xref: /openbmc/linux/arch/s390/kernel/perf_cpum_sf.c (revision 61bf3293)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Performance event support for the System z CPU-measurement Sampling Facility
4  *
5  * Copyright IBM Corp. 2013, 2018
6  * Author(s): Hendrik Brueckner <brueckner@linux.vnet.ibm.com>
7  */
8 #define KMSG_COMPONENT	"cpum_sf"
9 #define pr_fmt(fmt)	KMSG_COMPONENT ": " fmt
10 
11 #include <linux/kernel.h>
12 #include <linux/kernel_stat.h>
13 #include <linux/perf_event.h>
14 #include <linux/percpu.h>
15 #include <linux/pid.h>
16 #include <linux/notifier.h>
17 #include <linux/export.h>
18 #include <linux/slab.h>
19 #include <linux/mm.h>
20 #include <linux/moduleparam.h>
21 #include <asm/cpu_mf.h>
22 #include <asm/irq.h>
23 #include <asm/debug.h>
24 #include <asm/timex.h>
25 
26 /* Minimum number of sample-data-block-tables:
27  * At least one table is required for the sampling buffer structure.
28  * A single table contains up to 511 pointers to sample-data-blocks.
29  */
30 #define CPUM_SF_MIN_SDBT	1
31 
32 /* Number of sample-data-blocks per sample-data-block-table (SDBT):
33  * A table contains SDB pointers (8 bytes) and one table-link entry
34  * that points to the origin of the next SDBT.
35  */
36 #define CPUM_SF_SDB_PER_TABLE	((PAGE_SIZE - 8) / 8)
37 
38 /* Maximum page offset for an SDBT table-link entry:
39  * If this page offset is reached, a table-link entry to the next SDBT
40  * must be added.
41  */
42 #define CPUM_SF_SDBT_TL_OFFSET	(CPUM_SF_SDB_PER_TABLE * 8)
43 static inline int require_table_link(const void *sdbt)
44 {
45 	return ((unsigned long) sdbt & ~PAGE_MASK) == CPUM_SF_SDBT_TL_OFFSET;
46 }
47 
48 /* Minimum and maximum sampling buffer sizes:
49  *
50  * This number represents the maximum size of the sampling buffer taking
51  * the number of sample-data-block-tables into account.  Note that these
52  * numbers apply to the basic-sampling function only.
53  * The maximum number of SDBs is increased by CPUM_SF_SDB_DIAG_FACTOR if
54  * the diagnostic-sampling function is active.
55  *
56  * Sampling buffer size		Buffer characteristics
57  * ---------------------------------------------------
58  *	 64KB		    ==	  16 pages (4KB per page)
59  *				   1 page  for SDB-tables
60  *				  15 pages for SDBs
61  *
62  *  32MB		    ==	8192 pages (4KB per page)
63  *				  16 pages for SDB-tables
64  *				8176 pages for SDBs
65  */
66 static unsigned long __read_mostly CPUM_SF_MIN_SDB = 15;
67 static unsigned long __read_mostly CPUM_SF_MAX_SDB = 8176;
68 static unsigned long __read_mostly CPUM_SF_SDB_DIAG_FACTOR = 1;
69 
70 struct sf_buffer {
71 	unsigned long	 *sdbt;	    /* Sample-data-block-table origin */
72 	/* buffer characteristics (required for buffer increments) */
73 	unsigned long  num_sdb;	    /* Number of sample-data-blocks */
74 	unsigned long num_sdbt;	    /* Number of sample-data-block-tables */
75 	unsigned long	 *tail;	    /* last sample-data-block-table */
76 };
77 
78 struct aux_buffer {
79 	struct sf_buffer sfb;
80 	unsigned long head;	   /* index of SDB of buffer head */
81 	unsigned long alert_mark;  /* index of SDB of alert request position */
82 	unsigned long empty_mark;  /* mark of SDB not marked full */
83 	unsigned long *sdb_index;  /* SDB address for fast lookup */
84 	unsigned long *sdbt_index; /* SDBT address for fast lookup */
85 };
86 
87 struct cpu_hw_sf {
88 	/* CPU-measurement sampling information block */
89 	struct hws_qsi_info_block qsi;
90 	/* CPU-measurement sampling control block */
91 	struct hws_lsctl_request_block lsctl;
92 	struct sf_buffer sfb;	    /* Sampling buffer */
93 	unsigned int flags;	    /* Status flags */
94 	struct perf_event *event;   /* Scheduled perf event */
95 	struct perf_output_handle handle; /* AUX buffer output handle */
96 };
97 static DEFINE_PER_CPU(struct cpu_hw_sf, cpu_hw_sf);
98 
99 /* Debug feature */
100 static debug_info_t *sfdbg;
101 
102 /*
103  * sf_disable() - Switch off sampling facility
104  */
105 static int sf_disable(void)
106 {
107 	struct hws_lsctl_request_block sreq;
108 
109 	memset(&sreq, 0, sizeof(sreq));
110 	return lsctl(&sreq);
111 }
112 
113 /*
114  * sf_buffer_available() - Check for an allocated sampling buffer
115  */
116 static int sf_buffer_available(struct cpu_hw_sf *cpuhw)
117 {
118 	return !!cpuhw->sfb.sdbt;
119 }
120 
121 /*
122  * deallocate sampling facility buffer
123  */
124 static void free_sampling_buffer(struct sf_buffer *sfb)
125 {
126 	unsigned long *sdbt, *curr;
127 
128 	if (!sfb->sdbt)
129 		return;
130 
131 	sdbt = sfb->sdbt;
132 	curr = sdbt;
133 
134 	/* Free the SDBT after all SDBs are processed... */
135 	while (1) {
136 		if (!*curr || !sdbt)
137 			break;
138 
139 		/* Process table-link entries */
140 		if (is_link_entry(curr)) {
141 			curr = get_next_sdbt(curr);
142 			if (sdbt)
143 				free_page((unsigned long) sdbt);
144 
145 			/* If the origin is reached, sampling buffer is freed */
146 			if (curr == sfb->sdbt)
147 				break;
148 			else
149 				sdbt = curr;
150 		} else {
151 			/* Process SDB pointer */
152 			if (*curr) {
153 				free_page(*curr);
154 				curr++;
155 			}
156 		}
157 	}
158 
159 	debug_sprintf_event(sfdbg, 5, "%s: freed sdbt %#lx\n", __func__,
160 			    (unsigned long)sfb->sdbt);
161 	memset(sfb, 0, sizeof(*sfb));
162 }
163 
164 static int alloc_sample_data_block(unsigned long *sdbt, gfp_t gfp_flags)
165 {
166 	unsigned long sdb, *trailer;
167 
168 	/* Allocate and initialize sample-data-block */
169 	sdb = get_zeroed_page(gfp_flags);
170 	if (!sdb)
171 		return -ENOMEM;
172 	trailer = trailer_entry_ptr(sdb);
173 	*trailer = SDB_TE_ALERT_REQ_MASK;
174 
175 	/* Link SDB into the sample-data-block-table */
176 	*sdbt = sdb;
177 
178 	return 0;
179 }
180 
181 /*
182  * realloc_sampling_buffer() - extend sampler memory
183  *
184  * Allocates new sample-data-blocks and adds them to the specified sampling
185  * buffer memory.
