xref: /openbmc/linux/arch/s390/kernel/perf_cpum_sf.c (revision c9933d494c54f72290831191c09bb8488bfd5905)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Performance event support for the System z CPU-measurement Sampling Facility
4  *
5  * Copyright IBM Corp. 2013, 2018
6  * Author(s): Hendrik Brueckner <brueckner@linux.vnet.ibm.com>
7  */
8 #define KMSG_COMPONENT	"cpum_sf"
9 #define pr_fmt(fmt)	KMSG_COMPONENT ": " fmt
10 
11 #include <linux/kernel.h>
12 #include <linux/kernel_stat.h>
13 #include <linux/perf_event.h>
14 #include <linux/percpu.h>
15 #include <linux/pid.h>
16 #include <linux/notifier.h>
17 #include <linux/export.h>
18 #include <linux/slab.h>
19 #include <linux/mm.h>
20 #include <linux/moduleparam.h>
21 #include <asm/cpu_mf.h>
22 #include <asm/irq.h>
23 #include <asm/debug.h>
24 #include <asm/timex.h>
25 
26 /* Minimum number of sample-data-block-tables:
27  * At least one table is required for the sampling buffer structure.
28  * A single table contains up to 511 pointers to sample-data-blocks.
29  */
30 #define CPUM_SF_MIN_SDBT	1
31 
32 /* Number of sample-data-blocks per sample-data-block-table (SDBT):
33  * A table contains SDB pointers (8 bytes) and one table-link entry
34  * that points to the origin of the next SDBT.
35  */
36 #define CPUM_SF_SDB_PER_TABLE	((PAGE_SIZE - 8) / 8)
37 
38 /* Maximum page offset for an SDBT table-link entry:
39  * If this page offset is reached, a table-link entry to the next SDBT
40  * must be added.
41  */
42 #define CPUM_SF_SDBT_TL_OFFSET	(CPUM_SF_SDB_PER_TABLE * 8)
43 static inline int require_table_link(const void *sdbt)
44 {
45 	return ((unsigned long) sdbt & ~PAGE_MASK) == CPUM_SF_SDBT_TL_OFFSET;
46 }
47 
48 /* Minimum and maximum sampling buffer sizes:
49  *
50  * This number represents the maximum size of the sampling buffer taking
51  * the number of sample-data-block-tables into account.  Note that these
52  * numbers apply to the basic-sampling function only.
53  * The maximum number of SDBs is increased by CPUM_SF_SDB_DIAG_FACTOR if
54  * the diagnostic-sampling function is active.
55  *
56  * Sampling buffer size		Buffer characteristics
57  * ---------------------------------------------------
58  *	 64KB		    ==	  16 pages (4KB per page)
59  *				   1 page  for SDB-tables
60  *				  15 pages for SDBs
61  *
62  *  32MB		    ==	8192 pages (4KB per page)
63  *				  16 pages for SDB-tables
64  *				8176 pages for SDBs
65  */
66 static unsigned long __read_mostly CPUM_SF_MIN_SDB = 15;
67 static unsigned long __read_mostly CPUM_SF_MAX_SDB = 8176;
68 static unsigned long __read_mostly CPUM_SF_SDB_DIAG_FACTOR = 1;
69 
70 struct sf_buffer {
71 	unsigned long	 *sdbt;	    /* Sample-data-block-table origin */
72 	/* buffer characteristics (required for buffer increments) */
73 	unsigned long  num_sdb;	    /* Number of sample-data-blocks */
74 	unsigned long num_sdbt;	    /* Number of sample-data-block-tables */
75 	unsigned long	 *tail;	    /* last sample-data-block-table */
76 };
77 
78 struct aux_buffer {
79 	struct sf_buffer sfb;
80 	unsigned long head;	   /* index of SDB of buffer head */
81 	unsigned long alert_mark;  /* index of SDB of alert request position */
82 	unsigned long empty_mark;  /* mark of SDB not marked full */
83 	unsigned long *sdb_index;  /* SDB address for fast lookup */
84 	unsigned long *sdbt_index; /* SDBT address for fast lookup */
85 };
86 
87 struct cpu_hw_sf {
88 	/* CPU-measurement sampling information block */
89 	struct hws_qsi_info_block qsi;
90 	/* CPU-measurement sampling control block */
91 	struct hws_lsctl_request_block lsctl;
92 	struct sf_buffer sfb;	    /* Sampling buffer */
93 	unsigned int flags;	    /* Status flags */
94 	struct perf_event *event;   /* Scheduled perf event */
95 	struct perf_output_handle handle; /* AUX buffer output handle */
96 };
97 static DEFINE_PER_CPU(struct cpu_hw_sf, cpu_hw_sf);
98 
99 /* Debug feature */
100 static debug_info_t *sfdbg;
101 
102 /*
103  * sf_disable() - Switch off sampling facility
104  */
105 static int sf_disable(void)
106 {
107 	struct hws_lsctl_request_block sreq;
108 
109 	memset(&sreq, 0, sizeof(sreq));
110 	return lsctl(&sreq);
111 }
112 
113 /*
114  * sf_buffer_available() - Check for an allocated sampling buffer
115  */
116 static int sf_buffer_available(struct cpu_hw_sf *cpuhw)
117 {
118 	return !!cpuhw->sfb.sdbt;
119 }
120 
121 /*
122  * deallocate sampling facility buffer
123  */
124 static void free_sampling_buffer(struct sf_buffer *sfb)
125 {
126 	unsigned long *sdbt, *curr;
127 
128 	if (!sfb->sdbt)
129 		return;
130 
131 	sdbt = sfb->sdbt;
132 	curr = sdbt;
133 
134 	/* Free the SDBT after all SDBs are processed... */
135 	while (1) {
136 		if (!*curr || !sdbt)
137 			break;
138 
139 		/* Process table-link entries */
140 		if (is_link_entry(curr)) {
141 			curr = get_next_sdbt(curr);
142 			if (sdbt)
143 				free_page((unsigned long) sdbt);
144 
145 			/* If the origin is reached, sampling buffer is freed */
146 			if (curr == sfb->sdbt)
147 				break;
148 			else
149 				sdbt = curr;
150 		} else {
151 			/* Process SDB pointer */
152 			if (*curr) {
153 				free_page(*curr);
154 				curr++;
155 			}
156 		}
157 	}
158 
159 	debug_sprintf_event(sfdbg, 5, "%s: freed sdbt %#lx\n", __func__,
160 			    (unsigned long)sfb->sdbt);
161 	memset(sfb, 0, sizeof(*sfb));
162 }
163 
164 static int alloc_sample_data_block(unsigned long *sdbt, gfp_t gfp_flags)
165 {
166 	unsigned long sdb, *trailer;
167 
168 	/* Allocate and initialize sample-data-block */
169 	sdb = get_zeroed_page(gfp_flags);
170 	if (!sdb)
171 		return -ENOMEM;
172 	trailer = trailer_entry_ptr(sdb);
173 	*trailer = SDB_TE_ALERT_REQ_MASK;
174 
175 	/* Link SDB into the sample-data-block-table */
176 	*sdbt = sdb;
177 
178 	return 0;
179 }
180 
181 /*
182  * realloc_sampling_buffer() - extend sampler memory
183  *
184  * Allocates new sample-data-blocks and adds them to the specified sampling
185  * buffer memory.
186  *
187  * Important: This modifies the sampling buffer and must be called when the
188  *	      sampling facility is disabled.
189  *
190  * Returns zero on success, non-zero otherwise.
191  */
192 static int realloc_sampling_buffer(struct sf_buffer *sfb,
193 				   unsigned long num_sdb, gfp_t gfp_flags)
194 {
195 	int i, rc;
196 	unsigned long *new, *tail, *tail_prev = NULL;
197 
198 	if (!sfb->sdbt || !sfb->tail)
199 		return -EINVAL;
200 
201 	if (!is_link_entry(sfb->tail))
202 		return -EINVAL;
203 
204 	/* Append to the existing sampling buffer, overwriting the table-link
205 	 * register.
206 	 * The tail variables always points to the "tail" (last and table-link)
207 	 * entry in an SDB-table.
208 	 */
209 	tail = sfb->tail;
210 
211 	/* Do a sanity check whether the table-link entry points to
212 	 * the sampling buffer origin.
213 	 */
214 	if (sfb->sdbt != get_next_sdbt(tail)) {
215 		debug_sprintf_event(sfdbg, 3, "%s: "
216 				    "sampling buffer is not linked: origin %#lx"
217 				    " tail %#lx\n", __func__,
218 				    (unsigned long)sfb->sdbt,
219 				    (unsigned long)tail);
220 		return -EINVAL;
221 	}
222 
223 	/* Allocate remaining SDBs */
224 	rc = 0;
225 	for (i = 0; i < num_sdb; i++) {
226 		/* Allocate a new SDB-table if it is full. */
227 		if (require_table_link(tail)) {
228 			new = (unsigned long *) get_zeroed_page(gfp_flags);
229 			if (!new) {
230 				rc = -ENOMEM;
231 				break;
232 			}
233 			sfb->num_sdbt++;
234 			/* Link current page to tail of chain */
235 			*tail = (unsigned long)(void *) new + 1;
236 			tail_prev = tail;
237 			tail = new;
238 		}
239 
240 		/* Allocate a new sample-data-block.
241 		 * If there is not enough memory, stop the realloc process
242 		 * and simply use what was allocated.  If this is a temporary
243 		 * issue, a new realloc call (if required) might succeed.
244 		 */
245 		rc = alloc_sample_data_block(tail, gfp_flags);
246 		if (rc) {
247 			/* Undo last SDBT. An SDBT with no SDB at its first
248 			 * entry but with an SDBT entry instead can not be
249 			 * handled by the interrupt handler code.
250 			 * Avoid this situation.
251 			 */
252 			if (tail_prev) {
253 				sfb->num_sdbt--;
254 				free_page((unsigned long) new);
255 				tail = tail_prev;
256 			}
257 			break;
258 		}
259 		sfb->num_sdb++;
260 		tail++;
261 		tail_prev = new = NULL;	/* Allocated at least one SBD */
262 	}
263 
264 	/* Link sampling buffer to its origin */
265 	*tail = (unsigned long) sfb->sdbt + 1;
266 	sfb->tail = tail;
267 
268 	debug_sprintf_event(sfdbg, 4, "%s: new buffer"
269 			    " settings: sdbt %lu sdb %lu\n", __func__,
270 			    sfb->num_sdbt, sfb->num_sdb);
271 	return rc;
272 }
273 
274 /*
275  * allocate_sampling_buffer() - allocate sampler memory
276  *
277  * Allocates and initializes a sampling buffer structure using the
278  * specified number of sample-data-blocks (SDB).  For each allocation,
279  * a 4K page is used.  The number of sample-data-block-tables (SDBT)
280  * are calculated from SDBs.
281  * Also set the ALERT_REQ mask in each SDBs trailer.
282  *
283  * Returns zero on success, non-zero otherwise.
284  */
285 static int alloc_sampling_buffer(struct sf_buffer *sfb, unsigned long num_sdb)
286 {
287 	int rc;
288 
289 	if (sfb->sdbt)
290 		return -EINVAL;
291 
292 	/* Allocate the sample-data-block-table origin */
293 	sfb->sdbt = (unsigned long *) get_zeroed_page(GFP_KERNEL);
294 	if (!sfb->sdbt)
295 		return -ENOMEM;
296 	sfb->num_sdb = 0;
297 	sfb->num_sdbt = 1;
298 
299 	/* Link the table origin to point to itself to prepare for
300 	 * realloc_sampling_buffer() invocation.
