xref: /openbmc/linux/arch/s390/kernel/perf_cpum_sf.c (revision 6aa7de05)
1 /*
2  * Performance event support for the System z CPU-measurement Sampling Facility
3  *
4  * Copyright IBM Corp. 2013
5  * Author(s): Hendrik Brueckner <brueckner@linux.vnet.ibm.com>
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License (version 2 only)
9  * as published by the Free Software Foundation.
10  */
11 #define KMSG_COMPONENT	"cpum_sf"
12 #define pr_fmt(fmt)	KMSG_COMPONENT ": " fmt
13 
14 #include <linux/kernel.h>
15 #include <linux/kernel_stat.h>
16 #include <linux/perf_event.h>
17 #include <linux/percpu.h>
18 #include <linux/notifier.h>
19 #include <linux/export.h>
20 #include <linux/slab.h>
21 #include <linux/mm.h>
22 #include <linux/moduleparam.h>
23 #include <asm/cpu_mf.h>
24 #include <asm/irq.h>
25 #include <asm/debug.h>
26 #include <asm/timex.h>
27 
28 /* Minimum number of sample-data-block-tables:
29  * At least one table is required for the sampling buffer structure.
30  * A single table contains up to 511 pointers to sample-data-blocks.
31  */
32 #define CPUM_SF_MIN_SDBT	1
33 
34 /* Number of sample-data-blocks per sample-data-block-table (SDBT):
35  * A table contains SDB pointers (8 bytes) and one table-link entry
36  * that points to the origin of the next SDBT.
37  */
38 #define CPUM_SF_SDB_PER_TABLE	((PAGE_SIZE - 8) / 8)
39 
40 /* Maximum page offset for an SDBT table-link entry:
41  * If this page offset is reached, a table-link entry to the next SDBT
42  * must be added.
43  */
44 #define CPUM_SF_SDBT_TL_OFFSET	(CPUM_SF_SDB_PER_TABLE * 8)
45 static inline int require_table_link(const void *sdbt)
46 {
47 	return ((unsigned long) sdbt & ~PAGE_MASK) == CPUM_SF_SDBT_TL_OFFSET;
48 }
49 
50 /* Minimum and maximum sampling buffer sizes:
51  *
52  * This number represents the maximum size of the sampling buffer taking
53  * the number of sample-data-block-tables into account.  Note that these
54  * numbers apply to the basic-sampling function only.
55  * The maximum number of SDBs is increased by CPUM_SF_SDB_DIAG_FACTOR if
56  * the diagnostic-sampling function is active.
57  *
58  * Sampling buffer size		Buffer characteristics
59  * ---------------------------------------------------
60  *	 64KB		    ==	  16 pages (4KB per page)
61  *				   1 page  for SDB-tables
62  *				  15 pages for SDBs
63  *
64  *  32MB		    ==	8192 pages (4KB per page)
65  *				  16 pages for SDB-tables
66  *				8176 pages for SDBs
67  */
68 static unsigned long __read_mostly CPUM_SF_MIN_SDB = 15;
69 static unsigned long __read_mostly CPUM_SF_MAX_SDB = 8176;
70 static unsigned long __read_mostly CPUM_SF_SDB_DIAG_FACTOR = 1;
71 
72 struct sf_buffer {
73 	unsigned long	 *sdbt;	    /* Sample-data-block-table origin */
74 	/* buffer characteristics (required for buffer increments) */
75 	unsigned long  num_sdb;	    /* Number of sample-data-blocks */
76 	unsigned long num_sdbt;	    /* Number of sample-data-block-tables */
77 	unsigned long	 *tail;	    /* last sample-data-block-table */
78 };
79 
80 struct cpu_hw_sf {
81 	/* CPU-measurement sampling information block */
82 	struct hws_qsi_info_block qsi;
83 	/* CPU-measurement sampling control block */
84 	struct hws_lsctl_request_block lsctl;
85 	struct sf_buffer sfb;	    /* Sampling buffer */
86 	unsigned int flags;	    /* Status flags */
87 	struct perf_event *event;   /* Scheduled perf event */
88 };
89 static DEFINE_PER_CPU(struct cpu_hw_sf, cpu_hw_sf);
90 
91 /* Debug feature */
92 static debug_info_t *sfdbg;
93 
94 /*
95  * sf_disable() - Switch off sampling facility
96  */
97 static int sf_disable(void)
98 {
99 	struct hws_lsctl_request_block sreq;
100 
101 	memset(&sreq, 0, sizeof(sreq));
102 	return lsctl(&sreq);
103 }
104 
105 /*
106  * sf_buffer_available() - Check for an allocated sampling buffer
107  */
108 static int sf_buffer_available(struct cpu_hw_sf *cpuhw)
109 {
110 	return !!cpuhw->sfb.sdbt;
111 }
112 
113 /*
114  * deallocate sampling facility buffer
115  */
116 static void free_sampling_buffer(struct sf_buffer *sfb)
117 {
118 	unsigned long *sdbt, *curr;
119 
120 	if (!sfb->sdbt)
121 		return;
122 
123 	sdbt = sfb->sdbt;
124 	curr = sdbt;
125 
126 	/* Free the SDBT after all SDBs are processed... */
127 	while (1) {
128 		if (!*curr || !sdbt)
129 			break;
130 
131 		/* Process table-link entries */
132 		if (is_link_entry(curr)) {
133 			curr = get_next_sdbt(curr);
134 			if (sdbt)
135 				free_page((unsigned long) sdbt);
136 
137 			/* If the origin is reached, sampling buffer is freed */
138 			if (curr == sfb->sdbt)
139 				break;
140 			else
141 				sdbt = curr;
142 		} else {
143 			/* Process SDB pointer */
144 			if (*curr) {
145 				free_page(*curr);
146 				curr++;
147 			}
148 		}
149 	}
150 
151 	debug_sprintf_event(sfdbg, 5,
152 			    "free_sampling_buffer: freed sdbt=%p\n", sfb->sdbt);
153 	memset(sfb, 0, sizeof(*sfb));
154 }
155 
156 static int alloc_sample_data_block(unsigned long *sdbt, gfp_t gfp_flags)
157 {
158 	unsigned long sdb, *trailer;
159 
160 	/* Allocate and initialize sample-data-block */
161 	sdb = get_zeroed_page(gfp_flags);
162 	if (!sdb)
163 		return -ENOMEM;
164 	trailer = trailer_entry_ptr(sdb);
165 	*trailer = SDB_TE_ALERT_REQ_MASK;
166 
167 	/* Link SDB into the sample-data-block-table */
168 	*sdbt = sdb;
169 
170 	return 0;
171 }
172 
173 /*
174  * realloc_sampling_buffer() - extend sampler memory
175  *
176  * Allocates new sample-data-blocks and adds them to the specified sampling
177  * buffer memory.
178  *
179  * Important: This modifies the sampling buffer and must be called when the
180  *	      sampling facility is disabled.
181  *
182  * Returns zero on success, non-zero otherwise.
183  */
184 static int realloc_sampling_buffer(struct sf_buffer *sfb,
185 				   unsigned long num_sdb, gfp_t gfp_flags)
186 {
187 	int i, rc;
188 	unsigned long *new, *tail;
189 
190 	if (!sfb->sdbt || !sfb->tail)
191 		return -EINVAL;
192 
193 	if (!is_link_entry(sfb->tail))
194 		return -EINVAL;
195 
196 	/* Append to the existing sampling buffer, overwriting the table-link
197 	 * register.
198 	 * The tail variables always points to the "tail" (last and table-link)
199 	 * entry in an SDB-table.
200 	 */
201 	tail = sfb->tail;
202 
203 	/* Do a sanity check whether the table-link entry points to
204 	 * the sampling buffer origin.
205 	 */
206 	if (sfb->sdbt != get_next_sdbt(tail)) {
207 		debug_sprintf_event(sfdbg, 3, "realloc_sampling_buffer: "
208 				    "sampling buffer is not linked: origin=%p"
209 				    "tail=%p\n",
210 				    (void *) sfb->sdbt, (void *) tail);
211 		return -EINVAL;
212 	}
213 
214 	/* Allocate remaining SDBs */
215 	rc = 0;
216 	for (i = 0; i < num_sdb; i++) {
217 		/* Allocate a new SDB-table if it is full. */
218 		if (require_table_link(tail)) {
219 			new = (unsigned long *) get_zeroed_page(gfp_flags);
220 			if (!new) {
221 				rc = -ENOMEM;
222 				break;
223 			}
224 			sfb->num_sdbt++;
225 			/* Link current page to tail of chain */
226 			*tail = (unsigned long)(void *) new + 1;
227 			tail = new;
228 		}
229 
230 		/* Allocate a new sample-data-block.
