ON_ONCE(!aux)) 1594 return; 1595 1596 /* Inform user space new data arrived */ 1597 size = AUX_SDB_NUM_ALERT(aux) << PAGE_SHIFT; 1598 debug_sprintf_event(sfdbg, 6, "%s: #alert %ld\n", __func__, 1599 size >> PAGE_SHIFT); 1600 perf_aux_output_end(handle, size); 1601 1602 num_sdb = aux->sfb.num_sdb; 1603 while (!done) { 1604 /* Get an output handle */ 1605 aux = perf_aux_output_begin(handle, cpuhw->event); 1606 if (handle->size == 0) { 1607 pr_err("The AUX buffer with %lu pages for the " 1608 "diagnostic-sampling mode is full\n", 1609 num_sdb); 1610 debug_sprintf_event(sfdbg, 1, 1611 "%s: AUX buffer used up\n", 1612 __func__); 1613 break; 1614 } 1615 if (WARN_ON_ONCE(!aux)) 1616 return; 1617 1618 /* Update head and alert_mark to new position */ 1619 aux->head = handle->head >> PAGE_SHIFT; 1620 range = (handle->size + 1) >> PAGE_SHIFT; 1621 if (range == 1) 1622 aux->alert_mark = aux->head; 1623 else 1624 aux->alert_mark = aux->head + range/2 - 1; 1625 1626 if (aux_reset_buffer(aux, range, &overflow)) { 1627 if (!overflow) { 1628 done = 1; 1629 break; 1630 } 1631 size = range << PAGE_SHIFT; 1632 perf_aux_output_end(&cpuhw->handle, size); 1633 pr_err("Sample data caused the AUX buffer with %lu " 1634 "pages to overflow\n", aux->sfb.num_sdb); 1635 debug_sprintf_event(sfdbg, 1, "%s: head %ld range %ld " 1636 "overflow %lld\n", __func__, 1637 aux->head, range, overflow); 1638 } else { 1639 size = AUX_SDB_NUM_ALERT(aux) << PAGE_SHIFT; 1640 perf_aux_output_end(&cpuhw->handle, size); 1641 debug_sprintf_event(sfdbg, 6, "%s: head %ld alert %ld " 1642 "already full, try another\n", 1643 __func__, 1644 aux->head, aux->alert_mark); 1645 } 1646 } 1647 1648 if (done) 1649 debug_sprintf_event(sfdbg, 6, "%s: head %ld alert %ld " 1650 "empty %ld\n", __func__, aux->head, 1651 aux->alert_mark, aux->empty_mark); 1652 } 1653 1654 /* 1655 * Callback when freeing AUX buffers. 1656 */ 1657 static void aux_buffer_free(void *data) 1658 { 1659 struct aux_buffer *aux = data; 1660 unsigned long i, num_sdbt; 1661 1662 if (!aux) 1663 return; 1664 1665 /* Free SDBT. SDB is freed by the caller */ 1666 num_sdbt = aux->sfb.num_sdbt; 1667 for (i = 0; i < num_sdbt; i++) 1668 free_page(aux->sdbt_index[i]); 1669 1670 kfree(aux->sdbt_index); 1671 kfree(aux->sdb_index); 1672 kfree(aux); 1673 1674 debug_sprintf_event(sfdbg, 4, "%s: SDBTs %lu\n", __func__, num_sdbt); 1675 } 1676 1677 static void aux_sdb_init(unsigned long sdb) 1678 { 1679 struct hws_trailer_entry *te; 1680 1681 te = (struct hws_trailer_entry *)trailer_entry_ptr(sdb); 1682 1683 /* Save clock base */ 1684 te->clock_base = 1; 1685 te->progusage2 = tod_clock_base.tod; 1686 } 1687 1688 /* 1689 * aux_buffer_setup() - Setup AUX buffer for diagnostic mode sampling 1690 * @event: Event the buffer is setup for, event->cpu == -1 means current 1691 * @pages: Array of pointers to buffer pages passed from perf core 1692 * @nr_pages: Total pages 1693 * @snapshot: Flag for snapshot mode 1694 * 1695 * This is the callback when setup an event using AUX buffer. Perf tool can 1696 * trigger this by an additional mmap() call on the event. Unlike the buffer 1697 * for basic samples, AUX buffer belongs to the event. It is scheduled with 1698 * the task among online cpus when it is a per-thread event. 1699 * 1700 * Return the private AUX buffer structure if success or NULL if fails. 1701 */ 1702 static void *aux_buffer_setup(struct perf_event *event, void **pages, 1703 int nr_pages, bool snapshot) 1704 { 1705 struct sf_buffer *sfb; 1706 struct aux_buffer *aux; 1707 unsigned long *new, *tail; 1708 int i, n_sdbt; 1709 1710 if (!nr_pages || !pages) 1711 return NULL; 1712 1713 if (nr_pages > CPUM_SF_MAX_SDB * CPUM_SF_SDB_DIAG_FACTOR) { 1714 pr_err("AUX buffer size (%i pages) is larger than the " 1715 "maximum sampling buffer limit\n", 1716 nr_pages); 1717 return NULL; 1718 } else if (nr_pages < CPUM_SF_MIN_SDB * CPUM_SF_SDB_DIAG_FACTOR) { 1719 pr_err("AUX buffer size (%i pages) is less than the " 1720 "minimum sampling buffer limit\n", 1721 nr_pages); 1722 return NULL; 1723 } 1724 1725 /* Allocate aux_buffer struct for the event */ 1726 aux = kzalloc(sizeof(struct aux_buffer), GFP_KERNEL); 1727 if (!aux) 1728 goto no_aux; 1729 sfb = &aux->sfb; 1730 1731 /* Allocate sdbt_index for fast reference */ 1732 n_sdbt = DIV_ROUND_UP(nr_pages, CPUM_SF_SDB_PER_TABLE); 1733 aux->sdbt_index = kmalloc_array(n_sdbt, sizeof(void *), GFP_KERNEL); 1734 if (!aux->sdbt_index) 1735 goto no_sdbt_index; 1736 1737 /* Allocate sdb_index for fast reference */ 1738 aux->sdb_index = kmalloc_array(nr_pages, sizeof(void *), GFP_KERNEL); 1739 if (!aux->sdb_index) 1740 goto no_sdb_index; 1741 1742 /* Allocate the first SDBT */ 1743 sfb->num_sdbt = 0; 1744 sfb->sdbt = (unsigned long *) get_zeroed_page(GFP_KERNEL); 1745 if (!sfb->sdbt) 1746 goto no_sdbt; 1747 aux->sdbt_index[sfb->num_sdbt++] = (unsigned long)sfb->sdbt; 1748 tail = sfb->tail = sfb->sdbt; 1749 1750 /* 1751 * Link the provided pages of AUX buffer to SDBT. 1752 * Allocate SDBT if needed. 1753 */ 1754 for (i = 0; i < nr_pages; i++, tail++) { 1755 if (require_table_link(tail)) { 1756 new = (unsigned long *) get_zeroed_page(GFP_KERNEL); 1757 if (!new) 1758 goto no_sdbt; 1759 aux->sdbt_index[sfb->num_sdbt++] = (unsigned long)new; 1760 /* Link current page to tail of chain */ 1761 *tail = (unsigned long)(void *) new + 1; 1762 tail = new; 1763 } 1764 /* Tail is the entry in a SDBT */ 1765 *tail = (unsigned long)pages[i]; 1766 aux->sdb_index[i] = (unsigned long)pages[i]; 1767 aux_sdb_init((unsigned long)pages[i]); 1768 } 1769 sfb->num_sdb = nr_pages; 1770 1771 /* Link the last entry in the SDBT to the first SDBT */ 1772 *tail = (unsigned long) sfb->sdbt + 1; 1773 sfb->tail = tail; 1774 1775 /* 1776 * Initial all SDBs are zeroed. Mark it as empty. 