186  *
187  * Important: This modifies the sampling buffer and must be called when the
188  *	      sampling facility is disabled.
189  *
190  * Returns zero on success, non-zero otherwise.
191  */
192 static int realloc_sampling_buffer(struct sf_buffer *sfb,
193 				   unsigned long num_sdb, gfp_t gfp_flags)
194 {
195 	int i, rc;
196 	unsigned long *new, *tail, *tail_prev = NULL;
197 
198 	if (!sfb->sdbt || !sfb->tail)
199 		return -EINVAL;
200 
201 	if (!is_link_entry(sfb->tail))
202 		return -EINVAL;
203 
204 	/* Append to the existing sampling buffer, overwriting the table-link
205 	 * register.
206 	 * The tail variables always points to the "tail" (last and table-link)
207 	 * entry in an SDB-table.
208 	 */
209 	tail = sfb->tail;
210 
211 	/* Do a sanity check whether the table-link entry points to
212 	 * the sampling buffer origin.
213 	 */
214 	if (sfb->sdbt != get_next_sdbt(tail)) {
215 		debug_sprintf_event(sfdbg, 3, "%s: "
216 				    "sampling buffer is not linked: origin %#lx"
217 				    " tail %#lx\n", __func__,
218 				    (unsigned long)sfb->sdbt,
219 				    (unsigned long)tail);
220 		return -EINVAL;
221 	}
222 
223 	/* Allocate remaining SDBs */
224 	rc = 0;
225 	for (i = 0; i < num_sdb; i++) {
226 		/* Allocate a new SDB-table if it is full. */
227 		if (require_table_link(tail)) {
228 			new = (unsigned long *) get_zeroed_page(gfp_flags);
229 			if (!new) {
230 				rc = -ENOMEM;
231 				break;
232 			}
233 			sfb->num_sdbt++;
234 			/* Link current page to tail of chain */
235 			*tail = (unsigned long)(void *) new + 1;
236 			tail_prev = tail;
237 			tail = new;
238 		}
239 
240 		/* Allocate a new sample-data-block.
241 		 * If there is not enough memory, stop the realloc process
242 		 * and simply use what was allocated.  If this is a temporary
243 		 * issue, a new realloc call (if required) might succeed.
244 		 */
245 		rc = alloc_sample_data_block(tail, gfp_flags);
246 		if (rc) {
247 			/* Undo last SDBT. An SDBT with no SDB at its first
248 			 * entry but with an SDBT entry instead can not be
249 			 * handled by the interrupt handler code.
250 			 * Avoid this situation.
251 			 */
252 			if (tail_prev) {
253 				sfb->num_sdbt--;
254 				free_page((unsigned long) new);
255 				tail = tail_prev;
256 			}
257 			break;
258 		}
259 		sfb->num_sdb++;
260 		tail++;
261 		tail_prev = new = NULL;	/* Allocated at least one SBD */
262 	}
263 
264 	/* Link sampling buffer to its origin */
265 	*tail = (unsigned long) sfb->sdbt + 1;
266 	sfb->tail = tail;
267 
268 	debug_sprintf_event(sfdbg, 4, "%s: new buffer"
269 			    " settings: sdbt %lu sdb %lu\n", __func__,
270 			    sfb->num_sdbt, sfb->num_sdb);
271 	return rc;
272 }
273 
274 /*
275  * allocate_sampling_buffer() - allocate sampler memory
276  *
277  * Allocates and initializes a sampling buffer structure using the
278  * specified number of sample-data-blocks (SDB).  For each allocation,
279  * a 4K page is used.  The number of sample-data-block-tables (SDBT)
280  * are calculated from SDBs.
281  * Also set the ALERT_REQ mask in each SDBs trailer.
282  *
283  * Returns zero on success, non-zero otherwise.
284  */
285 static int alloc_sampling_buffer(struct sf_buffer *sfb, unsigned long num_sdb)
286 {
287 	int rc;
288 
289 	if (sfb->sdbt)
290 		return -EINVAL;
291 
292 	/* Allocate the sample-data-block-table origin */
293 	sfb->sdbt = (unsigned long *) get_zeroed_page(GFP_KERNEL);
294 	if (!sfb->sdbt)
295 		return -ENOMEM;
296 	sfb->num_sdb = 0;
297 	sfb->num_sdbt = 1;
298 
299 	/* Link the table origin to point to itself to prepare for
300 	 * realloc_sampling_buffer() invocation.
301 	 */
302 	sfb->tail = sfb->sdbt;
303 	*sfb->tail = (unsigned long)(void *) sfb->sdbt + 1;
304 
305 	/* Allocate requested number of sample-data-blocks */
306 	rc = realloc_sampling_buffer(sfb, num_sdb, GFP_KERNEL);
307 	if (rc) {
308 		free_sampling_buffer(sfb);
309 		debug_sprintf_event(sfdbg, 4, "%s: "
310 			"realloc_sampling_buffer failed with rc %i\n",
311 			__func__, rc);
312 	} else
313 		debug_sprintf_event(sfdbg, 4,
314 			"%s: tear %#lx dear %#lx\n", __func__,
315 			(unsigned long)sfb->sdbt, (unsigned long)*sfb->sdbt);
316 	return rc;
317 }
318 
319 static void sfb_set_limits(unsigned long min, unsigned long max)
320 {
321 	struct hws_qsi_info_block si;
322 
323 	CPUM_SF_MIN_SDB = min;
324 	CPUM_SF_MAX_SDB = max;
325 
326 	memset(&si, 0, sizeof(si));
327 	if (!qsi(&si))
328 		CPUM_SF_SDB_DIAG_FACTOR = DIV_ROUND_UP(si.dsdes, si.bsdes);
329 }
330 
331 static unsigned long sfb_max_limit(struct hw_perf_event *hwc)
332 {
333 	return SAMPL_DIAG_MODE(hwc) ? CPUM_SF_MAX_SDB * CPUM_SF_SDB_DIAG_FACTOR
334 				    : CPUM_SF_MAX_SDB;
335 }
336 
337 static unsigned long sfb_pending_allocs(struct sf_buffer *sfb,
338 					struct hw_perf_event *hwc)
339 {
340 	if (!sfb->sdbt)
341 		return SFB_ALLOC_REG(hwc);
342 	if (SFB_ALLOC_REG(hwc) > sfb->num_sdb)
343 		return SFB_ALLOC_REG(hwc) - sfb->num_sdb;
344 	return 0;
345 }
346 
347 static int sfb_has_pending_allocs(struct sf_buffer *sfb,
348 				   struct hw_perf_event *hwc)
349 {
350 	return sfb_pending_allocs(sfb, hwc) > 0;
351 }
352 
353 static void sfb_account_allocs(unsigned long num, struct hw_perf_event *hwc)
354 {
355 	/* Limit the number of SDBs to not exceed the maximum */
356 	num = min_t(unsigned long, num, sfb_max_limit(hwc) - SFB_ALLOC_REG(hwc));
357 	if (num)
358 		SFB_ALLOC_REG(hwc) += num;
359 }
360 
361 static void sfb_init_allocs(unsigned long num, struct hw_perf_event *hwc)
362 {
363 	SFB_ALLOC_REG(hwc) = 0;
364 	sfb_account_allocs(num, hwc);
365 }
366 
367 static void deallocate_buffers(struct cpu_hw_sf *cpuhw)
368 {
369 	if (cpuhw->sfb.sdbt)
370 		free_sampling_buffer(&cpuhw->sfb);
371 }
372 
373 static int allocate_buffers(struct cpu_hw_sf *cpuhw, struct hw_perf_event *hwc)
374 {
375 	unsigned long n_sdb, freq;
376 	size_t sample_size;
377 
378 	/* Calculate sampling buffers using 4K pages
379 	 *
380 	 *    1. The sampling size is 32 bytes for basic sampling. This size
381 	 *	 is the same for all machine types. Diagnostic
382 	 *	 sampling uses auxlilary data buffer setup which provides the
383 	 *	 memory for SDBs using linux common code auxiliary trace
384 	 *	 setup.