231 		 * If there is not enough memory, stop the realloc process
232 		 * and simply use what was allocated.  If this is a temporary
233 		 * issue, a new realloc call (if required) might succeed.
234 		 */
235 		rc = alloc_sample_data_block(tail, gfp_flags);
236 		if (rc)
237 			break;
238 		sfb->num_sdb++;
239 		tail++;
240 	}
241 
242 	/* Link sampling buffer to its origin */
243 	*tail = (unsigned long) sfb->sdbt + 1;
244 	sfb->tail = tail;
245 
246 	debug_sprintf_event(sfdbg, 4, "realloc_sampling_buffer: new buffer"
247 			    " settings: sdbt=%lu sdb=%lu\n",
248 			    sfb->num_sdbt, sfb->num_sdb);
249 	return rc;
250 }
251 
252 /*
253  * allocate_sampling_buffer() - allocate sampler memory
254  *
255  * Allocates and initializes a sampling buffer structure using the
256  * specified number of sample-data-blocks (SDB).  For each allocation,
257  * a 4K page is used.  The number of sample-data-block-tables (SDBT)
258  * are calculated from SDBs.
259  * Also set the ALERT_REQ mask in each SDBs trailer.
260  *
261  * Returns zero on success, non-zero otherwise.
262  */
263 static int alloc_sampling_buffer(struct sf_buffer *sfb, unsigned long num_sdb)
264 {
265 	int rc;
266 
267 	if (sfb->sdbt)
268 		return -EINVAL;
269 
270 	/* Allocate the sample-data-block-table origin */
271 	sfb->sdbt = (unsigned long *) get_zeroed_page(GFP_KERNEL);
272 	if (!sfb->sdbt)
273 		return -ENOMEM;
274 	sfb->num_sdb = 0;
275 	sfb->num_sdbt = 1;
276 
277 	/* Link the table origin to point to itself to prepare for
278 	 * realloc_sampling_buffer() invocation.
279 	 */
280 	sfb->tail = sfb->sdbt;
281 	*sfb->tail = (unsigned long)(void *) sfb->sdbt + 1;
282 
283 	/* Allocate requested number of sample-data-blocks */
284 	rc = realloc_sampling_buffer(sfb, num_sdb, GFP_KERNEL);
285 	if (rc) {
286 		free_sampling_buffer(sfb);
287 		debug_sprintf_event(sfdbg, 4, "alloc_sampling_buffer: "
288 			"realloc_sampling_buffer failed with rc=%i\n", rc);
289 	} else
290 		debug_sprintf_event(sfdbg, 4,
291 			"alloc_sampling_buffer: tear=%p dear=%p\n",
292 			sfb->sdbt, (void *) *sfb->sdbt);
293 	return rc;
294 }
295 
296 static void sfb_set_limits(unsigned long min, unsigned long max)
297 {
298 	struct hws_qsi_info_block si;
299 
300 	CPUM_SF_MIN_SDB = min;
301 	CPUM_SF_MAX_SDB = max;
302 
303 	memset(&si, 0, sizeof(si));
304 	if (!qsi(&si))
305 		CPUM_SF_SDB_DIAG_FACTOR = DIV_ROUND_UP(si.dsdes, si.bsdes);
306 }
307 
308 static unsigned long sfb_max_limit(struct hw_perf_event *hwc)
309 {
310 	return SAMPL_DIAG_MODE(hwc) ? CPUM_SF_MAX_SDB * CPUM_SF_SDB_DIAG_FACTOR
311 				    : CPUM_SF_MAX_SDB;
312 }
313 
314 static unsigned long sfb_pending_allocs(struct sf_buffer *sfb,
315 					struct hw_perf_event *hwc)
316 {
317 	if (!sfb->sdbt)
318 		return SFB_ALLOC_REG(hwc);
319 	if (SFB_ALLOC_REG(hwc) > sfb->num_sdb)
320 		return SFB_ALLOC_REG(hwc) - sfb->num_sdb;
321 	return 0;
322 }
323 
324 static int sfb_has_pending_allocs(struct sf_buffer *sfb,
325 				   struct hw_perf_event *hwc)
326 {
327 	return sfb_pending_allocs(sfb, hwc) > 0;
328 }
329 
330 static void sfb_account_allocs(unsigned long num, struct hw_perf_event *hwc)
331 {
332 	/* Limit the number of SDBs to not exceed the maximum */
333 	num = min_t(unsigned long, num, sfb_max_limit(hwc) - SFB_ALLOC_REG(hwc));
334 	if (num)
335 		SFB_ALLOC_REG(hwc) += num;
336 }
337 
338 static void sfb_init_allocs(unsigned long num, struct hw_perf_event *hwc)
339 {
340 	SFB_ALLOC_REG(hwc) = 0;
341 	sfb_account_allocs(num, hwc);
342 }
343 
344 static size_t event_sample_size(struct hw_perf_event *hwc)
345 {
346 	struct sf_raw_sample *sfr = (struct sf_raw_sample *) RAWSAMPLE_REG(hwc);
347 	size_t sample_size;
348 
349 	/* The sample size depends on the sampling function: The basic-sampling
350 	 * function must be always enabled, diagnostic-sampling function is
351 	 * optional.
352 	 */
353 	sample_size = sfr->bsdes;
354 	if (SAMPL_DIAG_MODE(hwc))
355 		sample_size += sfr->dsdes;
356 
357 	return sample_size;
358 }
359 
360 static void deallocate_buffers(struct cpu_hw_sf *cpuhw)
361 {
362 	if (cpuhw->sfb.sdbt)
363 		free_sampling_buffer(&cpuhw->sfb);
364 }
365 
366 static int allocate_buffers(struct cpu_hw_sf *cpuhw, struct hw_perf_event *hwc)
367 {
368 	unsigned long n_sdb, freq, factor;
369 	size_t sfr_size, sample_size;
370 	struct sf_raw_sample *sfr;
371 
372 	/* Allocate raw sample buffer
373 	 *
374 	 *    The raw sample buffer is used to temporarily store sampling data
375 	 *    entries for perf raw sample processing.  The buffer size mainly
376 	 *    depends on the size of diagnostic-sampling data entries which is
377 	 *    machine-specific.  The exact size calculation includes:
378 	 *	1. The first 4 bytes of diagnostic-sampling data entries are
379 	 *	   already reflected in the sf_raw_sample structure.  Subtract
380 	 *	   these bytes.
381 	 *	2. The perf raw sample data must be 8-byte aligned (u64) and
382 	 *	   perf's internal data size must be considered too.  So add
383 	 *	   an additional u32 for correct alignment and subtract before
384 	 *	   allocating the buffer.
385 	 *	3. Store the raw sample buffer pointer in the perf event
386 	 *	   hardware structure.
387 	 */
388 	sfr_size = ALIGN((sizeof(*sfr) - sizeof(sfr->diag) + cpuhw->qsi.dsdes) +
389 			 sizeof(u32), sizeof(u64));
390 	sfr_size -= sizeof(u32);
391 	sfr = kzalloc(sfr_size, GFP_KERNEL);
392 	if (!sfr)
393 		return -ENOMEM;
394 	sfr->size = sfr_size;
395 	sfr->bsdes = cpuhw->qsi.bsdes;
396 	sfr->dsdes = cpuhw->qsi.dsdes;
397 	RAWSAMPLE_REG(hwc) = (unsigned long) sfr;
398 
399 	/* Calculate sampling buffers using 4K pages
400 	 *
401 	 *    1. Determine the sample data size which depends on the used
402 	 *	 sampling functions, for example, basic-sampling or
403 	 *	 basic-sampling with diagnostic-sampling.
404 	 *
405 	 *    2. Use the sampling frequency as input.  The sampling buffer is
406 	 *	 designed for almost one second.  This can be adjusted through
407 	 *	 the "factor" variable.
408 	 *	 In any case, alloc_sampling_buffer() sets the Alert Request
409 	 *	 Control indicator to trigger a measurement-alert to harvest
410 	 *	 sample-data-blocks (sdb).
411 	 *
412 	 *    3. Compute the number of sample-data-blocks and ensure a minimum
413 	 *	 of CPUM_SF_MIN_SDB.  Also ensure the upper limit does not
414 	 *	 exceed a "calculated" maximum.  The symbolic maximum is
415 	 *	 designed for basic-sampling only and needs to be increased if
416 	 *	 diagnostic-sampling is active.
417 	 *	 See also the remarks for these symbolic constants.