301 	 */
302 	sfb->tail = sfb->sdbt;
303 	*sfb->tail = (unsigned long)(void *) sfb->sdbt + 1;
304 
305 	/* Allocate requested number of sample-data-blocks */
306 	rc = realloc_sampling_buffer(sfb, num_sdb, GFP_KERNEL);
307 	if (rc) {
308 		free_sampling_buffer(sfb);
309 		debug_sprintf_event(sfdbg, 4, "%s: "
310 			"realloc_sampling_buffer failed with rc %i\n",
311 			__func__, rc);
312 	} else
313 		debug_sprintf_event(sfdbg, 4,
314 			"%s: tear %#lx dear %#lx\n", __func__,
315 			(unsigned long)sfb->sdbt, (unsigned long)*sfb->sdbt);
316 	return rc;
317 }
318 
319 static void sfb_set_limits(unsigned long min, unsigned long max)
320 {
321 	struct hws_qsi_info_block si;
322 
323 	CPUM_SF_MIN_SDB = min;
324 	CPUM_SF_MAX_SDB = max;
325 
326 	memset(&si, 0, sizeof(si));
327 	if (!qsi(&si))
328 		CPUM_SF_SDB_DIAG_FACTOR = DIV_ROUND_UP(si.dsdes, si.bsdes);
329 }
330 
331 static unsigned long sfb_max_limit(struct hw_perf_event *hwc)
332 {
333 	return SAMPL_DIAG_MODE(hwc) ? CPUM_SF_MAX_SDB * CPUM_SF_SDB_DIAG_FACTOR
334 				    : CPUM_SF_MAX_SDB;
335 }
336 
337 static unsigned long sfb_pending_allocs(struct sf_buffer *sfb,
338 					struct hw_perf_event *hwc)
339 {
340 	if (!sfb->sdbt)
341 		return SFB_ALLOC_REG(hwc);
342 	if (SFB_ALLOC_REG(hwc) > sfb->num_sdb)
343 		return SFB_ALLOC_REG(hwc) - sfb->num_sdb;
344 	return 0;
345 }
346 
347 static int sfb_has_pending_allocs(struct sf_buffer *sfb,
348 				   struct hw_perf_event *hwc)
349 {
350 	return sfb_pending_allocs(sfb, hwc) > 0;
351 }
352 
353 static void sfb_account_allocs(unsigned long num, struct hw_perf_event *hwc)
354 {
355 	/* Limit the number of SDBs to not exceed the maximum */
356 	num = min_t(unsigned long, num, sfb_max_limit(hwc) - SFB_ALLOC_REG(hwc));
357 	if (num)
358 		SFB_ALLOC_REG(hwc) += num;
359 }
360 
361 static void sfb_init_allocs(unsigned long num, struct hw_perf_event *hwc)
362 {
363 	SFB_ALLOC_REG(hwc) = 0;
364 	sfb_account_allocs(num, hwc);
365 }
366 
367 static void deallocate_buffers(struct cpu_hw_sf *cpuhw)
368 {
369 	if (cpuhw->sfb.sdbt)
370 		free_sampling_buffer(&cpuhw->sfb);
371 }
372 
373 static int allocate_buffers(struct cpu_hw_sf *cpuhw, struct hw_perf_event *hwc)
374 {
375 	unsigned long n_sdb, freq;
376 	size_t sample_size;
377 
378 	/* Calculate sampling buffers using 4K pages
379 	 *
380 	 *    1. The sampling size is 32 bytes for basic sampling. This size
381 	 *	 is the same for all machine types. Diagnostic
382 	 *	 sampling uses auxlilary data buffer setup which provides the
383 	 *	 memory for SDBs using linux common code auxiliary trace
384 	 *	 setup.
385 	 *
386 	 *    2. Function alloc_sampling_buffer() sets the Alert Request
387 	 *	 Control indicator to trigger a measurement-alert to harvest
388 	 *	 sample-data-blocks (SDB). This is done per SDB. This
389 	 *	 measurement alert interrupt fires quick enough to handle
390 	 *	 one SDB, on very high frequency and work loads there might
391 	 *	 be 2 to 3 SBDs available for sample processing.
392 	 *	 Currently there is no need for setup alert request on every
393 	 *	 n-th page. This is counterproductive as one IRQ triggers
394 	 *	 a very high number of samples to be processed at one IRQ.
395 	 *
396 	 *    3. Use the sampling frequency as input.
397 	 *	 Compute the number of SDBs and ensure a minimum
398 	 *	 of CPUM_SF_MIN_SDB.  Depending on frequency add some more
399 	 *	 SDBs to handle a higher sampling rate.
400 	 *	 Use a minimum of CPUM_SF_MIN_SDB and allow for 100 samples
401 	 *	 (one SDB) for every 10000 HZ frequency increment.
402 	 *
403 	 *    4. Compute the number of sample-data-block-tables (SDBT) and
404 	 *	 ensure a minimum of CPUM_SF_MIN_SDBT (one table can manage up
405 	 *	 to 511 SDBs).
406 	 */
407 	sample_size = sizeof(struct hws_basic_entry);
408 	freq = sample_rate_to_freq(&cpuhw->qsi, SAMPL_RATE(hwc));
409 	n_sdb = CPUM_SF_MIN_SDB + DIV_ROUND_UP(freq, 10000);
410 
411 	/* If there is already a sampling buffer allocated, it is very likely
412 	 * that the sampling facility is enabled too.  If the event to be
413 	 * initialized requires a greater sampling buffer, the allocation must
414 	 * be postponed.  Changing the sampling buffer requires the sampling
415 	 * facility to be in the disabled state.  So, account the number of
416 	 * required SDBs and let cpumsf_pmu_enable() resize the buffer just
417 	 * before the event is started.
418 	 */
419 	sfb_init_allocs(n_sdb, hwc);
420 	if (sf_buffer_available(cpuhw))
421 		return 0;
422 
423 	debug_sprintf_event(sfdbg, 3,
424 			    "%s: rate %lu f %lu sdb %lu/%lu"
425 			    " sample_size %lu cpuhw %p\n", __func__,
426 			    SAMPL_RATE(hwc), freq, n_sdb, sfb_max_limit(hwc),
427 			    sample_size, cpuhw);
428 
429 	return alloc_sampling_buffer(&cpuhw->sfb,
430 				     sfb_pending_allocs(&cpuhw->sfb, hwc));
431 }
432 
433 static unsigned long min_percent(unsigned int percent, unsigned long base,
434 				 unsigned long min)
435 {
436 	return min_t(unsigned long, min, DIV_ROUND_UP(percent * base, 100));
437 }
438 
439 static unsigned long compute_sfb_extent(unsigned long ratio, unsigned long base)
440 {
441 	/* Use a percentage-based approach to extend the sampling facility
442 	 * buffer.  Accept up to 5% sample data loss.
443 	 * Vary the extents between 1% to 5% of the current number of
444 	 * sample-data-blocks.
445 	 */
446 	if (ratio <= 5)
447 		return 0;
448 	if (ratio <= 25)
449 		return min_percent(1, base, 1);
450 	if (ratio <= 50)
451 		return min_percent(1, base, 1);
452 	if (ratio <= 75)
453 		return min_percent(2, base, 2);
454 	if (ratio <= 100)
455 		return min_percent(3, base, 3);
456 	if (ratio <= 250)
457 		return min_percent(4, base, 4);
458 
459 	return min_percent(5, base, 8);
460 }
461 
462 static void sfb_account_overflows(struct cpu_hw_sf *cpuhw,
463 				  struct hw_perf_event *hwc)
464 {
465 	unsigned long ratio, num;
466 
467 	if (!OVERFLOW_REG(hwc))
468 		return;
469 
470 	/* The sample_overflow contains the average number of sample data
471 	 * that has been lost because sample-data-blocks were full.
472 	 *
473 	 * Calculate the total number of sample data entries that has been
474 	 * discarded.  Then calculate the ratio of lost samples to total samples
475 	 * per second in percent.
476 	 */
477 	ratio = DIV_ROUND_UP(100 * OVERFLOW_REG(hwc) * cpuhw->sfb.num_sdb,
478 			     sample_rate_to_freq(&cpuhw->qsi, SAMPL_RATE(hwc)));
479 
480 	/* Compute number of sample-data-blocks */
481 	num = compute_sfb_extent(ratio, cpuhw->sfb.num_sdb);
482 	if (num)
483 		sfb_account_allocs(num, hwc);
484 
485 	debug_sprintf_event(sfdbg, 5, "%s: overflow %llu ratio %lu num %lu\n",
486 			    __func__, OVERFLOW_REG(hwc), ratio, num);
487 	OVERFLOW_REG(hwc) = 0;
488 }
489 
490 /* extend_sampling_buffer() - Extend sampling buffer
491  * @sfb:	Sampling buffer structure (for local CPU)
492  * @hwc:	Perf event hardware structure
493  *
494  * Use this function to extend the sampling buffer based on the overflow counter
495  * and postponed allocation extents stored in the specified Perf event hardware.
496  *
497  * Important: This function disables the sampling facility in order to safely
498  *	      change the sampling buffer structure.  Do not call this function
499  *	      when the PMU is active.
500  */
501 static void extend_sampling_buffer(struct sf_buffer *sfb,
502 				   struct hw_perf_event *hwc)
503 {
504 	unsigned long num, num_old;
505 	int rc;
506 
507 	num = sfb_pending_allocs(sfb, hwc);
508 	if (!num)
509 		return;
510 	num_old = sfb->num_sdb;
511 
512 	/* Disable the sampling facility to reset any states and also
513 	 * clear pending measurement alerts.
514 	 */
515 	sf_disable();
516 
517 	/* Extend the sampling buffer.
518 	 * This memory allocation typically happens in an atomic context when
519 	 * called by perf.  Because this is a reallocation, it is fine if the
520 	 * new SDB-request cannot be satisfied immediately.