385 	 *
386 	 *    2. Function alloc_sampling_buffer() sets the Alert Request
387 	 *	 Control indicator to trigger a measurement-alert to harvest
388 	 *	 sample-data-blocks (SDB). This is done per SDB. This
389 	 *	 measurement alert interrupt fires quick enough to handle
390 	 *	 one SDB, on very high frequency and work loads there might
391 	 *	 be 2 to 3 SBDs available for sample processing.
392 	 *	 Currently there is no need for setup alert request on every
393 	 *	 n-th page. This is counterproductive as one IRQ triggers
394 	 *	 a very high number of samples to be processed at one IRQ.
395 	 *
396 	 *    3. Use the sampling frequency as input.
397 	 *	 Compute the number of SDBs and ensure a minimum
398 	 *	 of CPUM_SF_MIN_SDB.  Depending on frequency add some more
399 	 *	 SDBs to handle a higher sampling rate.
400 	 *	 Use a minimum of CPUM_SF_MIN_SDB and allow for 100 samples
401 	 *	 (one SDB) for every 10000 HZ frequency increment.
402 	 *
403 	 *    4. Compute the number of sample-data-block-tables (SDBT) and
404 	 *	 ensure a minimum of CPUM_SF_MIN_SDBT (one table can manage up
405 	 *	 to 511 SDBs).
406 	 */
407 	sample_size = sizeof(struct hws_basic_entry);
408 	freq = sample_rate_to_freq(&cpuhw->qsi, SAMPL_RATE(hwc));
409 	n_sdb = CPUM_SF_MIN_SDB + DIV_ROUND_UP(freq, 10000);
410 
411 	/* If there is already a sampling buffer allocated, it is very likely
412 	 * that the sampling facility is enabled too.  If the event to be
413 	 * initialized requires a greater sampling buffer, the allocation must
414 	 * be postponed.  Changing the sampling buffer requires the sampling
415 	 * facility to be in the disabled state.  So, account the number of
416 	 * required SDBs and let cpumsf_pmu_enable() resize the buffer just
417 	 * before the event is started.
418 	 */
419 	sfb_init_allocs(n_sdb, hwc);
420 	if (sf_buffer_available(cpuhw))
421 		return 0;
422 
423 	debug_sprintf_event(sfdbg, 3,
424 			    "%s: rate %lu f %lu sdb %lu/%lu"
425 			    " sample_size %lu cpuhw %p\n", __func__,
426 			    SAMPL_RATE(hwc), freq, n_sdb, sfb_max_limit(hwc),
427 			    sample_size, cpuhw);
428 
429 	return alloc_sampling_buffer(&cpuhw->sfb,
430 				     sfb_pending_allocs(&cpuhw->sfb, hwc));
431 }
432 
433 static unsigned long min_percent(unsigned int percent, unsigned long base,
434 				 unsigned long min)
435 {
436 	return min_t(unsigned long, min, DIV_ROUND_UP(percent * base, 100));
437 }
438 
439 static unsigned long compute_sfb_extent(unsigned long ratio, unsigned long base)
440 {
441 	/* Use a percentage-based approach to extend the sampling facility
442 	 * buffer.  Accept up to 5% sample data loss.
443 	 * Vary the extents between 1% to 5% of the current number of
444 	 * sample-data-blocks.
445 	 */
446 	if (ratio <= 5)
447 		return 0;
448 	if (ratio <= 25)
449 		return min_percent(1, base, 1);
450 	if (ratio <= 50)
451 		return min_percent(1, base, 1);
452 	if (ratio <= 75)
453 		return min_percent(2, base, 2);
454 	if (ratio <= 100)
455 		return min_percent(3, base, 3);
456 	if (ratio <= 250)
457 		return min_percent(4, base, 4);
458 
459 	return min_percent(5, base, 8);
460 }
461 
462 static void sfb_account_overflows(struct cpu_hw_sf *cpuhw,
463 				  struct hw_perf_event *hwc)
464 {
465 	unsigned long ratio, num;
466 
467 	if (!OVERFLOW_REG(hwc))
468 		return;
469 
470 	/* The sample_overflow contains the average number of sample data
471 	 * that has been lost because sample-data-blocks were full.
472 	 *
473 	 * Calculate the total number of sample data entries that has been
474 	 * discarded.  Then calculate the ratio of lost samples to total samples
475 	 * per second in percent.
476 	 */
477 	ratio = DIV_ROUND_UP(100 * OVERFLOW_REG(hwc) * cpuhw->sfb.num_sdb,
478 			     sample_rate_to_freq(&cpuhw->qsi, SAMPL_RATE(hwc)));
479 
480 	/* Compute number of sample-data-blocks */
481 	num = compute_sfb_extent(ratio, cpuhw->sfb.num_sdb);
482 	if (num)
483 		sfb_account_allocs(num, hwc);
484 
485 	debug_sprintf_event(sfdbg, 5, "%s: overflow %llu ratio %lu num %lu\n",
486 			    __func__, OVERFLOW_REG(hwc), ratio, num);
487 	OVERFLOW_REG(hwc) = 0;
488 }
489 
490 /* extend_sampling_buffer() - Extend sampling buffer
491  * @sfb:	Sampling buffer structure (for local CPU)
492  * @hwc:	Perf event hardware structure
493  *
494  * Use this function to extend the sampling buffer based on the overflow counter
495  * and postponed allocation extents stored in the specified Perf event hardware.
496  *
497  * Important: This function disables the sampling facility in order to safely
498  *	      change the sampling buffer structure.  Do not call this function
499  *	      when the PMU is active.
500  */
501 static void extend_sampling_buffer(struct sf_buffer *sfb,
502 				   struct hw_perf_event *hwc)
503 {
504 	unsigned long num, num_old;
505 	int rc;
506 
507 	num = sfb_pending_allocs(sfb, hwc);
508 	if (!num)
509 		return;
510 	num_old = sfb->num_sdb;
511 
512 	/* Disable the sampling facility to reset any states and also
513 	 * clear pending measurement alerts.
514 	 */
515 	sf_disable();
516 
517 	/* Extend the sampling buffer.
518 	 * This memory allocation typically happens in an atomic context when
519 	 * called by perf.  Because this is a reallocation, it is fine if the
520 	 * new SDB-request cannot be satisfied immediately.
