1 /* 2 * Performance event support for the System z CPU-measurement Sampling Facility 3 * 4 * Copyright IBM Corp. 2013 5 * Author(s): Hendrik Brueckner <brueckner@linux.vnet.ibm.com> 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License (version 2 only) 9 * as published by the Free Software Foundation. 10 */ 11 #define KMSG_COMPONENT "cpum_sf" 12 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt 13 14 #include <linux/kernel.h> 15 #include <linux/kernel_stat.h> 16 #include <linux/perf_event.h> 17 #include <linux/percpu.h> 18 #include <linux/notifier.h> 19 #include <linux/export.h> 20 #include <linux/slab.h> 21 #include <linux/mm.h> 22 #include <linux/moduleparam.h> 23 #include <asm/cpu_mf.h> 24 #include <asm/irq.h> 25 #include <asm/debug.h> 26 #include <asm/timex.h> 27 28 /* Minimum number of sample-data-block-tables: 29 * At least one table is required for the sampling buffer structure. 30 * A single table contains up to 511 pointers to sample-data-blocks. 31 */ 32 #define CPUM_SF_MIN_SDBT 1 33 34 /* Number of sample-data-blocks per sample-data-block-table (SDBT): 35 * A table contains SDB pointers (8 bytes) and one table-link entry 36 * that points to the origin of the next SDBT. 37 */ 38 #define CPUM_SF_SDB_PER_TABLE ((PAGE_SIZE - 8) / 8) 39 40 /* Maximum page offset for an SDBT table-link entry: 41 * If this page offset is reached, a table-link entry to the next SDBT 42 * must be added. 43 */ 44 #define CPUM_SF_SDBT_TL_OFFSET (CPUM_SF_SDB_PER_TABLE * 8) 45 static inline int require_table_link(const void *sdbt) 46 { 47 return ((unsigned long) sdbt & ~PAGE_MASK) == CPUM_SF_SDBT_TL_OFFSET; 48 } 49 50 /* Minimum and maximum sampling buffer sizes: 51 * 52 * This number represents the maximum size of the sampling buffer taking 53 * the number of sample-data-block-tables into account. Note that these 54 * numbers apply to the basic-sampling function only. 55 * The maximum number of SDBs is increased by CPUM_SF_SDB_DIAG_FACTOR if 56 * the diagnostic-sampling function is active. 57 * 58 * Sampling buffer size Buffer characteristics 59 * --------------------------------------------------- 60 * 64KB == 16 pages (4KB per page) 61 * 1 page for SDB-tables 62 * 15 pages for SDBs 63 * 64 * 32MB == 8192 pages (4KB per page) 65 * 16 pages for SDB-tables 66 * 8176 pages for SDBs 67 */ 68 static unsigned long __read_mostly CPUM_SF_MIN_SDB = 15; 69 static unsigned long __read_mostly CPUM_SF_MAX_SDB = 8176; 70 static unsigned long __read_mostly CPUM_SF_SDB_DIAG_FACTOR = 1; 71 72 struct sf_buffer { 73 unsigned long *sdbt; /* Sample-data-block-table origin */ 74 /* buffer characteristics (required for buffer increments) */ 75 unsigned long num_sdb; /* Number of sample-data-blocks */ 76 unsigned long num_sdbt; /* Number of sample-data-block-tables */ 77 unsigned long *tail; /* last sample-data-block-table */ 78 }; 79 80 struct cpu_hw_sf { 81 /* CPU-measurement sampling information block */ 82 struct hws_qsi_info_block qsi; 83 /* CPU-measurement sampling control block */ 84 struct hws_lsctl_request_block lsctl; 85 struct sf_buffer sfb; /* Sampling buffer */ 86 unsigned int flags; /* Status flags */ 87 struct perf_event *event; /* Scheduled perf event */ 88 }; 89 static DEFINE_PER_CPU(struct cpu_hw_sf, cpu_hw_sf); 90 91 /* Debug feature */ 92 static debug_info_t *sfdbg; 93 94 /* 95 * sf_disable() - Switch off sampling facility 96 */ 97 static int sf_disable(void) 98 { 99 struct hws_lsctl_request_block sreq; 100 101 memset(&sreq, 0, sizeof(sreq)); 102 return lsctl(&sreq); 103 } 104 105 /* 106 * sf_buffer_available() - Check for an allocated sampling buffer 107 */ 108 static int sf_buffer_available(struct cpu_hw_sf *cpuhw) 109 { 110 return !!cpuhw->sfb.sdbt; 111 } 112 113 /* 114 * deallocate sampling facility buffer 115 */ 116 static void free_sampling_buffer(struct sf_buffer *sfb) 117 { 118 unsigned long *sdbt, *curr; 119 120 if (!sfb->sdbt) 121 return; 122 123 sdbt = sfb->sdbt; 124 curr = sdbt; 125 126 /* Free the SDBT after all SDBs are processed... */ 127 while (1) { 128 if (!*curr || !sdbt) 129 break; 130 131 /* Process table-link entries */ 132 if (is_link_entry(curr)) { 133 curr = get_next_sdbt(curr); 134 if (sdbt) 135 free_page((unsigned long) sdbt); 136 137 /* If the origin is reached, sampling buffer is freed */ 138 if (curr == sfb->sdbt) 139 break; 140 else 141 sdbt = curr; 142 } else { 143 /* Process SDB pointer */ 144 if (*curr) { 145 free_page(*curr); 146 curr++; 147 } 148 } 149 } 150 151 debug_sprintf_event(sfdbg, 5, 152 "free_sampling_buffer: freed sdbt=%p\n", sfb->sdbt); 153 memset(sfb, 0, sizeof(*sfb)); 154 } 155 156 static int alloc_sample_data_block(unsigned long *sdbt, gfp_t gfp_flags) 157 { 158 unsigned long sdb, *trailer; 159 160 /* Allocate and initialize sample-data-block */ 161 sdb = get_zeroed_page(gfp_flags); 162 if (!sdb) 163 return -ENOMEM; 164 trailer = trailer_entry_ptr(sdb); 165 *trailer = SDB_TE_ALERT_REQ_MASK; 166 167 /* Link SDB into the sample-data-block-table */ 168 *sdbt = sdb; 169 170 return 0; 171 } 172 173 /* 174 * realloc_sampling_buffer() - extend sampler memory 175 * 176 * Allocates new sample-data-blocks and adds them to the specified sampling 177 * buffer memory. 178 * 179 * Important: This modifies the sampling buffer and must be called when the 180 * sampling facility is disabled. 181 * 182 * Returns zero on success, non-zero otherwise. 183 */ 184 static int realloc_sampling_buffer(struct sf_buffer *sfb, 185 unsigned long num_sdb, gfp_t gfp_flags) 186 { 187 int i, rc; 188 unsigned long *new, *tail; 189 190 if (!sfb->sdbt || !sfb->tail) 191 return -EINVAL; 192 193 if (!is_link_entry(sfb->tail)) 194 return -EINVAL; 195 196 /* Append to the existing sampling buffer, overwriting the table-link 197 * register. 198 * The tail variables always points to the "tail" (last and table-link) 199 * entry in an SDB-table. 200 */ 201 tail = sfb->tail; 202 203 /* Do a sanity check whether the table-link entry points to 204 * the sampling buffer origin. 205 */ 206 if (sfb->sdbt != get_next_sdbt(tail)) { 207 debug_sprintf_event(sfdbg, 3, "realloc_sampling_buffer: " 208 "sampling buffer is not linked: origin=%p" 209 "tail=%p\n", 210 (void *) sfb->sdbt, (void *) tail); 211 return -EINVAL; 212 } 213 214 /* Allocate remaining SDBs */ 215 rc = 0; 216 for (i = 0; i < num_sdb; i++) { 217 /* Allocate a new SDB-table if it is full. */ 218 if (require_table_link(tail)) { 219 new = (unsigned long *) get_zeroed_page(gfp_flags); 220 if (!new) { 221 rc = -ENOMEM; 222 break; 223 } 224 sfb->num_sdbt++; 225 /* Link current page to tail of chain */ 226 *tail = (unsigned long)(void *) new + 1; 227 tail = new; 228 } 229 230 /* Allocate a new sample-data-block. 