1 /* 2 * Performance event support for the System z CPU-measurement Sampling Facility 3 * 4 * Copyright IBM Corp. 2013 5 * Author(s): Hendrik Brueckner <brueckner@linux.vnet.ibm.com> 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License (version 2 only) 9 * as published by the Free Software Foundation. 10 */ 11 #define KMSG_COMPONENT "cpum_sf" 12 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt 13 14 #include <linux/kernel.h> 15 #include <linux/kernel_stat.h> 16 #include <linux/perf_event.h> 17 #include <linux/percpu.h> 18 #include <linux/notifier.h> 19 #include <linux/export.h> 20 #include <linux/slab.h> 21 #include <linux/mm.h> 22 #include <linux/moduleparam.h> 23 #include <asm/cpu_mf.h> 24 #include <asm/irq.h> 25 #include <asm/debug.h> 26 #include <asm/timex.h> 27 28 /* Minimum number of sample-data-block-tables: 29 * At least one table is required for the sampling buffer structure. 30 * A single table contains up to 511 pointers to sample-data-blocks. 31 */ 32 #define CPUM_SF_MIN_SDBT 1 33 34 /* Number of sample-data-blocks per sample-data-block-table (SDBT): 35 * A table contains SDB pointers (8 bytes) and one table-link entry 36 * that points to the origin of the next SDBT. 37 */ 38 #define CPUM_SF_SDB_PER_TABLE ((PAGE_SIZE - 8) / 8) 39 40 /* Maximum page offset for an SDBT table-link entry: 41 * If this page offset is reached, a table-link entry to the next SDBT 42 * must be added. 43 */ 44 #define CPUM_SF_SDBT_TL_OFFSET (CPUM_SF_SDB_PER_TABLE * 8) 45 static inline int require_table_link(const void *sdbt) 46 { 47 return ((unsigned long) sdbt & ~PAGE_MASK) == CPUM_SF_SDBT_TL_OFFSET; 48 } 49 50 /* Minimum and maximum sampling buffer sizes: 51 * 52 * This number represents the maximum size of the sampling buffer taking 53 * the number of sample-data-block-tables into account. Note that these 54 * numbers apply to the basic-sampling function only. 55 * The maximum number of SDBs is increased by CPUM_SF_SDB_DIAG_FACTOR if 56 * the diagnostic-sampling function is active. 57 * 58 * Sampling buffer size Buffer characteristics 59 * --------------------------------------------------- 60 * 64KB == 16 pages (4KB per page) 61 * 1 page for SDB-tables 62 * 15 pages for SDBs 63 * 64 * 32MB == 8192 pages (4KB per page) 65 * 16 pages for SDB-tables 66 * 8176 pages for SDBs 67 */ 68 static unsigned long __read_mostly CPUM_SF_MIN_SDB = 15; 69 static unsigned long __read_mostly CPUM_SF_MAX_SDB = 8176; 70 static unsigned long __read_mostly CPUM_SF_SDB_DIAG_FACTOR = 1; 71 72 struct sf_buffer { 73 unsigned long *sdbt; /* Sample-data-block-table origin */ 74 /* buffer characteristics (required for buffer increments) */ 75 unsigned long num_sdb; /* Number of sample-data-blocks */ 76 unsigned long num_sdbt; /* Number of sample-data-block-tables */ 77 unsigned long *tail; /* last sample-data-block-table */ 78 }; 79 80 struct cpu_hw_sf { 81 /* CPU-measurement sampling information block */ 82 struct hws_qsi_info_block qsi; 83 /* CPU-measurement sampling control block */ 84 struct hws_lsctl_request_block lsctl; 85 struct sf_buffer sfb; /* Sampling buffer */ 86 unsigned int flags; /* Status flags */ 87 struct perf_event *event; /* Scheduled perf event */ 88 }; 89 static DEFINE_PER_CPU(struct cpu_hw_sf, cpu_hw_sf); 90 91 /* Debug feature */ 92 static debug_info_t *sfdbg; 93 94 /* 95 * sf_disable() - Switch off sampling facility 96 */ 97 static int sf_disable(void) 98 { 99 struct hws_lsctl_request_block sreq; 100 101 memset(&sreq, 0, sizeof(sreq)); 102 return lsctl(&sreq); 103 } 104 105 /* 106 * sf_buffer_available() - Check for an allocated sampling buffer 107 */ 108 static int sf_buffer_available(struct cpu_hw_sf *cpuhw) 109 { 110 return !!cpuhw->sfb.sdbt; 111 } 112 113 /* 114 * deallocate sampling facility buffer 115 */ 116 static void free_sampling_buffer(struct sf_buffer *sfb) 117 { 118 unsigned long *sdbt, *curr; 119 120 if (!sfb->sdbt) 121 return; 122 123 sdbt = sfb->sdbt; 124 curr = sdbt; 125 126 /* Free the SDBT after all SDBs are processed... */ 127 while (1) { 128 if (!*curr || !sdbt) 129 break; 130 131 /* Process table-link entries */ 132 if (is_link_entry(curr)) { 133 curr = get_next_sdbt(curr); 134 if (sdbt) 135 free_page((unsigned long) sdbt); 136 137 /* If the origin is reached, sampling buffer is freed */ 138 if (curr == sfb->sdbt) 139 break; 140 else 141 sdbt = curr; 142 } else { 143 /* Process SDB pointer */ 144 if (*curr) { 145 free_page(*curr); 146 curr++; 147 } 148 } 149 } 150 151 debug_sprintf_event(sfdbg, 5, 152 "free_sampling_buffer: freed sdbt=%p\n", sfb->sdbt); 153 memset(sfb, 0, sizeof(*sfb)); 154 } 155 156 static int alloc_sample_data_block(unsigned long *sdbt, gfp_t gfp_flags) 157 { 158 unsigned long sdb, *trailer; 159 160 /* Allocate and initialize sample-data-block */ 161 sdb = get_zeroed_page(gfp_flags); 162 if (!sdb) 163 return -ENOMEM; 164 trailer = trailer_entry_ptr(sdb); 165 *trailer = SDB_TE_ALERT_REQ_MASK; 166 167 /* Link SDB into the sample-data-block-table */ 168 *sdbt = sdb; 169 170 return 0; 171 } 172 173 /* 174 * realloc_sampling_buffer() - extend sampler memory 175 * 176 * Allocates new sample-data-blocks and adds them to the specified sampling 177 * buffer memory. 178 * 179 * Important: This modifies the sampling buffer and must be called when the 180 * sampling facility is disabled. 181 * 182 * Returns zero on success, non-zero otherwise. 183 */ 184 static int realloc_sampling_buffer(struct sf_buffer *sfb, 185 unsigned long num_sdb, gfp_t gfp_flags) 186 { 187 int i, rc; 188 unsigned long *new, *tail; 189 190 if (!sfb->sdbt || !sfb->tail) 191 return -EINVAL; 192 193 if (!is_link_entry(sfb->tail)) 194 return -EINVAL; 195 196 /* Append to the existing sampling buffer, overwriting the table-link 197 * register. 198 * The tail variables always points to the "tail" (last and table-link) 199 * entry in an SDB-table. 200 */ 201 tail = sfb->tail; 202 203 /* Do a sanity check whether the table-link entry points to 204 * the sampling buffer origin. 205 */ 206 if (sfb->sdbt != get_next_sdbt(tail)) { 207 debug_sprintf_event(sfdbg, 3, "realloc_sampling_buffer: " 208 "sampling buffer is not linked: origin=%p" 209 "tail=%p\n", 210 (void *) sfb->sdbt, (void *) tail); 211 return -EINVAL; 212 } 213 214 /* Allocate remaining SDBs */ 215 rc = 0; 216 for (i = 0; i < num_sdb; i++) { 217 /* Allocate a new SDB-table if it is full. */ 218 if (require_table_link(tail)) { 219 new = (unsigned long *) get_zeroed_page(gfp_flags); 220 if (!new) { 221 rc = -ENOMEM; 222 break; 223 } 224 sfb->num_sdbt++; 225 /* Link current page to tail of chain */ 226 *tail = (unsigned long)(void *) new + 1; 227 tail = new; 228 } 229 230 /* Allocate a new sample-data-block. 