418 	 *
419 	 *    4. Compute the number of sample-data-block-tables (SDBT) and
420 	 *	 ensure a minimum of CPUM_SF_MIN_SDBT (one table can manage up
421 	 *	 to 511 SDBs).
422 	 */
423 	sample_size = event_sample_size(hwc);
424 	freq = sample_rate_to_freq(&cpuhw->qsi, SAMPL_RATE(hwc));
425 	factor = 1;
426 	n_sdb = DIV_ROUND_UP(freq, factor * ((PAGE_SIZE-64) / sample_size));
427 	if (n_sdb < CPUM_SF_MIN_SDB)
428 		n_sdb = CPUM_SF_MIN_SDB;
429 
430 	/* If there is already a sampling buffer allocated, it is very likely
431 	 * that the sampling facility is enabled too.  If the event to be
432 	 * initialized requires a greater sampling buffer, the allocation must
433 	 * be postponed.  Changing the sampling buffer requires the sampling
434 	 * facility to be in the disabled state.  So, account the number of
435 	 * required SDBs and let cpumsf_pmu_enable() resize the buffer just
436 	 * before the event is started.
437 	 */
438 	sfb_init_allocs(n_sdb, hwc);
439 	if (sf_buffer_available(cpuhw))
440 		return 0;
441 
442 	debug_sprintf_event(sfdbg, 3,
443 			    "allocate_buffers: rate=%lu f=%lu sdb=%lu/%lu"
444 			    " sample_size=%lu cpuhw=%p\n",
445 			    SAMPL_RATE(hwc), freq, n_sdb, sfb_max_limit(hwc),
446 			    sample_size, cpuhw);
447 
448 	return alloc_sampling_buffer(&cpuhw->sfb,
449 				     sfb_pending_allocs(&cpuhw->sfb, hwc));
450 }
451 
452 static unsigned long min_percent(unsigned int percent, unsigned long base,
453 				 unsigned long min)
454 {
455 	return min_t(unsigned long, min, DIV_ROUND_UP(percent * base, 100));
456 }
457 
458 static unsigned long compute_sfb_extent(unsigned long ratio, unsigned long base)
459 {
460 	/* Use a percentage-based approach to extend the sampling facility
461 	 * buffer.  Accept up to 5% sample data loss.
462 	 * Vary the extents between 1% to 5% of the current number of
463 	 * sample-data-blocks.
464 	 */
465 	if (ratio <= 5)
466 		return 0;
467 	if (ratio <= 25)
468 		return min_percent(1, base, 1);
469 	if (ratio <= 50)
470 		return min_percent(1, base, 1);
471 	if (ratio <= 75)
472 		return min_percent(2, base, 2);
473 	if (ratio <= 100)
474 		return min_percent(3, base, 3);
475 	if (ratio <= 250)
476 		return min_percent(4, base, 4);
477 
478 	return min_percent(5, base, 8);
479 }
480 
481 static void sfb_account_overflows(struct cpu_hw_sf *cpuhw,
482 				  struct hw_perf_event *hwc)
483 {
484 	unsigned long ratio, num;
485 
486 	if (!OVERFLOW_REG(hwc))
487 		return;
488 
489 	/* The sample_overflow contains the average number of sample data
490 	 * that has been lost because sample-data-blocks were full.
491 	 *
492 	 * Calculate the total number of sample data entries that has been
493 	 * discarded.  Then calculate the ratio of lost samples to total samples
494 	 * per second in percent.
495 	 */
496 	ratio = DIV_ROUND_UP(100 * OVERFLOW_REG(hwc) * cpuhw->sfb.num_sdb,
497 			     sample_rate_to_freq(&cpuhw->qsi, SAMPL_RATE(hwc)));
498 
499 	/* Compute number of sample-data-blocks */
500 	num = compute_sfb_extent(ratio, cpuhw->sfb.num_sdb);
501 	if (num)
502 		sfb_account_allocs(num, hwc);
503 
504 	debug_sprintf_event(sfdbg, 5, "sfb: overflow: overflow=%llu ratio=%lu"
505 			    " num=%lu\n", OVERFLOW_REG(hwc), ratio, num);
506 	OVERFLOW_REG(hwc) = 0;
507 }
508 
509 /* extend_sampling_buffer() - Extend sampling buffer
510  * @sfb:	Sampling buffer structure (for local CPU)
511  * @hwc:	Perf event hardware structure
512  *
513  * Use this function to extend the sampling buffer based on the overflow counter
514  * and postponed allocation extents stored in the specified Perf event hardware.
515  *
516  * Important: This function disables the sampling facility in order to safely
517  *	      change the sampling buffer structure.  Do not call this function
518  *	      when the PMU is active.
519  */
520 static void extend_sampling_buffer(struct sf_buffer *sfb,
521 				   struct hw_perf_event *hwc)
522 {
523 	unsigned long num, num_old;
524 	int rc;
525 
526 	num = sfb_pending_allocs(sfb, hwc);
527 	if (!num)
528 		return;
529 	num_old = sfb->num_sdb;
530 
531 	/* Disable the sampling facility to reset any states and also
532 	 * clear pending measurement alerts.
533 	 */
534 	sf_disable();
535 
536 	/* Extend the sampling buffer.
537 	 * This memory allocation typically happens in an atomic context when
538 	 * called by perf.  Because this is a reallocation, it is fine if the
539 	 * new SDB-request cannot be satisfied immediately.
540 	 */
541 	rc = realloc_sampling_buffer(sfb, num, GFP_ATOMIC);
542 	if (rc)
543 		debug_sprintf_event(sfdbg, 5, "sfb: extend: realloc "
544 				    "failed with rc=%i\n", rc);
545 
546 	if (sfb_has_pending_allocs(sfb, hwc))
547 		debug_sprintf_event(sfdbg, 5, "sfb: extend: "
548 				    "req=%lu alloc=%lu remaining=%lu\n",
549 				    num, sfb->num_sdb - num_old,
550 				    sfb_pending_allocs(sfb, hwc));
551 }
552 
553 
554 /* Number of perf events counting hardware events */
555 static atomic_t num_events;
556 /* Used to avoid races in calling reserve/release_cpumf_hardware */
557 static DEFINE_MUTEX(pmc_reserve_mutex);
558 
559 #define PMC_INIT      0
560 #define PMC_RELEASE   1
561 #define PMC_FAILURE   2
562 static void setup_pmc_cpu(void *flags)
563 {
564 	int err;
565 	struct cpu_hw_sf *cpusf = this_cpu_ptr(&cpu_hw_sf);
566 
567 	err = 0;
568 	switch (*((int *) flags)) {
569 	case PMC_INIT:
570 		memset(cpusf, 0, sizeof(*cpusf));
571 		err = qsi(&cpusf->qsi);
572 		if (err)
573 			break;
574 		cpusf->flags |= PMU_F_RESERVED;
575 		err = sf_disable();
576 		if (err)
577 			pr_err("Switching off the sampling facility failed "
578 			       "with rc=%i\n", err);
579 		debug_sprintf_event(sfdbg, 5,
580 				    "setup_pmc_cpu: initialized: cpuhw=%p\n", cpusf);
581 		break;
582 	case PMC_RELEASE:
583 		cpusf->flags &= ~PMU_F_RESERVED;
584 		err = sf_disable();
585 		if (err) {
586 			pr_err("Switching off the sampling facility failed "
587 			       "with rc=%i\n", err);
588 		} else
589 			deallocate_buffers(cpusf);
590 		debug_sprintf_event(sfdbg, 5,
591 				    "setup_pmc_cpu: released: cpuhw=%p\n", cpusf);
592 		break;
593 	}
594 	if (err)
595 		*((int *) flags) |= PMC_FAILURE;
596 }
597 
598 static void release_pmc_hardware(void)
599 {
600 	int flags = PMC_RELEASE;
601 
602 	irq_subclass_unregister(IRQ_SUBCLASS_MEASUREMENT_ALERT);
603 	on_each_cpu(setup_pmc_cpu, &flags, 1);
604 }
605 
606 static int reserve_pmc_hardware(void)
607 {
608 	int flags = PMC_INIT;
609 
610 	on_each_cpu(setup_pmc_cpu, &flags, 1);
611 	if (flags & PMC_FAILURE) {
612 		release_pmc_hardware();
613 		return -ENODEV;
614 	}
615 	irq_subclass_register(IRQ_SUBCLASS_MEASUREMENT_ALERT);
616 
617 	return 0;
618 }
619 
620 static void hw_perf_event_destroy(struct perf_event *event)
621 {
622 	/* Free raw sample buffer */
623 	if (RAWSAMPLE_REG(&event->hw))