231 * If there is not enough memory, stop the realloc process 232 * and simply use what was allocated. If this is a temporary 233 * issue, a new realloc call (if required) might succeed. 234 */ 235 rc = alloc_sample_data_block(tail, gfp_flags); 236 if (rc) 237 break; 238 sfb->num_sdb++; 239 tail++; 240 } 241 242 /* Link sampling buffer to its origin */ 243 *tail = (unsigned long) sfb->sdbt + 1; 244 sfb->tail = tail; 245 246 debug_sprintf_event(sfdbg, 4, "realloc_sampling_buffer: new buffer" 247 " settings: sdbt=%lu sdb=%lu\n", 248 sfb->num_sdbt, sfb->num_sdb); 249 return rc; 250 } 251 252 /* 253 * allocate_sampling_buffer() - allocate sampler memory 254 * 255 * Allocates and initializes a sampling buffer structure using the 256 * specified number of sample-data-blocks (SDB). For each allocation, 257 * a 4K page is used. The number of sample-data-block-tables (SDBT) 258 * are calculated from SDBs. 259 * Also set the ALERT_REQ mask in each SDBs trailer. 260 * 261 * Returns zero on success, non-zero otherwise. 262 */ 263 static int alloc_sampling_buffer(struct sf_buffer *sfb, unsigned long num_sdb) 264 { 265 int rc; 266 267 if (sfb->sdbt) 268 return -EINVAL; 269 270 /* Allocate the sample-data-block-table origin */ 271 sfb->sdbt = (unsigned long *) get_zeroed_page(GFP_KERNEL); 272 if (!sfb->sdbt) 273 return -ENOMEM; 274 sfb->num_sdb = 0; 275 sfb->num_sdbt = 1; 276 277 /* Link the table origin to point to itself to prepare for 278 * realloc_sampling_buffer() invocation. 279 */ 280 sfb->tail = sfb->sdbt; 281 *sfb->tail = (unsigned long)(void *) sfb->sdbt + 1; 282 283 /* Allocate requested number of sample-data-blocks */ 284 rc = realloc_sampling_buffer(sfb, num_sdb, GFP_KERNEL); 285 if (rc) { 286 free_sampling_buffer(sfb); 287 debug_sprintf_event(sfdbg, 4, "alloc_sampling_buffer: " 288 "realloc_sampling_buffer failed with rc=%i\n", rc); 289 } else 290 debug_sprintf_event(sfdbg, 4, 291 "alloc_sampling_buffer: tear=%p dear=%p\n", 292 sfb->sdbt, (void *) *sfb->sdbt); 293 return rc; 294 } 295 296 static void sfb_set_limits(unsigned long min, unsigned long max) 297 { 298 struct hws_qsi_info_block si; 299 300 CPUM_SF_MIN_SDB = min; 301 CPUM_SF_MAX_SDB = max; 302 303 memset(&si, 0, sizeof(si)); 304 if (!qsi(&si)) 305 CPUM_SF_SDB_DIAG_FACTOR = DIV_ROUND_UP(si.dsdes, si.bsdes); 306 } 307 308 static unsigned long sfb_max_limit(struct hw_perf_event *hwc) 309 { 310 return SAMPL_DIAG_MODE(hwc) ? CPUM_SF_MAX_SDB * CPUM_SF_SDB_DIAG_FACTOR 311 : CPUM_SF_MAX_SDB; 312 } 313 314 static unsigned long sfb_pending_allocs(struct sf_buffer *sfb, 315 struct hw_perf_event *hwc) 316 { 317 if (!sfb->sdbt) 318 return SFB_ALLOC_REG(hwc); 319 if (SFB_ALLOC_REG(hwc) > sfb->num_sdb) 320 return SFB_ALLOC_REG(hwc) - sfb->num_sdb; 321 return 0; 322 } 323 324 static int sfb_has_pending_allocs(struct sf_buffer *sfb, 325 struct hw_perf_event *hwc) 326 { 327 return sfb_pending_allocs(sfb, hwc) > 0; 328 } 329 330 static void sfb_account_allocs(unsigned long num, struct hw_perf_event *hwc) 331 { 332 /* Limit the number of SDBs to not exceed the maximum */ 333 num = min_t(unsigned long, num, sfb_max_limit(hwc) - SFB_ALLOC_REG(hwc)); 334 if (num) 335 SFB_ALLOC_REG(hwc) += num; 336 } 337 338 static void sfb_init_allocs(unsigned long num, struct hw_perf_event *hwc) 339 { 340 SFB_ALLOC_REG(hwc) = 0; 341 sfb_account_allocs(num, hwc); 342 } 343 344 static size_t event_sample_size(struct hw_perf_event *hwc) 345 { 346 struct sf_raw_sample *sfr = (struct sf_raw_sample *) RAWSAMPLE_REG(hwc); 347 size_t sample_size; 348 349 /* The sample size depends on the sampling function: The basic-sampling 350 * function must be always enabled, diagnostic-sampling function is 351 * optional. 352 */ 353 sample_size = sfr->bsdes; 354 if (SAMPL_DIAG_MODE(hwc)) 355 sample_size += sfr->dsdes; 356 357 return sample_size; 358 } 359 360 static void deallocate_buffers(struct cpu_hw_sf *cpuhw) 361 { 362 if (cpuhw->sfb.sdbt) 363 free_sampling_buffer(&cpuhw->sfb); 364 } 365 366 static int allocate_buffers(struct cpu_hw_sf *cpuhw, struct hw_perf_event *hwc) 367 { 368 unsigned long n_sdb, freq, factor; 369 size_t sfr_size, sample_size; 370 struct sf_raw_sample *sfr; 371 372 /* Allocate raw sample buffer 373 * 374 * The raw sample buffer is used to temporarily store sampling data 375 * entries for perf raw sample processing. The buffer size mainly 376 * depends on the size of diagnostic-sampling data entries which is 377 * machine-specific. The exact size calculation includes: 378 * 1. The first 4 bytes of diagnostic-sampling data entries are 379 * already reflected in the sf_raw_sample structure. Subtract 380 * these bytes. 381 * 2. The perf raw sample data must be 8-byte aligned (u64) and 382 * perf's internal data size must be considered too. So add 383 * an additional u32 for correct alignment and subtract before 384 * allocating the buffer. 385 * 3. Store the raw sample buffer pointer in the perf event 386 * hardware structure. 387 */ 388 sfr_size = ALIGN((sizeof(*sfr) - sizeof(sfr->diag) + cpuhw->qsi.dsdes) + 389 sizeof(u32), sizeof(u64)); 390 sfr_size -= sizeof(u32); 391 sfr = kzalloc(sfr_size, GFP_KERNEL); 392 if (!sfr) 393 return -ENOMEM; 394 sfr->size = sfr_size; 395 sfr->bsdes = cpuhw->qsi.bsdes; 396 sfr->dsdes = cpuhw->qsi.dsdes; 397 RAWSAMPLE_REG(hwc) = (unsigned long) sfr; 398 399 /* Calculate sampling buffers using 4K pages 400 * 401 * 1. Determine the sample data size which depends on the used 402 * sampling functions, for example, basic-sampling or 403 * basic-sampling with diagnostic-sampling. 404 * 405 * 2. Use the sampling frequency as input. The sampling buffer is 406 * designed for almost one second. This can be adjusted through 407 * the "factor" variable. 408 * In any case, alloc_sampling_buffer() sets the Alert Request 409 * Control indicator to trigger a measurement-alert to harvest 410 * sample-data-blocks (sdb). 411 * 412 * 3. Compute the number of sample-data-blocks and ensure a minimum 413 * of CPUM_SF_MIN_SDB. Also ensure the upper limit does not 414 * exceed a "calculated" maximum. The symbolic maximum is 415 * designed for basic-sampling only and needs to be increased if 416 * diagnostic-sampling is active. 