231 * If there is not enough memory, stop the realloc process 232 * and simply use what was allocated. If this is a temporary 233 * issue, a new realloc call (if required) might succeed. 234 */ 235 rc = alloc_sample_data_block(tail, gfp_flags); 236 if (rc) 237 break; 238 sfb->num_sdb++; 239 tail++; 240 } 241 242 /* Link sampling buffer to its origin */ 243 *tail = (unsigned long) sfb->sdbt + 1; 244 sfb->tail = tail; 245 246 debug_sprintf_event(sfdbg, 4, "realloc_sampling_buffer: new buffer" 247 " settings: sdbt=%lu sdb=%lu\n", 248 sfb->num_sdbt, sfb->num_sdb); 249 return rc; 250 } 251 252 /* 253 * allocate_sampling_buffer() - allocate sampler memory 254 * 255 * Allocates and initializes a sampling buffer structure using the 256 * specified number of sample-data-blocks (SDB). For each allocation, 257 * a 4K page is used. The number of sample-data-block-tables (SDBT) 258 * are calculated from SDBs. 259 * Also set the ALERT_REQ mask in each SDBs trailer. 260 * 261 * Returns zero on success, non-zero otherwise. 262 */ 263 static int alloc_sampling_buffer(struct sf_buffer *sfb, unsigned long num_sdb) 264 { 265 int rc; 266 267 if (sfb->sdbt) 268 return -EINVAL; 269 270 /* Allocate the sample-data-block-table origin */ 271 sfb->sdbt = (unsigned long *) get_zeroed_page(GFP_KERNEL); 272 if (!sfb->sdbt) 273 return -ENOMEM; 274 sfb->num_sdb = 0; 275 sfb->num_sdbt = 1; 276 277 /* Link the table origin to point to itself to prepare for 278 * realloc_sampling_buffer() invocation. 279 */ 280 sfb->tail = sfb->sdbt; 281 *sfb->tail = (unsigned long)(void *) sfb->sdbt + 1; 282 283 /* Allocate requested number of sample-data-blocks */ 284 rc = realloc_sampling_buffer(sfb, num_sdb, GFP_KERNEL); 285 if (rc) { 286 free_sampling_buffer(sfb); 287 debug_sprintf_event(sfdbg, 4, "alloc_sampling_buffer: " 288 "realloc_sampling_buffer failed with rc=%i\n", rc); 289 } else 290 debug_sprintf_event(sfdbg, 4, 291 "alloc_sampling_buffer: tear=%p dear=%p\n", 292 sfb->sdbt, (void *) *sfb->sdbt); 293 return rc; 294 } 295 296 static void sfb_set_limits(unsigned long min, unsigned long max) 297 { 298 struct hws_qsi_info_block si; 299 300 CPUM_SF_MIN_SDB = min; 301 CPUM_SF_MAX_SDB = max; 302 303 memset(&si, 0, sizeof(si)); 304 if (!qsi(&si)) 305 CPUM_SF_SDB_DIAG_FACTOR = DIV_ROUND_UP(si.dsdes, si.bsdes); 306 } 307 308 static unsigned long sfb_max_limit(struct hw_perf_event *hwc) 309 { 310 return SAMPL_DIAG_MODE(hwc) ? CPUM_SF_MAX_SDB * CPUM_SF_SDB_DIAG_FACTOR 311 : CPUM_SF_MAX_SDB; 312 } 313 314 static unsigned long sfb_pending_allocs(struct sf_buffer *sfb, 315 struct hw_perf_event *hwc) 316 { 317 if (!sfb->sdbt) 318 return SFB_ALLOC_REG(hwc); 319 if (SFB_ALLOC_REG(hwc) > sfb->num_sdb) 320 return SFB_ALLOC_REG(hwc) - sfb->num_sdb; 321 return 0; 322 } 323 324 static int sfb_has_pending_allocs(struct sf_buffer *sfb, 325 struct hw_perf_event *hwc) 326 { 327 return sfb_pending_allocs(sfb, hwc) > 0; 328 } 329 330 static void sfb_account_allocs(unsigned long num, struct hw_perf_event *hwc) 331 { 332 /* Limit the number of SDBs to not exceed the maximum */ 333 num = min_t(unsigned long, num, sfb_max_limit(hwc) - SFB_ALLOC_REG(hwc)); 334 if (num) 335 SFB_ALLOC_REG(hwc) += num; 336 } 337 338 static void sfb_init_allocs(unsigned long num, struct hw_perf_event *hwc) 339 { 340 SFB_ALLOC_REG(hwc) = 0; 341 sfb_account_allocs(num, hwc); 342 } 343 344 static size_t event_sample_size(struct hw_perf_event *hwc) 345 { 346 struct sf_raw_sample *sfr = (struct sf_raw_sample *) RAWSAMPLE_REG(hwc); 347 size_t sample_size; 348 349 /* The sample size depends on the sampling function: The basic-sampling 350 * function must be always enabled, diagnostic-sampling function is 351 * optional. 352 */ 353 sample_size = sfr->bsdes; 354 if (SAMPL_DIAG_MODE(hwc)) 355 sample_size += sfr->dsdes; 356 357 return sample_size; 358 } 359 360 static void deallocate_buffers(struct cpu_hw_sf *cpuhw) 361 { 362 if (cpuhw->sfb.sdbt) 363 free_sampling_buffer(&cpuhw->sfb); 364 } 365 366 static int allocate_buffers(struct cpu_hw_sf *cpuhw, struct hw_perf_event *hwc) 367 { 368 unsigned long n_sdb, freq, factor; 369 size_t sfr_size, sample_size; 370 struct sf_raw_sample *sfr; 371 372 /* Allocate raw sample buffer 373 * 374 * The raw sample buffer is used to temporarily store sampling data 375 * entries for perf raw sample processing. The buffer size mainly 376 * depends on the size of diagnostic-sampling data entries which is 377 * machine-specific. The exact size calculation includes: 378 * 1. The first 4 bytes of diagnostic-sampling data entries are 379 * already reflected in the sf_raw_sample structure. Subtract 380 * these bytes. 381 * 2. The perf raw sample data must be 8-byte aligned (u64) and 382 * perf's internal data size must be considered too. So add 383 * an additional u32 for correct alignment and subtract before 384 * allocating the buffer. 385 * 3. Store the raw sample buffer pointer in the perf event 386 * hardware structure. 387 */ 388 sfr_size = ALIGN((sizeof(*sfr) - sizeof(sfr->diag) + cpuhw->qsi.dsdes) + 389 sizeof(u32), sizeof(u64)); 390 sfr_size -= sizeof(u32); 391 sfr = kzalloc(sfr_size, GFP_KERNEL); 392 if (!sfr) 393 return -ENOMEM; 394 sfr->size = sfr_size; 395 sfr->bsdes = cpuhw->qsi.bsdes; 396 sfr->dsdes = cpuhw->qsi.dsdes; 397 RAWSAMPLE_REG(hwc) = (unsigned long) sfr; 398 399 /* Calculate sampling buffers using 4K pages 400 * 401 * 1. Determine the sample data size which depends on the used 402 * sampling functions, for example, basic-sampling or 403 * basic-sampling with diagnostic-sampling. 404 * 405 * 2. Use the sampling frequency as input. The sampling buffer is 406 * designed for almost one second. This can be adjusted through 407 * the "factor" variable. 408 * In any case, alloc_sampling_buffer() sets the Alert Request 409 * Control indicator to trigger a measurement-alert to harvest 410 * sample-data-blocks (sdb). 411 * 412 * 3. Compute the number of sample-data-blocks and ensure a minimum 413 * of CPUM_SF_MIN_SDB. Also ensure the upper limit does not 414 * exceed a "calculated" maximum. The symbolic maximum is 415 * designed for basic-sampling only and needs to be increased if 416 * diagnostic-sampling is active. 