624 		kfree((void *) RAWSAMPLE_REG(&event->hw));
625 
626 	/* Release PMC if this is the last perf event */
627 	if (!atomic_add_unless(&num_events, -1, 1)) {
628 		mutex_lock(&pmc_reserve_mutex);
629 		if (atomic_dec_return(&num_events) == 0)
630 			release_pmc_hardware();
631 		mutex_unlock(&pmc_reserve_mutex);
632 	}
633 }
634 
635 static void hw_init_period(struct hw_perf_event *hwc, u64 period)
636 {
637 	hwc->sample_period = period;
638 	hwc->last_period = hwc->sample_period;
639 	local64_set(&hwc->period_left, hwc->sample_period);
640 }
641 
642 static void hw_reset_registers(struct hw_perf_event *hwc,
643 			       unsigned long *sdbt_origin)
644 {
645 	struct sf_raw_sample *sfr;
646 
647 	/* (Re)set to first sample-data-block-table */
648 	TEAR_REG(hwc) = (unsigned long) sdbt_origin;
649 
650 	/* (Re)set raw sampling buffer register */
651 	sfr = (struct sf_raw_sample *) RAWSAMPLE_REG(hwc);
652 	memset(&sfr->basic, 0, sizeof(sfr->basic));
653 	memset(&sfr->diag, 0, sfr->dsdes);
654 }
655 
656 static unsigned long hw_limit_rate(const struct hws_qsi_info_block *si,
657 				   unsigned long rate)
658 {
659 	return clamp_t(unsigned long, rate,
660 		       si->min_sampl_rate, si->max_sampl_rate);
661 }
662 
663 static int __hw_perf_event_init(struct perf_event *event)
664 {
665 	struct cpu_hw_sf *cpuhw;
666 	struct hws_qsi_info_block si;
667 	struct perf_event_attr *attr = &event->attr;
668 	struct hw_perf_event *hwc = &event->hw;
669 	unsigned long rate;
670 	int cpu, err;
671 
672 	/* Reserve CPU-measurement sampling facility */
673 	err = 0;
674 	if (!atomic_inc_not_zero(&num_events)) {
675 		mutex_lock(&pmc_reserve_mutex);
676 		if (atomic_read(&num_events) == 0 && reserve_pmc_hardware())
677 			err = -EBUSY;
678 		else
679 			atomic_inc(&num_events);
680 		mutex_unlock(&pmc_reserve_mutex);
681 	}
682 	event->destroy = hw_perf_event_destroy;
683 
684 	if (err)
685 		goto out;
686 
687 	/* Access per-CPU sampling information (query sampling info) */
688 	/*
689 	 * The event->cpu value can be -1 to count on every CPU, for example,
690 	 * when attaching to a task.  If this is specified, use the query
691 	 * sampling info from the current CPU, otherwise use event->cpu to
692 	 * retrieve the per-CPU information.
693 	 * Later, cpuhw indicates whether to allocate sampling buffers for a
694 	 * particular CPU (cpuhw!=NULL) or each online CPU (cpuw==NULL).
695 	 */
696 	memset(&si, 0, sizeof(si));
697 	cpuhw = NULL;
698 	if (event->cpu == -1)
699 		qsi(&si);
700 	else {
701 		/* Event is pinned to a particular CPU, retrieve the per-CPU
702 		 * sampling structure for accessing the CPU-specific QSI.
703 		 */
704 		cpuhw = &per_cpu(cpu_hw_sf, event->cpu);
705 		si = cpuhw->qsi;
706 	}
707 
708 	/* Check sampling facility authorization and, if not authorized,
709 	 * fall back to other PMUs.  It is safe to check any CPU because
710 	 * the authorization is identical for all configured CPUs.
711 	 */
712 	if (!si.as) {
713 		err = -ENOENT;
714 		goto out;
715 	}
716 
717 	/* Always enable basic sampling */
718 	SAMPL_FLAGS(hwc) = PERF_CPUM_SF_BASIC_MODE;
719 
720 	/* Check if diagnostic sampling is requested.  Deny if the required
721 	 * sampling authorization is missing.
722 	 */
723 	if (attr->config == PERF_EVENT_CPUM_SF_DIAG) {
724 		if (!si.ad) {
725 			err = -EPERM;
726 			goto out;
727 		}
728 		SAMPL_FLAGS(hwc) |= PERF_CPUM_SF_DIAG_MODE;
729 	}
730 
731 	/* Check and set other sampling flags */
732 	if (attr->config1 & PERF_CPUM_SF_FULL_BLOCKS)
733 		SAMPL_FLAGS(hwc) |= PERF_CPUM_SF_FULL_BLOCKS;
734 
735 	/* The sampling information (si) contains information about the
736 	 * min/max sampling intervals and the CPU speed.  So calculate the
737 	 * correct sampling interval and avoid the whole period adjust
738 	 * feedback loop.
739 	 */
740 	rate = 0;
741 	if (attr->freq) {
742 		rate = freq_to_sample_rate(&si, attr->sample_freq);
743 		rate = hw_limit_rate(&si, rate);
744 		attr->freq = 0;
745 		attr->sample_period = rate;
746 	} else {
747 		/* The min/max sampling rates specifies the valid range
748 		 * of sample periods.  If the specified sample period is
749 		 * out of range, limit the period to the range boundary.
750 		 */
751 		rate = hw_limit_rate(&si, hwc->sample_period);
752 
753 		/* The perf core maintains a maximum sample rate that is
754 		 * configurable through the sysctl interface.  Ensure the
755 		 * sampling rate does not exceed this value.  This also helps
756 		 * to avoid throttling when pushing samples with
757 		 * perf_event_overflow().
758 		 */
759 		if (sample_rate_to_freq(&si, rate) >
760 		      sysctl_perf_event_sample_rate) {
761 			err = -EINVAL;
762 			debug_sprintf_event(sfdbg, 1, "Sampling rate exceeds maximum perf sample rate\n");
763 			goto out;
764 		}
765 	}
766 	SAMPL_RATE(hwc) = rate;
767 	hw_init_period(hwc, SAMPL_RATE(hwc));
768 
769 	/* Initialize sample data overflow accounting */
770 	hwc->extra_reg.reg = REG_OVERFLOW;
771 	OVERFLOW_REG(hwc) = 0;
772 
773 	/* Allocate the per-CPU sampling buffer using the CPU information
774 	 * from the event.  If the event is not pinned to a particular
775 	 * CPU (event->cpu == -1; or cpuhw == NULL), allocate sampling
776 	 * buffers for each online CPU.
777 	 */
778 	if (cpuhw)
779 		/* Event is pinned to a particular CPU */
780 		err = allocate_buffers(cpuhw, hwc);
781 	else {
782 		/* Event is not pinned, allocate sampling buffer on
783 		 * each online CPU
784 		 */
785 		for_each_online_cpu(cpu) {
786 			cpuhw = &per_cpu(cpu_hw_sf, cpu);
787 			err = allocate_buffers(cpuhw, hwc);
788 			if (err)
789 				break;
790 		}
791 	}
792 out:
793 	return err;
794 }
795 
796 static int cpumsf_pmu_event_init(struct perf_event *event)
797 {
798 	int err;
799 
800 	/* No support for taken branch sampling */
801 	if (has_branch_stack(event))
802 		return -EOPNOTSUPP;
803 
804 	switch (event->attr.type) {
805 	case PERF_TYPE_RAW:
806 		if ((event->attr.config != PERF_EVENT_CPUM_SF) &&
807 		    (event->attr.config != PERF_EVENT_CPUM_SF_DIAG))
808 			return -ENOENT;
809 		break;
810 	case PERF_TYPE_HARDWARE:
811 		/* Support sampling of CPU cycles in addition to the
812 		 * counter facility.  However, the counter facility
813 		 * is more precise and, hence, restrict this PMU to
814 		 * sampling events only.
815 		 */
816 		if (event->attr.config != PERF_COUNT_HW_CPU_CYCLES)
817 			return -ENOENT;
818 		if (!is_sampling_event(event))
819 			return -ENOENT;
820 		break;
821 	default:
822 		return -ENOENT;
823 	}
824 
825 	/* Check online status of the CPU to which the event is pinned */
826 	if (event->cpu >= 0) {
827 		if ((unsigned int)event->cpu >= nr_cpumask_bits)
828 			return -ENODEV;
829 		if (!cpu_online(event->cpu))
830 			return -ENODEV;
831 	}
832 
833 	/* Force reset of idle/hv excludes regardless of what the
834 	 * user requested.