417 * See also the remarks for these symbolic constants. 418 * 419 * 4. Compute the number of sample-data-block-tables (SDBT) and 420 * ensure a minimum of CPUM_SF_MIN_SDBT (one table can manage up 421 * to 511 SDBs). 422 */ 423 sample_size = event_sample_size(hwc); 424 freq = sample_rate_to_freq(&cpuhw->qsi, SAMPL_RATE(hwc)); 425 factor = 1; 426 n_sdb = DIV_ROUND_UP(freq, factor * ((PAGE_SIZE-64) / sample_size)); 427 if (n_sdb < CPUM_SF_MIN_SDB) 428 n_sdb = CPUM_SF_MIN_SDB; 429 430 /* If there is already a sampling buffer allocated, it is very likely 431 * that the sampling facility is enabled too. If the event to be 432 * initialized requires a greater sampling buffer, the allocation must 433 * be postponed. Changing the sampling buffer requires the sampling 434 * facility to be in the disabled state. So, account the number of 435 * required SDBs and let cpumsf_pmu_enable() resize the buffer just 436 * before the event is started. 437 */ 438 sfb_init_allocs(n_sdb, hwc); 439 if (sf_buffer_available(cpuhw)) 440 return 0; 441 442 debug_sprintf_event(sfdbg, 3, 443 "allocate_buffers: rate=%lu f=%lu sdb=%lu/%lu" 444 " sample_size=%lu cpuhw=%p\n", 445 SAMPL_RATE(hwc), freq, n_sdb, sfb_max_limit(hwc), 446 sample_size, cpuhw); 447 448 return alloc_sampling_buffer(&cpuhw->sfb, 449 sfb_pending_allocs(&cpuhw->sfb, hwc)); 450 } 451 452 static unsigned long min_percent(unsigned int percent, unsigned long base, 453 unsigned long min) 454 { 455 return min_t(unsigned long, min, DIV_ROUND_UP(percent * base, 100)); 456 } 457 458 static unsigned long compute_sfb_extent(unsigned long ratio, unsigned long base) 459 { 460 /* Use a percentage-based approach to extend the sampling facility 461 * buffer. Accept up to 5% sample data loss. 462 * Vary the extents between 1% to 5% of the current number of 463 * sample-data-blocks. 464 */ 465 if (ratio <= 5) 466 return 0; 467 if (ratio <= 25) 468 return min_percent(1, base, 1); 469 if (ratio <= 50) 470 return min_percent(1, base, 1); 471 if (ratio <= 75) 472 return min_percent(2, base, 2); 473 if (ratio <= 100) 474 return min_percent(3, base, 3); 475 if (ratio <= 250) 476 return min_percent(4, base, 4); 477 478 return min_percent(5, base, 8); 479 } 480 481 static void sfb_account_overflows(struct cpu_hw_sf *cpuhw, 482 struct hw_perf_event *hwc) 483 { 484 unsigned long ratio, num; 485 486 if (!OVERFLOW_REG(hwc)) 487 return; 488 489 /* The sample_overflow contains the average number of sample data 490 * that has been lost because sample-data-blocks were full. 491 * 492 * Calculate the total number of sample data entries that has been 493 * discarded. Then calculate the ratio of lost samples to total samples 494 * per second in percent. 495 */ 496 ratio = DIV_ROUND_UP(100 * OVERFLOW_REG(hwc) * cpuhw->sfb.num_sdb, 497 sample_rate_to_freq(&cpuhw->qsi, SAMPL_RATE(hwc))); 498 499 /* Compute number of sample-data-blocks */ 500 num = compute_sfb_extent(ratio, cpuhw->sfb.num_sdb); 501 if (num) 502 sfb_account_allocs(num, hwc); 503 504 debug_sprintf_event(sfdbg, 5, "sfb: overflow: overflow=%llu ratio=%lu" 505 " num=%lu\n", OVERFLOW_REG(hwc), ratio, num); 506 OVERFLOW_REG(hwc) = 0; 507 } 508 509 /* extend_sampling_buffer() - Extend sampling buffer 510 * @sfb: Sampling buffer structure (for local CPU) 511 * @hwc: Perf event hardware structure 512 * 513 * Use this function to extend the sampling buffer based on the overflow counter 514 * and postponed allocation extents stored in the specified Perf event hardware. 515 * 516 * Important: This function disables the sampling facility in order to safely 517 * change the sampling buffer structure. Do not call this function 518 * when the PMU is active. 519 */ 520 static void extend_sampling_buffer(struct sf_buffer *sfb, 521 struct hw_perf_event *hwc) 522 { 523 unsigned long num, num_old; 524 int rc; 525 526 num = sfb_pending_allocs(sfb, hwc); 527 if (!num) 528 return; 529 num_old = sfb->num_sdb; 530 531 /* Disable the sampling facility to reset any states and also 532 * clear pending measurement alerts. 533 */ 534 sf_disable(); 535 536 /* Extend the sampling buffer. 537 * This memory allocation typically happens in an atomic context when 538 * called by perf. Because this is a reallocation, it is fine if the 539 * new SDB-request cannot be satisfied immediately. 540 */ 541 rc = realloc_sampling_buffer(sfb, num, GFP_ATOMIC); 542 if (rc) 543 debug_sprintf_event(sfdbg, 5, "sfb: extend: realloc " 544 "failed with rc=%i\n", rc); 545 546 if (sfb_has_pending_allocs(sfb, hwc)) 547 debug_sprintf_event(sfdbg, 5, "sfb: extend: " 548 "req=%lu alloc=%lu remaining=%lu\n", 549 num, sfb->num_sdb - num_old, 550 sfb_pending_allocs(sfb, hwc)); 551 } 552 553 554 /* Number of perf events counting hardware events */ 555 static atomic_t num_events; 556 /* Used to avoid races in calling reserve/release_cpumf_hardware */ 557 static DEFINE_MUTEX(pmc_reserve_mutex); 558 559 #define PMC_INIT 0 560 #define PMC_RELEASE 1 561 #define PMC_FAILURE 2 562 static void setup_pmc_cpu(void *flags) 563 { 564 int err; 565 struct cpu_hw_sf *cpusf = this_cpu_ptr(&cpu_hw_sf); 566 567 err = 0; 568 switch (*((int *) flags)) { 569 case PMC_INIT: 570 memset(cpusf, 0, sizeof(*cpusf)); 571 err = qsi(&cpusf->qsi); 572 if (err) 573 break; 574 cpusf->flags |= PMU_F_RESERVED; 575 err = sf_disable(); 576 if (err) 577 pr_err("Switching off the sampling facility failed " 578 "with rc=%i\n", err); 579 debug_sprintf_event(sfdbg, 5, 580 "setup_pmc_cpu: initialized: cpuhw=%p\n", cpusf); 581 break; 582 case PMC_RELEASE: 583 cpusf->flags &= ~PMU_F_RESERVED; 584 err = sf_disable(); 585 if (err) { 586 pr_err("Switching off the sampling facility failed " 587 "with rc=%i\n", err); 588 } else 589 deallocate_buffers(cpusf); 590 debug_sprintf_event(sfdbg, 5, 591 "setup_pmc_cpu: released: cpuhw=%p\n", cpusf); 592 break; 593 } 594 if (err) 595 *((int *) flags) |= PMC_FAILURE; 596 } 597 598 static void release_pmc_hardware(void) 599 { 600 int flags = PMC_RELEASE; 601 602 irq_subclass_unregister(IRQ_SUBCLASS_MEASUREMENT_ALERT); 603 on_each_cpu(setup_pmc_cpu, &flags, 1); 604 } 605 606 static int reserve_pmc_hardware(void) 607 { 608 int flags = PMC_INIT; 609 610 on_each_cpu(setup_pmc_cpu, &flags, 1); 611 if (flags & PMC_FAILURE) { 612 release_pmc_hardware(); 613 return -ENODEV; 614 } 615 irq_subclass_register(IRQ_SUBCLASS_MEASUREMENT_ALERT); 616 617 return 0; 618 } 619 620 static