417 * See also the remarks for these symbolic constants. 418 * 419 * 4. Compute the number of sample-data-block-tables (SDBT) and 420 * ensure a minimum of CPUM_SF_MIN_SDBT (one table can manage up 421 * to 511 SDBs). 422 */ 423 sample_size = event_sample_size(hwc); 424 freq = sample_rate_to_freq(&cpuhw->qsi, SAMPL_RATE(hwc)); 425 factor = 1; 426 n_sdb = DIV_ROUND_UP(freq, factor * ((PAGE_SIZE-64) / sample_size)); 427 if (n_sdb < CPUM_SF_MIN_SDB) 428 n_sdb = CPUM_SF_MIN_SDB; 429 430 /* If there is already a sampling buffer allocated, it is very likely 431 * that the sampling facility is enabled too. If the event to be 432 * initialized requires a greater sampling buffer, the allocation must 433 * be postponed. Changing the sampling buffer requires the sampling 434 * facility to be in the disabled state. So, account the number of 435 * required SDBs and let cpumsf_pmu_enable() resize the buffer just 436 * before the event is started. 437 */ 438 sfb_init_allocs(n_sdb, hwc); 439 if (sf_buffer_available(cpuhw)) 440 return 0; 441 442 debug_sprintf_event(sfdbg, 3, 443 "allocate_buffers: rate=%lu f=%lu sdb=%lu/%lu" 444 " sample_size=%lu cpuhw=%p\n", 445 SAMPL_RATE(hwc), freq, n_sdb, sfb_max_limit(hwc), 446 sample_size, cpuhw); 447 448 return alloc_sampling_buffer(&cpuhw->sfb, 449 sfb_pending_allocs(&cpuhw->sfb, hwc)); 450 } 451 452 static unsigned long min_percent(unsigned int percent, unsigned long base, 453 unsigned long min) 454 { 455 return min_t(unsigned long, min, DIV_ROUND_UP(percent * base, 100)); 456 } 457 458 static unsigned long compute_sfb_extent(unsigned long ratio, unsigned long base) 459 { 460 /* Use a percentage-based approach to extend the sampling facility 461 * buffer. Accept up to 5% sample data loss. 462 * Vary the extents between 1% to 5% of the current number of 463 * sample-data-blocks. 464 */ 465 if (ratio <= 5) 466 return 0; 467 if (ratio <= 25) 468 return min_percent(1, base, 1); 469 if (ratio <= 50) 470 return min_percent(1, base, 1); 471 if (ratio <= 75) 472 return min_percent(2, base, 2); 473 if (ratio <= 100) 474 return min_percent(3, base, 3); 475 if (ratio <= 250) 476 return min_percent(4, base, 4); 477 478 return min_percent(5, base, 8); 479 } 480 481 static void sfb_account_overflows(struct cpu_hw_sf *cpuhw, 482 struct hw_perf_event *hwc) 483 { 484 unsigned long ratio, num; 485 486 if (!OVERFLOW_REG(hwc)) 487 return; 488 489 /* The sample_overflow contains the average number of sample data 490 * that has been lost because sample-data-blocks were full. 491 * 492 * Calculate the total number of sample data entries that has been 493 * discarded. Then calculate the ratio of lost samples to total samples 494 * per second in percent. 495 */ 496 ratio = DIV_ROUND_UP(100 * OVERFLOW_REG(hwc) * cpuhw->sfb.num_sdb, 497 sample_rate_to_freq(&cpuhw->qsi, SAMPL_RATE(hwc))); 498 499 /* Compute number of sample-data-blocks */ 500 num = compute_sfb_extent(ratio, cpuhw->sfb.num_sdb); 501 if (num) 502 sfb_account_allocs(num, hwc); 503 504 debug_sprintf_event(sfdbg, 5, "sfb: overflow: overflow=%llu ratio=%lu" 505 " num=%lu\n", OVERFLOW_REG(hwc), ratio, num); 506 OVERFLOW_REG(hwc) = 0; 507 } 508 509 /* extend_sampling_buffer() - Extend sampling buffer 510 * @sfb: Sampling buffer structure (for local CPU) 511 * @hwc: Perf event hardware structure 512 * 513 * Use this function to extend the sampling buffer based on the overflow counter 514 * and postponed allocation extents stored in the specified Perf event hardware. 515 * 516 * Important: This function disables the sampling facility in order to safely 517 * change the sampling buffer structure. Do not call this function 518 * when the PMU is active. 519 */ 520 static void extend_sampling_buffer(struct sf_buffer *sfb, 521 struct hw_perf_event *hwc) 522 { 523 unsigned long num, num_old; 524 int rc; 525 526 num = sfb_pending_allocs(sfb, hwc); 527 if (!num) 528 return; 529 num_old = sfb->num_sdb; 530 531 /* Disable the sampling facility to reset any states and also 532 * clear pending measurement alerts. 533 */ 534 sf_disable(); 535 536 /* Extend the sampling buffer. 537 * This memory allocation typically happens in an atomic context when 538 * called by perf. Because this is a reallocation, it is fine if the 539 * new SDB-request cannot be satisfied immediately. 540 */ 541 rc = realloc_sampling_buffer(sfb, num, GFP_ATOMIC); 542 if (rc) 543 debug_sprintf_event(sfdbg, 5, "sfb: extend: realloc " 544 "failed with rc=%i\n", rc); 545 546 if (sfb_has_pending_allocs(sfb, hwc)) 547 debug_sprintf_event(sfdbg, 5, "sfb: extend: " 548 "req=%lu alloc=%lu remaining=%lu\n", 549 num, sfb->num_sdb - num_old, 550 sfb_pending_allocs(sfb, hwc)); 551 } 552 553 554 /* Number of perf events counting hardware events */ 555 static atomic_t num_events; 556 /* Used to avoid races in calling reserve/release_cpumf_hardware */ 557 static DEFINE_MUTEX(pmc_reserve_mutex); 558 559 #define PMC_INIT 0 560 #define PMC_RELEASE 1 561 #define PMC_FAILURE 2 562 static void setup_pmc_cpu(void *flags) 563 { 564 int err; 565 struct cpu_hw_sf *cpusf = this_cpu_ptr(&cpu_hw_sf); 566 567 err = 0; 568 switch (*((int *) flags)) { 569 case PMC_INIT: 570 memset(cpusf, 0, sizeof(*cpusf)); 571 err = qsi(&cpusf->qsi); 572 if (err) 573 break; 574 cpusf->flags |= PMU_F_RESERVED; 575 err = sf_disable(); 576 if (err) 577 pr_err("Switching off the sampling facility failed " 578 "with rc=%i\n", err); 579 debug_sprintf_event(sfdbg, 5, 580 "setup_pmc_cpu: initialized: cpuhw=%p\n", cpusf); 581 break; 582 case PMC_RELEASE: 583 cpusf->flags &= ~PMU_F_RESERVED; 584 err = sf_disable(); 585 if (err) { 586 pr_err("Switching off the sampling facility failed " 587 "with rc=%i\n", err); 588 } else 589 deallocate_buffers(cpusf); 590 debug_sprintf_event(sfdbg, 5, 591 "setup_pmc_cpu: released: cpuhw=%p\n", cpusf); 592 break; 593 } 594 if (err) 595 *((int *) flags) |= PMC_FAILURE; 596 } 597 598 static void release_pmc_hardware(void) 599 { 600 int flags = PMC_RELEASE; 601 602 irq_subclass_unregister(IRQ_SUBCLASS_MEASUREMENT_ALERT); 603 on_each_cpu(setup_pmc_cpu, &flags, 1); 604 } 605 606 static int reserve_pmc_hardware(void) 607 { 608 int flags = PMC_INIT; 609 610 on_each_cpu(setup_pmc_cpu, &flags, 1); 611 if (flags & PMC_FAILURE) { 612 release_pmc_hardware(); 613 return -ENODEV; 614 } 615 irq_subclass_register(IRQ_SUBCLASS_MEASUREMENT_ALERT); 616 617 return 0; 618 } 619 620 static void