1777 * So there is no need to clear the full indicator 1778 * when this event is first added. 1779 */ 1780 aux->empty_mark = sfb->num_sdb - 1; 1781 1782 debug_sprintf_event(sfdbg, 4, "%s: SDBTs %lu SDBs %lu\n", __func__, 1783 sfb->num_sdbt, sfb->num_sdb); 1784 1785 return aux; 1786 1787 no_sdbt: 1788 /* SDBs (AUX buffer pages) are freed by caller */ 1789 for (i = 0; i < sfb->num_sdbt; i++) 1790 free_page(aux->sdbt_index[i]); 1791 kfree(aux->sdb_index); 1792 no_sdb_index: 1793 kfree(aux->sdbt_index); 1794 no_sdbt_index: 1795 kfree(aux); 1796 no_aux: 1797 return NULL; 1798 } 1799 1800 static void cpumsf_pmu_read(struct perf_event *event) 1801 { 1802 /* Nothing to do ... updates are interrupt-driven */ 1803 } 1804 1805 /* Check if the new sampling period/freqeuncy is appropriate. 1806 * 1807 * Return non-zero on error and zero on passed checks. 1808 */ 1809 static int cpumsf_pmu_check_period(struct perf_event *event, u64 value) 1810 { 1811 struct hws_qsi_info_block si; 1812 unsigned long rate; 1813 bool do_freq; 1814 1815 memset(&si, 0, sizeof(si)); 1816 if (event->cpu == -1) { 1817 if (qsi(&si)) 1818 return -ENODEV; 1819 } else { 1820 /* Event is pinned to a particular CPU, retrieve the per-CPU 1821 * sampling structure for accessing the CPU-specific QSI. 1822 */ 1823 struct cpu_hw_sf *cpuhw = &per_cpu(cpu_hw_sf, event->cpu); 1824 1825 si = cpuhw->qsi; 1826 } 1827 1828 do_freq = !!SAMPLE_FREQ_MODE(&event->hw); 1829 rate = getrate(do_freq, value, &si); 1830 if (!rate) 1831 return -EINVAL; 1832 1833 event->attr.sample_period = rate; 1834 SAMPL_RATE(&event->hw) = rate; 1835 hw_init_period(&event->hw, SAMPL_RATE(&event->hw)); 1836 debug_sprintf_event(sfdbg, 4, "%s:" 1837 " cpu %d value %#llx period %#llx freq %d\n", 1838 __func__, event->cpu, value, 1839 event->attr.sample_period, do_freq); 1840 return 0; 1841 } 1842 1843 /* Activate sampling control. 1844 * Next call of pmu_enable() starts sampling. 1845 */ 1846 static void cpumsf_pmu_start(struct perf_event *event, int flags) 1847 { 1848 struct cpu_hw_sf *cpuhw = this_cpu_ptr(&cpu_hw_sf); 1849 1850 if (WARN_ON_ONCE(!(event->hw.state & PERF_HES_STOPPED))) 1851 return; 1852 1853 if (flags & PERF_EF_RELOAD) 1854 WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE)); 1855 1856 perf_pmu_disable(event->pmu); 1857 event->hw.state = 0; 1858 cpuhw->lsctl.cs = 1; 1859 if (SAMPL_DIAG_MODE(&event->hw)) 1860 cpuhw->lsctl.cd = 1; 1861 perf_pmu_enable(event->pmu); 1862 } 1863 1864 /* Deactivate sampling control. 