835 	 */
836 	if (event->attr.exclude_hv)
837 		event->attr.exclude_hv = 0;
838 	if (event->attr.exclude_idle)
839 		event->attr.exclude_idle = 0;
840 
841 	err = __hw_perf_event_init(event);
842 	if (unlikely(err))
843 		if (event->destroy)
844 			event->destroy(event);
845 	return err;
846 }
847 
848 static void cpumsf_pmu_enable(struct pmu *pmu)
849 {
850 	struct cpu_hw_sf *cpuhw = this_cpu_ptr(&cpu_hw_sf);
851 	struct hw_perf_event *hwc;
852 	int err;
853 
854 	if (cpuhw->flags & PMU_F_ENABLED)
855 		return;
856 
857 	if (cpuhw->flags & PMU_F_ERR_MASK)
858 		return;
859 
860 	/* Check whether to extent the sampling buffer.
861 	 *
862 	 * Two conditions trigger an increase of the sampling buffer for a
863 	 * perf event:
864 	 *    1. Postponed buffer allocations from the event initialization.
865 	 *    2. Sampling overflows that contribute to pending allocations.
866 	 *
867 	 * Note that the extend_sampling_buffer() function disables the sampling
868 	 * facility, but it can be fully re-enabled using sampling controls that
869 	 * have been saved in cpumsf_pmu_disable().
870 	 */
871 	if (cpuhw->event) {
872 		hwc = &cpuhw->event->hw;
873 		/* Account number of overflow-designated buffer extents */
874 		sfb_account_overflows(cpuhw, hwc);
875 		if (sfb_has_pending_allocs(&cpuhw->sfb, hwc))
876 			extend_sampling_buffer(&cpuhw->sfb, hwc);
877 	}
878 
879 	/* (Re)enable the PMU and sampling facility */
880 	cpuhw->flags |= PMU_F_ENABLED;
881 	barrier();
882 
883 	err = lsctl(&cpuhw->lsctl);
884 	if (err) {
885 		cpuhw->flags &= ~PMU_F_ENABLED;
886 		pr_err("Loading sampling controls failed: op=%i err=%i\n",
887 			1, err);
888 		return;
889 	}
890 
891 	debug_sprintf_event(sfdbg, 6, "pmu_enable: es=%i cs=%i ed=%i cd=%i "
892 			    "tear=%p dear=%p\n", cpuhw->lsctl.es, cpuhw->lsctl.cs,
893 			    cpuhw->lsctl.ed, cpuhw->lsctl.cd,
894 			    (void *) cpuhw->lsctl.tear, (void *) cpuhw->lsctl.dear);
895 }
896 
897 static void cpumsf_pmu_disable(struct pmu *pmu)
898 {
899 	struct cpu_hw_sf *cpuhw = this_cpu_ptr(&cpu_hw_sf);
900 	struct hws_lsctl_request_block inactive;
901 	struct hws_qsi_info_block si;
902 	int err;
903 
904 	if (!(cpuhw->flags & PMU_F_ENABLED))
905 		return;
906 
907 	if (cpuhw->flags & PMU_F_ERR_MASK)
908 		return;
909 
910 	/* Switch off sampling activation control */
911 	inactive = cpuhw->lsctl;
912 	inactive.cs = 0;
913 	inactive.cd = 0;
914 
915 	err = lsctl(&inactive);
916 	if (err) {
917 		pr_err("Loading sampling controls failed: op=%i err=%i\n",
918 			2, err);
919 		return;
920 	}
921 
922 	/* Save state of TEAR and DEAR register contents */
923 	if (!qsi(&si)) {
924 		/* TEAR/DEAR values are valid only if the sampling facility is
925 		 * enabled.  Note that cpumsf_pmu_disable() might be called even
926 		 * for a disabled sampling facility because cpumsf_pmu_enable()
927 		 * controls the enable/disable state.
928 		 */
929 		if (si.es) {
930 			cpuhw->lsctl.tear = si.tear;
931 			cpuhw->lsctl.dear = si.dear;
932 		}
933 	} else
934 		debug_sprintf_event(sfdbg, 3, "cpumsf_pmu_disable: "
935 				    "qsi() failed with err=%i\n", err);
936 
937 	cpuhw->flags &= ~PMU_F_ENABLED;
938 }
939 
940 /* perf_exclude_event() - Filter event
941  * @event:	The perf event
942  * @regs:	pt_regs structure
943  * @sde_regs:	Sample-data-entry (sde) regs structure
944  *
945  * Filter perf events according to their exclude specification.
946  *
947  * Return non-zero if the event shall be excluded.
948  */
949 static int perf_exclude_event(struct perf_event *event, struct pt_regs *regs,
950 			      struct perf_sf_sde_regs *sde_regs)
951 {
952 	if (event->attr.exclude_user && user_mode(regs))
953 		return 1;
954 	if (event->attr.exclude_kernel && !user_mode(regs))
955 		return 1;
956 	if (event->attr.exclude_guest && sde_regs->in_guest)
957 		return 1;
958 	if (event->attr.exclude_host && !sde_regs->in_guest)
959 		return 1;
960 	return 0;
961 }
962 
963 /* perf_push_sample() - Push samples to perf
964  * @event:	The perf event
965  * @sample:	Hardware sample data
966  *
967  * Use the hardware sample data to create perf event sample.  The sample
968  * is the pushed to the event subsystem and the function checks for
969  * possible event overflows.  If an event overflow occurs, the PMU is
970  * stopped.
971  *
972  * Return non-zero if an event overflow occurred.
973  */
974 static int perf_push_sample(struct perf_event *event, struct sf_raw_sample *sfr)
975 {
976 	int overflow;
977 	struct pt_regs regs;
978 	struct perf_sf_sde_regs *sde_regs;
979 	struct perf_sample_data data;
980 	struct perf_raw_record raw = {
981 		.frag = {
982 			.size = sfr->size,
983 			.data = sfr,
984 		},
985 	};
986 
987 	/* Setup perf sample */
988 	perf_sample_data_init(&data, 0, event->hw.last_period);
989 	data.raw = &raw;
990 
991 	/* Setup pt_regs to look like an CPU-measurement external interrupt
992 	 * using the Program Request Alert code.  The regs.int_parm_long
993 	 * field which is unused contains additional sample-data-entry related
994 	 * indicators.
995 	 */
996 	memset(&regs, 0, sizeof(regs));
997 	regs.int_code = 0x1407;
998 	regs.int_parm = CPU_MF_INT_SF_PRA;
999 	sde_regs = (struct perf_sf_sde_regs *) &regs.int_parm_long;
1000 
1001 	psw_bits(regs.psw).ia	= sfr->basic.ia;
1002 	psw_bits(regs.psw).dat	= sfr->basic.T;
1003 	psw_bits(regs.psw).wait = sfr->basic.W;
1004 	psw_bits(regs.psw).pstate = sfr->basic.P;
1005 	psw_bits(regs.psw).as	= sfr->basic.AS;
1006 
1007 	/*
1008 	 * Use the hardware provided configuration level to decide if the
1009 	 * sample belongs to a guest or host. If that is not available,
1010 	 * fall back to the following heuristics:
1011 	 * A non-zero guest program parameter always indicates a guest
1012 	 * sample. Some early samples or samples from guests without
1013 	 * lpp usage would be misaccounted to the host. We use the asn
1014 	 * value as an addon heuristic to detect most of these guest samples.
1015 	 * If the value differs from 0xffff (the host value), we assume to
1016 	 * be a KVM guest.
1017 	 */
1018 	switch (sfr->basic.CL) {
1019 	case 1: /* logical partition */
1020 		sde_regs->in_guest = 0;
1021 		break;
1022 	case 2: /* virtual machine */
1023 		sde_regs->in_guest = 1;
1024 		break;
1025 	default: /* old machine, use heuristics */
1026 		if (sfr->basic.gpp || sfr->basic.prim_asn != 0xffff)
1027 			sde_regs->in_guest = 1;
1028 		break;
1029 	}
1030 
1031 	overflow = 0;
1032 	if (perf_exclude_event(event, &regs, sde_regs))
1033 		goto out;
1034 	if (perf_event_overflow(event, &data, &regs)) {
1035 		overflow = 1;
1036 		event->pmu->stop(event, 0);
1037 	}
1038 	perf_event_update_userpage(event);
1039 out:
1040 	return overflow;
1041 }
1042 
1043 static void perf_event_count_update(struct perf_event *event, u64 count)
1044 {
1045 	local64_add(count, &event->count);
1046 }
1047 
1048 static int sample_format_is_valid(struct hws_combined_entry *sample,
1049 				   unsigned int flags)
1050 {
1051 	if (likely(flags & PERF_CPUM_SF_BASIC_MODE))
1052 		/* Only basic-sampling data entries with data-entry-format
1053 		 * version of 0x0001 can be processed.