hw_perf_event_destroy(struct perf_event *event) 621 { 622 /* Free raw sample buffer */ 623 if (RAWSAMPLE_REG(&event->hw)) 624 kfree((void *) RAWSAMPLE_REG(&event->hw)); 625 626 /* Release PMC if this is the last perf event */ 627 if (!atomic_add_unless(&num_events, -1, 1)) { 628 mutex_lock(&pmc_reserve_mutex); 629 if (atomic_dec_return(&num_events) == 0) 630 release_pmc_hardware(); 631 mutex_unlock(&pmc_reserve_mutex); 632 } 633 } 634 635 static void hw_init_period(struct hw_perf_event *hwc, u64 period) 636 { 637 hwc->sample_period = period; 638 hwc->last_period = hwc->sample_period; 639 local64_set(&hwc->period_left, hwc->sample_period); 640 } 641 642 static void hw_reset_registers(struct hw_perf_event *hwc, 643 unsigned long *sdbt_origin) 644 { 645 struct sf_raw_sample *sfr; 646 647 /* (Re)set to first sample-data-block-table */ 648 TEAR_REG(hwc) = (unsigned long) sdbt_origin; 649 650 /* (Re)set raw sampling buffer register */ 651 sfr = (struct sf_raw_sample *) RAWSAMPLE_REG(hwc); 652 memset(&sfr->basic, 0, sizeof(sfr->basic)); 653 memset(&sfr->diag, 0, sfr->dsdes); 654 } 655 656 static unsigned long hw_limit_rate(const struct hws_qsi_info_block *si, 657 unsigned long rate) 658 { 659 return clamp_t(unsigned long, rate, 660 si->min_sampl_rate, si->max_sampl_rate); 661 } 662 663 static int __hw_perf_event_init(struct perf_event *event) 664 { 665 struct cpu_hw_sf *cpuhw; 666 struct hws_qsi_info_block si; 667 struct perf_event_attr *attr = &event->attr; 668 struct hw_perf_event *hwc = &event->hw; 669 unsigned long rate; 670 int cpu, err; 671 672 /* Reserve CPU-measurement sampling facility */ 673 err = 0; 674 if (!atomic_inc_not_zero(&num_events)) { 675 mutex_lock(&pmc_reserve_mutex); 676 if (atomic_read(&num_events) == 0 && reserve_pmc_hardware()) 677 err = -EBUSY; 678 else 679 atomic_inc(&num_events); 680 mutex_unlock(&pmc_reserve_mutex); 681 } 682 event->destroy = hw_perf_event_destroy; 683 684 if (err) 685 goto out; 686 687 /* Access per-CPU sampling information (query sampling info) */ 688 /* 689 * The event->cpu value can be -1 to count on every CPU, for example, 690 * when attaching to a task. If this is specified, use the query 691 * sampling info from the current CPU, otherwise use event->cpu to 692 * retrieve the per-CPU information. 693 * Later, cpuhw indicates whether to allocate sampling buffers for a 694 * particular CPU (cpuhw!=NULL) or each online CPU (cpuw==NULL). 695 */ 696 memset(&si, 0, sizeof(si)); 697 cpuhw = NULL; 698 if (event->cpu == -1) 699 qsi(&si); 700 else { 701 /* Event is pinned to a particular CPU, retrieve the per-CPU 702 * sampling structure for accessing the CPU-specific QSI. 703 */ 704 cpuhw = &per_cpu(cpu_hw_sf, event->cpu); 705 si = cpuhw->qsi; 706 } 707 708 /* Check sampling facility authorization and, if not authorized, 709 * fall back to other PMUs. It is safe to check any CPU because 710 * the authorization is identical for all configured CPUs. 711 */ 712 if (!si.as) { 713 err = -ENOENT; 714 goto out; 715 } 716 717 /* Always enable basic sampling */ 718 SAMPL_FLAGS(hwc) = PERF_CPUM_SF_BASIC_MODE; 719 720 /* Check if diagnostic sampling is requested. Deny if the required 721 * sampling authorization is missing. 722 */ 723 if (attr->config == PERF_EVENT_CPUM_SF_DIAG) { 724 if (!si.ad) { 725 err = -EPERM; 726 goto out; 727 } 728 SAMPL_FLAGS(hwc) |= PERF_CPUM_SF_DIAG_MODE; 729 } 730 731 /* Check and set other sampling flags */ 732 if (attr->config1 & PERF_CPUM_SF_FULL_BLOCKS) 733 SAMPL_FLAGS(hwc) |= PERF_CPUM_SF_FULL_BLOCKS; 734 735 /* The sampling information (si) contains information about the 736 * min/max sampling intervals and the CPU speed. So calculate the 737 * correct sampling interval and avoid the whole period adjust 738 * feedback loop. 739 */ 740 rate = 0; 741 if (attr->freq) { 742 rate = freq_to_sample_rate(&si, attr->sample_freq); 743 rate = hw_limit_rate(&si, rate); 744 attr->freq = 0; 745 attr->sample_period = rate; 746 } else { 747 /* The min/max sampling rates specifies the valid range 748 * of sample periods. If the specified sample period is 749 * out of range, limit the period to the range boundary. 750 */ 751 rate = hw_limit_rate(&si, hwc->sample_period); 752 753 /* The perf core maintains a maximum sample rate that is 754 * configurable through the sysctl interface. Ensure the 755 * sampling rate does not exceed this value. This also helps 756 * to avoid throttling when pushing samples with 757 * perf_event_overflow(). 758 */ 759 if (sample_rate_to_freq(&si, rate) > 760 sysctl_perf_event_sample_rate) { 761 err = -EINVAL; 762 debug_sprintf_event(sfdbg, 1, "Sampling rate exceeds maximum perf sample rate\n"); 763 goto out; 764 } 765 } 766 SAMPL_RATE(hwc) = rate; 767 hw_init_period(hwc, SAMPL_RATE(hwc)); 768 769 /* Initialize sample data overflow accounting */ 770 hwc->extra_reg.reg = REG_OVERFLOW; 771 OVERFLOW_REG(hwc) = 0; 772 773 /* Allocate the per-CPU sampling buffer using the CPU information 774 * from the event. If the event is not pinned to a particular 775 * CPU (event->cpu == -1; or cpuhw == NULL), allocate sampling 776 * buffers for each online CPU. 777 */ 778 if (cpuhw) 779 /* Event is pinned to a particular CPU */ 780 err = allocate_buffers(cpuhw, hwc); 781 else { 782 /* Event is not pinned, allocate sampling buffer on 783 * each online CPU 784 */ 785 for_each_online_cpu(cpu) { 786 cpuhw = &per_cpu(cpu_hw_sf, cpu); 787 err = allocate_buffers(cpuhw, hwc); 788 if (err) 789 break; 790 } 791 } 792 out: 793 return err; 794 } 795 796 static int cpumsf_pmu_event_init(struct perf_event *event) 797 { 798 int err; 799 800 /* No support for taken branch sampling */ 801 if (has_branch_stack(event)) 802 return -EOPNOTSUPP; 803 804 switch (event->attr.type) { 805 case PERF_TYPE_RAW: 806 if ((event->attr.config != PERF_EVENT_CPUM_SF) && 807 (event->attr.config != PERF_EVENT_CPUM_SF_DIAG)) 808 return -ENOENT; 809 break; 810 case PERF_TYPE_HARDWARE: 811 /* Support sampling of CPU cycles in addition to the 812 * counter facility. However, the counter facility 813 * is more precise and, hence, restrict this PMU to 814 * sampling events only. 815 */ 816 if (event->attr.config != PERF_COUNT_HW_CPU_CYCLES) 817 return -ENOENT; 818 if (!is_sampling_event(event)) 819 return -ENOENT; 820 break; 821 default: 822 return -ENOENT; 823 } 824 825 /* Check online status of the CPU to which the event is pinned */ 826 if (event->cpu >= 0) { 827 if ((unsigned int)event->cpu >= nr_cpumask_bits) 828 return -ENODEV; 829 if (!cpu_online(event->cpu)) 830 return -ENODEV; 831 } 832 833 /* Force reset of idle/hv excludes regardless of what the 834 * user requested. 