521 	 */
522 	rc = realloc_sampling_buffer(sfb, num, GFP_ATOMIC);
523 	if (rc)
524 		debug_sprintf_event(sfdbg, 5, "%s: realloc failed with rc %i\n",
525 				    __func__, rc);
526 
527 	if (sfb_has_pending_allocs(sfb, hwc))
528 		debug_sprintf_event(sfdbg, 5, "%s: "
529 				    "req %lu alloc %lu remaining %lu\n",
530 				    __func__, num, sfb->num_sdb - num_old,
531 				    sfb_pending_allocs(sfb, hwc));
532 }
533 
534 /* Number of perf events counting hardware events */
535 static atomic_t num_events;
536 /* Used to avoid races in calling reserve/release_cpumf_hardware */
537 static DEFINE_MUTEX(pmc_reserve_mutex);
538 
539 #define PMC_INIT      0
540 #define PMC_RELEASE   1
541 #define PMC_FAILURE   2
542 static void setup_pmc_cpu(void *flags)
543 {
544 	int err;
545 	struct cpu_hw_sf *cpusf = this_cpu_ptr(&cpu_hw_sf);
546 
547 	err = 0;
548 	switch (*((int *) flags)) {
549 	case PMC_INIT:
550 		memset(cpusf, 0, sizeof(*cpusf));
551 		err = qsi(&cpusf->qsi);
552 		if (err)
553 			break;
554 		cpusf->flags |= PMU_F_RESERVED;
555 		err = sf_disable();
556 		if (err)
557 			pr_err("Switching off the sampling facility failed "
558 			       "with rc %i\n", err);
559 		debug_sprintf_event(sfdbg, 5,
560 				    "%s: initialized: cpuhw %p\n", __func__,
561 				    cpusf);
562 		break;
563 	case PMC_RELEASE:
564 		cpusf->flags &= ~PMU_F_RESERVED;
565 		err = sf_disable();
566 		if (err) {
567 			pr_err("Switching off the sampling facility failed "
568 			       "with rc %i\n", err);
569 		} else
570 			deallocate_buffers(cpusf);
571 		debug_sprintf_event(sfdbg, 5,
572 				    "%s: released: cpuhw %p\n", __func__,
573 				    cpusf);
574 		break;
575 	}
576 	if (err)
577 		*((int *) flags) |= PMC_FAILURE;
578 }
579 
580 static void release_pmc_hardware(void)
581 {
582 	int flags = PMC_RELEASE;
583 
584 	irq_subclass_unregister(IRQ_SUBCLASS_MEASUREMENT_ALERT);
585 	on_each_cpu(setup_pmc_cpu, &flags, 1);
586 }
587 
588 static int reserve_pmc_hardware(void)
589 {
590 	int flags = PMC_INIT;
591 
592 	on_each_cpu(setup_pmc_cpu, &flags, 1);
593 	if (flags & PMC_FAILURE) {
594 		release_pmc_hardware();
595 		return -ENODEV;
596 	}
597 	irq_subclass_register(IRQ_SUBCLASS_MEASUREMENT_ALERT);
598 
599 	return 0;
600 }
601 
602 static void hw_perf_event_destroy(struct perf_event *event)
603 {
604 	/* Release PMC if this is the last perf event */
605 	if (!atomic_add_unless(&num_events, -1, 1)) {
606 		mutex_lock(&pmc_reserve_mutex);
607 		if (atomic_dec_return(&num_events) == 0)
608 			release_pmc_hardware();
609 		mutex_unlock(&pmc_reserve_mutex);
610 	}
611 }
612 
613 static void hw_init_period(struct hw_perf_event *hwc, u64 period)
614 {
615 	hwc->sample_period = period;
616 	hwc->last_period = hwc->sample_period;
617 	local64_set(&hwc->period_left, hwc->sample_period);
618 }
619 
620 static unsigned long hw_limit_rate(const struct hws_qsi_info_block *si,
621 				   unsigned long rate)
622 {
623 	return clamp_t(unsigned long, rate,
624 		       si->min_sampl_rate, si->max_sampl_rate);
625 }
626 
627 static u32 cpumsf_pid_type(struct perf_event *event,
628 			   u32 pid, enum pid_type type)
629 {
630 	struct task_struct *tsk;
631 
632 	/* Idle process */
633 	if (!pid)
634 		goto out;
635 
636 	tsk = find_task_by_pid_ns(pid, &init_pid_ns);
637 	pid = -1;
638 	if (tsk) {
639 		/*
640 		 * Only top level events contain the pid namespace in which
641 		 * they are created.
642 		 */
643 		if (event->parent)
644 			event = event->parent;
645 		pid = __task_pid_nr_ns(tsk, type, event->ns);
646 		/*
647 		 * See also 1d953111b648
648 		 * "perf/core: Don't report zero PIDs for exiting tasks".
649 		 */
650 		if (!pid && !pid_alive(tsk))
651 			pid = -1;
652 	}
653 out:
654 	return pid;
655 }
656 
657 static void cpumsf_output_event_pid(struct perf_event *event,
658 				    struct perf_sample_data *data,
659 				    struct pt_regs *regs)
660 {
661 	u32 pid;
662 	struct perf_event_header header;
663 	struct perf_output_handle handle;
664 
665 	/*
666 	 * Obtain the PID from the basic-sampling data entry and
667 	 * correct the data->tid_entry.pid value.
668 	 */
669 	pid = data->tid_entry.pid;
670 
671 	/* Protect callchain buffers, tasks */
672 	rcu_read_lock();
673 
674 	perf_prepare_sample(&header, data, event, regs);
675 	if (perf_output_begin(&handle, event, header.size))
676 		goto out;
677 
678 	/* Update the process ID (see also kernel/events/core.c) */
679 	data->tid_entry.pid = cpumsf_pid_type(event, pid, PIDTYPE_TGID);
680 	data->tid_entry.tid = cpumsf_pid_type(event, pid, PIDTYPE_PID);
681 
682 	perf_output_sample(&handle, &header, data, event);
683 	perf_output_end(&handle);
684 out:
685 	rcu_read_unlock();
686 }
687 
688 static unsigned long getrate(bool freq, unsigned long sample,
689 			     struct hws_qsi_info_block *si)
690 {
691 	unsigned long rate;
692 
693 	if (freq) {
694 		rate = freq_to_sample_rate(si, sample);
695 		rate = hw_limit_rate(si, rate);
696 	} else {
697 		/* The min/max sampling rates specifies the valid range
698 		 * of sample periods.  If the specified sample period is
699 		 * out of range, limit the period to the range boundary.
700 		 */
701 		rate = hw_limit_rate(si, sample);
702 
703 		/* The perf core maintains a maximum sample rate that is
704 		 * configurable through the sysctl interface.  Ensure the
705 		 * sampling rate does not exceed this value.  This also helps
706 		 * to avoid throttling when pushing samples with
707 		 * perf_event_overflow().