1865 * Next call of pmu_enable() stops sampling. 1866 */ 1867 static void cpumsf_pmu_stop(struct perf_event *event, int flags) 1868 { 1869 struct cpu_hw_sf *cpuhw = this_cpu_ptr(&cpu_hw_sf); 1870 1871 if (event->hw.state & PERF_HES_STOPPED) 1872 return; 1873 1874 perf_pmu_disable(event->pmu); 1875 cpuhw->lsctl.cs = 0; 1876 cpuhw->lsctl.cd = 0; 1877 event->hw.state |= PERF_HES_STOPPED; 1878 1879 if ((flags & PERF_EF_UPDATE) && !(event->hw.state & PERF_HES_UPTODATE)) { 1880 hw_perf_event_update(event, 1); 1881 event->hw.state |= PERF_HES_UPTODATE; 1882 } 1883 perf_pmu_enable(event->pmu); 1884 } 1885 1886 static int cpumsf_pmu_add(struct perf_event *event, int flags) 1887 { 1888 struct cpu_hw_sf *cpuhw = this_cpu_ptr(&cpu_hw_sf); 1889 struct aux_buffer *aux; 1890 int err; 1891 1892 if (cpuhw->flags & PMU_F_IN_USE) 1893 return -EAGAIN; 1894 1895 if (!SAMPL_DIAG_MODE(&event->hw) && !cpuhw->sfb.sdbt) 1896 return -EINVAL; 1897 1898 err = 0; 1899 perf_pmu_disable(event->pmu); 1900 1901 event->hw.state = PERF_HES_UPTODATE | PERF_HES_STOPPED; 1902 1903 /* Set up sampling controls. Always program the sampling register 1904 * using the SDB-table start. Reset TEAR_REG event hardware register 1905 * that is used by hw_perf_event_update() to store the sampling buffer 1906 * position after samples have been flushed. 1907 */ 1908 cpuhw->lsctl.s = 0; 1909 cpuhw->lsctl.h = 1; 1910 cpuhw->lsctl.interval = SAMPL_RATE(&event->hw); 1911 if (!SAMPL_DIAG_MODE(&event->hw)) { 1912 cpuhw->lsctl.tear = (unsigned long) cpuhw->sfb.sdbt; 1913 cpuhw->lsctl.dear = *(unsigned long *) cpuhw->sfb.sdbt; 1914 TEAR_REG(&event->hw) = (unsigned long) cpuhw->sfb.sdbt; 1915 } 1916 1917 /* Ensure sampling functions are in the disabled state. If disabled, 1918 * switch on sampling enable control. */ 1919 if (WARN_ON_ONCE(cpuhw->lsctl.es == 1 || cpuhw->lsctl.ed == 1)) { 1920 err = -EAGAIN; 1921 goto out; 1922 } 1923 if (SAMPL_DIAG_MODE(&event->hw)) { 1924 aux = perf_aux_output_begin(&cpuhw->handle, event); 1925 if (!aux) { 1926 err = -EINVAL; 1927 goto out; 1928 } 1929 err = aux_output_begin(&cpuhw->handle, aux, cpuhw); 1930 if (err) 1931 goto out; 1932 cpuhw->lsctl.ed = 1; 1933 } 1934 cpuhw->lsctl.es = 1; 1935 1936 /* Set in_use flag and store event */ 1937 cpuhw->event = event; 1938 cpuhw->flags |= PMU_F_IN_USE; 1939 1940 if (flags & PERF_EF_START) 1941 cpumsf_pmu_start(event, PERF_EF_RELOAD); 1942 out: 1943 perf_event_update_userpage(event); 1944 perf_pmu_enable(event->pmu); 1945 return err; 1946 } 1947 1948 static void cpumsf_pmu_del(struct perf_event *event, int flags) 1949 { 1950 struct cpu_hw_sf *cpuhw = this_cpu_ptr(&cpu_hw_sf); 1951 1952 perf_pmu_disable(event->pmu); 1953 