835 */ 836 if (event->attr.exclude_hv) 837 event->attr.exclude_hv = 0; 838 if (event->attr.exclude_idle) 839 event->attr.exclude_idle = 0; 840 841 err = __hw_perf_event_init(event); 842 if (unlikely(err)) 843 if (event->destroy) 844 event->destroy(event); 845 return err; 846 } 847 848 static void cpumsf_pmu_enable(struct pmu *pmu) 849 { 850 struct cpu_hw_sf *cpuhw = this_cpu_ptr(&cpu_hw_sf); 851 struct hw_perf_event *hwc; 852 int err; 853 854 if (cpuhw->flags & PMU_F_ENABLED) 855 return; 856 857 if (cpuhw->flags & PMU_F_ERR_MASK) 858 return; 859 860 /* Check whether to extent the sampling buffer. 861 * 862 * Two conditions trigger an increase of the sampling buffer for a 863 * perf event: 864 * 1. Postponed buffer allocations from the event initialization. 865 * 2. Sampling overflows that contribute to pending allocations. 866 * 867 * Note that the extend_sampling_buffer() function disables the sampling 868 * facility, but it can be fully re-enabled using sampling controls that 869 * have been saved in cpumsf_pmu_disable(). 870 */ 871 if (cpuhw->event) { 872 hwc = &cpuhw->event->hw; 873 /* Account number of overflow-designated buffer extents */ 874 sfb_account_overflows(cpuhw, hwc); 875 if (sfb_has_pending_allocs(&cpuhw->sfb, hwc)) 876 extend_sampling_buffer(&cpuhw->sfb, hwc); 877 } 878 879 /* (Re)enable the PMU and sampling facility */ 880 cpuhw->flags |= PMU_F_ENABLED; 881 barrier(); 882 883 err = lsctl(&cpuhw->lsctl); 884 if (err) { 885 cpuhw->flags &= ~PMU_F_ENABLED; 886 pr_err("Loading sampling controls failed: op=%i err=%i\n", 887 1, err); 888 return; 889 } 890 891 debug_sprintf_event(sfdbg, 6, "pmu_enable: es=%i cs=%i ed=%i cd=%i " 892 "tear=%p dear=%p\n", cpuhw->lsctl.es, cpuhw->lsctl.cs, 893 cpuhw->lsctl.ed, cpuhw->lsctl.cd, 894 (void *) cpuhw->lsctl.tear, (void *) cpuhw->lsctl.dear); 895 } 896 897 static void cpumsf_pmu_disable(struct pmu *pmu) 898 { 899 struct cpu_hw_sf *cpuhw = this_cpu_ptr(&cpu_hw_sf); 900 struct hws_lsctl_request_block inactive; 901 struct hws_qsi_info_block si; 902 int err; 903 904 if (!(cpuhw->flags & PMU_F_ENABLED)) 905 return; 906 907 if (cpuhw->flags & PMU_F_ERR_MASK) 908 return; 909 910 /* Switch off sampling activation control */ 911 inactive = cpuhw->lsctl; 912 inactive.cs = 0; 913 inactive.cd = 0; 914 915 err = lsctl(&inactive); 916 if (err) { 917 pr_err("Loading sampling controls failed: op=%i err=%i\n", 918 2, err); 919 return; 920 } 921 922 /* Save state of TEAR and DEAR register contents */ 923 if (!qsi(&si)) { 924 /* TEAR/DEAR values are valid only if the sampling facility is 925 * enabled. Note that cpumsf_pmu_disable() might be called even 926 * for a disabled sampling facility because cpumsf_pmu_enable() 927 * controls the enable/disable state. 928 */ 929 if (si.es) { 930 cpuhw->lsctl.tear = si.tear; 931 cpuhw->lsctl.dear = si.dear; 932 } 933 } else 934 debug_sprintf_event(sfdbg, 3, "cpumsf_pmu_disable: " 935 "qsi() failed with err=%i\n", err); 936 937 cpuhw->flags &= ~PMU_F_ENABLED; 938 } 939 940 /* perf_exclude_event() - Filter event 941 * @event: The perf event 942 * @regs: pt_regs structure 943 * @sde_regs: Sample-data-entry (sde) regs structure 944 * 945 * Filter perf events according to their exclude specification. 946 * 947 * Return non-zero if the event shall be excluded. 948 */ 949 static int perf_exclude_event(struct perf_event *event, struct pt_regs *regs, 950 struct perf_sf_sde_regs *sde_regs) 951 { 952 if (event->attr.exclude_user && user_mode(regs)) 953 return 1; 954 if (event->attr.exclude_kernel && !user_mode(regs)) 955 return 1; 956 if (event->attr.exclude_guest && sde_regs->in_guest) 957 return 1; 958 if (event->attr.exclude_host && !sde_regs->in_guest) 959 return 1; 960 return 0; 961 } 962 963 /* perf_push_sample() - Push samples to perf 964 * @event: The perf event 965 * @sample: Hardware sample data 966 * 967 * Use the hardware sample data to create perf event sample. The sample 968 * is the pushed to the event subsystem and the function checks for 969 * possible event overflows. If an event overflow occurs, the PMU is 970 * stopped. 971 * 972 * Return non-zero if an event overflow occurred. 973 */ 974 static int perf_push_sample(struct perf_event *event, struct sf_raw_sample *sfr) 975 { 976 int overflow; 977 struct pt_regs regs; 978 struct perf_sf_sde_regs *sde_regs; 979 struct perf_sample_data data; 980 struct perf_raw_record raw = { 981 .frag = { 982 .size = sfr->size, 983 .data = sfr, 984 }, 985 }; 986 987 /* Setup perf sample */ 988 perf_sample_data_init(&data, 0, event->hw.last_period); 989 data.raw = &raw; 990 991 /* Setup pt_regs to look like an CPU-measurement external interrupt 992 * using the Program Request Alert code. The regs.int_parm_long 993 * field which is unused contains additional sample-data-entry related 994 * indicators. 995 */ 996 memset(®s, 0, sizeof(regs)); 997 regs.int_code = 0x1407; 998 regs.int_parm = CPU_MF_INT_SF_PRA; 999 sde_regs = (struct perf_sf_sde_regs *) ®s.int_parm_long; 1000 1001 psw_bits(regs.psw).ia = sfr->basic.ia; 1002 psw_bits(regs.psw).dat = sfr->basic.T; 1003 psw_bits(regs.psw).wait = sfr->basic.W; 1004 psw_bits(regs.psw).pstate = sfr->basic.P; 1005 psw_bits(regs.psw).as = sfr->basic.AS; 1006 1007 /* 1008 * Use the hardware provided configuration level to decide if the 1009 * sample belongs to a guest or host. If that is not available, 1010 * fall back to the following heuristics: 1011 * A non-zero guest program parameter always indicates a guest 1012 * sample. Some early samples or samples from guests without 1013 * lpp usage would be misaccounted to the host. We use the asn 1014 * value as an addon heuristic to detect most of these guest samples. 1015 * If the value differs from 0xffff (the host value), we assume to 1016 * be a KVM guest. 