521 	 */
522 	rc = realloc_sampling_buffer(sfb, num, GFP_ATOMIC);
523 	if (rc)
524 		debug_sprintf_event(sfdbg, 5, "%s: realloc failed with rc %i\n",
525 				    __func__, rc);
526 
527 	if (sfb_has_pending_allocs(sfb, hwc))
528 		debug_sprintf_event(sfdbg, 5, "%s: "
529 				    "req %lu alloc %lu remaining %lu\n",
530 				    __func__, num, sfb->num_sdb - num_old,
531 				    sfb_pending_allocs(sfb, hwc));
532 }
533 
534 /* Number of perf events counting hardware events */
535 static atomic_t num_events;
536 /* Used to avoid races in calling reserve/release_cpumf_hardware */
537 static DEFINE_MUTEX(pmc_reserve_mutex);
538 
539 #define PMC_INIT      0
540 #define PMC_RELEASE   1
541 #define PMC_FAILURE   2
542 static void setup_pmc_cpu(void *flags)
543 {
544 	int err;
545 	struct cpu_hw_sf *cpusf = this_cpu_ptr(&cpu_hw_sf);
546 
547 	err = 0;
548 	switch (*((int *) flags)) {
549 	case PMC_INIT:
550 		memset(cpusf, 0, sizeof(*cpusf));
551 		err = qsi(&cpusf->qsi);
552 		if (err)
553 			break;
554 		cpusf->flags |= PMU_F_RESERVED;
555 		err = sf_disable();
556 		if (err)
557 			pr_err("Switching off the sampling facility failed "
558 			       "with rc %i\n", err);
559 		debug_sprintf_event(sfdbg, 5,
560 				    "%s: initialized: cpuhw %p\n", __func__,
561 				    cpusf);
562 		break;
563 	case PMC_RELEASE:
564 		cpusf->flags &= ~PMU_F_RESERVED;
565 		err = sf_disable();
566 		if (err) {
567 			pr_err("Switching off the sampling facility failed "
568 			       "with rc %i\n", err);
569 		} else
570 			deallocate_buffers(cpusf);
571 		debug_sprintf_event(sfdbg, 5,
572 				    "%s: released: cpuhw %p\n", __func__,
573 				    cpusf);
574 		break;
575 	}
576 	if (err)
577 		*((int *) flags) |= PMC_FAILURE;
578 }
579 
580 static void release_pmc_hardware(void)
581 {
582 	int flags = PMC_RELEASE;
583 
584 	irq_subclass_unregister(IRQ_SUBCLASS_MEASUREMENT_ALERT);
585 	on_each_cpu(setup_pmc_cpu, &flags, 1);
586 }
587 
588 static int reserve_pmc_hardware(void)
589 {
590 	int flags = PMC_INIT;
591 
592 	on_each_cpu(setup_pmc_cpu, &flags, 1);
593 	if (flags & PMC_FAILURE) {
594 		release_pmc_hardware();
595 		return -ENODEV;
596 	}
597 	irq_subclass_register(IRQ_SUBCLASS_MEASUREMENT_ALERT);
598 
599 	return 0;
600 }
601 
602 static void hw_perf_event_destroy(struct perf_event *event)
603 {
604 	/* Release PMC if this is the last perf event */
605 	if (!atomic_add_unless(&num_events, -1, 1)) {
606 		mutex_lock(&pmc_reserve_mutex);
607 		if (atomic_dec_return(&num_events) == 0)
608 			release_pmc_hardware();
609 		mutex_unlock(&pmc_reserve_mutex);
610 	}
611 }
612 
613 static void hw_init_period(struct hw_perf_event *hwc, u64 period)
614 {
615 	hwc->sample_period = period;
616 	hwc->last_period = hwc->sample_period;
617 	local64_set(&hwc->period_left, hwc->sample_period);
618 }
619 
620 static unsigned long hw_limit_rate(const struct hws_qsi_info_block *si,
621 				   unsigned long rate)
622 {
623 	return clamp_t(unsigned long, rate,
624 		       si->min_sampl_rate, si->max_sampl_rate);
625 }
626 
627 static u32 cpumsf_pid_type(struct perf_event *event,
628 			   u32 pid, enum pid_type type)
629 {
630 	struct task_struct *tsk;
631 
632 	/* Idle process */
633 	if (!pid)
634 		goto out;
635 
636 	tsk = find_task_by_pid_ns(pid, &init_pid_ns);
637 	pid = -1;
638 	if (tsk) {
639 		/*
640 		 * Only top level events contain the pid namespace in which
641 		 * they are created.
642 		 */
643 		if (event->parent)
644 			event = event->parent;
645 		pid = __task_pid_nr_ns(tsk, type, event->ns);
646 		/*
647 		 * See also 1d953111b648
648 		 * "perf/core: Don't report zero PIDs for exiting tasks".
649 		 */
650 		if (!pid && !pid_alive(tsk))
651 			pid = -1;
652 	}
653 out:
654 	return pid;
655 }
656 
657 static void cpumsf_output_event_pid(struct perf_event *event,
658 				    struct perf_sample_data *data,
659 				    struct pt_regs *regs)
660 {
661 	u32 pid;
662 	struct perf_event_header header;
663 	struct perf_output_handle handle;
664 
665 	/*
666 	 * Obtain the PID from the basic-sampling data entry and
667 	 * correct the data->tid_entry.pid value.
668 	 */
669 	pid = data->tid_entry.pid;
670 
671 	/* Protect callchain buffers, tasks */
672 	rcu_read_lock();
673 
674 	perf_prepare_sample(&header, data, event, regs);
675 	if (perf_output_begin(&handle, data, event, header.size))
676 		goto out;
677 
678 	/* Update the process ID (see also kernel/events/core.c) */
679 	data->tid_entry.pid = cpumsf_pid_type(event, pid, PIDTYPE_TGID);
680 	data->tid_entry.tid = cpumsf_pid_type(event, pid, PIDTYPE_PID);
681 
682 	perf_output_sample(&handle, &header, data, event);
683 	perf_output_end(&handle);
684 out:
685 	rcu_read_unlock();
686 }
687 
688 static unsigned long getrate(bool freq, unsigned long sample,
689 			     struct hws_qsi_info_block *si)
690 {
691 	unsigned long rate;
692 
693 	if (freq) {
694 		rate = freq_to_sample_rate(si, sample);
695 		rate = hw_limit_rate(si, rate);
696 	} else {
697 		/* The min/max sampling rates specifies the valid range
698 		 * of sample periods.  If the specified sample period is
699 		 * out of range, limit the period to the range boundary.
700 		 */
701 		rate = hw_limit_rate(si, sample);
702 
703 		/* The perf core maintains a maximum sample rate that is
704 		 * configurable through the sysctl interface.  Ensure the
705 		 * sampling rate does not exceed this value.  This also helps
706 		 * to avoid throttling when pushing samples with
707 		 * perf_event_overflow().
708 		 */
709 		if (sample_rate_to_freq(si, rate) >
710 		    sysctl_perf_event_sample_rate) {
711 			debug_sprintf_event(sfdbg, 1, "%s: "
712 					    "Sampling rate exceeds maximum "
713 					    "perf sample rate\n", __func__);
714 			rate = 0;
715 		}
716 	}
717 	return rate;
718 }
719 
720 /* The sampling information (si) contains information about the
721  * min/max sampling intervals and the CPU speed.  So calculate the
722  * correct sampling interval and avoid the whole period adjust
723  * feedback loop.
724  *
725  * Since the CPU Measurement sampling facility can not handle frequency
726  * calculate the sampling interval when frequency is specified using
727  * this formula:
728  *	interval := cpu_speed * 1000000 / sample_freq
729  *
730  * Returns errno on bad input and zero on success with parameter interval
731  * set to the correct sampling rate.
732  *
733  * Note: This function turns off freq bit to avoid calling function
734  * perf_adjust_period(). This causes frequency adjustment in the common
735  * code part which causes tremendous variations in the counter values.
736  */
737 static int __hw_perf_event_init_rate(struct perf_event *event,
738 				     struct hws_qsi_info_block *si)
739 {
740 	struct perf_event_attr *attr = &event->attr;
741 	struct hw_perf_event *hwc = &event->hw;
742 	unsigned long rate;
743 
744 	if (attr->freq) {
745 		if (!attr->sample_freq)
746 			return -EINVAL;
747 		rate = getrate(attr->freq, attr->sample_freq, si);
748 		attr->freq = 0;		/* Don't call  perf_adjust_period() */
749 		SAMPL_FLAGS(hwc) |= PERF_CPUM_SF_FREQ_MODE;
750 	} else {
751 		rate = getrate(attr->freq, attr->sample_period, si);
752 		if (!rate)
753 			return -EINVAL;
754 	}
755 	attr->sample_period = rate;
756 	SAMPL_RATE(hwc) = rate;
757 	hw_init_period(hwc, SAMPL_RATE(hwc));
758 	debug_sprintf_event(sfdbg, 4, "%s: cpu %d period %#llx freq %d,%#lx\n",
759 			    __func__, event->cpu, event->attr.sample_period,
760 			    event->attr.freq, SAMPLE_FREQ_MODE(hwc));
761 	return 0;
762 }
763 
764 static int __hw_perf_event_init(struct perf_event *event)
765 {
766 	struct cpu_hw_sf *cpuhw;
767 	struct hws_qsi_info_block si;
768 	struct perf_event_attr *attr = &event->attr;
769 	struct hw_perf_event *hwc = &event->hw;
770 	int cpu, err;
771 
772 	/* Reserve CPU-measurement sampling facility */
773 	err = 0;
774 	if (!atomic_inc_not_zero(&num_events)) {
775 		mutex_lock(&pmc_reserve_mutex);
776 		if (atomic_read(&num_events) == 0 && reserve_pmc_hardware())
777 			err = -EBUSY;
778 		else
779 			atomic_inc(&num_events);
780 		mutex_unlock(&pmc_reserve_mutex);
781 	}
782 	event->destroy = hw_perf_event_destroy;
783 
784 	if (err)
785 		goto out;
786 
787 	/* Access per-CPU sampling information (query sampling info) */
788 	/*
789 	 * The event->cpu value can be -1 to count on every CPU, for example,
790 	 * when attaching to a task.  If this is specified, use the query
791 	 * sampling info from the current CPU, otherwise use event->cpu to
792 	 * retrieve the per-CPU information.
793 	 * Later, cpuhw indicates whether to allocate sampling buffers for a
794 	 * particular CPU (cpuhw!=NULL) or each online CPU (cpuw==NULL).
795 	 */
796 	memset(&si, 0, sizeof(si));
797 	cpuhw = NULL;
798 	if (event->cpu == -1)
799 		qsi(&si);
800 	else {
801 		/* Event is pinned to a particular CPU, retrieve the per-CPU
802 		 * sampling structure for accessing the CPU-specific QSI.
803 		 */
804 		cpuhw = &per_cpu(cpu_hw_sf, event->cpu);
805 		si = cpuhw->qsi;
806 	}
807 
808 	/* Check sampling facility authorization and, if not authorized,
809 	 * fall back to other PMUs.  It is safe to check any CPU because
810 	 * the authorization is identical for all configured CPUs.
811 	 */
812 	if (!si.as) {
813 		err = -ENOENT;
814 		goto out;
815 	}
816 
817 	if (si.ribm & CPU_MF_SF_RIBM_NOTAV) {
818 		pr_warn("CPU Measurement Facility sampling is temporarily not available\n");
819 		err = -EBUSY;
820 		goto out;
821 	}
822 
823 	/* Always enable basic sampling */
824 	SAMPL_FLAGS(hwc) = PERF_CPUM_SF_BASIC_MODE;
825 
826 	/* Check if diagnostic sampling is requested.  Deny if the required
827 	 * sampling authorization is missing.
828 	 */
829 	if (attr->config == PERF_EVENT_CPUM_SF_DIAG) {
830 		if (!si.ad) {
831 			err = -EPERM;
832 			goto out;
833 		}
834 		SAMPL_FLAGS(hwc) |= PERF_CPUM_SF_DIAG_MODE;
835 	}
836 
837 	/* Check and set other sampling flags */
838 	if (attr->config1 & PERF_CPUM_SF_FULL_BLOCKS)
839 		SAMPL_FLAGS(hwc) |= PERF_CPUM_SF_FULL_BLOCKS;
840 
841 	err =  __hw_perf_event_init_rate(event, &si);
842 	if (err)
843 		goto out;
844 
845 	/* Initialize sample data overflow accounting */
846 	hwc->extra_reg.reg = REG_OVERFLOW;
847 	OVERFLOW_REG(hwc) = 0;
848 
849 	/* Use AUX buffer. No need to allocate it by ourself */
850 	if (attr->config == PERF_EVENT_CPUM_SF_DIAG)
851 		return 0;
852 
853 	/* Allocate the per-CPU sampling buffer using the CPU information
854 	 * from the event.  If the event is not pinned to a particular
855 	 * CPU (event->cpu == -1; or cpuhw == NULL), allocate sampling
856 	 * buffers for each online CPU.
857 	 */
858 	if (cpuhw)
859 		/* Event is pinned to a particular CPU */
860 		err = allocate_buffers(cpuhw, hwc);
861 	else {
862 		/* Event is not pinned, allocate sampling buffer on
863 		 * each online CPU
864 		 */
865 		for_each_online_cpu(cpu) {
866 			cpuhw = &per_cpu(cpu_hw_sf, cpu);
867 			err = allocate_buffers(cpuhw, hwc);
868 			if (err)
869 				break;
870 		}
871 	}
872 
873 	/* If PID/TID sampling is active, replace the default overflow
874 	 * handler to extract and resolve the PIDs from the basic-sampling
875 	 * data entries.