void hw_perf_event_destroy(struct perf_event *event) 621 { 622 /* Free raw sample buffer */ 623 if (RAWSAMPLE_REG(&event->hw)) 624 kfree((void *) RAWSAMPLE_REG(&event->hw)); 625 626 /* Release PMC if this is the last perf event */ 627 if (!atomic_add_unless(&num_events, -1, 1)) { 628 mutex_lock(&pmc_reserve_mutex); 629 if (atomic_dec_return(&num_events) == 0) 630 release_pmc_hardware(); 631 mutex_unlock(&pmc_reserve_mutex); 632 } 633 } 634 635 static void hw_init_period(struct hw_perf_event *hwc, u64 period) 636 { 637 hwc->sample_period = period; 638 hwc->last_period = hwc->sample_period; 639 local64_set(&hwc->period_left, hwc->sample_period); 640 } 641 642 static void hw_reset_registers(struct hw_perf_event *hwc, 643 unsigned long *sdbt_origin) 644 { 645 struct sf_raw_sample *sfr; 646 647 /* (Re)set to first sample-data-block-table */ 648 TEAR_REG(hwc) = (unsigned long) sdbt_origin; 649 650 /* (Re)set raw sampling buffer register */ 651 sfr = (struct sf_raw_sample *) RAWSAMPLE_REG(hwc); 652 memset(&sfr->basic, 0, sizeof(sfr->basic)); 653 memset(&sfr->diag, 0, sfr->dsdes); 654 } 655 656 static unsigned long hw_limit_rate(const struct hws_qsi_info_block *si, 657 unsigned long rate) 658 { 659 return clamp_t(unsigned long, rate, 660 si->min_sampl_rate, si->max_sampl_rate); 661 } 662 663 static int __hw_perf_event_init(struct perf_event *event) 664 { 665 struct cpu_hw_sf *cpuhw; 666 struct hws_qsi_info_block si; 667 struct perf_event_attr *attr = &event->attr; 668 struct hw_perf_event *hwc = &event->hw; 669 unsigned long rate; 670 int cpu, err; 671 672 /* Reserve CPU-measurement sampling facility */ 673 err = 0; 674 if (!atomic_inc_not_zero(&num_events)) { 675 mutex_lock(&pmc_reserve_mutex); 676 if (atomic_read(&num_events) == 0 && reserve_pmc_hardware()) 677 err = -EBUSY; 678 else 679 atomic_inc(&num_events); 680 mutex_unlock(&pmc_reserve_mutex); 681 } 682 event->destroy = hw_perf_event_destroy; 683 684 if (err) 685 goto out; 686 687 /* Access per-CPU sampling information (query sampling info) */ 688 /* 689 * The event->cpu value can be -1 to count on every CPU, for example, 690 * when attaching to a task. If this is specified, use the query 691 * sampling info from the current CPU, otherwise use event->cpu to 692 * retrieve the per-CPU information. 693 * Later, cpuhw indicates whether to allocate sampling buffers for a 694 * particular CPU (cpuhw!=NULL) or each online CPU (cpuw==NULL). 695 */ 696 memset(&si, 0, sizeof(si)); 697 cpuhw = NULL; 698 if (event->cpu == -1) 699 qsi(&si); 700 else { 701 /* Event is pinned to a particular CPU, retrieve the per-CPU 702 * sampling structure for accessing the CPU-specific QSI. 703 */ 704 cpuhw = &per_cpu(cpu_hw_sf, event->cpu); 705 si = cpuhw->qsi; 706 } 707 708 /* Check sampling facility authorization and, if not authorized, 709 * fall back to other PMUs. It is safe to check any CPU because 710 * the authorization is identical for all configured CPUs. 711 */ 712 if (!si.as) { 713 err = -ENOENT; 714 goto out; 715 } 716 717 /* Always enable basic sampling */ 718 SAMPL_FLAGS(hwc) = PERF_CPUM_SF_BASIC_MODE; 719 720 /* Check if diagnostic sampling is requested. Deny if the required 721 * sampling authorization is missing. 722 */ 723 if (attr->config == PERF_EVENT_CPUM_SF_DIAG) { 724 if (!si.ad) { 725 err = -EPERM; 726 goto out; 727 } 728 SAMPL_FLAGS(hwc) |= PERF_CPUM_SF_DIAG_MODE; 729 } 730 731 /* Check and set other sampling flags */ 732 if (attr->config1 & PERF_CPUM_SF_FULL_BLOCKS) 733 SAMPL_FLAGS(hwc) |= PERF_CPUM_SF_FULL_BLOCKS; 734 735 /* The sampling information (si) contains information about the 736 * min/max sampling intervals and the CPU speed. So calculate the 737 * correct sampling interval and avoid the whole period adjust 738 * feedback loop. 739 */ 740 rate = 0; 741 if (attr->freq) { 742 rate = freq_to_sample_rate(&si, attr->sample_freq); 743 rate = hw_limit_rate(&si, rate); 744 attr->freq = 0; 745 attr->sample_period = rate; 746 } else { 747 /* The min/max sampling rates specifies the valid range 748 * of sample periods. If the specified sample period is 749 * out of range, limit the period to the range boundary. 750 */ 751 rate = hw_limit_rate(&si, hwc->sample_period); 752 753 /* The perf core maintains a maximum sample rate that is 754 * configurable through the sysctl interface. Ensure the 755 * sampling rate does not exceed this value. This also helps 756 * to avoid throttling when pushing samples with 757 * perf_event_overflow(). 758 */ 759 if (sample_rate_to_freq(&si, rate) > 760 sysctl_perf_event_sample_rate) { 761 err = -EINVAL; 762 debug_sprintf_event(sfdbg, 1, "Sampling rate exceeds maximum perf sample rate\n"); 763 goto out; 764 } 765 } 766 SAMPL_RATE(hwc) = rate; 767 hw_init_period(hwc, SAMPL_RATE(hwc)); 768 769 /* Initialize sample data overflow accounting */ 770 hwc->extra_reg.reg = REG_OVERFLOW; 771 OVERFLOW_REG(hwc) = 0; 772 773 /* Allocate the per-CPU sampling buffer using the CPU information 774 * from the event. If the event is not pinned to a particular 775 * CPU (event->cpu == -1; or cpuhw == NULL), allocate sampling 776 * buffers for each online CPU. 777 */ 778 if (cpuhw) 779 /* Event is pinned to a particular CPU */ 780 err = allocate_buffers(cpuhw, hwc); 781 else { 782 /* Event is not pinned, allocate sampling buffer on 783 * each online CPU 784 */ 785 for_each_online_cpu(cpu) { 786 cpuhw = &per_cpu(cpu_hw_sf, cpu); 787 err = allocate_buffers(cpuhw, hwc); 788 if (err) 789 break; 790 } 791 } 792 out: 793 return err; 794 } 795 796 static int cpumsf_pmu_event_init(struct perf_event *event) 797 { 798 int err; 799 800 /* No support for taken branch sampling */ 801 if (has_branch_stack(event)) 802 return -EOPNOTSUPP; 803 804 switch (event->attr.type) { 805 case PERF_TYPE_RAW: 806 if ((event->attr.config != PERF_EVENT_CPUM_SF) && 807 (event->attr.config != PERF_EVENT_CPUM_SF_DIAG)) 808 return -ENOENT; 809 break; 810 case PERF_TYPE_HARDWARE: 811 /* Support sampling of CPU cycles in addition to the 812 * counter facility. However, the counter facility 813 * is more precise and, hence, restrict this PMU to 814 * sampling events only. 815 */ 816 if (event->attr.config != PERF_COUNT_HW_CPU_CYCLES) 817 return -ENOENT; 818 if (!is_sampling_event(event)) 819 return -ENOENT; 820 break; 821 default: 822 return -ENOENT; 823 } 824 825 /* Check online status of the CPU to which the event is pinned */ 826 if ((unsigned int)event->cpu >= nr_cpumask_bits || 827 (event->cpu >= 0 && !cpu_online(event->cpu))) 828 return -ENODEV; 829 830 /* Force reset of idle/hv excludes regardless of what the 831 * user requested. 