1017 */ 1018 switch (sfr->basic.CL) { 1019 case 1: /* logical partition */ 1020 sde_regs->in_guest = 0; 1021 break; 1022 case 2: /* virtual machine */ 1023 sde_regs->in_guest = 1; 1024 break; 1025 default: /* old machine, use heuristics */ 1026 if (sfr->basic.gpp || sfr->basic.prim_asn != 0xffff) 1027 sde_regs->in_guest = 1; 1028 break; 1029 } 1030 1031 overflow = 0; 1032 if (perf_exclude_event(event, ®s, sde_regs)) 1033 goto out; 1034 if (perf_event_overflow(event, &data, ®s)) { 1035 overflow = 1; 1036 event->pmu->stop(event, 0); 1037 } 1038 perf_event_update_userpage(event); 1039 out: 1040 return overflow; 1041 } 1042 1043 static void perf_event_count_update(struct perf_event *event, u64 count) 1044 { 1045 local64_add(count, &event->count); 1046 } 1047 1048 static int sample_format_is_valid(struct hws_combined_entry *sample, 1049 unsigned int flags) 1050 { 1051 if (likely(flags & PERF_CPUM_SF_BASIC_MODE)) 1052 /* Only basic-sampling data entries with data-entry-format 1053 * version of 0x0001 can be processed. 1054 */ 1055 if (sample->basic.def != 0x0001) 1056 return 0; 1057 if (flags & PERF_CPUM_SF_DIAG_MODE) 1058 /* The data-entry-format number of diagnostic-sampling data 1059 * entries can vary. Because diagnostic data is just passed 1060 * through, do only a sanity check on the DEF. 1061 */ 1062 if (sample->diag.def < 0x8001) 1063 return 0; 1064 return 1; 1065 } 1066 1067 static int sample_is_consistent(struct hws_combined_entry *sample, 1068 unsigned long flags) 1069 { 1070 /* This check applies only to basic-sampling data entries of potentially 1071 * combined-sampling data entries. Invalid entries cannot be processed 1072 * by the PMU and, thus, do not deliver an associated 1073 * diagnostic-sampling data entry. 1074 */ 1075 if (unlikely(!(flags & PERF_CPUM_SF_BASIC_MODE))) 1076 return 0; 1077 /* 1078 * Samples are skipped, if they are invalid or for which the 1079 * instruction address is not predictable, i.e., the wait-state bit is 1080 * set. 1081 */ 1082 if (sample->basic.I || sample->basic.W) 1083 return 0; 1084 return 1; 1085 } 1086 1087 static void reset_sample_slot(struct hws_combined_entry *sample, 1088 unsigned long flags) 1089 { 1090 if (likely(flags & PERF_CPUM_SF_BASIC_MODE)) 1091 sample->basic.def = 0; 1092 if (flags & PERF_CPUM_SF_DIAG_MODE) 1093 sample->diag.def = 0; 1094 } 1095 1096 static void sfr_store_sample(struct sf_raw_sample *sfr, 1097 struct hws_combined_entry *sample) 1098 { 1099 if (likely(sfr->format & PERF_CPUM_SF_BASIC_MODE)) 1100 sfr->basic = sample->basic; 1101 if (sfr->format & PERF_CPUM_SF_DIAG_MODE) 1102 memcpy(&sfr->diag, &sample->diag, sfr->dsdes); 1103 } 1104 1105 static void debug_sample_entry(struct hws_combined_entry *sample, 1106 struct hws_trailer_entry *te, 1107 unsigned long flags) 1108 { 1109 debug_sprintf_event(sfdbg, 4, "hw_collect_samples: Found unknown " 1110 "sampling data entry: te->f=%i basic.def=%04x (%p)" 1111 " diag.def=%04x (%p)\n", te->f, 1112 sample->basic.def, &sample->basic, 1113 (flags & PERF_CPUM_SF_DIAG_MODE) 1114 ? sample->diag.def : 0xFFFF, 1115 (flags & PERF_CPUM_SF_DIAG_MODE) 1116 ? &sample->diag : NULL); 1117 } 1118 1119 /* hw_collect_samples() - Walk through a sample-data-block and collect samples 1120 * @event: The perf event 1121 * @sdbt: Sample-data-block table 1122 * @overflow: Event overflow counter 1123 * 1124 * Walks through a sample-data-block and collects sampling data entries that are 1125 * then pushed to the perf event subsystem. Depending on the sampling function, 1126 * there can be either basic-sampling or combined-sampling data entries. A 1127 * combined-sampling data entry consists of a basic- and a diagnostic-sampling 1128 * data entry. The sampling function is determined by the flags in the perf 1129 * event hardware structure. The function always works with a combined-sampling 1130 * data entry but ignores the the diagnostic portion if it is not available. 1131 * 1132 * Note that the implementation focuses on basic-sampling data entries and, if 1133 * such an entry is not valid, the entire combined-sampling data entry is 1134 * ignored. 1135 * 1136 * The overflow variables counts the number of samples that has been discarded 1137 * due to a perf event overflow. 1138 */ 1139 static void hw_collect_samples(struct perf_event *event, unsigned long *sdbt, 1140 unsigned long long *overflow) 1141 { 1142 unsigned long flags = SAMPL_FLAGS(&event->hw); 1143 struct hws_combined_entry *sample; 1144 struct hws_trailer_entry *te; 1145 struct sf_raw_sample *sfr; 1146 size_t sample_size; 1147 1148 /* Prepare and initialize raw sample data */ 1149 sfr = (struct sf_raw_sample *) RAWSAMPLE_REG(&event->hw); 1150 sfr->format = flags & PERF_CPUM_SF_MODE_MASK; 1151 1152 sample_size = event_sample_size(&event->hw); 1153 te = (struct hws_trailer_entry *) trailer_entry_ptr(*sdbt); 1154 sample = (struct hws_combined_entry *) *sdbt; 1155 while ((unsigned long *) sample < (unsigned long *) te) { 1156 /* Check for an empty sample */ 1157 if (!sample->basic.def) 1158 break; 1159 1160 /* Update perf event period */ 1161 perf_event_count_update(event, SAMPL_RATE(&event->hw)); 1162 1163 /* Check sampling data entry */ 1164 if (sample_format_is_valid(sample, flags)) { 1165 /* If an event overflow occurred, the PMU is stopped to 1166 * throttle event delivery. Remaining sample data is 1167 * discarded. 1168 */ 1169 if (!*overflow) { 1170 if (sample_is_consistent(sample, flags)) { 1171 /* Deliver sample data to perf */ 1172 sfr_store_sample(sfr, sample); 1173 *overflow = perf_push_sample(event, sfr); 1174 } 1175 } else 1176 /* Count discarded samples */ 1177 *overflow += 1; 1178 } else { 1179 debug_sample_entry(sample, te, flags); 1180 /* Sample slot is not yet written or other record. 1181 * 1182 * This condition can occur if the buffer was reused 1183 * from a combined basic- and diagnostic-sampling. 1184 * If only basic-sampling is then active, entries are 1185 * written into the larger diagnostic entries. 1186 * This is typically the case for sample-data-blocks 1187 * that are not full. Stop processing if the first 1188 * invalid format was detected. 1189 */ 1190 if (!te->f) 1191 break; 1192 } 1193 1194 /* Reset sample slot and advance to next sample */ 1195 reset_sample_slot(sample, flags); 1196 sample += sample_size; 1197 } 1198 } 1199 1200 /* hw_perf_event_update() - Process sampling buffer 1201 * @event: The perf event 1202 * @flush_all: Flag to also flush partially filled sample-data-blocks 1203 * 1204 * Processes the sampling buffer and create perf event samples. 1205 * The sampling buffer position are retrieved and saved in the TEAR_REG 1206 * register of the specified perf event. 1207 * 1208 * Only full sample-data-blocks are processed. Specify the flash_all flag 1209 * to also walk through partially filled sample-data-blocks. It is ignored 1210 * if PERF_CPUM_SF_FULL_BLOCKS is set. The PERF_CPUM_SF_FULL_BLOCKS flag 1211 * enforces the processing of full sample-data-blocks only (trailer entries 1212 * with the block-full-indicator bit set). 