876 	 */
877 	if (event->attr.sample_type & PERF_SAMPLE_TID)
878 		if (is_default_overflow_handler(event))
879 			event->overflow_handler = cpumsf_output_event_pid;
880 out:
881 	return err;
882 }
883 
884 static bool is_callchain_event(struct perf_event *event)
885 {
886 	u64 sample_type = event->attr.sample_type;
887 
888 	return sample_type & (PERF_SAMPLE_CALLCHAIN | PERF_SAMPLE_REGS_USER |
889 			      PERF_SAMPLE_STACK_USER);
890 }
891 
892 static int cpumsf_pmu_event_init(struct perf_event *event)
893 {
894 	int err;
895 
896 	/* No support for taken branch sampling */
897 	/* No support for callchain, stacks and registers */
898 	if (has_branch_stack(event) || is_callchain_event(event))
899 		return -EOPNOTSUPP;
900 
901 	switch (event->attr.type) {
902 	case PERF_TYPE_RAW:
903 		if ((event->attr.config != PERF_EVENT_CPUM_SF) &&
904 		    (event->attr.config != PERF_EVENT_CPUM_SF_DIAG))
905 			return -ENOENT;
906 		break;
907 	case PERF_TYPE_HARDWARE:
908 		/* Support sampling of CPU cycles in addition to the
909 		 * counter facility.  However, the counter facility
910 		 * is more precise and, hence, restrict this PMU to
911 		 * sampling events only.
912 		 */
913 		if (event->attr.config != PERF_COUNT_HW_CPU_CYCLES)
914 			return -ENOENT;
915 		if (!is_sampling_event(event))
916 			return -ENOENT;
917 		break;
918 	default:
919 		return -ENOENT;
920 	}
921 
922 	/* Check online status of the CPU to which the event is pinned */
923 	if (event->cpu >= 0 && !cpu_online(event->cpu))
924 		return -ENODEV;
925 
926 	/* Force reset of idle/hv excludes regardless of what the
927 	 * user requested.
928 	 */
929 	if (event->attr.exclude_hv)
930 		event->attr.exclude_hv = 0;
931 	if (event->attr.exclude_idle)
932 		event->attr.exclude_idle = 0;
933 
934 	err = __hw_perf_event_init(event);
935 	if (unlikely(err))
936 		if (event->destroy)
937 			event->destroy(event);
938 	return err;
939 }
940 
941 static void cpumsf_pmu_enable(struct pmu *pmu)
942 {
943 	struct cpu_hw_sf *cpuhw = this_cpu_ptr(&cpu_hw_sf);
944 	struct hw_perf_event *hwc;
945 	int err;
946 
947 	if (cpuhw->flags & PMU_F_ENABLED)
948 		return;
949 
950 	if (cpuhw->flags & PMU_F_ERR_MASK)
951 		return;
952 
953 	/* Check whether to extent the sampling buffer.
954 	 *
955 	 * Two conditions trigger an increase of the sampling buffer for a
956 	 * perf event:
957 	 *    1. Postponed buffer allocations from the event initialization.
958 	 *    2. Sampling overflows that contribute to pending allocations.
959 	 *
960 	 * Note that the extend_sampling_buffer() function disables the sampling
961 	 * facility, but it can be fully re-enabled using sampling controls that
962 	 * have been saved in cpumsf_pmu_disable().
963 	 */
964 	if (cpuhw->event) {
965 		hwc = &cpuhw->event->hw;
966 		if (!(SAMPL_DIAG_MODE(hwc))) {
967 			/*
968 			 * Account number of overflow-designated
969 			 * buffer extents
970 			 */
971 			sfb_account_overflows(cpuhw, hwc);
972 			extend_sampling_buffer(&cpuhw->sfb, hwc);
973 		}
974 		/* Rate may be adjusted with ioctl() */
975 		cpuhw->lsctl.interval = SAMPL_RATE(&cpuhw->event->hw);
976 	}
977 
978 	/* (Re)enable the PMU and sampling facility */
979 	cpuhw->flags |= PMU_F_ENABLED;
980 	barrier();
981 
982 	err = lsctl(&cpuhw->lsctl);
983 	if (err) {
984 		cpuhw->flags &= ~PMU_F_ENABLED;
985 		pr_err("Loading sampling controls failed: op %i err %i\n",
986 			1, err);
987 		return;
988 	}
989 
990 	/* Load current program parameter */
991 	lpp(&S390_lowcore.lpp);
992 
993 	debug_sprintf_event(sfdbg, 6, "%s: es %i cs %i ed %i cd %i "
994 			    "interval %#lx tear %#lx dear %#lx\n", __func__,
995 			    cpuhw->lsctl.es, cpuhw->lsctl.cs, cpuhw->lsctl.ed,
996 			    cpuhw->lsctl.cd, cpuhw->lsctl.interval,
997 			    cpuhw->lsctl.tear, cpuhw->lsctl.dear);
998 }
999 
1000 static void cpumsf_pmu_disable(struct pmu *pmu)
1001 {
1002 	struct cpu_hw_sf *cpuhw = this_cpu_ptr(&cpu_hw_sf);
1003 	struct hws_lsctl_request_block inactive;
1004 	struct hws_qsi_info_block si;
1005 	int err;
1006 
1007 	if (!(cpuhw->flags & PMU_F_ENABLED))
1008 		return;
1009 
1010 	if (cpuhw->flags & PMU_F_ERR_MASK)
1011 		return;
1012 
1013 	/* Switch off sampling activation control */
1014 	inactive = cpuhw->lsctl;
1015 	inactive.cs = 0;
1016 	inactive.cd = 0;
1017 
1018 	err = lsctl(&inactive);
1019 	if (err) {
1020 		pr_err("Loading sampling controls failed: op %i err %i\n",
1021 			2, err);
1022 		return;
1023 	}
1024 
1025 	/* Save state of TEAR and DEAR register contents */
1026 	err = qsi(&si);
1027 	if (!err) {
1028 		/* TEAR/DEAR values are valid only if the sampling facility is
1029 		 * enabled.  Note that cpumsf_pmu_disable() might be called even
1030 		 * for a disabled sampling facility because cpumsf_pmu_enable()
1031 		 * controls the enable/disable state.
1032 		 */
1033 		if (si.es) {
1034 			cpuhw->lsctl.tear = si.tear;
1035 			cpuhw->lsctl.dear = si.dear;
1036 		}
1037 	} else
1038 		debug_sprintf_event(sfdbg, 3, "%s: qsi() failed with err %i\n",
1039 				    __func__, err);
1040 
1041 	cpuhw->flags &= ~PMU_F_ENABLED;
1042 }
1043 
1044 /* perf_exclude_event() - Filter event
1045  * @event:	The perf event
1046  * @regs:	pt_regs structure
1047  * @sde_regs:	Sample-data-entry (sde) regs structure
1048  *
1049  * Filter perf events according to their exclude specification.
1050  *
1051  * Return non-zero if the event shall be excluded.
1052  */
1053 static int perf_exclude_event(struct perf_event *event, struct pt_regs *regs,
1054 			      struct perf_sf_sde_regs *sde_regs)
1055 {
1056 	if (event->attr.exclude_user && user_mode(regs))
1057 		return 1;
1058 	if (event->attr.exclude_kernel && !user_mode(regs))
1059 		return 1;
1060 	if (event->attr.exclude_guest && sde_regs->in_guest)
1061 		return 1;
1062 	if (event->attr.exclude_host && !sde_regs->in_guest)
1063 		return 1;
1064 	return 0;
1065 }
1066 
1067 /* perf_push_sample() - Push samples to perf
1068  * @event:	The perf event
1069  * @sample:	Hardware sample data
1070  *
1071  * Use the hardware sample data to create perf event sample.  The sample
1072  * is the pushed to the event subsystem and the function checks for
1073  * possible event overflows.  If an event overflow occurs, the PMU is
1074  * stopped.
1075  *
1076  * Return non-zero if an event overflow occurred.
1077  */
1078 static int perf_push_sample(struct perf_event *event,
1079 			    struct hws_basic_entry *basic)
1080 {
1081 	int overflow;
1082 	struct pt_regs regs;
1083 	struct perf_sf_sde_regs *sde_regs;
1084 	struct perf_sample_data data;
1085 
1086 	/* Setup perf sample */
1087 	perf_sample_data_init(&data, 0, event->hw.last_period);
1088 
1089 	/* Setup pt_regs to look like an CPU-measurement external interrupt
1090 	 * using the Program Request Alert code.  The regs.int_parm_long
1091 	 * field which is unused contains additional sample-data-entry related
1092 	 * indicators.
1093 	 */
1094 	memset(&regs, 0, sizeof(regs));
1095 	regs.int_code = 0x1407;
1096 	regs.int_parm = CPU_MF_INT_SF_PRA;
1097 	sde_regs = (struct perf_sf_sde_regs *) &regs.int_parm_long;
1098 
1099 	psw_bits(regs.psw).ia	= basic->ia;
1100 	psw_bits(regs.psw).dat	= basic->T;
1101 	psw_bits(regs.psw).wait = basic->W;
1102 	psw_bits(regs.psw).pstate = basic->P;
1103 	psw_bits(regs.psw).as	= basic->AS;
1104 
1105 	/*
1106 	 * Use the hardware provided configuration level to decide if the
1107 	 * sample belongs to a guest or host. If that is not available,
1108 	 * fall back to the following heuristics:
1109 	 * A non-zero guest program parameter always indicates a guest
1110 	 * sample. Some early samples or samples from guests without
1111 	 * lpp usage would be misaccounted to the host. We use the asn
1112 	 * value as an addon heuristic to detect most of these guest samples.
1113 	 * If the value differs from 0xffff (the host value), we assume to
1114 	 * be a KVM guest.
1115 	 */
1116 	switch (basic->CL) {
1117 	case 1: /* logical partition */
1118 		sde_regs->in_guest = 0;
1119 		break;
1120 	case 2: /* virtual machine */
1121 		sde_regs->in_guest = 1;
1122 		break;
1123 	default: /* old machine, use heuristics */
1124 		if (basic->gpp || basic->prim_asn != 0xffff)
1125 			sde_regs->in_guest = 1;
1126 		break;
1127 	}
1128 
1129 	/*
1130 	 * Store the PID value from the sample-data-entry to be
1131 	 * processed and resolved by cpumsf_output_event_pid().
1132 	 */
1133 	data.tid_entry.pid = basic->hpp & LPP_PID_MASK;
1134 
1135 	overflow = 0;
1136 	if (perf_exclude_event(event, &regs, sde_regs))
1137 		goto out;
1138 	if (perf_event_overflow(event, &data, &regs)) {
1139 		overflow = 1;
1140 		event->pmu->stop(event, 0);
1141 	}
1142 	perf_event_update_userpage(event);
1143 out:
1144 	return overflow;
1145 }
1146 
1147 static void perf_event_count_update(struct perf_event *event, u64 count)
1148 {
1149 	local64_add(count, &event->count);
1150 }
1151 
1152 /* hw_collect_samples() - Walk through a sample-data-block and collect samples
1153  * @event:	The perf event
1154  * @sdbt:	Sample-data-block table
1155  * @overflow:	Event overflow counter
1156  *
1157  * Walks through a sample-data-block and collects sampling data entries that are
1158  * then pushed to the perf event subsystem.  Depending on the sampling function,
1159  * there can be either basic-sampling or combined-sampling data entries.  A
1160  * combined-sampling data entry consists of a basic- and a diagnostic-sampling
1161  * data entry.	The sampling function is determined by the flags in the perf
1162  * event hardware structure.  The function always works with a combined-sampling
1163  * data entry but ignores the the diagnostic portion if it is not available.
1164  *
1165  * Note that the implementation focuses on basic-sampling data entries and, if
1166  * such an entry is not valid, the entire combined-sampling data entry is
1167  * ignored.
1168  *
1169  * The overflow variables counts the number of samples that has been discarded
1170  * due to a perf event overflow.