cpumsf_pmu_stop(event, PERF_EF_UPDATE); 1954 1955 cpuhw->lsctl.es = 0; 1956 cpuhw->lsctl.ed = 0; 1957 cpuhw->flags &= ~PMU_F_IN_USE; 1958 cpuhw->event = NULL; 1959 1960 if (SAMPL_DIAG_MODE(&event->hw)) 1961 aux_output_end(&cpuhw->handle); 1962 perf_event_update_userpage(event); 1963 perf_pmu_enable(event->pmu); 1964 } 1965 1966 CPUMF_EVENT_ATTR(SF, SF_CYCLES_BASIC, PERF_EVENT_CPUM_SF); 1967 CPUMF_EVENT_ATTR(SF, SF_CYCLES_BASIC_DIAG, PERF_EVENT_CPUM_SF_DIAG); 1968 1969 /* Attribute list for CPU_SF. 1970 * 1971 * The availablitiy depends on the CPU_MF sampling facility authorization 1972 * for basic + diagnositic samples. This is determined at initialization 1973 * time by the sampling facility device driver. 1974 * If the authorization for basic samples is turned off, it should be 1975 * also turned off for diagnostic sampling. 1976 * 1977 * During initialization of the device driver, check the authorization 1978 * level for diagnostic sampling and installs the attribute 1979 * file for diagnostic sampling if necessary. 1980 * 1981 * For now install a placeholder to reference all possible attributes: 1982 * SF_CYCLES_BASIC and SF_CYCLES_BASIC_DIAG. 1983 * Add another entry for the final NULL pointer. 1984 */ 1985 enum { 1986 SF_CYCLES_BASIC_ATTR_IDX = 0, 1987 SF_CYCLES_BASIC_DIAG_ATTR_IDX, 1988 SF_CYCLES_ATTR_MAX 1989 }; 1990 1991 static struct attribute *cpumsf_pmu_events_attr[SF_CYCLES_ATTR_MAX + 1] = { 1992 [SF_CYCLES_BASIC_ATTR_IDX] = CPUMF_EVENT_PTR(SF, SF_CYCLES_BASIC) 1993 }; 1994 1995 PMU_FORMAT_ATTR(event, "config:0-63"); 1996 1997 static struct attribute *cpumsf_pmu_format_attr[] = { 1998 &format_attr_event.attr, 1999 NULL, 2000 }; 2001 2002 static struct attribute_group cpumsf_pmu_events_group = { 2003 .name = "events", 2004 .attrs = cpumsf_pmu_events_attr, 2005 }; 2006 2007 static struct attribute_group cpumsf_pmu_format_group = { 2008 .name = "format", 2009 .attrs = cpumsf_pmu_format_attr, 2010 }; 2011 2012 static const struct attribute_group *cpumsf_pmu_attr_groups[] = { 2013 &cpumsf_pmu_events_group, 2014 &cpumsf_pmu_format_group, 2015 NULL, 2016 }; 2017 2018 static struct pmu cpumf_sampling = { 2019 .pmu_enable = cpumsf_pmu_enable, 2020 .pmu_disable = cpumsf_pmu_disable, 2021 2022 .event_init = cpumsf_pmu_event_init, 2023 .add = cpumsf_pmu_add, 2024 .del = cpumsf_pmu_del, 2025 2026 .start = cpumsf_pmu_start, 2027 .stop = cpumsf_pmu_stop, 2028 .read = cpumsf_pmu_read, 2029 2030 .attr_groups = cpumsf_pmu_attr_groups, 2031 2032 .setup_aux = aux_buffer_setup, 2033 .free_aux = aux_buffer_free, 2034 2035 .check_period = cpumsf_pmu_check_period, 2036 }; 2037 2038 static void cpumf_measurement_alert(struct ext_code ext_code, 2039 unsigned int alert, unsigned long unused) 2040 { 2041 struct cpu_hw_sf *cpuhw; 2042 2043 if (!