708 		 */
709 		if (sample_rate_to_freq(si, rate) >
710 		    sysctl_perf_event_sample_rate) {
711 			debug_sprintf_event(sfdbg, 1, "%s: "
712 					    "Sampling rate exceeds maximum "
713 					    "perf sample rate\n", __func__);
714 			rate = 0;
715 		}
716 	}
717 	return rate;
718 }
719 
720 /* The sampling information (si) contains information about the
721  * min/max sampling intervals and the CPU speed.  So calculate the
722  * correct sampling interval and avoid the whole period adjust
723  * feedback loop.
724  *
725  * Since the CPU Measurement sampling facility can not handle frequency
726  * calculate the sampling interval when frequency is specified using
727  * this formula:
728  *	interval := cpu_speed * 1000000 / sample_freq
729  *
730  * Returns errno on bad input and zero on success with parameter interval
731  * set to the correct sampling rate.
732  *
733  * Note: This function turns off freq bit to avoid calling function
734  * perf_adjust_period(). This causes frequency adjustment in the common
735  * code part which causes tremendous variations in the counter values.
736  */
737 static int __hw_perf_event_init_rate(struct perf_event *event,
738 				     struct hws_qsi_info_block *si)
739 {
740 	struct perf_event_attr *attr = &event->attr;
741 	struct hw_perf_event *hwc = &event->hw;
742 	unsigned long rate;
743 
744 	if (attr->freq) {
745 		if (!attr->sample_freq)
746 			return -EINVAL;
747 		rate = getrate(attr->freq, attr->sample_freq, si);
748 		attr->freq = 0;		/* Don't call  perf_adjust_period() */
749 		SAMPL_FLAGS(hwc) |= PERF_CPUM_SF_FREQ_MODE;
750 	} else {
751 		rate = getrate(attr->freq, attr->sample_period, si);
752 		if (!rate)
753 			return -EINVAL;
754 	}
755 	attr->sample_period = rate;
756 	SAMPL_RATE(hwc) = rate;
757 	hw_init_period(hwc, SAMPL_RATE(hwc));
758 	debug_sprintf_event(sfdbg, 4, "%s: cpu %d period %#llx freq %d,%#lx\n",
759 			    __func__, event->cpu, event->attr.sample_period,
760 			    event->attr.freq, SAMPLE_FREQ_MODE(hwc));
761 	return 0;
762 }
763 
764 static int __hw_perf_event_init(struct perf_event *event)
765 {
766 	struct cpu_hw_sf *cpuhw;
767 	struct hws_qsi_info_block si;
768 	struct perf_event_attr *attr = &event->attr;
769 	struct hw_perf_event *hwc = &event->hw;
770 	int cpu, err;
771 
772 	/* Reserve CPU-measurement sampling facility */
773 	err = 0;
774 	if (!atomic_inc_not_zero(&num_events)) {
775 		mutex_lock(&pmc_reserve_mutex);
776 		if (atomic_read(&num_events) == 0 && reserve_pmc_hardware())
777 			err = -EBUSY;
778 		else
779 			atomic_inc(&num_events);
780 		mutex_unlock(&pmc_reserve_mutex);
781 	}
782 	event->destroy = hw_perf_event_destroy;
783 
784 	if (err)
785 		goto out;
786 
787 	/* Access per-CPU sampling information (query sampling info) */
788 	/*
789 	 * The event->cpu value can be -1 to count on every CPU, for example,
790 	 * when attaching to a task.  If this is specified, use the query
791 	 * sampling info from the current CPU, otherwise use event->cpu to
792 	 * retrieve the per-CPU information.
793 	 * Later, cpuhw indicates whether to allocate sampling buffers for a
794 	 * particular CPU (cpuhw!=NULL) or each online CPU (cpuw==NULL).
795 	 */
796 	memset(&si, 0, sizeof(si));
797 	cpuhw = NULL;
798 	if (event->cpu == -1)
799 		qsi(&si);
800 	else {
801 		/* Event is pinned to a particular CPU, retrieve the per-CPU
802 		 * sampling structure for accessing the CPU-specific QSI.
803 		 */
804 		cpuhw = &per_cpu(cpu_hw_sf, event->cpu);
805 		si = cpuhw->qsi;
806 	}
807 
808 	/* Check sampling facility authorization and, if not authorized,
809 	 * fall back to other PMUs.  It is safe to check any CPU because
810 	 * the authorization is identical for all configured CPUs.
811 	 */
812 	if (!si.as) {
813 		err = -ENOENT;
814 		goto out;
815 	}
816 
817 	if (si.ribm & CPU_MF_SF_RIBM_NOTAV) {
818 		pr_warn("CPU Measurement Facility sampling is temporarily not available\n");
819 		err = -EBUSY;
820 		goto out;
821 	}
822 
823 	/* Always enable basic sampling */
824 	SAMPL_FLAGS(hwc) = PERF_CPUM_SF_BASIC_MODE;
825 
826 	/* Check if diagnostic sampling is requested.  Deny if the required
827 	 * sampling authorization is missing.
828 	 */
829 	if (attr->config == PERF_EVENT_CPUM_SF_DIAG) {
830 		if (!si.ad) {
831 			err = -EPERM;
832 			goto out;
833 		}
834 		SAMPL_FLAGS(hwc) |= PERF_CPUM_SF_DIAG_MODE;
835 	}
836 
837 	/* Check and set other sampling flags */
838 	if (attr->config1 & PERF_CPUM_SF_FULL_BLOCKS)
839 		SAMPL_FLAGS(hwc) |= PERF_CPUM_SF_FULL_BLOCKS;
840 
841 	err =  __hw_perf_event_init_rate(event, &si);
842 	if (err)
843 		goto out;
844 
845 	/* Initialize sample data overflow accounting */
846 	hwc->extra_reg.reg = REG_OVERFLOW;
847 	OVERFLOW_REG(hwc) = 0;
848 
849 	/* Use AUX buffer. No need to allocate it by ourself */
850 	if (attr->config == PERF_EVENT_CPUM_SF_DIAG)
851 		return 0;
852 
853 	/* Allocate the per-CPU sampling buffer using the CPU information
854 	 * from the event.  If the event is not pinned to a particular
855 	 * CPU (event->cpu == -1; or cpuhw == NULL), allocate sampling
856 	 * buffers for each online CPU.
857 	 */
858 	if (cpuhw)
859 		/* Event is pinned to a particular CPU */
860 		err = allocate_buffers(cpuhw, hwc);
861 	else {
862 		/* Event is not pinned, allocate sampling buffer on
863 		 * each online CPU
864 		 */
865 		for_each_online_cpu(cpu) {
866 			cpuhw = &per_cpu(cpu_hw_sf, cpu);
867 			err = allocate_buffers(cpuhw, hwc);
868 			if (err)
869 				break;
870 		}
871 	}
872 
873 	/* If PID/TID sampling is active, replace the default overflow
874 	 * handler to extract and resolve the PIDs from the basic-sampling
875 	 * data entries.