1171  */
1172 static void hw_collect_samples(struct perf_event *event, unsigned long *sdbt,
1173 			       unsigned long long *overflow)
1174 {
1175 	struct hws_trailer_entry *te;
1176 	struct hws_basic_entry *sample;
1177 
1178 	te = (struct hws_trailer_entry *) trailer_entry_ptr(*sdbt);
1179 	sample = (struct hws_basic_entry *) *sdbt;
1180 	while ((unsigned long *) sample < (unsigned long *) te) {
1181 		/* Check for an empty sample */
1182 		if (!sample->def || sample->LS)
1183 			break;
1184 
1185 		/* Update perf event period */
1186 		perf_event_count_update(event, SAMPL_RATE(&event->hw));
1187 
1188 		/* Check whether sample is valid */
1189 		if (sample->def == 0x0001) {
1190 			/* If an event overflow occurred, the PMU is stopped to
1191 			 * throttle event delivery.  Remaining sample data is
1192 			 * discarded.
1193 			 */
1194 			if (!*overflow) {
1195 				/* Check whether sample is consistent */
1196 				if (sample->I == 0 && sample->W == 0) {
1197 					/* Deliver sample data to perf */
1198 					*overflow = perf_push_sample(event,
1199 								     sample);
1200 				}
1201 			} else
1202 				/* Count discarded samples */
1203 				*overflow += 1;
1204 		} else {
1205 			debug_sprintf_event(sfdbg, 4,
1206 					    "%s: Found unknown"
1207 					    " sampling data entry: te->f %i"
1208 					    " basic.def %#4x (%p)\n", __func__,
1209 					    te->f, sample->def, sample);
1210 			/* Sample slot is not yet written or other record.
1211 			 *
1212 			 * This condition can occur if the buffer was reused
1213 			 * from a combined basic- and diagnostic-sampling.
1214 			 * If only basic-sampling is then active, entries are
1215 			 * written into the larger diagnostic entries.
1216 			 * This is typically the case for sample-data-blocks
1217 			 * that are not full.  Stop processing if the first
1218 			 * invalid format was detected.
1219 			 */
1220 			if (!te->f)
1221 				break;
1222 		}
1223 
1224 		/* Reset sample slot and advance to next sample */
1225 		sample->def = 0;
1226 		sample++;
1227 	}
1228 }
1229 
1230 /* hw_perf_event_update() - Process sampling buffer
1231  * @event:	The perf event
1232  * @flush_all:	Flag to also flush partially filled sample-data-blocks
1233  *
1234  * Processes the sampling buffer and create perf event samples.
1235  * The sampling buffer position are retrieved and saved in the TEAR_REG
1236  * register of the specified perf event.
1237  *
1238  * Only full sample-data-blocks are processed.	Specify the flash_all flag
1239  * to also walk through partially filled sample-data-blocks.  It is ignored
1240  * if PERF_CPUM_SF_FULL_BLOCKS is set.	The PERF_CPUM_SF_FULL_BLOCKS flag
1241  * enforces the processing of full sample-data-blocks only (trailer entries
1242  * with the block-full-indicator bit set).
1243  */
1244 static void hw_perf_event_update(struct perf_event *event, int flush_all)
1245 {
1246 	struct hw_perf_event *hwc = &event->hw;
1247 	struct hws_trailer_entry *te;
1248 	unsigned long *sdbt;
1249 	unsigned long long event_overflow, sampl_overflow, num_sdb, te_flags;
1250 	int done;
1251 
1252 	/*
1253 	 * AUX buffer is used when in diagnostic sampling mode.
1254 	 * No perf events/samples are created.
1255 	 */
1256 	if (SAMPL_DIAG_MODE(&event->hw))
1257 		return;
1258 
1259 	if (flush_all && SDB_FULL_BLOCKS(hwc))
1260 		flush_all = 0;
1261 
1262 	sdbt = (unsigned long *) TEAR_REG(hwc);
1263 	done = event_overflow = sampl_overflow = num_sdb = 0;
1264 	while (!done) {
1265 		/* Get the trailer entry of the sample-data-block */
1266 		te = (struct hws_trailer_entry *) trailer_entry_ptr(*sdbt);
1267 
1268 		/* Leave loop if no more work to do (block full indicator) */
1269 		if (!te->f) {
1270 			done = 1;
1271 			if (!flush_all)
1272 				break;
1273 		}
1274 
1275 		/* Check the sample overflow count */
1276 		if (te->overflow)
1277 			/* Account sample overflows and, if a particular limit
1278 			 * is reached, extend the sampling buffer.
1279 			 * For details, see sfb_account_overflows().
1280 			 */
1281 			sampl_overflow += te->overflow;
1282 
1283 		/* Timestamps are valid for full sample-data-blocks only */
1284 		debug_sprintf_event(sfdbg, 6, "%s: sdbt %#lx "
1285 				    "overflow %llu timestamp %#llx\n",
1286 				    __func__, (unsigned long)sdbt, te->overflow,
1287 				    (te->f) ? trailer_timestamp(te) : 0ULL);
1288 
1289 		/* Collect all samples from a single sample-data-block and
1290 		 * flag if an (perf) event overflow happened.  If so, the PMU
1291 		 * is stopped and remaining samples will be discarded.
1292 		 */
1293 		hw_collect_samples(event, sdbt, &event_overflow);
1294 		num_sdb++;
1295 
1296 		/* Reset trailer (using compare-double-and-swap) */
1297 		do {
1298 			te_flags = te->flags & ~SDB_TE_BUFFER_FULL_MASK;
1299 			te_flags |= SDB_TE_ALERT_REQ_MASK;
1300 		} while (!cmpxchg_double(&te->flags, &te->overflow,
1301 					 te->flags, te->overflow,
1302 					 te_flags, 0ULL));
1303 
1304 		/* Advance to next sample-data-block */
1305 		sdbt++;
1306 		if (is_link_entry(sdbt))
1307 			sdbt = get_next_sdbt(sdbt);
1308 
1309 		/* Update event hardware registers */
1310 		TEAR_REG(hwc) = (unsigned long) sdbt;
1311 
1312 		/* Stop processing sample-data if all samples of the current
1313 		 * sample-data-block were flushed even if it was not full.
1314 		 */
1315 		if (flush_all && done)
1316 			break;
1317 	}
1318 
1319 	/* Account sample overflows in the event hardware structure */
1320 	if (sampl_overflow)
1321 		OVERFLOW_REG(hwc) = DIV_ROUND_UP(OVERFLOW_REG(hwc) +
1322 						 sampl_overflow, 1 + num_sdb);
1323 
1324 	/* Perf_event_overflow() and perf_event_account_interrupt() limit
1325 	 * the interrupt rate to an upper limit. Roughly 1000 samples per
1326 	 * task tick.
1327 	 * Hitting this limit results in a large number
1328 	 * of throttled REF_REPORT_THROTTLE entries and the samples
1329 	 * are dropped.
1330 	 * Slightly increase the interval to avoid hitting this limit.
1331 	 */
1332 	if (event_overflow) {
1333 		SAMPL_RATE(hwc) += DIV_ROUND_UP(SAMPL_RATE(hwc), 10);
1334 		debug_sprintf_event(sfdbg, 1, "%s: rate adjustment %ld\n",
1335 				    __func__,
1336 				    DIV_ROUND_UP(SAMPL_RATE(hwc), 10));
1337 	}
1338 
1339 	if (sampl_overflow || event_overflow)
1340 		debug_sprintf_event(sfdbg, 4, "%s: "
1341 				    "overflows: sample %llu event %llu"
1342 				    " total %llu num_sdb %llu\n",
1343 				    __func__, sampl_overflow, event_overflow,
1344 				    OVERFLOW_REG(hwc), num_sdb);
1345 }
1346 
1347 #define AUX_SDB_INDEX(aux, i) ((i) % aux->sfb.num_sdb)
1348 #define AUX_SDB_NUM(aux, start, end) (end >= start ? end - start + 1 : 0)
1349 #define AUX_SDB_NUM_ALERT(aux) AUX_SDB_NUM(aux, aux->head, aux->alert_mark)
1350 #define AUX_SDB_NUM_EMPTY(aux) AUX_SDB_NUM(aux, aux->head, aux->empty_mark)
1351 
1352 /*
1353  * Get trailer entry by index of SDB.
1354  */
1355 static struct hws_trailer_entry *aux_sdb_trailer(struct aux_buffer *aux,
1356 						 unsigned long index)
1357 {
1358 	unsigned long sdb;
1359 
1360 	index = AUX_SDB_INDEX(aux, index);
1361 	sdb = aux->sdb_index[index];
1362 	return (struct hws_trailer_entry *)trailer_entry_ptr(sdb);
1363 }
1364 
1365 /*
1366  * Finish sampling on the cpu. Called by cpumsf_pmu_del() with pmu
1367  * disabled. Collect the full SDBs in AUX buffer which have not reached
1368  * the point of alert indicator. And ignore the SDBs which are not
1369  * full.
1370  *
1371  * 1. Scan SDBs to see how much data is there and consume them.
1372  * 2. Remove alert indicator in the buffer.
1373  */
1374 static void aux_output_end(struct perf_output_handle *handle)
1375 {
1376 	unsigned long i, range_scan, idx;
1377 	struct aux_buffer *aux;
1378 	struct hws_trailer_entry *te;
1379 
1380 	aux = perf_get_aux(handle);
1381 	if (!aux)
1382 		return;
1383 
1384 	range_scan = AUX_SDB_NUM_ALERT(aux);
1385 	for (i = 0, idx = aux->head; i < range_scan; i++, idx++) {
1386 		te = aux_sdb_trailer(aux, idx);
1387 		if (!(te->flags & SDB_TE_BUFFER_FULL_MASK))
1388 			break;
1389 	}
1390 	/* i is num of SDBs which are full */
1391 	perf_aux_output_end(handle, i << PAGE_SHIFT);
1392 
1393 	/* Remove alert indicators in the buffer */
1394 	te = aux_sdb_trailer(aux, aux->alert_mark);
1395 	te->flags &= ~SDB_TE_ALERT_REQ_MASK;
1396 
1397 	debug_sprintf_event(sfdbg, 6, "%s: SDBs %ld range %ld head %ld\n",
1398 			    __func__, i, range_scan, aux->head);
1399 }
1400 
1401 /*
1402  * Start sampling on the CPU. Called by cpumsf_pmu_add() when an event
1403  * is first added to the CPU or rescheduled again to the CPU. It is called
1404  * with pmu disabled.
1405  *
1406  * 1. Reset the trailer of SDBs to get ready for new data.
1407  * 2. Tell the hardware where to put the data by reset the SDBs buffer
1408  *    head(tear/dear).
1409  */
1410 static int aux_output_begin(struct perf_output_handle *handle,
1411 			    struct aux_buffer *aux,
1412 			    struct cpu_hw_sf *cpuhw)
1413 {
1414 	unsigned long range;
1415 	unsigned long i, range_scan, idx;
1416 	unsigned long head, base, offset;
1417 	struct hws_trailer_entry *te;
1418 
1419 	if (WARN_ON_ONCE(handle->head & ~PAGE_MASK))
1420 		return -EINVAL;
1421 
1422 	aux->head = handle->head >> PAGE_SHIFT;
1423 	range = (handle->size + 1) >> PAGE_SHIFT;
1424 	if (range <= 1)
1425 		return -ENOMEM;
1426 
1427 	/*
1428 	 * SDBs between aux->head and aux->empty_mark are already ready
1429 	 * for new data. range_scan is num of SDBs not within them.