832 */ 833 if (event->attr.exclude_hv) 834 event->attr.exclude_hv = 0; 835 if (event->attr.exclude_idle) 836 event->attr.exclude_idle = 0; 837 838 err = __hw_perf_event_init(event); 839 if (unlikely(err)) 840 if (event->destroy) 841 event->destroy(event); 842 return err; 843 } 844 845 static void cpumsf_pmu_enable(struct pmu *pmu) 846 { 847 struct cpu_hw_sf *cpuhw = this_cpu_ptr(&cpu_hw_sf); 848 struct hw_perf_event *hwc; 849 int err; 850 851 if (cpuhw->flags & PMU_F_ENABLED) 852 return; 853 854 if (cpuhw->flags & PMU_F_ERR_MASK) 855 return; 856 857 /* Check whether to extent the sampling buffer. 858 * 859 * Two conditions trigger an increase of the sampling buffer for a 860 * perf event: 861 * 1. Postponed buffer allocations from the event initialization. 862 * 2. Sampling overflows that contribute to pending allocations. 863 * 864 * Note that the extend_sampling_buffer() function disables the sampling 865 * facility, but it can be fully re-enabled using sampling controls that 866 * have been saved in cpumsf_pmu_disable(). 867 */ 868 if (cpuhw->event) { 869 hwc = &cpuhw->event->hw; 870 /* Account number of overflow-designated buffer extents */ 871 sfb_account_overflows(cpuhw, hwc); 872 if (sfb_has_pending_allocs(&cpuhw->sfb, hwc)) 873 extend_sampling_buffer(&cpuhw->sfb, hwc); 874 } 875 876 /* (Re)enable the PMU and sampling facility */ 877 cpuhw->flags |= PMU_F_ENABLED; 878 barrier(); 879 880 err = lsctl(&cpuhw->lsctl); 881 if (err) { 882 cpuhw->flags &= ~PMU_F_ENABLED; 883 pr_err("Loading sampling controls failed: op=%i err=%i\n", 884 1, err); 885 return; 886 } 887 888 debug_sprintf_event(sfdbg, 6, "pmu_enable: es=%i cs=%i ed=%i cd=%i " 889 "tear=%p dear=%p\n", cpuhw->lsctl.es, cpuhw->lsctl.cs, 890 cpuhw->lsctl.ed, cpuhw->lsctl.cd, 891 (void *) cpuhw->lsctl.tear, (void *) cpuhw->lsctl.dear); 892 } 893 894 static void cpumsf_pmu_disable(struct pmu *pmu) 895 { 896 struct cpu_hw_sf *cpuhw = this_cpu_ptr(&cpu_hw_sf); 897 struct hws_lsctl_request_block inactive; 898 struct hws_qsi_info_block si; 899 int err; 900 901 if (!(cpuhw->flags & PMU_F_ENABLED)) 902 return; 903 904 if (cpuhw->flags & PMU_F_ERR_MASK) 905 return; 906 907 /* Switch off sampling activation control */ 908 inactive = cpuhw->lsctl; 909 inactive.cs = 0; 910 inactive.cd = 0; 911 912 err = lsctl(&inactive); 913 if (err) { 914 pr_err("Loading sampling controls failed: op=%i err=%i\n", 915 2, err); 916 return; 917 } 918 919 /* Save state of TEAR and DEAR register contents */ 920 if (!qsi(&si)) { 921 /* TEAR/DEAR values are valid only if the sampling facility is 922 * enabled. Note that cpumsf_pmu_disable() might be called even 923 * for a disabled sampling facility because cpumsf_pmu_enable() 924 * controls the enable/disable state. 925 */ 926 if (si.es) { 927 cpuhw->lsctl.tear = si.tear; 928 cpuhw->lsctl.dear = si.dear; 929 } 930 } else 931 debug_sprintf_event(sfdbg, 3, "cpumsf_pmu_disable: " 932 "qsi() failed with err=%i\n", err); 933 934 cpuhw->flags &= ~PMU_F_ENABLED; 935 } 936 937 /* perf_exclude_event() - Filter event 938 * @event: The perf event 939 * @regs: pt_regs structure 940 * @sde_regs: Sample-data-entry (sde) regs structure 941 * 942 * Filter perf events according to their exclude specification. 943 * 944 * Return non-zero if the event shall be excluded. 945 */ 946 static int perf_exclude_event(struct perf_event *event, struct pt_regs *regs, 947 struct perf_sf_sde_regs *sde_regs) 948 { 949 if (event->attr.exclude_user && user_mode(regs)) 950 return 1; 951 if (event->attr.exclude_kernel && !user_mode(regs)) 952 return 1; 953 if (event->attr.exclude_guest && sde_regs->in_guest) 954 return 1; 955 if (event->attr.exclude_host && !sde_regs->in_guest) 956 return 1; 957 return 0; 958 } 959 960 /* perf_push_sample() - Push samples to perf 961 * @event: The perf event 962 * @sample: Hardware sample data 963 * 964 * Use the hardware sample data to create perf event sample. The sample 965 * is the pushed to the event subsystem and the function checks for 966 * possible event overflows. If an event overflow occurs, the PMU is 967 * stopped. 968 * 969 * Return non-zero if an event overflow occurred. 970 */ 971 static int perf_push_sample(struct perf_event *event, struct sf_raw_sample *sfr) 972 { 973 int overflow; 974 struct pt_regs regs; 975 struct perf_sf_sde_regs *sde_regs; 976 struct perf_sample_data data; 977 struct perf_raw_record raw = { 978 .frag = { 979 .size = sfr->size, 980 .data = sfr, 981 }, 982 }; 983 984 /* Setup perf sample */ 985 perf_sample_data_init(&data, 0, event->hw.last_period); 986 data.raw = &raw; 987 988 /* Setup pt_regs to look like an CPU-measurement external interrupt 989 * using the Program Request Alert code. The regs.int_parm_long 990 * field which is unused contains additional sample-data-entry related 991 * indicators. 992 */ 993 memset(®s, 0, sizeof(regs)); 994 regs.int_code = 0x1407; 995 regs.int_parm = CPU_MF_INT_SF_PRA; 996 sde_regs = (struct perf_sf_sde_regs *) ®s.int_parm_long; 997 998 psw_bits(regs.psw).ia = sfr->basic.ia; 999 psw_bits(regs.psw).dat = sfr->basic.T; 1000 psw_bits(regs.psw).wait = sfr->basic.W; 1001 psw_bits(regs.psw).pstate = sfr->basic.P; 1002 psw_bits(regs.psw).as = sfr->basic.AS; 1003 1004 /* 1005 * Use the hardware provided configuration level to decide if the 1006 * sample belongs to a guest or host. If that is not available, 1007 * fall back to the following heuristics: 1008 * A non-zero guest program parameter always indicates a guest 1009 * sample. Some early samples or samples from guests without 1010 * lpp usage would be misaccounted to the host. We use the asn 1011 * value as an addon heuristic to detect most of these guest samples. 1012 * If the value differs from 0xffff (the host value), we assume to 1013 * be a KVM guest. 