876 	 */
877 	if (event->attr.sample_type & PERF_SAMPLE_TID)
878 		if (is_default_overflow_handler(event))
879 			event->overflow_handler = cpumsf_output_event_pid;
880 out:
881 	return err;
882 }
883 
884 static int cpumsf_pmu_event_init(struct perf_event *event)
885 {
886 	int err;
887 
888 	/* No support for taken branch sampling */
889 	if (has_branch_stack(event))
890 		return -EOPNOTSUPP;
891 
892 	switch (event->attr.type) {
893 	case PERF_TYPE_RAW:
894 		if ((event->attr.config != PERF_EVENT_CPUM_SF) &&
895 		    (event->attr.config != PERF_EVENT_CPUM_SF_DIAG))
896 			return -ENOENT;
897 		break;
898 	case PERF_TYPE_HARDWARE:
899 		/* Support sampling of CPU cycles in addition to the
900 		 * counter facility.  However, the counter facility
901 		 * is more precise and, hence, restrict this PMU to
902 		 * sampling events only.
903 		 */
904 		if (event->attr.config != PERF_COUNT_HW_CPU_CYCLES)
905 			return -ENOENT;
906 		if (!is_sampling_event(event))
907 			return -ENOENT;
908 		break;
909 	default:
910 		return -ENOENT;
911 	}
912 
913 	/* Check online status of the CPU to which the event is pinned */
914 	if (event->cpu >= 0 && !cpu_online(event->cpu))
915 		return -ENODEV;
916 
917 	/* Force reset of idle/hv excludes regardless of what the
918 	 * user requested.
919 	 */
920 	if (event->attr.exclude_hv)
921 		event->attr.exclude_hv = 0;
922 	if (event->attr.exclude_idle)
923 		event->attr.exclude_idle = 0;
924 
925 	err = __hw_perf_event_init(event);
926 	if (unlikely(err))
927 		if (event->destroy)
928 			event->destroy(event);
929 	return err;
930 }
931 
932 static void cpumsf_pmu_enable(struct pmu *pmu)
933 {
934 	struct cpu_hw_sf *cpuhw = this_cpu_ptr(&cpu_hw_sf);
935 	struct hw_perf_event *hwc;
936 	int err;
937 
938 	if (cpuhw->flags & PMU_F_ENABLED)
939 		return;
940 
941 	if (cpuhw->flags & PMU_F_ERR_MASK)
942 		return;
943 
944 	/* Check whether to extent the sampling buffer.
945 	 *
946 	 * Two conditions trigger an increase of the sampling buffer for a
947 	 * perf event:
948 	 *    1. Postponed buffer allocations from the event initialization.
949 	 *    2. Sampling overflows that contribute to pending allocations.
950 	 *
951 	 * Note that the extend_sampling_buffer() function disables the sampling
952 	 * facility, but it can be fully re-enabled using sampling controls that
953 	 * have been saved in cpumsf_pmu_disable().
954 	 */
955 	if (cpuhw->event) {
956 		hwc = &cpuhw->event->hw;
957 		if (!(SAMPL_DIAG_MODE(hwc))) {
958 			/*
959 			 * Account number of overflow-designated
960 			 * buffer extents
961 			 */
962 			sfb_account_overflows(cpuhw, hwc);
963 			extend_sampling_buffer(&cpuhw->sfb, hwc);
964 		}
965 		/* Rate may be adjusted with ioctl() */
966 		cpuhw->lsctl.interval = SAMPL_RATE(&cpuhw->event->hw);
967 	}
968 
969 	/* (Re)enable the PMU and sampling facility */
970 	cpuhw->flags |= PMU_F_ENABLED;
971 	barrier();
972 
973 	err = lsctl(&cpuhw->lsctl);
974 	if (err) {
975 		cpuhw->flags &= ~PMU_F_ENABLED;
976 		pr_err("Loading sampling controls failed: op %i err %i\n",
977 			1, err);
978 		return;
979 	}
980 
981 	/* Load current program parameter */
982 	lpp(&S390_lowcore.lpp);
983 
984 	debug_sprintf_event(sfdbg, 6, "%s: es %i cs %i ed %i cd %i "
985 			    "interval %#lx tear %#lx dear %#lx\n", __func__,
986 			    cpuhw->lsctl.es, cpuhw->lsctl.cs, cpuhw->lsctl.ed,
987 			    cpuhw->lsctl.cd, cpuhw->lsctl.interval,
988 			    cpuhw->lsctl.tear, cpuhw->lsctl.dear);
989 }
990 
991 static void cpumsf_pmu_disable(struct pmu *pmu)
992 {
993 	struct cpu_hw_sf *cpuhw = this_cpu_ptr(&cpu_hw_sf);
994 	struct hws_lsctl_request_block inactive;
995 	struct hws_qsi_info_block si;
996 	int err;
997 
998 	if (!(cpuhw->flags & PMU_F_ENABLED))
999 		return;
1000 
1001 	if (cpuhw->flags & PMU_F_ERR_MASK)
1002 		return;
1003 
1004 	/* Switch off sampling activation control */
1005 	inactive = cpuhw->lsctl;
1006 	inactive.cs = 0;
1007 	inactive.cd = 0;
1008 
1009 	err = lsctl(&inactive);
1010 	if (err) {
1011 		pr_err("Loading sampling controls failed: op %i err %i\n",
1012 			2, err);
1013 		return;
1014 	}
1015 
1016 	/* Save state of TEAR and DEAR register contents */
1017 	err = qsi(&si);
1018 	if (!err) {
1019 		/* TEAR/DEAR values are valid only if the sampling facility is
1020 		 * enabled.  Note that cpumsf_pmu_disable() might be called even
1021 		 * for a disabled sampling facility because cpumsf_pmu_enable()
1022 		 * controls the enable/disable state.
1023 		 */
1024 		if (si.es) {
1025 			cpuhw->lsctl.tear = si.tear;
1026 			cpuhw->lsctl.dear = si.dear;
1027 		}
1028 	} else
1029 		debug_sprintf_event(sfdbg, 3, "%s: qsi() failed with err %i\n",
1030 				    __func__, err);
1031 
1032 	cpuhw->flags &= ~PMU_F_ENABLED;
1033 }
1034 
1035 /* perf_exclude_event() - Filter event
1036  * @event:	The perf event
1037  * @regs:	pt_regs structure
1038  * @sde_regs:	Sample-data-entry (sde) regs structure
1039  *
1040  * Filter perf events according to their exclude specification.
1041  *
1042  * Return non-zero if the event shall be excluded.
1043  */
1044 static int perf_exclude_event(struct perf_event *event, struct pt_regs *regs,
1045 			      struct perf_sf_sde_regs *sde_regs)
1046 {
1047 	if (event->attr.exclude_user && user_mode(regs))
1048 		return 1;
1049 	if (event->attr.exclude_kernel && !user_mode(regs))
1050 		return 1;
1051 	if (event->attr.exclude_guest && sde_regs->in_guest)
1052 		return 1;
1053 	if (event->attr.exclude_host && !sde_regs->in_guest)
1054 		return 1;
1055 	return 0;
1056 }
1057 
1058 /* perf_push_sample() - Push samples to perf
1059  * @event:	The perf event
1060  * @sample:	Hardware sample data
1061  *
1062  * Use the hardware sample data to create perf event sample.  The sample
1063  * is the pushed to the event subsystem and the function checks for
1064  * possible event overflows.  If an event overflow occurs, the PMU is
1065  * stopped.
1066  *
1067  * Return non-zero if an event overflow occurred.