1054 		 */
1055 		if (sample->basic.def != 0x0001)
1056 			return 0;
1057 	if (flags & PERF_CPUM_SF_DIAG_MODE)
1058 		/* The data-entry-format number of diagnostic-sampling data
1059 		 * entries can vary.  Because diagnostic data is just passed
1060 		 * through, do only a sanity check on the DEF.
1061 		 */
1062 		if (sample->diag.def < 0x8001)
1063 			return 0;
1064 	return 1;
1065 }
1066 
1067 static int sample_is_consistent(struct hws_combined_entry *sample,
1068 				unsigned long flags)
1069 {
1070 	/* This check applies only to basic-sampling data entries of potentially
1071 	 * combined-sampling data entries.  Invalid entries cannot be processed
1072 	 * by the PMU and, thus, do not deliver an associated
1073 	 * diagnostic-sampling data entry.
1074 	 */
1075 	if (unlikely(!(flags & PERF_CPUM_SF_BASIC_MODE)))
1076 		return 0;
1077 	/*
1078 	 * Samples are skipped, if they are invalid or for which the
1079 	 * instruction address is not predictable, i.e., the wait-state bit is
1080 	 * set.
1081 	 */
1082 	if (sample->basic.I || sample->basic.W)
1083 		return 0;
1084 	return 1;
1085 }
1086 
1087 static void reset_sample_slot(struct hws_combined_entry *sample,
1088 			      unsigned long flags)
1089 {
1090 	if (likely(flags & PERF_CPUM_SF_BASIC_MODE))
1091 		sample->basic.def = 0;
1092 	if (flags & PERF_CPUM_SF_DIAG_MODE)
1093 		sample->diag.def = 0;
1094 }
1095 
1096 static void sfr_store_sample(struct sf_raw_sample *sfr,
1097 			     struct hws_combined_entry *sample)
1098 {
1099 	if (likely(sfr->format & PERF_CPUM_SF_BASIC_MODE))
1100 		sfr->basic = sample->basic;
1101 	if (sfr->format & PERF_CPUM_SF_DIAG_MODE)
1102 		memcpy(&sfr->diag, &sample->diag, sfr->dsdes);
1103 }
1104 
1105 static void debug_sample_entry(struct hws_combined_entry *sample,
1106 			       struct hws_trailer_entry *te,
1107 			       unsigned long flags)
1108 {
1109 	debug_sprintf_event(sfdbg, 4, "hw_collect_samples: Found unknown "
1110 			    "sampling data entry: te->f=%i basic.def=%04x (%p)"
1111 			    " diag.def=%04x (%p)\n", te->f,
1112 			    sample->basic.def, &sample->basic,
1113 			    (flags & PERF_CPUM_SF_DIAG_MODE)
1114 					? sample->diag.def : 0xFFFF,
1115 			    (flags & PERF_CPUM_SF_DIAG_MODE)
1116 					?  &sample->diag : NULL);
1117 }
1118 
1119 /* hw_collect_samples() - Walk through a sample-data-block and collect samples
1120  * @event:	The perf event
1121  * @sdbt:	Sample-data-block table
1122  * @overflow:	Event overflow counter
1123  *
1124  * Walks through a sample-data-block and collects sampling data entries that are
1125  * then pushed to the perf event subsystem.  Depending on the sampling function,
1126  * there can be either basic-sampling or combined-sampling data entries.  A
1127  * combined-sampling data entry consists of a basic- and a diagnostic-sampling
1128  * data entry.	The sampling function is determined by the flags in the perf
1129  * event hardware structure.  The function always works with a combined-sampling
1130  * data entry but ignores the the diagnostic portion if it is not available.
1131  *
1132  * Note that the implementation focuses on basic-sampling data entries and, if
1133  * such an entry is not valid, the entire combined-sampling data entry is
1134  * ignored.
1135  *
1136  * The overflow variables counts the number of samples that has been discarded
1137  * due to a perf event overflow.
1138  */
1139 static void hw_collect_samples(struct perf_event *event, unsigned long *sdbt,
1140 			       unsigned long long *overflow)
1141 {
1142 	unsigned long flags = SAMPL_FLAGS(&event->hw);
1143 	struct hws_combined_entry *sample;
1144 	struct hws_trailer_entry *te;
1145 	struct sf_raw_sample *sfr;
1146 	size_t sample_size;
1147 
1148 	/* Prepare and initialize raw sample data */
1149 	sfr = (struct sf_raw_sample *) RAWSAMPLE_REG(&event->hw);
1150 	sfr->format = flags & PERF_CPUM_SF_MODE_MASK;
1151 
1152 	sample_size = event_sample_size(&event->hw);
1153 	te = (struct hws_trailer_entry *) trailer_entry_ptr(*sdbt);
1154 	sample = (struct hws_combined_entry *) *sdbt;
1155 	while ((unsigned long *) sample < (unsigned long *) te) {
1156 		/* Check for an empty sample */
1157 		if (!sample->basic.def)
1158 			break;
1159 
1160 		/* Update perf event period */
1161 		perf_event_count_update(event, SAMPL_RATE(&event->hw));
1162 
1163 		/* Check sampling data entry */
1164 		if (sample_format_is_valid(sample, flags)) {
1165 			/* If an event overflow occurred, the PMU is stopped to
1166 			 * throttle event delivery.  Remaining sample data is
1167 			 * discarded.
1168 			 */
1169 			if (!*overflow) {
1170 				if (sample_is_consistent(sample, flags)) {
1171 					/* Deliver sample data to perf */
1172 					sfr_store_sample(sfr, sample);
1173 					*overflow = perf_push_sample(event, sfr);
1174 				}
1175 			} else
1176 				/* Count discarded samples */
1177 				*overflow += 1;
1178 		} else {
1179 			debug_sample_entry(sample, te, flags);
1180 			/* Sample slot is not yet written or other record.
1181 			 *
1182 			 * This condition can occur if the buffer was reused
1183 			 * from a combined basic- and diagnostic-sampling.
1184 			 * If only basic-sampling is then active, entries are
1185 			 * written into the larger diagnostic entries.
1186 			 * This is typically the case for sample-data-blocks
1187 			 * that are not full.  Stop processing if the first
1188 			 * invalid format was detected.
1189 			 */
1190 			if (!te->f)
1191 				break;
1192 		}
1193 
1194 		/* Reset sample slot and advance to next sample */
1195 		reset_sample_slot(sample, flags);
1196 		sample += sample_size;
1197 	}
1198 }
1199 
1200 /* hw_perf_event_update() - Process sampling buffer
1201  * @event:	The perf event
1202  * @flush_all:	Flag to also flush partially filled sample-data-blocks
1203  *
1204  * Processes the sampling buffer and create perf event samples.
1205  * The sampling buffer position are retrieved and saved in the TEAR_REG
1206  * register of the specified perf event.
1207  *
1208  * Only full sample-data-blocks are processed.	Specify the flash_all flag
1209  * to also walk through partially filled sample-data-blocks.  It is ignored
1210  * if PERF_CPUM_SF_FULL_BLOCKS is set.	The PERF_CPUM_SF_FULL_BLOCKS flag
1211  * enforces the processing of full sample-data-blocks only (trailer entries
1212  * with the block-full-indicator bit set).
1213  */
1214 static void hw_perf_event_update(struct perf_event *event, int flush_all)
1215 {
1216 	struct hw_perf_event *hwc = &event->hw;
1217 	struct hws_trailer_entry *te;
1218 	unsigned long *sdbt;
1219 	unsigned long long event_overflow, sampl_overflow, num_sdb, te_flags;
1220 	int done;
1221 
1222 	if (flush_all && SDB_FULL_BLOCKS(hwc))
1223 		flush_all = 0;
1224 
1225 	sdbt = (unsigned long *) TEAR_REG(hwc);
1226 	done = event_overflow = sampl_overflow = num_sdb = 0;
1227 	while (!done) {
1228 		/* Get the trailer entry of the sample-data-block */
1229 		te = (struct hws_trailer_entry *) trailer_entry_ptr(*sdbt);
1230 
1231 		/* Leave loop if no more work to do (block full indicator) */
1232 		if (!te->f) {
1233 			done = 1;
1234 			if (!flush_all)
1235 				break;
1236 		}
1237 
1238 		/* Check the sample overflow count */
1239 		if (te->overflow)
1240 			/* Account sample overflows and, if a particular limit
1241 			 * is reached, extend the sampling buffer.
1242 			 * For details, see sfb_account_overflows().