1014 */ 1015 switch (sfr->basic.CL) { 1016 case 1: /* logical partition */ 1017 sde_regs->in_guest = 0; 1018 break; 1019 case 2: /* virtual machine */ 1020 sde_regs->in_guest = 1; 1021 break; 1022 default: /* old machine, use heuristics */ 1023 if (sfr->basic.gpp || sfr->basic.prim_asn != 0xffff) 1024 sde_regs->in_guest = 1; 1025 break; 1026 } 1027 1028 overflow = 0; 1029 if (perf_exclude_event(event, ®s, sde_regs)) 1030 goto out; 1031 if (perf_event_overflow(event, &data, ®s)) { 1032 overflow = 1; 1033 event->pmu->stop(event, 0); 1034 } 1035 perf_event_update_userpage(event); 1036 out: 1037 return overflow; 1038 } 1039 1040 static void perf_event_count_update(struct perf_event *event, u64 count) 1041 { 1042 local64_add(count, &event->count); 1043 } 1044 1045 static int sample_format_is_valid(struct hws_combined_entry *sample, 1046 unsigned int flags) 1047 { 1048 if (likely(flags & PERF_CPUM_SF_BASIC_MODE)) 1049 /* Only basic-sampling data entries with data-entry-format 1050 * version of 0x0001 can be processed. 1051 */ 1052 if (sample->basic.def != 0x0001) 1053 return 0; 1054 if (flags & PERF_CPUM_SF_DIAG_MODE) 1055 /* The data-entry-format number of diagnostic-sampling data 1056 * entries can vary. Because diagnostic data is just passed 1057 * through, do only a sanity check on the DEF. 1058 */ 1059 if (sample->diag.def < 0x8001) 1060 return 0; 1061 return 1; 1062 } 1063 1064 static int sample_is_consistent(struct hws_combined_entry *sample, 1065 unsigned long flags) 1066 { 1067 /* This check applies only to basic-sampling data entries of potentially 1068 * combined-sampling data entries. Invalid entries cannot be processed 1069 * by the PMU and, thus, do not deliver an associated 1070 * diagnostic-sampling data entry. 1071 */ 1072 if (unlikely(!(flags & PERF_CPUM_SF_BASIC_MODE))) 1073 return 0; 1074 /* 1075 * Samples are skipped, if they are invalid or for which the 1076 * instruction address is not predictable, i.e., the wait-state bit is 1077 * set. 1078 */ 1079 if (sample->basic.I || sample->basic.W) 1080 return 0; 1081 return 1; 1082 } 1083 1084 static void reset_sample_slot(struct hws_combined_entry *sample, 1085 unsigned long flags) 1086 { 1087 if (likely(flags & PERF_CPUM_SF_BASIC_MODE)) 1088 sample->basic.def = 0; 1089 if (flags & PERF_CPUM_SF_DIAG_MODE) 1090 sample->diag.def = 0; 1091 } 1092 1093 static void sfr_store_sample(struct sf_raw_sample *sfr, 1094 struct hws_combined_entry *sample) 1095 { 1096 if (likely(sfr->format & PERF_CPUM_SF_BASIC_MODE)) 1097 sfr->basic = sample->basic; 1098 if (sfr->format & PERF_CPUM_SF_DIAG_MODE) 1099 memcpy(&sfr->diag, &sample->diag, sfr->dsdes); 1100 } 1101 1102 static void debug_sample_entry(struct hws_combined_entry *sample, 1103 struct hws_trailer_entry *te, 1104 unsigned long flags) 1105 { 1106 debug_sprintf_event(sfdbg, 4, "hw_collect_samples: Found unknown " 1107 "sampling data entry: te->f=%i basic.def=%04x (%p)" 1108 " diag.def=%04x (%p)\n", te->f, 1109 sample->basic.def, &sample->basic, 1110 (flags & PERF_CPUM_SF_DIAG_MODE) 1111 ? sample->diag.def : 0xFFFF, 1112 (flags & PERF_CPUM_SF_DIAG_MODE) 1113 ? &sample->diag : NULL); 1114 } 1115 1116 /* hw_collect_samples() - Walk through a sample-data-block and collect samples 1117 * @event: The perf event 1118 * @sdbt: Sample-data-block table 1119 * @overflow: Event overflow counter 1120 * 1121 * Walks through a sample-data-block and collects sampling data entries that are 1122 * then pushed to the perf event subsystem. Depending on the sampling function, 1123 * there can be either basic-sampling or combined-sampling data entries. A 1124 * combined-sampling data entry consists of a basic- and a diagnostic-sampling 1125 * data entry. The sampling function is determined by the flags in the perf 1126 * event hardware structure. The function always works with a combined-sampling 1127 * data entry but ignores the the diagnostic portion if it is not available. 1128 * 1129 * Note that the implementation focuses on basic-sampling data entries and, if 1130 * such an entry is not valid, the entire combined-sampling data entry is 1131 * ignored. 1132 * 1133 * The overflow variables counts the number of samples that has been discarded 1134 * due to a perf event overflow. 1135 */ 1136 static void hw_collect_samples(struct perf_event *event, unsigned long *sdbt, 1137 unsigned long long *overflow) 1138 { 1139 unsigned long flags = SAMPL_FLAGS(&event->hw); 1140 struct hws_combined_entry *sample; 1141 struct hws_trailer_entry *te; 1142 struct sf_raw_sample *sfr; 1143 size_t sample_size; 1144 1145 /* Prepare and initialize raw sample data */ 1146 sfr = (struct sf_raw_sample *) RAWSAMPLE_REG(&event->hw); 1147 sfr->format = flags & PERF_CPUM_SF_MODE_MASK; 1148 1149 sample_size = event_sample_size(&event->hw); 1150 te = (struct hws_trailer_entry *) trailer_entry_ptr(*sdbt); 1151 sample = (struct hws_combined_entry *) *sdbt; 1152 while ((unsigned long *) sample < (unsigned long *) te) { 1153 /* Check for an empty sample */ 1154 if (!sample->basic.def) 1155 break; 1156 1157 /* Update perf event period */ 1158 perf_event_count_update(event, SAMPL_RATE(&event->hw)); 1159 1160 /* Check sampling data entry */ 1161 if (sample_format_is_valid(sample, flags)) { 1162 /* If an event overflow occurred, the PMU is stopped to 1163 * throttle event delivery. Remaining sample data is 1164 * discarded. 1165 */ 1166 if (!*overflow) { 1167 if (sample_is_consistent(sample, flags)) { 1168 /* Deliver sample data to perf */ 1169 sfr_store_sample(sfr, sample); 1170 *overflow = perf_push_sample(event, sfr); 1171 } 1172 } else 1173 /* Count discarded samples */ 1174 *overflow += 1; 1175 } else { 1176 debug_sample_entry(sample, te, flags); 1177 /* Sample slot is not yet written or other record. 1178 * 1179 * This condition can occur if the buffer was reused 1180 * from a combined basic- and diagnostic-sampling. 1181 * If only basic-sampling is then active, entries are 1182 * written into the larger diagnostic entries. 1183 * This is typically the case for sample-data-blocks 1184 * that are not full. Stop processing if the first 1185 * invalid format was detected. 1186 */ 1187 if (!te->f) 1188 break; 1189 } 1190 1191 /* Reset sample slot and advance to next sample */ 1192 reset_sample_slot(sample, flags); 1193 sample += sample_size; 1194 } 1195 } 1196 1197 /* hw_perf_event_update() - Process sampling buffer 1198 * @event: The perf event 1199 * @flush_all: Flag to also flush partially filled sample-data-blocks 1200 * 1201 * Processes the sampling buffer and create perf event samples. 1202 * The sampling buffer position are retrieved and saved in the TEAR_REG 1203 * register of the specified perf event. 1204 * 1205 * Only full sample-data-blocks are processed. Specify the flash_all flag 1206 * to also walk through partially filled sample-data-blocks. It is ignored 1207 * if PERF_CPUM_SF_FULL_BLOCKS is set. The PERF_CPUM_SF_FULL_BLOCKS flag 1208 * enforces the processing of full sample-data-blocks only (trailer entries 1209 * with the block-full-indicator bit set). 