1068  */
1069 static int perf_push_sample(struct perf_event *event,
1070 			    struct hws_basic_entry *basic)
1071 {
1072 	int overflow;
1073 	struct pt_regs regs;
1074 	struct perf_sf_sde_regs *sde_regs;
1075 	struct perf_sample_data data;
1076 
1077 	/* Setup perf sample */
1078 	perf_sample_data_init(&data, 0, event->hw.last_period);
1079 
1080 	/* Setup pt_regs to look like an CPU-measurement external interrupt
1081 	 * using the Program Request Alert code.  The regs.int_parm_long
1082 	 * field which is unused contains additional sample-data-entry related
1083 	 * indicators.
1084 	 */
1085 	memset(&regs, 0, sizeof(regs));
1086 	regs.int_code = 0x1407;
1087 	regs.int_parm = CPU_MF_INT_SF_PRA;
1088 	sde_regs = (struct perf_sf_sde_regs *) &regs.int_parm_long;
1089 
1090 	psw_bits(regs.psw).ia	= basic->ia;
1091 	psw_bits(regs.psw).dat	= basic->T;
1092 	psw_bits(regs.psw).wait = basic->W;
1093 	psw_bits(regs.psw).pstate = basic->P;
1094 	psw_bits(regs.psw).as	= basic->AS;
1095 
1096 	/*
1097 	 * Use the hardware provided configuration level to decide if the
1098 	 * sample belongs to a guest or host. If that is not available,
1099 	 * fall back to the following heuristics:
1100 	 * A non-zero guest program parameter always indicates a guest
1101 	 * sample. Some early samples or samples from guests without
1102 	 * lpp usage would be misaccounted to the host. We use the asn
1103 	 * value as an addon heuristic to detect most of these guest samples.
1104 	 * If the value differs from 0xffff (the host value), we assume to
1105 	 * be a KVM guest.
1106 	 */
1107 	switch (basic->CL) {
1108 	case 1: /* logical partition */
1109 		sde_regs->in_guest = 0;
1110 		break;
1111 	case 2: /* virtual machine */
1112 		sde_regs->in_guest = 1;
1113 		break;
1114 	default: /* old machine, use heuristics */
1115 		if (basic->gpp || basic->prim_asn != 0xffff)
1116 			sde_regs->in_guest = 1;
1117 		break;
1118 	}
1119 
1120 	/*
1121 	 * Store the PID value from the sample-data-entry to be
1122 	 * processed and resolved by cpumsf_output_event_pid().
1123 	 */
1124 	data.tid_entry.pid = basic->hpp & LPP_PID_MASK;
1125 
1126 	overflow = 0;
1127 	if (perf_exclude_event(event, &regs, sde_regs))
1128 		goto out;
1129 	if (perf_event_overflow(event, &data, &regs)) {
1130 		overflow = 1;
1131 		event->pmu->stop(event, 0);
1132 	}
1133 	perf_event_update_userpage(event);
1134 out:
1135 	return overflow;
1136 }
1137 
1138 static void perf_event_count_update(struct perf_event *event, u64 count)
1139 {
1140 	local64_add(count, &event->count);
1141 }
1142 
1143 /* hw_collect_samples() - Walk through a sample-data-block and collect samples
1144  * @event:	The perf event
1145  * @sdbt:	Sample-data-block table
1146  * @overflow:	Event overflow counter
1147  *
1148  * Walks through a sample-data-block and collects sampling data entries that are
1149  * then pushed to the perf event subsystem.  Depending on the sampling function,
1150  * there can be either basic-sampling or combined-sampling data entries.  A
1151  * combined-sampling data entry consists of a basic- and a diagnostic-sampling
1152  * data entry.	The sampling function is determined by the flags in the perf
1153  * event hardware structure.  The function always works with a combined-sampling
1154  * data entry but ignores the the diagnostic portion if it is not available.
1155  *
1156  * Note that the implementation focuses on basic-sampling data entries and, if
1157  * such an entry is not valid, the entire combined-sampling data entry is
1158  * ignored.
1159  *
1160  * The overflow variables counts the number of samples that has been discarded
1161  * due to a perf event overflow.
1162  */
1163 static void hw_collect_samples(struct perf_event *event, unsigned long *sdbt,
1164 			       unsigned long long *overflow)
1165 {
1166 	struct hws_trailer_entry *te;
1167 	struct hws_basic_entry *sample;
1168 
1169 	te = (struct hws_trailer_entry *) trailer_entry_ptr(*sdbt);
1170 	sample = (struct hws_basic_entry *) *sdbt;
1171 	while ((unsigned long *) sample < (unsigned long *) te) {
1172 		/* Check for an empty sample */
1173 		if (!sample->def)
1174 			break;
1175 
1176 		/* Update perf event period */
1177 		perf_event_count_update(event, SAMPL_RATE(&event->hw));
1178 
1179 		/* Check whether sample is valid */
1180 		if (sample->def == 0x0001) {
1181 			/* If an event overflow occurred, the PMU is stopped to
1182 			 * throttle event delivery.  Remaining sample data is
1183 			 * discarded.
1184 			 */
1185 			if (!*overflow) {
1186 				/* Check whether sample is consistent */
1187 				if (sample->I == 0 && sample->W == 0) {
1188 					/* Deliver sample data to perf */
1189 					*overflow = perf_push_sample(event,
1190 								     sample);
1191 				}
1192 			} else
1193 				/* Count discarded samples */
1194 				*overflow += 1;
1195 		} else {
1196 			debug_sprintf_event(sfdbg, 4,
1197 					    "%s: Found unknown"
1198 					    " sampling data entry: te->f %i"
1199 					    " basic.def %#4x (%p)\n", __func__,
1200 					    te->f, sample->def, sample);
1201 			/* Sample slot is not yet written or other record.
1202 			 *
1203 			 * This condition can occur if the buffer was reused
1204 			 * from a combined basic- and diagnostic-sampling.
1205 			 * If only basic-sampling is then active, entries are
1206 			 * written into the larger diagnostic entries.
1207 			 * This is typically the case for sample-data-blocks
1208 			 * that are not full.  Stop processing if the first
1209 			 * invalid format was detected.
1210 			 */
1211 			if (!te->f)
1212 				break;
1213 		}
1214 
1215 		/* Reset sample slot and advance to next sample */
1216 		sample->def = 0;
1217 		sample++;
1218 	}
1219 }
1220 
1221 /* hw_perf_event_update() - Process sampling buffer
1222  * @event:	The perf event
1223  * @flush_all:	Flag to also flush partially filled sample-data-blocks
1224  *
1225  * Processes the sampling buffer and create perf event samples.
1226  * The sampling buffer position are retrieved and saved in the TEAR_REG
1227  * register of the specified perf event.
1228  *
1229  * Only full sample-data-blocks are processed.	Specify the flash_all flag
1230  * to also walk through partially filled sample-data-blocks.  It is ignored
1231  * if PERF_CPUM_SF_FULL_BLOCKS is set.	The PERF_CPUM_SF_FULL_BLOCKS flag
1232  * enforces the processing of full sample-data-blocks only (trailer entries
1233  * with the block-full-indicator bit set).