(alert & CPU_MF_INT_SF_MASK)) 2044 return; 2045 inc_irq_stat(IRQEXT_CMS); 2046 cpuhw = this_cpu_ptr(&cpu_hw_sf); 2047 2048 /* Measurement alerts are shared and might happen when the PMU 2049 * is not reserved. Ignore these alerts in this case. */ 2050 if (!(cpuhw->flags & PMU_F_RESERVED)) 2051 return; 2052 2053 /* The processing below must take care of multiple alert events that 2054 * might be indicated concurrently. */ 2055 2056 /* Program alert request */ 2057 if (alert & CPU_MF_INT_SF_PRA) { 2058 if (cpuhw->flags & PMU_F_IN_USE) 2059 if (SAMPL_DIAG_MODE(&cpuhw->event->hw)) 2060 hw_collect_aux(cpuhw); 2061 else 2062 hw_perf_event_update(cpuhw->event, 0); 2063 else 2064 WARN_ON_ONCE(!(cpuhw->flags & PMU_F_IN_USE)); 2065 } 2066 2067 /* Report measurement alerts only for non-PRA codes */ 2068 if (alert != CPU_MF_INT_SF_PRA) 2069 debug_sprintf_event(sfdbg, 6, "%s: alert %#x\n", __func__, 2070 alert); 2071 2072 /* Sampling authorization change request */ 2073 if (alert & CPU_MF_INT_SF_SACA) 2074 qsi(&cpuhw->qsi); 2075 2076 /* Loss of sample data due to high-priority machine activities */ 2077 if (alert & CPU_MF_INT_SF_LSDA) { 2078 pr_err("Sample data was lost\n"); 2079 cpuhw->flags |= PMU_F_ERR_LSDA; 2080 sf_disable(); 2081 } 2082 2083 /* Invalid sampling buffer entry */ 2084 if (alert & (CPU_MF_INT_SF_IAE|CPU_MF_INT_SF_ISE)) { 2085 pr_err("A sampling buffer entry is incorrect (alert=0x%x)\n", 2086 alert); 2087 cpuhw->flags |= PMU_F_ERR_IBE; 2088 sf_disable(); 2089 } 2090 } 2091 2092 static int cpusf_pmu_setup(unsigned int cpu, int flags) 2093 { 2094 /* Ignore the notification if no events are scheduled on the PMU. 2095 * This might be racy... 2096 */ 2097 if (!atomic_read(&num_events)) 2098 return 0; 2099 2100 local_irq_disable(); 2101 setup_pmc_cpu(&flags); 2102 local_irq_enable(); 2103 return 0; 2104 } 2105 2106 static int s390_pmu_sf_online_cpu(unsigned int cpu) 2107 { 2108 return cpusf_pmu_setup(cpu, PMC_INIT); 2109 } 2110 2111 static int s390_pmu_sf_offline_cpu(unsigned int cpu) 2112 { 2113 return cpusf_pmu_setup(cpu, PMC_RELEASE); 2114 } 2115 2116 static int param_get_sfb_size(char *buffer, const struct kernel_param *kp) 2117 { 2118 if (!cpum_sf_avail()) 2119 return -ENODEV; 2120 return sprintf(buffer, "%lu,%lu", CPUM_SF_MIN_SDB, CPUM_SF_MAX_SDB); 2121 } 2122 2123 static int param_set_sfb_size(const char *val, const struct kernel_param *kp) 2124 { 2125 int rc; 2126 unsigned long min, max; 2127 2128 if (!cpum_sf_avail()) 2129 return -ENODEV; 2130 if (!val || !strlen(val)) 2131 return -EINVAL; 2132 2133 /* Valid parameter values: "min,max" or "max" */ 2134 min = CPUM_SF_MIN_SDB; 2135 max = CPUM_SF_MAX_SDB; 2136 if (strchr(val, ',')) 2137 rc = (sscanf(val, "%lu,%lu", &min, &max) == 2) ? 