1430 	 */
1431 	debug_sprintf_event(sfdbg, 6,
1432 			    "%s: range %ld head %ld alert %ld empty %ld\n",
1433 			    __func__, range, aux->head, aux->alert_mark,
1434 			    aux->empty_mark);
1435 	if (range > AUX_SDB_NUM_EMPTY(aux)) {
1436 		range_scan = range - AUX_SDB_NUM_EMPTY(aux);
1437 		idx = aux->empty_mark + 1;
1438 		for (i = 0; i < range_scan; i++, idx++) {
1439 			te = aux_sdb_trailer(aux, idx);
1440 			te->flags &= ~(SDB_TE_BUFFER_FULL_MASK |
1441 				       SDB_TE_ALERT_REQ_MASK);
1442 			te->overflow = 0;
1443 		}
1444 		/* Save the position of empty SDBs */
1445 		aux->empty_mark = aux->head + range - 1;
1446 	}
1447 
1448 	/* Set alert indicator */
1449 	aux->alert_mark = aux->head + range/2 - 1;
1450 	te = aux_sdb_trailer(aux, aux->alert_mark);
1451 	te->flags = te->flags | SDB_TE_ALERT_REQ_MASK;
1452 
1453 	/* Reset hardware buffer head */
1454 	head = AUX_SDB_INDEX(aux, aux->head);
1455 	base = aux->sdbt_index[head / CPUM_SF_SDB_PER_TABLE];
1456 	offset = head % CPUM_SF_SDB_PER_TABLE;
1457 	cpuhw->lsctl.tear = base + offset * sizeof(unsigned long);
1458 	cpuhw->lsctl.dear = aux->sdb_index[head];
1459 
1460 	debug_sprintf_event(sfdbg, 6, "%s: head %ld alert %ld empty %ld "
1461 			    "index %ld tear %#lx dear %#lx\n", __func__,
1462 			    aux->head, aux->alert_mark, aux->empty_mark,
1463 			    head / CPUM_SF_SDB_PER_TABLE,
1464 			    cpuhw->lsctl.tear, cpuhw->lsctl.dear);
1465 
1466 	return 0;
1467 }
1468 
1469 /*
1470  * Set alert indicator on SDB at index @alert_index while sampler is running.
1471  *
1472  * Return true if successfully.
1473  * Return false if full indicator is already set by hardware sampler.
1474  */
1475 static bool aux_set_alert(struct aux_buffer *aux, unsigned long alert_index,
1476 			  unsigned long long *overflow)
1477 {
1478 	unsigned long long orig_overflow, orig_flags, new_flags;
1479 	struct hws_trailer_entry *te;
1480 
1481 	te = aux_sdb_trailer(aux, alert_index);
1482 	do {
1483 		orig_flags = te->flags;
1484 		*overflow = orig_overflow = te->overflow;
1485 		if (orig_flags & SDB_TE_BUFFER_FULL_MASK) {
1486 			/*
1487 			 * SDB is already set by hardware.
1488 			 * Abort and try to set somewhere
1489 			 * behind.
1490 			 */
1491 			return false;
1492 		}
1493 		new_flags = orig_flags | SDB_TE_ALERT_REQ_MASK;
1494 	} while (!cmpxchg_double(&te->flags, &te->overflow,
1495 				 orig_flags, orig_overflow,
1496 				 new_flags, 0ULL));
1497 	return true;
1498 }
1499 
1500 /*
1501  * aux_reset_buffer() - Scan and setup SDBs for new samples
1502  * @aux:	The AUX buffer to set
1503  * @range:	The range of SDBs to scan started from aux->head
1504  * @overflow:	Set to overflow count
1505  *
1506  * Set alert indicator on the SDB at index of aux->alert_mark. If this SDB is
1507  * marked as empty, check if it is already set full by the hardware sampler.
1508  * If yes, that means new data is already there before we can set an alert
1509  * indicator. Caller should try to set alert indicator to some position behind.
1510  *
1511  * Scan the SDBs in AUX buffer from behind aux->empty_mark. They are used
1512  * previously and have already been consumed by user space. Reset these SDBs
1513  * (clear full indicator and alert indicator) for new data.
1514  * If aux->alert_mark fall in this area, just set it. Overflow count is
1515  * recorded while scanning.
1516  *
1517  * SDBs between aux->head and aux->empty_mark are already reset at last time.
1518  * and ready for new samples. So scanning on this area could be skipped.
1519  *
1520  * Return true if alert indicator is set successfully and false if not.
1521  */
1522 static bool aux_reset_buffer(struct aux_buffer *aux, unsigned long range,
1523 			     unsigned long long *overflow)
1524 {
1525 	unsigned long long orig_overflow, orig_flags, new_flags;
1526 	unsigned long i, range_scan, idx, idx_old;
1527 	struct hws_trailer_entry *te;
1528 
1529 	debug_sprintf_event(sfdbg, 6, "%s: range %ld head %ld alert %ld "
1530 			    "empty %ld\n", __func__, range, aux->head,
1531 			    aux->alert_mark, aux->empty_mark);
1532 	if (range <= AUX_SDB_NUM_EMPTY(aux))
1533 		/*
1534 		 * No need to scan. All SDBs in range are marked as empty.
1535 		 * Just set alert indicator. Should check race with hardware
1536 		 * sampler.
1537 		 */
1538 		return aux_set_alert(aux, aux->alert_mark, overflow);
1539 
1540 	if (aux->alert_mark <= aux->empty_mark)
1541 		/*
1542 		 * Set alert indicator on empty SDB. Should check race
1543 		 * with hardware sampler.
1544 		 */
1545 		if (!aux_set_alert(aux, aux->alert_mark, overflow))
1546 			return false;
1547 
1548 	/*
1549 	 * Scan the SDBs to clear full and alert indicator used previously.
1550 	 * Start scanning from one SDB behind empty_mark. If the new alert
1551 	 * indicator fall into this range, set it.
1552 	 */
1553 	range_scan = range - AUX_SDB_NUM_EMPTY(aux);
1554 	idx_old = idx = aux->empty_mark + 1;
1555 	for (i = 0; i < range_scan; i++, idx++) {
1556 		te = aux_sdb_trailer(aux, idx);
1557 		do {
1558 			orig_flags = te->flags;
1559 			orig_overflow = te->overflow;
1560 			new_flags = orig_flags & ~SDB_TE_BUFFER_FULL_MASK;
1561 			if (idx == aux->alert_mark)
1562 				new_flags |= SDB_TE_ALERT_REQ_MASK;
1563 			else
1564 				new_flags &= ~SDB_TE_ALERT_REQ_MASK;
1565 		} while (!cmpxchg_double(&te->flags, &te->overflow,
1566 					 orig_flags, orig_overflow,
1567 					 new_flags, 0ULL));
1568 		*overflow += orig_overflow;
1569 	}
1570 
1571 	/* Update empty_mark to new position */
1572 	aux->empty_mark = aux->head + range - 1;
1573 
1574 	debug_sprintf_event(sfdbg, 6, "%s: range_scan %ld idx %ld..%ld "
1575 			    "empty %ld\n", __func__, range_scan, idx_old,
1576 			    idx - 1, aux->empty_mark);
1577 	return true;
1578 }
1579 
1580 /*
1581  * Measurement alert handler for diagnostic mode sampling.
1582  */
1583 static void hw_collect_aux(struct cpu_hw_sf *cpuhw)
1584 {
1585 	struct aux_buffer *aux;
1586 	int done = 0;
1587 	unsigned long range = 0, size;
1588 	unsigned long long overflow = 0;
1589 	struct perf_output_handle *handle = &cpuhw->handle;
1590 	unsigned long num_sdb;
1591 
1592 	aux = perf_get_aux(handle);
1593 	if (WARN_ON_ONCE(!aux))
1594 		return;
1595 
1596 	/* Inform user space new data arrived */
1597 	size = AUX_SDB_NUM_ALERT(aux) << PAGE_SHIFT;
1598 	debug_sprintf_event(sfdbg, 6, "%s: #alert %ld\n", __func__,
1599 			    size >> PAGE_SHIFT);
1600 	perf_aux_output_end(handle, size);
1601 
1602 	num_sdb = aux->sfb.num_sdb;
1603 	while (!done) {
1604 		/* Get an output handle */
1605 		aux = perf_aux_output_begin(handle, cpuhw->event);
1606 		if (handle->size == 0) {
1607 			pr_err("The AUX buffer with %lu pages for the "
1608 			       "diagnostic-sampling mode is full\n",
1609 				num_sdb);
1610 			debug_sprintf_event(sfdbg, 1,
1611 					    "%s: AUX buffer used up\n",
1612 					    __func__);
1613 			break;
1614 		}
1615 		if (WARN_ON_ONCE(!aux))
1616 			return;
1617 
1618 		/* Update head and alert_mark to new position */
1619 		aux->head = handle->head >> PAGE_SHIFT;
1620 		range = (handle->size + 1) >> PAGE_SHIFT;
1621 		if (range == 1)
1622 			aux->alert_mark = aux->head;
1623 		else
1624 			aux->alert_mark = aux->head + range/2 - 1;
1625 
1626 		if (aux_reset_buffer(aux, range, &overflow)) {
1627 			if (!overflow) {
1628 				done = 1;
1629 				break;
1630 			}
1631 			size = range << PAGE_SHIFT;
1632 			perf_aux_output_end(&cpuhw->handle, size);
1633 			pr_err("Sample data caused the AUX buffer with %lu "
1634 			       "pages to overflow\n", aux->sfb.num_sdb);
1635 			debug_sprintf_event(sfdbg, 1, "%s: head %ld range %ld "
1636 					    "overflow %lld\n", __func__,
1637 					    aux->head, range, overflow);
1638 		} else {
1639 			size = AUX_SDB_NUM_ALERT(aux) << PAGE_SHIFT;
1640 			perf_aux_output_end(&cpuhw->handle, size);
1641 			debug_sprintf_event(sfdbg, 6, "%s: head %ld alert %ld "
1642 					    "already full, try another\n",
1643 					    __func__,
1644 					    aux->head, aux->alert_mark);
1645 		}
1646 	}
1647 
1648 	if (done)
1649 		debug_sprintf_event(sfdbg, 6, "%s: head %ld alert %ld "
1650 				    "empty %ld\n", __func__, aux->head,
1651 				    aux->alert_mark, aux->empty_mark);
1652 }
1653 
1654 /*
1655  * Callback when freeing AUX buffers.
1656  */
1657 static void aux_buffer_free(void *data)
1658 {
1659 	struct aux_buffer *aux = data;
1660 	unsigned long i, num_sdbt;
1661 
1662 	if (!aux)
1663 		return;
1664 
1665 	/* Free SDBT. SDB is freed by the caller */
1666 	num_sdbt = aux->sfb.num_sdbt;
1667 	for (i = 0; i < num_sdbt; i++)
1668 		free_page(aux->sdbt_index[i]);
1669 
1670 	kfree(aux->sdbt_index);
1671 	kfree(aux->sdb_index);
1672 	kfree(aux);
1673 
1674 	debug_sprintf_event(sfdbg, 4, "%s: SDBTs %lu\n", __func__, num_sdbt);
1675 }
1676 
1677 static void aux_sdb_init(unsigned long sdb)
1678 {
1679 	struct hws_trailer_entry *te;
1680 
1681 	te = (struct hws_trailer_entry *)trailer_entry_ptr(sdb);
1682 
1683 	/* Save clock base */
1684 	te->clock_base = 1;
1685 	te->progusage2 = tod_clock_base.tod;
1686 }
1687 
1688 /*
1689  * aux_buffer_setup() - Setup AUX buffer for diagnostic mode sampling
1690  * @event:	Event the buffer is setup for, event->cpu == -1 means current
1691  * @pages:	Array of pointers to buffer pages passed from perf core
1692  * @nr_pages:	Total pages
1693  * @snapshot:	Flag for snapshot mode
1694  *
1695  * This is the callback when setup an event using AUX buffer. Perf tool can
1696  * trigger this by an additional mmap() call on the event. Unlike the buffer
1697  * for basic samples, AUX buffer belongs to the event. It is scheduled with
1698  * the task among online cpus when it is a per-thread event.