1243 			 */
1244 			sampl_overflow += te->overflow;
1245 
1246 		/* Timestamps are valid for full sample-data-blocks only */
1247 		debug_sprintf_event(sfdbg, 6, "hw_perf_event_update: sdbt=%p "
1248 				    "overflow=%llu timestamp=0x%llx\n",
1249 				    sdbt, te->overflow,
1250 				    (te->f) ? trailer_timestamp(te) : 0ULL);
1251 
1252 		/* Collect all samples from a single sample-data-block and
1253 		 * flag if an (perf) event overflow happened.  If so, the PMU
1254 		 * is stopped and remaining samples will be discarded.
1255 		 */
1256 		hw_collect_samples(event, sdbt, &event_overflow);
1257 		num_sdb++;
1258 
1259 		/* Reset trailer (using compare-double-and-swap) */
1260 		do {
1261 			te_flags = te->flags & ~SDB_TE_BUFFER_FULL_MASK;
1262 			te_flags |= SDB_TE_ALERT_REQ_MASK;
1263 		} while (!cmpxchg_double(&te->flags, &te->overflow,
1264 					 te->flags, te->overflow,
1265 					 te_flags, 0ULL));
1266 
1267 		/* Advance to next sample-data-block */
1268 		sdbt++;
1269 		if (is_link_entry(sdbt))
1270 			sdbt = get_next_sdbt(sdbt);
1271 
1272 		/* Update event hardware registers */
1273 		TEAR_REG(hwc) = (unsigned long) sdbt;
1274 
1275 		/* Stop processing sample-data if all samples of the current
1276 		 * sample-data-block were flushed even if it was not full.
1277 		 */
1278 		if (flush_all && done)
1279 			break;
1280 
1281 		/* If an event overflow happened, discard samples by
1282 		 * processing any remaining sample-data-blocks.
1283 		 */
1284 		if (event_overflow)
1285 			flush_all = 1;
1286 	}
1287 
1288 	/* Account sample overflows in the event hardware structure */
1289 	if (sampl_overflow)
1290 		OVERFLOW_REG(hwc) = DIV_ROUND_UP(OVERFLOW_REG(hwc) +
1291 						 sampl_overflow, 1 + num_sdb);
1292 	if (sampl_overflow || event_overflow)
1293 		debug_sprintf_event(sfdbg, 4, "hw_perf_event_update: "
1294 				    "overflow stats: sample=%llu event=%llu\n",
1295 				    sampl_overflow, event_overflow);
1296 }
1297 
1298 static void cpumsf_pmu_read(struct perf_event *event)
1299 {
1300 	/* Nothing to do ... updates are interrupt-driven */
1301 }
1302 
1303 /* Activate sampling control.
1304  * Next call of pmu_enable() starts sampling.
1305  */
1306 static void cpumsf_pmu_start(struct perf_event *event, int flags)
1307 {
1308 	struct cpu_hw_sf *cpuhw = this_cpu_ptr(&cpu_hw_sf);
1309 
1310 	if (WARN_ON_ONCE(!(event->hw.state & PERF_HES_STOPPED)))
1311 		return;
1312 
1313 	if (flags & PERF_EF_RELOAD)
1314 		WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));
1315 
1316 	perf_pmu_disable(event->pmu);
1317 	event->hw.state = 0;
1318 	cpuhw->lsctl.cs = 1;
1319 	if (SAMPL_DIAG_MODE(&event->hw))
1320 		cpuhw->lsctl.cd = 1;
1321 	perf_pmu_enable(event->pmu);
1322 }
1323 
1324 /* Deactivate sampling control.
1325  * Next call of pmu_enable() stops sampling.
1326  */
1327 static void cpumsf_pmu_stop(struct perf_event *event, int flags)
1328 {
1329 	struct cpu_hw_sf *cpuhw = this_cpu_ptr(&cpu_hw_sf);
1330 
1331 	if (event->hw.state & PERF_HES_STOPPED)
1332 		return;
1333 
1334 	perf_pmu_disable(event->pmu);
1335 	cpuhw->lsctl.cs = 0;
1336 	cpuhw->lsctl.cd = 0;
1337 	event->hw.state |= PERF_HES_STOPPED;
1338 
1339 	if ((flags & PERF_EF_UPDATE) && !(event->hw.state & PERF_HES_UPTODATE)) {
1340 		hw_perf_event_update(event, 1);
1341 		event->hw.state |= PERF_HES_UPTODATE;
1342 	}
1343 	perf_pmu_enable(event->pmu);
1344 }
1345 
1346 static int cpumsf_pmu_add(struct perf_event *event, int flags)
1347 {
1348 	struct cpu_hw_sf *cpuhw = this_cpu_ptr(&cpu_hw_sf);
1349 	int err;
1350 
1351 	if (cpuhw->flags & PMU_F_IN_USE)
1352 		return -EAGAIN;
1353 
1354 	if (!cpuhw->sfb.sdbt)
1355 		return -EINVAL;
1356 
1357 	err = 0;
1358 	perf_pmu_disable(event->pmu);
1359 
1360 	event->hw.state = PERF_HES_UPTODATE | PERF_HES_STOPPED;
1361 
1362 	/* Set up sampling controls.  Always program the sampling register
1363 	 * using the SDB-table start.  Reset TEAR_REG event hardware register
1364 	 * that is used by hw_perf_event_update() to store the sampling buffer
1365 	 * position after samples have been flushed.
1366 	 */
1367 	cpuhw->lsctl.s = 0;
1368 	cpuhw->lsctl.h = 1;
1369 	cpuhw->lsctl.tear = (unsigned long) cpuhw->sfb.sdbt;
1370 	cpuhw->lsctl.dear = *(unsigned long *) cpuhw->sfb.sdbt;
1371 	cpuhw->lsctl.interval = SAMPL_RATE(&event->hw);
1372 	hw_reset_registers(&event->hw, cpuhw->sfb.sdbt);
1373 
1374 	/* Ensure sampling functions are in the disabled state.  If disabled,
1375 	 * switch on sampling enable control. */
1376 	if (WARN_ON_ONCE(cpuhw->lsctl.es == 1 || cpuhw->lsctl.ed == 1)) {
1377 		err = -EAGAIN;
1378 		goto out;
1379 	}
1380 	cpuhw->lsctl.es = 1;
1381 	if (SAMPL_DIAG_MODE(&event->hw))
1382 		cpuhw->lsctl.ed = 1;
1383 
1384 	/* Set in_use flag and store event */
1385 	cpuhw->event = event;
1386 	cpuhw->flags |= PMU_F_IN_USE;
1387 
1388 	if (flags & PERF_EF_START)
1389 		cpumsf_pmu_start(event, PERF_EF_RELOAD);
1390 out:
1391 	perf_event_update_userpage(event);
1392 	perf_pmu_enable(event->pmu);
1393 	return err;
1394 }
1395 
1396 static void cpumsf_pmu_del(struct perf_event *event, int flags)
1397 {
1398 	struct cpu_hw_sf *cpuhw = this_cpu_ptr(&cpu_hw_sf);
1399 
1400 	perf_pmu_disable(event->pmu);
1401 	cpumsf_pmu_stop(event, PERF_EF_UPDATE);
1402 
1403 	cpuhw->lsctl.es = 0;
1404 	cpuhw->lsctl.ed = 0;
1405 	cpuhw->flags &= ~PMU_F_IN_USE;
1406 	cpuhw->event = NULL;
1407 
1408 	perf_event_update_userpage(event);
1409 	perf_pmu_enable(event->pmu);
1410 }
1411 
1412 CPUMF_EVENT_ATTR(SF, SF_CYCLES_BASIC, PERF_EVENT_CPUM_SF);
1413 CPUMF_EVENT_ATTR(SF, SF_CYCLES_BASIC_DIAG, PERF_EVENT_CPUM_SF_DIAG);
1414 
1415 static struct attribute *cpumsf_pmu_events_attr[] = {
1416 	CPUMF_EVENT_PTR(SF, SF_CYCLES_BASIC),
1417 	NULL,
1418 	NULL,
1419 };
1420 
1421 PMU_FORMAT_ATTR(event, "config:0-63");
1422 
1423 static struct attribute *cpumsf_pmu_format_attr[] = {
1424 	&format_attr_event.attr,
1425 	NULL,
1426 };
1427 
1428 static struct attribute_group cpumsf_pmu_events_group = {
1429 	.name = "events",
1430 	.attrs = cpumsf_pmu_events_attr,
1431 };
1432 static struct attribute_group cpumsf_pmu_format_group = {