1210 */ 1211 static void hw_perf_event_update(struct perf_event *event, int flush_all) 1212 { 1213 struct hw_perf_event *hwc = &event->hw; 1214 struct hws_trailer_entry *te; 1215 unsigned long *sdbt; 1216 unsigned long long event_overflow, sampl_overflow, num_sdb, te_flags; 1217 int done; 1218 1219 if (flush_all && SDB_FULL_BLOCKS(hwc)) 1220 flush_all = 0; 1221 1222 sdbt = (unsigned long *) TEAR_REG(hwc); 1223 done = event_overflow = sampl_overflow = num_sdb = 0; 1224 while (!done) { 1225 /* Get the trailer entry of the sample-data-block */ 1226 te = (struct hws_trailer_entry *) trailer_entry_ptr(*sdbt); 1227 1228 /* Leave loop if no more work to do (block full indicator) */ 1229 if (!te->f) { 1230 done = 1; 1231 if (!flush_all) 1232 break; 1233 } 1234 1235 /* Check the sample overflow count */ 1236 if (te->overflow) 1237 /* Account sample overflows and, if a particular limit 1238 * is reached, extend the sampling buffer. 1239 * For details, see sfb_account_overflows(). 1240 */ 1241 sampl_overflow += te->overflow; 1242 1243 /* Timestamps are valid for full sample-data-blocks only */ 1244 debug_sprintf_event(sfdbg, 6, "hw_perf_event_update: sdbt=%p " 1245 "overflow=%llu timestamp=0x%llx\n", 1246 sdbt, te->overflow, 1247 (te->f) ? trailer_timestamp(te) : 0ULL); 1248 1249 /* Collect all samples from a single sample-data-block and 1250 * flag if an (perf) event overflow happened. If so, the PMU 1251 * is stopped and remaining samples will be discarded. 1252 */ 1253 hw_collect_samples(event, sdbt, &event_overflow); 1254 num_sdb++; 1255 1256 /* Reset trailer (using compare-double-and-swap) */ 1257 do { 1258 te_flags = te->flags & ~SDB_TE_BUFFER_FULL_MASK; 1259 te_flags |= SDB_TE_ALERT_REQ_MASK; 1260 } while (!cmpxchg_double(&te->flags, &te->overflow, 1261 te->flags, te->overflow, 1262 te_flags, 0ULL)); 1263 1264 /* Advance to next sample-data-block */ 1265 sdbt++; 1266 if (is_link_entry(sdbt)) 1267 sdbt = get_next_sdbt(sdbt); 1268 1269 /* Update event hardware registers */ 1270 TEAR_REG(hwc) = (unsigned long) sdbt; 1271 1272 /* Stop processing sample-data if all samples of the current 1273 * sample-data-block were flushed even if it was not full. 1274 */ 1275 if (flush_all && done) 1276 break; 1277 1278 /* If an event overflow happened, discard samples by 1279 * processing any remaining sample-data-blocks. 1280 */ 1281 if (event_overflow) 1282 flush_all = 1; 1283 } 1284 1285 /* Account sample overflows in the event hardware structure */ 1286 if (sampl_overflow) 1287 OVERFLOW_REG(hwc) = DIV_ROUND_UP(OVERFLOW_REG(hwc) + 1288 sampl_overflow, 1 + num_sdb); 1289 if (sampl_overflow || event_overflow) 1290 debug_sprintf_event(sfdbg, 4, "hw_perf_event_update: " 1291 "overflow stats: sample=%llu event=%llu\n", 1292 sampl_overflow, event_overflow); 1293 } 1294 1295 static void cpumsf_pmu_read(struct perf_event *event) 1296 { 1297 /* Nothing to do ... updates are interrupt-driven */ 1298 } 1299 1300 /* Activate sampling control. 1301 * Next call of pmu_enable() starts sampling. 1302 */ 1303 static void cpumsf_pmu_start(struct perf_event *event, int flags) 1304 { 1305 struct cpu_hw_sf *cpuhw = this_cpu_ptr(&cpu_hw_sf); 1306 1307 if (WARN_ON_ONCE(!(event->hw.state & PERF_HES_STOPPED))) 1308 return; 1309 1310 if (flags & PERF_EF_RELOAD) 1311 WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE)); 1312 1313 perf_pmu_disable(event->pmu); 1314 event->hw.state = 0; 1315 cpuhw->lsctl.cs = 1; 1316 if (SAMPL_DIAG_MODE(&event->hw)) 1317 cpuhw->lsctl.cd = 1; 1318 perf_pmu_enable(event->pmu); 1319 } 1320 1321 /* Deactivate sampling control. 1322 * Next call of pmu_enable() stops sampling. 1323 */ 1324 static void cpumsf_pmu_stop(struct perf_event *event, int flags) 1325 { 1326 struct cpu_hw_sf *cpuhw = this_cpu_ptr(&cpu_hw_sf); 1327 1328 if (event->hw.state & PERF_HES_STOPPED) 1329 return; 1330 1331 perf_pmu_disable(event->pmu); 1332 cpuhw->lsctl.cs = 0; 1333 cpuhw->lsctl.cd = 0; 1334 event->hw.state |= PERF_HES_STOPPED; 1335 1336 if ((flags & PERF_EF_UPDATE) && !(event->hw.state & PERF_HES_UPTODATE)) { 1337 hw_perf_event_update(event, 1); 1338 event->hw.state |= PERF_HES_UPTODATE; 1339 } 1340 perf_pmu_enable(event->pmu); 1341 } 1342 1343 static int cpumsf_pmu_add(struct perf_event *event, int flags) 1344 { 1345 struct cpu_hw_sf *cpuhw = this_cpu_ptr(&cpu_hw_sf); 1346 int err; 1347 1348 if (cpuhw->flags & PMU_F_IN_USE) 1349 return -EAGAIN; 1350 1351 if (!cpuhw->sfb.sdbt) 1352 return -EINVAL; 1353 1354 err = 0; 1355 perf_pmu_disable(event->pmu); 1356 1357 event->hw.state = PERF_HES_UPTODATE | PERF_HES_STOPPED; 1358 1359 /* Set up sampling controls. Always program the sampling register 1360 * using the SDB-table start. Reset TEAR_REG event hardware register 1361 * that is used by hw_perf_event_update() to store the sampling buffer 1362 * position after samples have been flushed. 1363 */ 1364 cpuhw->lsctl.s = 0; 1365 cpuhw->lsctl.h = 1; 1366 cpuhw->lsctl.tear = (unsigned long) cpuhw->sfb.sdbt; 1367 cpuhw->lsctl.dear = *(unsigned long *) cpuhw->sfb.sdbt; 1368 cpuhw->lsctl.interval = SAMPL_RATE(&event->hw); 1369 hw_reset_registers(&event->hw, cpuhw->sfb.sdbt); 1370 1371 /* Ensure sampling functions are in the disabled state. If disabled, 1372 * switch on sampling enable control. */ 1373 if (WARN_ON_ONCE(cpuhw->lsctl.es == 1 || cpuhw->lsctl.ed == 1)) { 1374 err = -EAGAIN; 1375 goto out; 1376 } 1377 cpuhw->lsctl.es = 1; 1378 if (SAMPL_DIAG_MODE(&event->hw)) 1379 cpuhw->lsctl.ed = 1; 1380 1381 /* Set in_use flag and store event */ 1382 cpuhw->event = event; 1383 cpuhw->flags |= PMU_F_IN_USE; 1384 1385 if (flags & PERF_EF_START) 1386 cpumsf_pmu_start(event, PERF_EF_RELOAD); 1387 out: 1388 perf_event_update_userpage(event); 1389 perf_pmu_enable(event->pmu); 1390 return err; 1391 } 1392 1393 static void cpumsf_pmu_del(struct perf_event *event, int flags) 1394 { 1395 struct cpu_hw_sf *cpuhw = this_cpu_ptr(&cpu_hw_sf); 1396 1397 perf_pmu_disable(event->pmu); 1398 cpumsf_pmu_stop(event, PERF_EF_UPDATE); 1399 1400 cpuhw->lsctl.es = 0; 1401 cpuhw->lsctl.ed = 0; 1402 cpuhw->flags &= ~PMU_F_IN_USE; 1403 cpuhw->event = NULL; 1404 1405 perf_event_update_userpage(event); 1406 perf_pmu_enable(event->pmu); 1407 } 1408 1409 CPUMF_EVENT_ATTR(SF, SF_CYCLES_BASIC, PERF_EVENT_CPUM_SF); 