1699  *
1700  * Return the private AUX buffer structure if success or NULL if fails.
1701  */
1702 static void *aux_buffer_setup(struct perf_event *event, void **pages,
1703 			      int nr_pages, bool snapshot)
1704 {
1705 	struct sf_buffer *sfb;
1706 	struct aux_buffer *aux;
1707 	unsigned long *new, *tail;
1708 	int i, n_sdbt;
1709 
1710 	if (!nr_pages || !pages)
1711 		return NULL;
1712 
1713 	if (nr_pages > CPUM_SF_MAX_SDB * CPUM_SF_SDB_DIAG_FACTOR) {
1714 		pr_err("AUX buffer size (%i pages) is larger than the "
1715 		       "maximum sampling buffer limit\n",
1716 		       nr_pages);
1717 		return NULL;
1718 	} else if (nr_pages < CPUM_SF_MIN_SDB * CPUM_SF_SDB_DIAG_FACTOR) {
1719 		pr_err("AUX buffer size (%i pages) is less than the "
1720 		       "minimum sampling buffer limit\n",
1721 		       nr_pages);
1722 		return NULL;
1723 	}
1724 
1725 	/* Allocate aux_buffer struct for the event */
1726 	aux = kzalloc(sizeof(struct aux_buffer), GFP_KERNEL);
1727 	if (!aux)
1728 		goto no_aux;
1729 	sfb = &aux->sfb;
1730 
1731 	/* Allocate sdbt_index for fast reference */
1732 	n_sdbt = DIV_ROUND_UP(nr_pages, CPUM_SF_SDB_PER_TABLE);
1733 	aux->sdbt_index = kmalloc_array(n_sdbt, sizeof(void *), GFP_KERNEL);
1734 	if (!aux->sdbt_index)
1735 		goto no_sdbt_index;
1736 
1737 	/* Allocate sdb_index for fast reference */
1738 	aux->sdb_index = kmalloc_array(nr_pages, sizeof(void *), GFP_KERNEL);
1739 	if (!aux->sdb_index)
1740 		goto no_sdb_index;
1741 
1742 	/* Allocate the first SDBT */
1743 	sfb->num_sdbt = 0;
1744 	sfb->sdbt = (unsigned long *) get_zeroed_page(GFP_KERNEL);
1745 	if (!sfb->sdbt)
1746 		goto no_sdbt;
1747 	aux->sdbt_index[sfb->num_sdbt++] = (unsigned long)sfb->sdbt;
1748 	tail = sfb->tail = sfb->sdbt;
1749 
1750 	/*
1751 	 * Link the provided pages of AUX buffer to SDBT.
1752 	 * Allocate SDBT if needed.
1753 	 */
1754 	for (i = 0; i < nr_pages; i++, tail++) {
1755 		if (require_table_link(tail)) {
1756 			new = (unsigned long *) get_zeroed_page(GFP_KERNEL);
1757 			if (!new)
1758 				goto no_sdbt;
1759 			aux->sdbt_index[sfb->num_sdbt++] = (unsigned long)new;
1760 			/* Link current page to tail of chain */
1761 			*tail = (unsigned long)(void *) new + 1;
1762 			tail = new;
1763 		}
1764 		/* Tail is the entry in a SDBT */
1765 		*tail = (unsigned long)pages[i];
1766 		aux->sdb_index[i] = (unsigned long)pages[i];
1767 		aux_sdb_init((unsigned long)pages[i]);
1768 	}
1769 	sfb->num_sdb = nr_pages;
1770 
1771 	/* Link the last entry in the SDBT to the first SDBT */
1772 	*tail = (unsigned long) sfb->sdbt + 1;
1773 	sfb->tail = tail;
1774 
1775 	/*
1776 	 * Initial all SDBs are zeroed. Mark it as empty.
1777 	 * So there is no need to clear the full indicator
1778 	 * when this event is first added.
1779 	 */
1780 	aux->empty_mark = sfb->num_sdb - 1;
1781 
1782 	debug_sprintf_event(sfdbg, 4, "%s: SDBTs %lu SDBs %lu\n", __func__,
1783 			    sfb->num_sdbt, sfb->num_sdb);
1784 
1785 	return aux;
1786 
1787 no_sdbt:
1788 	/* SDBs (AUX buffer pages) are freed by caller */
1789 	for (i = 0; i < sfb->num_sdbt; i++)
1790 		free_page(aux->sdbt_index[i]);
1791 	kfree(aux->sdb_index);
1792 no_sdb_index:
1793 	kfree(aux->sdbt_index);
1794 no_sdbt_index:
1795 	kfree(aux);
1796 no_aux:
1797 	return NULL;
1798 }
1799 
1800 static void cpumsf_pmu_read(struct perf_event *event)
1801 {
1802 	/* Nothing to do ... updates are interrupt-driven */
1803 }
1804 
1805 /* Check if the new sampling period/freqeuncy is appropriate.
1806  *
1807  * Return non-zero on error and zero on passed checks.
1808  */
1809 static int cpumsf_pmu_check_period(struct perf_event *event, u64 value)
1810 {
1811 	struct hws_qsi_info_block si;
1812 	unsigned long rate;
1813 	bool do_freq;
1814 
1815 	memset(&si, 0, sizeof(si));
1816 	if (event->cpu == -1) {
1817 		if (qsi(&si))
1818 			return -ENODEV;
1819 	} else {
1820 		/* Event is pinned to a particular CPU, retrieve the per-CPU
1821 		 * sampling structure for accessing the CPU-specific QSI.
1822 		 */
1823 		struct cpu_hw_sf *cpuhw = &per_cpu(cpu_hw_sf, event->cpu);
1824 
1825 		si = cpuhw->qsi;
1826 	}
1827 
1828 	do_freq = !!SAMPLE_FREQ_MODE(&event->hw);
1829 	rate = getrate(do_freq, value, &si);
1830 	if (!rate)
1831 		return -EINVAL;
1832 
1833 	event->attr.sample_period = rate;
1834 	SAMPL_RATE(&event->hw) = rate;
1835 	hw_init_period(&event->hw, SAMPL_RATE(&event->hw));
1836 	debug_sprintf_event(sfdbg, 4, "%s:"
1837 			    " cpu %d value %#llx period %#llx freq %d\n",
1838 			    __func__, event->cpu, value,
1839 			    event->attr.sample_period, do_freq);
1840 	return 0;
1841 }
1842 
1843 /* Activate sampling control.
1844  * Next call of pmu_enable() starts sampling.
1845  */
1846 static void cpumsf_pmu_start(struct perf_event *event, int flags)
1847 {
1848 	struct cpu_hw_sf *cpuhw = this_cpu_ptr(&cpu_hw_sf);
1849 
1850 	if (WARN_ON_ONCE(!(event->hw.state & PERF_HES_STOPPED)))
1851 		return;
1852 
1853 	if (flags & PERF_EF_RELOAD)
1854 		WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));
1855 
1856 	perf_pmu_disable(event->pmu);
1857 	event->hw.state = 0;
1858 	cpuhw->lsctl.cs = 1;
1859 	if (SAMPL_DIAG_MODE(&event->hw))
1860 		cpuhw->lsctl.cd = 1;
1861 	perf_pmu_enable(event->pmu);
1862 }
1863 
1864 /* Deactivate sampling control.
1865  * Next call of pmu_enable() stops sampling.
1866  */
1867 static void cpumsf_pmu_stop(struct perf_event *event, int flags)
1868 {
1869 	struct cpu_hw_sf *cpuhw = this_cpu_ptr(&cpu_hw_sf);
1870 
1871 	if (event->hw.state & PERF_HES_STOPPED)
1872 		return;
1873 
1874 	perf_pmu_disable(event->pmu);
1875 	cpuhw->lsctl.cs = 0;
1876 	cpuhw->lsctl.cd = 0;
1877 	event->hw.state |= PERF_HES_STOPPED;
1878 
1879 	if ((flags & PERF_EF_UPDATE) && !(event->hw.state & PERF_HES_UPTODATE)) {
1880 		hw_perf_event_update(event, 1);
1881 		event->hw.state |= PERF_HES_UPTODATE;
1882 	}
1883 	perf_pmu_enable(event->pmu);
1884 }
1885 
1886 static int cpumsf_pmu_add(struct perf_event *event, int flags)
1887 {
1888 	struct cpu_hw_sf *cpuhw = this_cpu_ptr(&cpu_hw_sf);
1889 	struct aux_buffer *aux;
1890 	int err;
1891 
1892 	if (cpuhw->flags & PMU_F_IN_USE)
1893 		return -EAGAIN;
1894 
1895 	if (!SAMPL_DIAG_MODE(&event->hw) && !cpuhw->sfb.sdbt)
1896 		return -EINVAL;
1897 
1898 	err = 0;
1899 	perf_pmu_disable(event->pmu);
1900 
1901 	event->hw.state = PERF_HES_UPTODATE | PERF_HES_STOPPED;
1902 
1903 	/* Set up sampling controls.  Always program the sampling register
1904 	 * using the SDB-table start.  Reset TEAR_REG event hardware register
1905 	 * that is used by hw_perf_event_update() to store the sampling buffer
1906 	 * position after samples have been flushed.
1907 	 */
1908 	cpuhw->lsctl.s = 0;
1909 	cpuhw->lsctl.h = 1;
1910 	cpuhw->lsctl.interval = SAMPL_RATE(&event->hw);
1911 	if (!SAMPL_DIAG_MODE(&event->hw)) {
1912 		cpuhw->lsctl.tear = (unsigned long) cpuhw->sfb.sdbt;
1913 		cpuhw->lsctl.dear = *(unsigned long *) cpuhw->sfb.sdbt;
1914 		TEAR_REG(&event->hw) = (unsigned long) cpuhw->sfb.sdbt;
1915 	}
1916 
1917 	/* Ensure sampling functions are in the disabled state.  If disabled,
1918 	 * switch on sampling enable control. */
1919 	if (WARN_ON_ONCE(cpuhw->lsctl.es == 1 || cpuhw->lsctl.ed == 1)) {
1920 		err = -EAGAIN;
1921 		goto out;
1922 	}
1923 	if (SAMPL_DIAG_MODE(&event->hw)) {
1924 		aux = perf_aux_output_begin(&cpuhw->handle, event);
1925 		if (!aux) {
1926 			err = -EINVAL;
1927 			goto out;
1928 		}
1929 		err = aux_output_begin(&cpuhw->handle, aux, cpuhw);
1930 		if (err)
1931 			goto out;
1932 		cpuhw->lsctl.ed = 1;
1933 	}
1934 	cpuhw->lsctl.es = 1;
1935 
1936 	/* Set in_use flag and store event */
1937 	cpuhw->event = event;
1938 	cpuhw->flags |= PMU_F_IN_USE;
1939 
1940 	if (flags & PERF_EF_START)
1941 		cpumsf_pmu_start(event, PERF_EF_RELOAD);
1942 out:
1943 	perf_event_update_userpage(event);
1944 	perf_pmu_enable(event->pmu);
1945 	return err;
1946 }
1947 
1948 static void cpumsf_pmu_del(struct perf_event *event, int flags)
1949 {
1950 	struct cpu_hw_sf *cpuhw = this_cpu_ptr(&cpu_hw_sf);
1951 
1952 	perf_pmu_disable(event->pmu);
1953 	cpumsf_pmu_stop(event, PERF_EF_UPDATE);
1954 
1955 	cpuhw->lsctl.es = 0;
1956 	cpuhw->lsctl.ed = 0;
1957 	cpuhw->flags &= ~PMU_F_IN_USE;
1958 	cpuhw->event = NULL;
1959 
1960 	if (SAMPL_DIAG_MODE(&event->hw))
1961 		aux_output_end(&cpuhw->handle);
1962 	perf_event_update_userpage(event);
1963 	perf_pmu_enable(event->pmu);
1964 }
1965 
1966 CPUMF_EVENT_ATTR(SF, SF_CYCLES_BASIC, PERF_EVENT_CPUM_SF);
1967 CPUMF_EVENT_ATTR(SF, SF_CYCLES_BASIC_DIAG, PERF_EVENT_CPUM_SF_DIAG);
1968 
1969 /* Attribute list for CPU_SF.