1213 */ 1214 static void hw_perf_event_update(struct perf_event *event, int flush_all) 1215 { 1216 struct hw_perf_event *hwc = &event->hw; 1217 struct hws_trailer_entry *te; 1218 unsigned long *sdbt; 1219 unsigned long long event_overflow, sampl_overflow, num_sdb, te_flags; 1220 int done; 1221 1222 if (flush_all && SDB_FULL_BLOCKS(hwc)) 1223 flush_all = 0; 1224 1225 sdbt = (unsigned long *) TEAR_REG(hwc); 1226 done = event_overflow = sampl_overflow = num_sdb = 0; 1227 while (!done) { 1228 /* Get the trailer entry of the sample-data-block */ 1229 te = (struct hws_trailer_entry *) trailer_entry_ptr(*sdbt); 1230 1231 /* Leave loop if no more work to do (block full indicator) */ 1232 if (!te->f) { 1233 done = 1; 1234 if (!flush_all) 1235 break; 1236 } 1237 1238 /* Check the sample overflow count */ 1239 if (te->overflow) 1240 /* Account sample overflows and, if a particular limit 1241 * is reached, extend the sampling buffer. 1242 * For details, see sfb_account_overflows(). 1243 */ 1244 sampl_overflow += te->overflow; 1245 1246 /* Timestamps are valid for full sample-data-blocks only */ 1247 debug_sprintf_event(sfdbg, 6, "hw_perf_event_update: sdbt=%p " 1248 "overflow=%llu timestamp=0x%llx\n", 1249 sdbt, te->overflow, 1250 (te->f) ? trailer_timestamp(te) : 0ULL); 1251 1252 /* Collect all samples from a single sample-data-block and 1253 * flag if an (perf) event overflow happened. If so, the PMU 1254 * is stopped and remaining samples will be discarded. 1255 */ 1256 hw_collect_samples(event, sdbt, &event_overflow); 1257 num_sdb++; 1258 1259 /* Reset trailer (using compare-double-and-swap) */ 1260 do { 1261 te_flags = te->flags & ~SDB_TE_BUFFER_FULL_MASK; 1262 te_flags |= SDB_TE_ALERT_REQ_MASK; 1263 } while (!cmpxchg_double(&te->flags, &te->overflow, 1264 te->flags, te->overflow, 1265 te_flags, 0ULL)); 1266 1267 /* Advance to next sample-data-block */ 1268 sdbt++; 1269 if (is_link_entry(sdbt)) 1270 sdbt = get_next_sdbt(sdbt); 1271 1272 /* Update event hardware registers */ 1273 TEAR_REG(hwc) = (unsigned long) sdbt; 1274 1275 /* Stop processing sample-data if all samples of the current 1276 * sample-data-block were flushed even if it was not full. 1277 */ 1278 if (flush_all && done) 1279 break; 1280 1281 /* If an event overflow happened, discard samples by 1282 * processing any remaining sample-data-blocks. 1283 */ 1284 if (event_overflow) 1285 flush_all = 1; 1286 } 1287 1288 /* Account sample overflows in the event hardware structure */ 1289 if (sampl_overflow) 1290 OVERFLOW_REG(hwc) = DIV_ROUND_UP(OVERFLOW_REG(hwc) + 1291 sampl_overflow, 1 + num_sdb); 1292 if (sampl_overflow || event_overflow) 1293 debug_sprintf_event(sfdbg, 4, "hw_perf_event_update: " 1294 "overflow stats: sample=%llu event=%llu\n", 1295 sampl_overflow, event_overflow); 1296 } 1297 1298 static void cpumsf_pmu_read(struct perf_event *event) 1299 { 1300 /* Nothing to do ... updates are interrupt-driven */ 1301 } 1302 1303 /* Activate sampling control. 1304 * Next call of pmu_enable() starts sampling. 1305 */ 1306 static void cpumsf_pmu_start(struct perf_event *event, int flags) 1307 { 1308 struct cpu_hw_sf *cpuhw = this_cpu_ptr(&cpu_hw_sf); 1309 1310 if (WARN_ON_ONCE(!(event->hw.state & PERF_HES_STOPPED))) 1311 return; 1312 1313 if (flags & PERF_EF_RELOAD) 1314 WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE)); 1315 1316 perf_pmu_disable(event->pmu); 1317 event->hw.state = 0; 1318 cpuhw->lsctl.cs = 1; 1319 if (SAMPL_DIAG_MODE(&event->hw)) 1320 cpuhw->lsctl.cd = 1; 1321 perf_pmu_enable(event->pmu); 1322 } 1323 1324 /* Deactivate sampling control. 1325 * Next call of pmu_enable() stops sampling. 1326 */ 1327 static void cpumsf_pmu_stop(struct perf_event *event, int flags) 1328 { 1329 struct cpu_hw_sf *cpuhw = this_cpu_ptr(&cpu_hw_sf); 1330 1331 if (event->hw.state & PERF_HES_STOPPED) 1332 return; 1333 1334 perf_pmu_disable(event->pmu); 1335 cpuhw->lsctl.cs = 0; 1336 cpuhw->lsctl.cd = 0; 1337 event->hw.state |= PERF_HES_STOPPED; 1338 1339 if ((flags & PERF_EF_UPDATE) && !(event->hw.state & PERF_HES_UPTODATE)) { 1340 hw_perf_event_update(event, 1); 1341 event->hw.state |= PERF_HES_UPTODATE; 1342 } 1343 perf_pmu_enable(event->pmu); 1344 } 1345 1346 static int cpumsf_pmu_add(struct perf_event *event, int flags) 1347 { 1348 struct cpu_hw_sf *cpuhw = this_cpu_ptr(&cpu_hw_sf); 1349 int err; 1350 1351 if (cpuhw->flags & PMU_F_IN_USE) 1352 return -EAGAIN; 1353 1354 if (!cpuhw->sfb.sdbt) 1355 return -EINVAL; 1356 1357 err = 0; 1358 perf_pmu_disable(event->pmu); 1359 1360 event->hw.state = PERF_HES_UPTODATE | PERF_HES_STOPPED; 1361 1362 /* Set up sampling controls. Always program the sampling register 1363 * using the SDB-table start. Reset TEAR_REG event hardware register 1364 * that is used by hw_perf_event_update() to store the sampling buffer 1365 * position after samples have been flushed. 1366 */ 1367 cpuhw->lsctl.s = 0; 1368 cpuhw->lsctl.h = 1; 1369 cpuhw->lsctl.tear = (unsigned long) cpuhw->sfb.sdbt; 1370 cpuhw->lsctl.dear = *(unsigned long *) cpuhw->sfb.sdbt; 1371 cpuhw->lsctl.interval = SAMPL_RATE(&event->hw); 1372 hw_reset_registers(&event->hw, cpuhw->sfb.sdbt); 1373 1374 /* Ensure sampling functions are in the disabled state. If disabled, 1375 * switch on sampling enable control. */ 1376 if (WARN_ON_ONCE(cpuhw->lsctl.es == 1 || cpuhw->lsctl.ed == 1)) { 1377 err = -EAGAIN; 1378 goto out; 1379 } 1380 cpuhw->lsctl.es = 1; 1381 if (SAMPL_DIAG_MODE(&event->hw)) 1382 cpuhw->lsctl.ed = 1; 1383 1384 /* Set in_use flag and store event */ 1385 cpuhw->event = event; 1386 cpuhw->flags |= PMU_F_IN_USE; 1387 1388 if (flags & PERF_EF_START) 1389 cpumsf_pmu_start(event, PERF_EF_RELOAD); 1390 out: 1391 perf_event_update_userpage(event); 1392 perf_pmu_enable(event->pmu); 1393 return err; 1394 } 1395 1396 static void cpumsf_pmu_del(struct perf_event *event, int flags) 1397 { 1398 struct cpu_hw_sf *cpuhw = this_cpu_ptr(&cpu_hw_sf); 1399 1400 perf_pmu_disable(event->pmu); 1401 cpumsf_pmu_stop(event, PERF_EF_UPDATE); 1402 1403 cpuhw->lsctl.es = 0; 1404 cpuhw->lsctl.ed = 0; 1405 cpuhw->flags &= ~PMU_F_IN_USE; 1406 cpuhw->event = NULL; 1407 1408 perf_event_update_userpage(event); 1409 perf_pmu_enable(event->pmu); 1410 } 1411 1412 CPUMF_EVENT_ATTR(SF, SF_CYCLES_BASIC, PERF_EVENT_CPUM_SF); 