0 : -EINVAL; 2138 else 2139 rc = kstrtoul(val, 10, &max); 2140 2141 if (min < 2 || min >= max || max > get_num_physpages()) 2142 rc = -EINVAL; 2143 if (rc) 2144 return rc; 2145 2146 sfb_set_limits(min, max); 2147 pr_info("The sampling buffer limits have changed to: " 2148 "min %lu max %lu (diag %lu)\n", 2149 CPUM_SF_MIN_SDB, CPUM_SF_MAX_SDB, CPUM_SF_SDB_DIAG_FACTOR); 2150 return 0; 2151 } 2152 2153 #define param_check_sfb_size(name, p) __param_check(name, p, void) 2154 static const struct kernel_param_ops param_ops_sfb_size = { 2155 .set = param_set_sfb_size, 2156 .get = param_get_sfb_size, 2157 }; 2158 2159 #define RS_INIT_FAILURE_QSI 0x0001 2160 #define RS_INIT_FAILURE_BSDES 0x0002 2161 #define RS_INIT_FAILURE_ALRT 0x0003 2162 #define RS_INIT_FAILURE_PERF 0x0004 2163 static void __init pr_cpumsf_err(unsigned int reason) 2164 { 2165 pr_err("Sampling facility support for perf is not available: " 2166 "reason %#x\n", reason); 2167 } 2168 2169 static int __init init_cpum_sampling_pmu(void) 2170 { 2171 struct hws_qsi_info_block si; 2172 int err; 2173 2174 if (!cpum_sf_avail()) 2175 return -ENODEV; 2176 2177 memset(&si, 0, sizeof(si)); 2178 if (qsi(&si)) { 2179 pr_cpumsf_err(RS_INIT_FAILURE_QSI); 2180 return -ENODEV; 2181 } 2182 2183 if (!si.as && !si.ad) 2184 return -ENODEV; 2185 2186 if (si.bsdes != sizeof(struct hws_basic_entry)) { 2187 pr_cpumsf_err(RS_INIT_FAILURE_BSDES); 2188 return -EINVAL; 2189 } 2190 2191 if (si.ad) { 2192 sfb_set_limits(CPUM_SF_MIN_SDB, CPUM_SF_MAX_SDB); 2193 /* Sampling of diagnostic data authorized, 2194 * install event into attribute list of PMU device. 2195 */ 2196 cpumsf_pmu_events_attr[SF_CYCLES_BASIC_DIAG_ATTR_IDX] = 2197 CPUMF_EVENT_PTR(SF, SF_CYCLES_BASIC_DIAG); 2198 } 2199 2200 sfdbg = debug_register(KMSG_COMPONENT, 2, 1, 80); 2201 if (!sfdbg) { 2202 pr_err("Registering for s390dbf failed\n"); 2203 return -ENOMEM; 2204 } 2205 debug_register_view(sfdbg, &debug_sprintf_view); 2206 2207 err = register_external_irq(EXT_IRQ_MEASURE_ALERT, 2208 cpumf_measurement_alert); 2209 if (err) { 2210 pr_cpumsf_err(RS_INIT_FAILURE_ALRT); 2211 debug_unregister(sfdbg); 2212 goto out; 2213 } 2214 2215 err = perf_pmu_register(&cpumf_sampling, "cpum_sf", PERF_TYPE_RAW); 2216 if (err) { 2217 pr_cpumsf_err(RS_INIT_FAILURE_PERF); 2218 unregister_external_irq(EXT_IRQ_MEASURE_ALERT, 2219 cpumf_measurement_alert); 2220 debug_unregister(sfdbg); 2221 goto out; 2222 } 2223 2224 cpuhp_setup_state(CPUHP_AP_PERF_S390_SF_ONLINE, "perf/s390/sf:online", 2225 s390_pmu_sf_online_cpu, s390_pmu_sf_offline_cpu); 2226 out: 2227 return err; 2228 } 2229 2230 arch_initcall(init_cpum_sampling_pmu); 2231 core_param(cpum_sfb_size, CPUM_SF_MAX_SDB, sfb_size, 0644); 2232