1970  *
1971  * The availablitiy depends on the CPU_MF sampling facility authorization
1972  * for basic + diagnositic samples. This is determined at initialization
1973  * time by the sampling facility device driver.
1974  * If the authorization for basic samples is turned off, it should be
1975  * also turned off for diagnostic sampling.
1976  *
1977  * During initialization of the device driver, check the authorization
1978  * level for diagnostic sampling and installs the attribute
1979  * file for diagnostic sampling if necessary.
1980  *
1981  * For now install a placeholder to reference all possible attributes:
1982  * SF_CYCLES_BASIC and SF_CYCLES_BASIC_DIAG.
1983  * Add another entry for the final NULL pointer.
1984  */
1985 enum {
1986 	SF_CYCLES_BASIC_ATTR_IDX = 0,
1987 	SF_CYCLES_BASIC_DIAG_ATTR_IDX,
1988 	SF_CYCLES_ATTR_MAX
1989 };
1990 
1991 static struct attribute *cpumsf_pmu_events_attr[SF_CYCLES_ATTR_MAX + 1] = {
1992 	[SF_CYCLES_BASIC_ATTR_IDX] = CPUMF_EVENT_PTR(SF, SF_CYCLES_BASIC)
1993 };
1994 
1995 PMU_FORMAT_ATTR(event, "config:0-63");
1996 
1997 static struct attribute *cpumsf_pmu_format_attr[] = {
1998 	&format_attr_event.attr,
1999 	NULL,
2000 };
2001 
2002 static struct attribute_group cpumsf_pmu_events_group = {
2003 	.name = "events",
2004 	.attrs = cpumsf_pmu_events_attr,
2005 };
2006 
2007 static struct attribute_group cpumsf_pmu_format_group = {
2008 	.name = "format",
2009 	.attrs = cpumsf_pmu_format_attr,
2010 };
2011 
2012 static const struct attribute_group *cpumsf_pmu_attr_groups[] = {
2013 	&cpumsf_pmu_events_group,
2014 	&cpumsf_pmu_format_group,
2015 	NULL,
2016 };
2017 
2018 static struct pmu cpumf_sampling = {
2019 	.pmu_enable   = cpumsf_pmu_enable,
2020 	.pmu_disable  = cpumsf_pmu_disable,
2021 
2022 	.event_init   = cpumsf_pmu_event_init,
2023 	.add	      = cpumsf_pmu_add,
2024 	.del	      = cpumsf_pmu_del,
2025 
2026 	.start	      = cpumsf_pmu_start,
2027 	.stop	      = cpumsf_pmu_stop,
2028 	.read	      = cpumsf_pmu_read,
2029 
2030 	.attr_groups  = cpumsf_pmu_attr_groups,
2031 
2032 	.setup_aux    = aux_buffer_setup,
2033 	.free_aux     = aux_buffer_free,
2034 
2035 	.check_period = cpumsf_pmu_check_period,
2036 };
2037 
2038 static void cpumf_measurement_alert(struct ext_code ext_code,
2039 				    unsigned int alert, unsigned long unused)
2040 {
2041 	struct cpu_hw_sf *cpuhw;
2042 
2043 	if (!(alert & CPU_MF_INT_SF_MASK))
2044 		return;
2045 	inc_irq_stat(IRQEXT_CMS);
2046 	cpuhw = this_cpu_ptr(&cpu_hw_sf);
2047 
2048 	/* Measurement alerts are shared and might happen when the PMU
2049 	 * is not reserved.  Ignore these alerts in this case. */
2050 	if (!(cpuhw->flags & PMU_F_RESERVED))
2051 		return;
2052 
2053 	/* The processing below must take care of multiple alert events that
2054 	 * might be indicated concurrently. */
2055 
2056 	/* Program alert request */
2057 	if (alert & CPU_MF_INT_SF_PRA) {
2058 		if (cpuhw->flags & PMU_F_IN_USE)
2059 			if (SAMPL_DIAG_MODE(&cpuhw->event->hw))
2060 				hw_collect_aux(cpuhw);
2061 			else
2062 				hw_perf_event_update(cpuhw->event, 0);
2063 		else
2064 			WARN_ON_ONCE(!(cpuhw->flags & PMU_F_IN_USE));
2065 	}
2066 
2067 	/* Report measurement alerts only for non-PRA codes */
2068 	if (alert != CPU_MF_INT_SF_PRA)
2069 		debug_sprintf_event(sfdbg, 6, "%s: alert %#x\n", __func__,
2070 				    alert);
2071 
2072 	/* Sampling authorization change request */
2073 	if (alert & CPU_MF_INT_SF_SACA)
2074 		qsi(&cpuhw->qsi);
2075 
2076 	/* Loss of sample data due to high-priority machine activities */
2077 	if (alert & CPU_MF_INT_SF_LSDA) {
2078 		pr_err("Sample data was lost\n");
2079 		cpuhw->flags |= PMU_F_ERR_LSDA;
2080 		sf_disable();
2081 	}
2082 
2083 	/* Invalid sampling buffer entry */
2084 	if (alert & (CPU_MF_INT_SF_IAE|CPU_MF_INT_SF_ISE)) {
2085 		pr_err("A sampling buffer entry is incorrect (alert=0x%x)\n",
2086 		       alert);
2087 		cpuhw->flags |= PMU_F_ERR_IBE;
2088 		sf_disable();
2089 	}
2090 }
2091 
2092 static int cpusf_pmu_setup(unsigned int cpu, int flags)
2093 {
2094 	/* Ignore the notification if no events are scheduled on the PMU.
2095 	 * This might be racy...
2096 	 */
2097 	if (!atomic_read(&num_events))
2098 		return 0;
2099 
2100 	local_irq_disable();
2101 	setup_pmc_cpu(&flags);
2102 	local_irq_enable();
2103 	return 0;
2104 }
2105 
2106 static int s390_pmu_sf_online_cpu(unsigned int cpu)
2107 {
2108 	return cpusf_pmu_setup(cpu, PMC_INIT);
2109 }
2110 
2111 static int s390_pmu_sf_offline_cpu(unsigned int cpu)
2112 {
2113 	return cpusf_pmu_setup(cpu, PMC_RELEASE);
2114 }
2115 
2116 static int param_get_sfb_size(char *buffer, const struct kernel_param *kp)
2117 {
2118 	if (!cpum_sf_avail())
2119 		return -ENODEV;
2120 	return sprintf(buffer, "%lu,%lu", CPUM_SF_MIN_SDB, CPUM_SF_MAX_SDB);
2121 }
2122 
2123 static int param_set_sfb_size(const char *val, const struct kernel_param *kp)
2124 {
2125 	int rc;
2126 	unsigned long min, max;
2127 
2128 	if (!cpum_sf_avail())
2129 		return -ENODEV;
2130 	if (!val || !strlen(val))
2131 		return -EINVAL;
2132 
2133 	/* Valid parameter values: "min,max" or "max" */
2134 	min = CPUM_SF_MIN_SDB;
2135 	max = CPUM_SF_MAX_SDB;
2136 	if (strchr(val, ','))
2137 		rc = (sscanf(val, "%lu,%lu", &min, &max) == 2) ? 0 : -EINVAL;
2138 	else
2139 		rc = kstrtoul(val, 10, &max);
2140 
2141 	if (min < 2 || min >= max || max > get_num_physpages())
2142 		rc = -EINVAL;
2143 	if (rc)
2144 		return rc;
2145 
2146 	sfb_set_limits(min, max);
2147 	pr_info("The sampling buffer limits have changed to: "
2148 		"min %lu max %lu (diag %lu)\n",
2149 		CPUM_SF_MIN_SDB, CPUM_SF_MAX_SDB, CPUM_SF_SDB_DIAG_FACTOR);
2150 	return 0;
2151 }
2152 
2153 #define param_check_sfb_size(name, p) __param_check(name, p, void)
2154 static const struct kernel_param_ops param_ops_sfb_size = {
2155 	.set = param_set_sfb_size,
2156 	.get = param_get_sfb_size,
2157 };
2158 
2159 #define RS_INIT_FAILURE_QSI	  0x0001
2160 #define RS_INIT_FAILURE_BSDES	  0x0002
2161 #define RS_INIT_FAILURE_ALRT	  0x0003
2162 #define RS_INIT_FAILURE_PERF	  0x0004
2163 static void __init pr_cpumsf_err(unsigned int reason)
2164 {
2165 	pr_err("Sampling facility support for perf is not available: "
2166 	       "reason %#x\n", reason);
2167 }
2168 
2169 static int __init init_cpum_sampling_pmu(void)
2170 {
2171 	struct hws_qsi_info_block si;
2172 	int err;
2173 
2174 	if (!cpum_sf_avail())
2175 		return -ENODEV;
2176 
2177 	memset(&si, 0, sizeof(si));
2178 	if (qsi(&si)) {
2179 		pr_cpumsf_err(RS_INIT_FAILURE_QSI);
2180 		return -ENODEV;
2181 	}
2182 
2183 	if (!si.as && !si.ad)
2184 		return -ENODEV;
2185 
2186 	if (si.bsdes != sizeof(struct hws_basic_entry)) {
2187 		pr_cpumsf_err(RS_INIT_FAILURE_BSDES);
2188 		return -EINVAL;
2189 	}
2190 
2191 	if (si.ad) {
2192 		sfb_set_limits(CPUM_SF_MIN_SDB, CPUM_SF_MAX_SDB);
2193 		/* Sampling of diagnostic data authorized,
2194 		 * install event into attribute list of PMU device.
2195 		 */
2196 		cpumsf_pmu_events_attr[SF_CYCLES_BASIC_DIAG_ATTR_IDX] =
2197 			CPUMF_EVENT_PTR(SF, SF_CYCLES_BASIC_DIAG);
2198 	}
2199 
2200 	sfdbg = debug_register(KMSG_COMPONENT, 2, 1, 80);
2201 	if (!sfdbg) {
2202 		pr_err("Registering for s390dbf failed\n");
2203 		return -ENOMEM;
2204 	}
2205 	debug_register_view(sfdbg, &debug_sprintf_view);
2206 
2207 	err = register_external_irq(EXT_IRQ_MEASURE_ALERT,
2208 				    cpumf_measurement_alert);
2209 	if (err) {
2210 		pr_cpumsf_err(RS_INIT_FAILURE_ALRT);
2211 		debug_unregister(sfdbg);
2212 		goto out;
2213 	}
2214 
2215 	err = perf_pmu_register(&cpumf_sampling, "cpum_sf", PERF_TYPE_RAW);
2216 	if (err) {
2217 		pr_cpumsf_err(RS_INIT_FAILURE_PERF);
2218 		unregister_external_irq(EXT_IRQ_MEASURE_ALERT,
2219 					cpumf_measurement_alert);
2220 		debug_unregister(sfdbg);
2221 		goto out;
2222 	}
2223 
2224 	cpuhp_setup_state(CPUHP_AP_PERF_S390_SF_ONLINE, "perf/s390/sf:online",
2225 			  s390_pmu_sf_online_cpu, s390_pmu_sf_offline_cpu);
2226 out:
2227 	return err;
2228 }
2229 
2230 arch_initcall(init_cpum_sampling_pmu);
2231 core_param(cpum_sfb_size, CPUM_SF_MAX_SDB, sfb_size, 0644);
2232