1413 CPUMF_EVENT_ATTR(SF, SF_CYCLES_BASIC_DIAG, PERF_EVENT_CPUM_SF_DIAG); 1414 1415 static struct attribute *cpumsf_pmu_events_attr[] = { 1416 CPUMF_EVENT_PTR(SF, SF_CYCLES_BASIC), 1417 NULL, 1418 NULL, 1419 }; 1420 1421 PMU_FORMAT_ATTR(event, "config:0-63"); 1422 1423 static struct attribute *cpumsf_pmu_format_attr[] = { 1424 &format_attr_event.attr, 1425 NULL, 1426 }; 1427 1428 static struct attribute_group cpumsf_pmu_events_group = { 1429 .name = "events", 1430 .attrs = cpumsf_pmu_events_attr, 1431 }; 1432 static struct attribute_group cpumsf_pmu_format_group = { 1433 .name = "format", 1434 .attrs = cpumsf_pmu_format_attr, 1435 }; 1436 static const struct attribute_group *cpumsf_pmu_attr_groups[] = { 1437 &cpumsf_pmu_events_group, 1438 &cpumsf_pmu_format_group, 1439 NULL, 1440 }; 1441 1442 static struct pmu cpumf_sampling = { 1443 .pmu_enable = cpumsf_pmu_enable, 1444 .pmu_disable = cpumsf_pmu_disable, 1445 1446 .event_init = cpumsf_pmu_event_init, 1447 .add = cpumsf_pmu_add, 1448 .del = cpumsf_pmu_del, 1449 1450 .start = cpumsf_pmu_start, 1451 .stop = cpumsf_pmu_stop, 1452 .read = cpumsf_pmu_read, 1453 1454 .attr_groups = cpumsf_pmu_attr_groups, 1455 }; 1456 1457 static void cpumf_measurement_alert(struct ext_code ext_code, 1458 unsigned int alert, unsigned long unused) 1459 { 1460 struct cpu_hw_sf *cpuhw; 1461 1462 if (!(alert & CPU_MF_INT_SF_MASK)) 1463 return; 1464 inc_irq_stat(IRQEXT_CMS); 1465 cpuhw = this_cpu_ptr(&cpu_hw_sf); 1466 1467 /* Measurement alerts are shared and might happen when the PMU 1468 * is not reserved. Ignore these alerts in this case. */ 1469 if (!(cpuhw->flags & PMU_F_RESERVED)) 1470 return; 1471 1472 /* The processing below must take care of multiple alert events that 1473 * might be indicated concurrently. */ 1474 1475 /* Program alert request */ 1476 if (alert & CPU_MF_INT_SF_PRA) { 1477 if (cpuhw->flags & PMU_F_IN_USE) 1478 hw_perf_event_update(cpuhw->event, 0); 1479 else 1480 WARN_ON_ONCE(!(cpuhw->flags & PMU_F_IN_USE)); 1481 } 1482 1483 /* Report measurement alerts only for non-PRA codes */ 1484 if (alert != CPU_MF_INT_SF_PRA) 1485 debug_sprintf_event(sfdbg, 6, "measurement alert: 0x%x\n", alert); 1486 1487 /* Sampling authorization change request */ 1488 if (alert & CPU_MF_INT_SF_SACA) 1489 qsi(&cpuhw->qsi); 1490 1491 /* Loss of sample data due to high-priority machine activities */ 1492 if (alert & CPU_MF_INT_SF_LSDA) { 1493 pr_err("Sample data was lost\n"); 1494 cpuhw->flags |= PMU_F_ERR_LSDA; 1495 sf_disable(); 1496 } 1497 1498 /* Invalid sampling buffer entry */ 1499 if (alert & (CPU_MF_INT_SF_IAE|CPU_MF_INT_SF_ISE)) { 1500 pr_err("A sampling buffer entry is incorrect (alert=0x%x)\n", 1501 alert); 1502 cpuhw->flags |= PMU_F_ERR_IBE; 1503 sf_disable(); 1504 } 1505 } 1506 static int cpusf_pmu_setup(unsigned int cpu, int flags) 1507 { 1508 /* Ignore the notification if no events are scheduled on the PMU. 1509 * This might be racy... 1510 */ 1511 if (!atomic_read(&num_events)) 1512 return 0; 1513 1514 local_irq_disable(); 1515 setup_pmc_cpu(&flags); 1516 local_irq_enable(); 1517 return 0; 1518 } 1519 1520 static int s390_pmu_sf_online_cpu(unsigned int cpu) 1521 { 1522 return cpusf_pmu_setup(cpu, PMC_INIT); 1523 } 1524 1525 static int s390_pmu_sf_offline_cpu(unsigned int cpu) 1526 { 1527 return cpusf_pmu_setup(cpu, PMC_RELEASE); 1528 } 1529 1530 static int param_get_sfb_size(char *buffer, const struct kernel_param *kp) 1531 { 1532 if (!cpum_sf_avail()) 1533 return -ENODEV; 1534 return sprintf(buffer, "%lu,%lu", CPUM_SF_MIN_SDB, CPUM_SF_MAX_SDB); 1535 } 1536 1537 static int param_set_sfb_size(const char *val, const struct kernel_param *kp) 1538 { 1539 int rc; 1540 unsigned long min, max; 1541 1542 if (!cpum_sf_avail()) 1543 return -ENODEV; 1544 if (!val || !strlen(val)) 1545 return -EINVAL; 1546 1547 /* Valid parameter values: "min,max" or "max" */ 1548 min = CPUM_SF_MIN_SDB; 1549 max = CPUM_SF_MAX_SDB; 1550 if (strchr(val, ',')) 1551 rc = (sscanf(val, "%lu,%lu", &min, &max) == 2) ? 0 : -EINVAL; 1552 else 1553 rc = kstrtoul(val, 10, &max); 1554 1555 if (min < 2 || min >= max || max > get_num_physpages()) 1556 rc = -EINVAL; 1557 if (rc) 1558 return rc; 1559 1560 sfb_set_limits(min, max); 1561 pr_info("The sampling buffer limits have changed to: " 1562 "min=%lu max=%lu (diag=x%lu)\n", 1563 CPUM_SF_MIN_SDB, CPUM_SF_MAX_SDB, CPUM_SF_SDB_DIAG_FACTOR); 1564 return 0; 1565 } 1566 1567 #define param_check_sfb_size(name, p) __param_check(name, p, void) 1568 static const struct kernel_param_ops param_ops_sfb_size = { 1569 .set = param_set_sfb_size, 1570 .get = param_get_sfb_size, 1571 }; 1572 1573 #define RS_INIT_FAILURE_QSI 0x0001 1574 #define RS_INIT_FAILURE_BSDES 0x0002 1575 #define RS_INIT_FAILURE_ALRT 0x0003 1576 #define RS_INIT_FAILURE_PERF 0x0004 1577 static void __init pr_cpumsf_err(unsigned int reason) 1578 { 1579 pr_err("Sampling facility support for perf is not available: " 1580 "reason=%04x\n", reason); 1581 } 1582 1583 static int __init init_cpum_sampling_pmu(void) 1584 { 1585 struct hws_qsi_info_block si; 1586 int err; 1587 1588 if (!cpum_sf_avail()) 1589 return -ENODEV; 1590 1591 memset(&si, 0, sizeof(si)); 1592 if (qsi(&si)) { 1593 pr_cpumsf_err(RS_INIT_FAILURE_QSI); 1594 return -ENODEV; 1595 } 1596 1597 if (si.bsdes != sizeof(struct hws_basic_entry)) { 1598 pr_cpumsf_err(RS_INIT_FAILURE_BSDES); 1599 return -EINVAL; 1600 } 1601 1602 if (si.ad) { 1603 sfb_set_limits(CPUM_SF_MIN_SDB, CPUM_SF_MAX_SDB); 1604 cpumsf_pmu_events_attr[1] = 1605 CPUMF_EVENT_PTR(SF, SF_CYCLES_BASIC_DIAG); 1606 } 1607 1608 sfdbg = debug_register(KMSG_COMPONENT, 2, 1, 80); 1609 if (!sfdbg) 1610 pr_err("Registering for s390dbf failed\n"); 1611 debug_register_view(sfdbg, &debug_sprintf_view); 1612 1613 err = register_external_irq(EXT_IRQ_MEASURE_ALERT, 1614 cpumf_measurement_alert); 1615 if (err) { 1616 pr_cpumsf_err(RS_INIT_FAILURE_ALRT); 1617 goto out; 1618 } 1619 1620 err = perf_pmu_register(&cpumf_sampling, "cpum_sf", PERF_TYPE_RAW); 1621 if (err) { 1622 pr_cpumsf_err(RS_INIT_FAILURE_PERF); 1623 unregister_external_irq(EXT_IRQ_MEASURE_ALERT, 1624 cpumf_measurement_alert); 1625 goto out; 1626 } 1627 1628 cpuhp_setup_state(CPUHP_AP_PERF_S390_SF_ONLINE, "perf/s390/sf:online", 1629 s390_pmu_sf_online_cpu, s390_pmu_sf_offline_cpu); 1630 out: 1631 return err; 1632 } 1633 arch_initcall(init_cpum_sampling_pmu); 1634 core_param(cpum_sfb_size, CPUM_SF_MAX_SDB, sfb_size, 0640); 1635