1410 CPUMF_EVENT_ATTR(SF, SF_CYCLES_BASIC_DIAG, PERF_EVENT_CPUM_SF_DIAG); 1411 1412 static struct attribute *cpumsf_pmu_events_attr[] = { 1413 CPUMF_EVENT_PTR(SF, SF_CYCLES_BASIC), 1414 NULL, 1415 NULL, 1416 }; 1417 1418 PMU_FORMAT_ATTR(event, "config:0-63"); 1419 1420 static struct attribute *cpumsf_pmu_format_attr[] = { 1421 &format_attr_event.attr, 1422 NULL, 1423 }; 1424 1425 static struct attribute_group cpumsf_pmu_events_group = { 1426 .name = "events", 1427 .attrs = cpumsf_pmu_events_attr, 1428 }; 1429 static struct attribute_group cpumsf_pmu_format_group = { 1430 .name = "format", 1431 .attrs = cpumsf_pmu_format_attr, 1432 }; 1433 static const struct attribute_group *cpumsf_pmu_attr_groups[] = { 1434 &cpumsf_pmu_events_group, 1435 &cpumsf_pmu_format_group, 1436 NULL, 1437 }; 1438 1439 static struct pmu cpumf_sampling = { 1440 .pmu_enable = cpumsf_pmu_enable, 1441 .pmu_disable = cpumsf_pmu_disable, 1442 1443 .event_init = cpumsf_pmu_event_init, 1444 .add = cpumsf_pmu_add, 1445 .del = cpumsf_pmu_del, 1446 1447 .start = cpumsf_pmu_start, 1448 .stop = cpumsf_pmu_stop, 1449 .read = cpumsf_pmu_read, 1450 1451 .attr_groups = cpumsf_pmu_attr_groups, 1452 }; 1453 1454 static void cpumf_measurement_alert(struct ext_code ext_code, 1455 unsigned int alert, unsigned long unused) 1456 { 1457 struct cpu_hw_sf *cpuhw; 1458 1459 if (!(alert & CPU_MF_INT_SF_MASK)) 1460 return; 1461 inc_irq_stat(IRQEXT_CMS); 1462 cpuhw = this_cpu_ptr(&cpu_hw_sf); 1463 1464 /* Measurement alerts are shared and might happen when the PMU 1465 * is not reserved. Ignore these alerts in this case. */ 1466 if (!(cpuhw->flags & PMU_F_RESERVED)) 1467 return; 1468 1469 /* The processing below must take care of multiple alert events that 1470 * might be indicated concurrently. */ 1471 1472 /* Program alert request */ 1473 if (alert & CPU_MF_INT_SF_PRA) { 1474 if (cpuhw->flags & PMU_F_IN_USE) 1475 hw_perf_event_update(cpuhw->event, 0); 1476 else 1477 WARN_ON_ONCE(!(cpuhw->flags & PMU_F_IN_USE)); 1478 } 1479 1480 /* Report measurement alerts only for non-PRA codes */ 1481 if (alert != CPU_MF_INT_SF_PRA) 1482 debug_sprintf_event(sfdbg, 6, "measurement alert: 0x%x\n", alert); 1483 1484 /* Sampling authorization change request */ 1485 if (alert & CPU_MF_INT_SF_SACA) 1486 qsi(&cpuhw->qsi); 1487 1488 /* Loss of sample data due to high-priority machine activities */ 1489 if (alert & CPU_MF_INT_SF_LSDA) { 1490 pr_err("Sample data was lost\n"); 1491 cpuhw->flags |= PMU_F_ERR_LSDA; 1492 sf_disable(); 1493 } 1494 1495 /* Invalid sampling buffer entry */ 1496 if (alert & (CPU_MF_INT_SF_IAE|CPU_MF_INT_SF_ISE)) { 1497 pr_err("A sampling buffer entry is incorrect (alert=0x%x)\n", 1498 alert); 1499 cpuhw->flags |= PMU_F_ERR_IBE; 1500 sf_disable(); 1501 } 1502 } 1503 static int cpusf_pmu_setup(unsigned int cpu, int flags) 1504 { 1505 /* Ignore the notification if no events are scheduled on the PMU. 1506 * This might be racy... 1507 */ 1508 if (!atomic_read(&num_events)) 1509 return 0; 1510 1511 local_irq_disable(); 1512 setup_pmc_cpu(&flags); 1513 local_irq_enable(); 1514 return 0; 1515 } 1516 1517 static int s390_pmu_sf_online_cpu(unsigned int cpu) 1518 { 1519 return cpusf_pmu_setup(cpu, PMC_INIT); 1520 } 1521 1522 static int s390_pmu_sf_offline_cpu(unsigned int cpu) 1523 { 1524 return cpusf_pmu_setup(cpu, PMC_RELEASE); 1525 } 1526 1527 static int param_get_sfb_size(char *buffer, const struct kernel_param *kp) 1528 { 1529 if (!cpum_sf_avail()) 1530 return -ENODEV; 1531 return sprintf(buffer, "%lu,%lu", CPUM_SF_MIN_SDB, CPUM_SF_MAX_SDB); 1532 } 1533 1534 static int param_set_sfb_size(const char *val, const struct kernel_param *kp) 1535 { 1536 int rc; 1537 unsigned long min, max; 1538 1539 if (!cpum_sf_avail()) 1540 return -ENODEV; 1541 if (!val || !strlen(val)) 1542 return -EINVAL; 1543 1544 /* Valid parameter values: "min,max" or "max" */ 1545 min = CPUM_SF_MIN_SDB; 1546 max = CPUM_SF_MAX_SDB; 1547 if (strchr(val, ',')) 1548 rc = (sscanf(val, "%lu,%lu", &min, &max) == 2) ? 0 : -EINVAL; 1549 else 1550 rc = kstrtoul(val, 10, &max); 1551 1552 if (min < 2 || min >= max || max > get_num_physpages()) 1553 rc = -EINVAL; 1554 if (rc) 1555 return rc; 1556 1557 sfb_set_limits(min, max); 1558 pr_info("The sampling buffer limits have changed to: " 1559 "min=%lu max=%lu (diag=x%lu)\n", 1560 CPUM_SF_MIN_SDB, CPUM_SF_MAX_SDB, CPUM_SF_SDB_DIAG_FACTOR); 1561 return 0; 1562 } 1563 1564 #define param_check_sfb_size(name, p) __param_check(name, p, void) 1565 static const struct kernel_param_ops param_ops_sfb_size = { 1566 .set = param_set_sfb_size, 1567 .get = param_get_sfb_size, 1568 }; 1569 1570 #define RS_INIT_FAILURE_QSI 0x0001 1571 #define RS_INIT_FAILURE_BSDES 0x0002 1572 #define RS_INIT_FAILURE_ALRT 0x0003 1573 #define RS_INIT_FAILURE_PERF 0x0004 1574 static void __init pr_cpumsf_err(unsigned int reason) 1575 { 1576 pr_err("Sampling facility support for perf is not available: " 1577 "reason=%04x\n", reason); 1578 } 1579 1580 static int __init init_cpum_sampling_pmu(void) 1581 { 1582 struct hws_qsi_info_block si; 1583 int err; 1584 1585 if (!cpum_sf_avail()) 1586 return -ENODEV; 1587 1588 memset(&si, 0, sizeof(si)); 1589 if (qsi(&si)) { 1590 pr_cpumsf_err(RS_INIT_FAILURE_QSI); 1591 return -ENODEV; 1592 } 1593 1594 if (si.bsdes != sizeof(struct hws_basic_entry)) { 1595 pr_cpumsf_err(RS_INIT_FAILURE_BSDES); 1596 return -EINVAL; 1597 } 1598 1599 if (si.ad) { 1600 sfb_set_limits(CPUM_SF_MIN_SDB, CPUM_SF_MAX_SDB); 1601 cpumsf_pmu_events_attr[1] = 1602 CPUMF_EVENT_PTR(SF, SF_CYCLES_BASIC_DIAG); 1603 } 1604 1605 sfdbg = debug_register(KMSG_COMPONENT, 2, 1, 80); 1606 if (!sfdbg) 1607 pr_err("Registering for s390dbf failed\n"); 1608 debug_register_view(sfdbg, &debug_sprintf_view); 1609 1610 err = register_external_irq(EXT_IRQ_MEASURE_ALERT, 1611 cpumf_measurement_alert); 1612 if (err) { 1613 pr_cpumsf_err(RS_INIT_FAILURE_ALRT); 1614 goto out; 1615 } 1616 1617 err = perf_pmu_register(&cpumf_sampling, "cpum_sf", PERF_TYPE_RAW); 1618 if (err) { 1619 pr_cpumsf_err(RS_INIT_FAILURE_PERF); 1620 unregister_external_irq(EXT_IRQ_MEASURE_ALERT, 1621 cpumf_measurement_alert); 1622 goto out; 1623 } 1624 1625 cpuhp_setup_state(CPUHP_AP_PERF_S390_SF_ONLINE, "perf/s390/sf:online", 1626 s390_pmu_sf_online_cpu, s390_pmu_sf_offline_cpu); 1627 out: 1628 return err; 1629 } 1630 arch_initcall(init_cpum_sampling_pmu); 1631 core_param(cpum_sfb_size, CPUM_SF_MAX_SDB, sfb_size, 0640); 1632