1433 	.name = "format",
1434 	.attrs = cpumsf_pmu_format_attr,
1435 };
1436 static const struct attribute_group *cpumsf_pmu_attr_groups[] = {
1437 	&cpumsf_pmu_events_group,
1438 	&cpumsf_pmu_format_group,
1439 	NULL,
1440 };
1441 
1442 static struct pmu cpumf_sampling = {
1443 	.pmu_enable   = cpumsf_pmu_enable,
1444 	.pmu_disable  = cpumsf_pmu_disable,
1445 
1446 	.event_init   = cpumsf_pmu_event_init,
1447 	.add	      = cpumsf_pmu_add,
1448 	.del	      = cpumsf_pmu_del,
1449 
1450 	.start	      = cpumsf_pmu_start,
1451 	.stop	      = cpumsf_pmu_stop,
1452 	.read	      = cpumsf_pmu_read,
1453 
1454 	.attr_groups  = cpumsf_pmu_attr_groups,
1455 };
1456 
1457 static void cpumf_measurement_alert(struct ext_code ext_code,
1458 				    unsigned int alert, unsigned long unused)
1459 {
1460 	struct cpu_hw_sf *cpuhw;
1461 
1462 	if (!(alert & CPU_MF_INT_SF_MASK))
1463 		return;
1464 	inc_irq_stat(IRQEXT_CMS);
1465 	cpuhw = this_cpu_ptr(&cpu_hw_sf);
1466 
1467 	/* Measurement alerts are shared and might happen when the PMU
1468 	 * is not reserved.  Ignore these alerts in this case. */
1469 	if (!(cpuhw->flags & PMU_F_RESERVED))
1470 		return;
1471 
1472 	/* The processing below must take care of multiple alert events that
1473 	 * might be indicated concurrently. */
1474 
1475 	/* Program alert request */
1476 	if (alert & CPU_MF_INT_SF_PRA) {
1477 		if (cpuhw->flags & PMU_F_IN_USE)
1478 			hw_perf_event_update(cpuhw->event, 0);
1479 		else
1480 			WARN_ON_ONCE(!(cpuhw->flags & PMU_F_IN_USE));
1481 	}
1482 
1483 	/* Report measurement alerts only for non-PRA codes */
1484 	if (alert != CPU_MF_INT_SF_PRA)
1485 		debug_sprintf_event(sfdbg, 6, "measurement alert: 0x%x\n", alert);
1486 
1487 	/* Sampling authorization change request */
1488 	if (alert & CPU_MF_INT_SF_SACA)
1489 		qsi(&cpuhw->qsi);
1490 
1491 	/* Loss of sample data due to high-priority machine activities */
1492 	if (alert & CPU_MF_INT_SF_LSDA) {
1493 		pr_err("Sample data was lost\n");
1494 		cpuhw->flags |= PMU_F_ERR_LSDA;
1495 		sf_disable();
1496 	}
1497 
1498 	/* Invalid sampling buffer entry */
1499 	if (alert & (CPU_MF_INT_SF_IAE|CPU_MF_INT_SF_ISE)) {
1500 		pr_err("A sampling buffer entry is incorrect (alert=0x%x)\n",
1501 		       alert);
1502 		cpuhw->flags |= PMU_F_ERR_IBE;
1503 		sf_disable();
1504 	}
1505 }
1506 static int cpusf_pmu_setup(unsigned int cpu, int flags)
1507 {
1508 	/* Ignore the notification if no events are scheduled on the PMU.
1509 	 * This might be racy...
1510 	 */
1511 	if (!atomic_read(&num_events))
1512 		return 0;
1513 
1514 	local_irq_disable();
1515 	setup_pmc_cpu(&flags);
1516 	local_irq_enable();
1517 	return 0;
1518 }
1519 
1520 static int s390_pmu_sf_online_cpu(unsigned int cpu)
1521 {
1522 	return cpusf_pmu_setup(cpu, PMC_INIT);
1523 }
1524 
1525 static int s390_pmu_sf_offline_cpu(unsigned int cpu)
1526 {
1527 	return cpusf_pmu_setup(cpu, PMC_RELEASE);
1528 }
1529 
1530 static int param_get_sfb_size(char *buffer, const struct kernel_param *kp)
1531 {
1532 	if (!cpum_sf_avail())
1533 		return -ENODEV;
1534 	return sprintf(buffer, "%lu,%lu", CPUM_SF_MIN_SDB, CPUM_SF_MAX_SDB);
1535 }
1536 
1537 static int param_set_sfb_size(const char *val, const struct kernel_param *kp)
1538 {
1539 	int rc;
1540 	unsigned long min, max;
1541 
1542 	if (!cpum_sf_avail())
1543 		return -ENODEV;
1544 	if (!val || !strlen(val))
1545 		return -EINVAL;
1546 
1547 	/* Valid parameter values: "min,max" or "max" */
1548 	min = CPUM_SF_MIN_SDB;
1549 	max = CPUM_SF_MAX_SDB;
1550 	if (strchr(val, ','))
1551 		rc = (sscanf(val, "%lu,%lu", &min, &max) == 2) ? 0 : -EINVAL;
1552 	else
1553 		rc = kstrtoul(val, 10, &max);
1554 
1555 	if (min < 2 || min >= max || max > get_num_physpages())
1556 		rc = -EINVAL;
1557 	if (rc)
1558 		return rc;
1559 
1560 	sfb_set_limits(min, max);
1561 	pr_info("The sampling buffer limits have changed to: "
1562 		"min=%lu max=%lu (diag=x%lu)\n",
1563 		CPUM_SF_MIN_SDB, CPUM_SF_MAX_SDB, CPUM_SF_SDB_DIAG_FACTOR);
1564 	return 0;
1565 }
1566 
1567 #define param_check_sfb_size(name, p) __param_check(name, p, void)
1568 static const struct kernel_param_ops param_ops_sfb_size = {
1569 	.set = param_set_sfb_size,
1570 	.get = param_get_sfb_size,
1571 };
1572 
1573 #define RS_INIT_FAILURE_QSI	  0x0001
1574 #define RS_INIT_FAILURE_BSDES	  0x0002
1575 #define RS_INIT_FAILURE_ALRT	  0x0003
1576 #define RS_INIT_FAILURE_PERF	  0x0004
1577 static void __init pr_cpumsf_err(unsigned int reason)
1578 {
1579 	pr_err("Sampling facility support for perf is not available: "
1580 	       "reason=%04x\n", reason);
1581 }
1582 
1583 static int __init init_cpum_sampling_pmu(void)
1584 {
1585 	struct hws_qsi_info_block si;
1586 	int err;
1587 
1588 	if (!cpum_sf_avail())
1589 		return -ENODEV;
1590 
1591 	memset(&si, 0, sizeof(si));
1592 	if (qsi(&si)) {
1593 		pr_cpumsf_err(RS_INIT_FAILURE_QSI);
1594 		return -ENODEV;
1595 	}
1596 
1597 	if (si.bsdes != sizeof(struct hws_basic_entry)) {
1598 		pr_cpumsf_err(RS_INIT_FAILURE_BSDES);
1599 		return -EINVAL;
1600 	}
1601 
1602 	if (si.ad) {
1603 		sfb_set_limits(CPUM_SF_MIN_SDB, CPUM_SF_MAX_SDB);
1604 		cpumsf_pmu_events_attr[1] =
1605 			CPUMF_EVENT_PTR(SF, SF_CYCLES_BASIC_DIAG);
1606 	}
1607 
1608 	sfdbg = debug_register(KMSG_COMPONENT, 2, 1, 80);
1609 	if (!sfdbg)
1610 		pr_err("Registering for s390dbf failed\n");
1611 	debug_register_view(sfdbg, &debug_sprintf_view);
1612 
1613 	err = register_external_irq(EXT_IRQ_MEASURE_ALERT,
1614 				    cpumf_measurement_alert);
1615 	if (err) {
1616 		pr_cpumsf_err(RS_INIT_FAILURE_ALRT);
1617 		goto out;
1618 	}
1619 
1620 	err = perf_pmu_register(&cpumf_sampling, "cpum_sf", PERF_TYPE_RAW);
1621 	if (err) {
1622 		pr_cpumsf_err(RS_INIT_FAILURE_PERF);
1623 		unregister_external_irq(EXT_IRQ_MEASURE_ALERT,
1624 					cpumf_measurement_alert);
1625 		goto out;
1626 	}
1627 
1628 	cpuhp_setup_state(CPUHP_AP_PERF_S390_SF_ONLINE, "perf/s390/sf:online",
1629 			  s390_pmu_sf_online_cpu, s390_pmu_sf_offline_cpu);
1630 out:
1631 	return err;
1632 }
1633 arch_initcall(init_cpum_sampling_pmu);
1634 core_param(cpum_sfb_size, CPUM_SF_MAX_SDB, sfb_size, 0640);
1635