1234  */
1235 static void hw_perf_event_update(struct perf_event *event, int flush_all)
1236 {
1237 	struct hw_perf_event *hwc = &event->hw;
1238 	struct hws_trailer_entry *te;
1239 	unsigned long *sdbt;
1240 	unsigned long long event_overflow, sampl_overflow, num_sdb, te_flags;
1241 	int done;
1242 
1243 	/*
1244 	 * AUX buffer is used when in diagnostic sampling mode.
1245 	 * No perf events/samples are created.
1246 	 */
1247 	if (SAMPL_DIAG_MODE(&event->hw))
1248 		return;
1249 
1250 	if (flush_all && SDB_FULL_BLOCKS(hwc))
1251 		flush_all = 0;
1252 
1253 	sdbt = (unsigned long *) TEAR_REG(hwc);
1254 	done = event_overflow = sampl_overflow = num_sdb = 0;
1255 	while (!done) {
1256 		/* Get the trailer entry of the sample-data-block */
1257 		te = (struct hws_trailer_entry *) trailer_entry_ptr(*sdbt);
1258 
1259 		/* Leave loop if no more work to do (block full indicator) */
1260 		if (!te->f) {
1261 			done = 1;
1262 			if (!flush_all)
1263 				break;
1264 		}
1265 
1266 		/* Check the sample overflow count */
1267 		if (te->overflow)
1268 			/* Account sample overflows and, if a particular limit
1269 			 * is reached, extend the sampling buffer.
1270 			 * For details, see sfb_account_overflows().
1271 			 */
1272 			sampl_overflow += te->overflow;
1273 
1274 		/* Timestamps are valid for full sample-data-blocks only */
1275 		debug_sprintf_event(sfdbg, 6, "%s: sdbt %#lx "
1276 				    "overflow %llu timestamp %#llx\n",
1277 				    __func__, (unsigned long)sdbt, te->overflow,
1278 				    (te->f) ? trailer_timestamp(te) : 0ULL);
1279 
1280 		/* Collect all samples from a single sample-data-block and
1281 		 * flag if an (perf) event overflow happened.  If so, the PMU
1282 		 * is stopped and remaining samples will be discarded.
1283 		 */
1284 		hw_collect_samples(event, sdbt, &event_overflow);
1285 		num_sdb++;
1286 
1287 		/* Reset trailer (using compare-double-and-swap) */
1288 		do {
1289 			te_flags = te->flags & ~SDB_TE_BUFFER_FULL_MASK;
1290 			te_flags |= SDB_TE_ALERT_REQ_MASK;
1291 		} while (!cmpxchg_double(&te->flags, &te->overflow,
1292 					 te->flags, te->overflow,
1293 					 te_flags, 0ULL));
1294 
1295 		/* Advance to next sample-data-block */
1296 		sdbt++;
1297 		if (is_link_entry(sdbt))
1298 			sdbt = get_next_sdbt(sdbt);
1299 
1300 		/* Update event hardware registers */
1301 		TEAR_REG(hwc) = (unsigned long) sdbt;
1302 
1303 		/* Stop processing sample-data if all samples of the current
1304 		 * sample-data-block were flushed even if it was not full.
1305 		 */
1306 		if (flush_all && done)
1307 			break;
1308 	}
1309 
1310 	/* Account sample overflows in the event hardware structure */
1311 	if (sampl_overflow)
1312 		OVERFLOW_REG(hwc) = DIV_ROUND_UP(OVERFLOW_REG(hwc) +
1313 						 sampl_overflow, 1 + num_sdb);
1314 
1315 	/* Perf_event_overflow() and perf_event_account_interrupt() limit
1316 	 * the interrupt rate to an upper limit. Roughly 1000 samples per
1317 	 * task tick.
1318 	 * Hitting this limit results in a large number
1319 	 * of throttled REF_REPORT_THROTTLE entries and the samples
1320 	 * are dropped.
1321 	 * Slightly increase the interval to avoid hitting this limit.
1322 	 */
1323 	if (event_overflow) {
1324 		SAMPL_RATE(hwc) += DIV_ROUND_UP(SAMPL_RATE(hwc), 10);
1325 		debug_sprintf_event(sfdbg, 1, "%s: rate adjustment %ld\n",
1326 				    __func__,
1327 				    DIV_ROUND_UP(SAMPL_RATE(hwc), 10));
1328 	}
1329 
1330 	if (sampl_overflow || event_overflow)
1331 		debug_sprintf_event(sfdbg, 4, "%s: "
1332 				    "overflows: sample %llu event %llu"
1333 				    " total %llu num_sdb %llu\n",
1334 				    __func__, sampl_overflow, event_overflow,
1335 				    OVERFLOW_REG(hwc), num_sdb);
1336 }
1337 
1338 #define AUX_SDB_INDEX(aux, i) ((i) % aux->sfb.num_sdb)
1339 #define AUX_SDB_NUM(aux, start, end) (end >= start ? end - start + 1 : 0)
1340 #define AUX_SDB_NUM_ALERT(aux) AUX_SDB_NUM(aux, aux->head, aux->alert_mark)
1341 #define AUX_SDB_NUM_EMPTY(aux) AUX_SDB_NUM(aux, aux->head, aux->empty_mark)
1342 
1343 /*
1344  * Get trailer entry by index of SDB.
1345  */
1346 static struct hws_trailer_entry *aux_sdb_trailer(struct aux_buffer *aux,
1347 						 unsigned long index)
1348 {
1349 	unsigned long sdb;
1350 
1351 	index = AUX_SDB_INDEX(aux, index);
1352 	sdb = aux->sdb_index[index];
1353 	return (struct hws_trailer_entry *)trailer_entry_ptr(sdb);
1354 }
1355 
1356 /*
1357  * Finish sampling on the cpu. Called by cpumsf_pmu_del() with pmu
1358  * disabled. Collect the full SDBs in AUX buffer which have not reached
1359  * the point of alert indicator. And ignore the SDBs which are not
1360  * full.
1361  *
1362  * 1. Scan SDBs to see how much data is there and consume them.
1363  * 2. Remove alert indicator in the buffer.
1364  */
1365 static void aux_output_end(struct perf_output_handle *handle)
1366 {
1367 	unsigned long i, range_scan, idx;
1368 	struct aux_buffer *aux;
1369 	struct hws_trailer_entry *te;
1370 
1371 	aux = perf_get_aux(handle);
1372 	if (!aux)
1373 		return;
1374 
1375 	range_scan = AUX_SDB_NUM_ALERT(aux);
1376 	for (i = 0, idx = aux->head; i < range_scan; i++, idx++) {
1377 		te = aux_sdb_trailer(aux, idx);
1378 		if (!(te->flags & SDB_TE_BUFFER_FULL_MASK))
1379 			break;
1380 	}
1381 	/* i is num of SDBs which are full */
1382 	perf_aux_output_end(handle, i << PAGE_SHIFT);
1383 
1384 	/* Remove alert indicators in the buffer */
1385 	te = aux_sdb_trailer(aux, aux->alert_mark);
1386 	te->flags &= ~SDB_TE_ALERT_REQ_MASK;
1387 
1388 	debug_sprintf_event(sfdbg, 6, "%s: SDBs %ld range %ld head %ld\n",
1389 			    __func__, i, range_scan, aux->head);
1390 }
1391 
1392 /*
1393  * Start sampling on the CPU. Called by cpumsf_pmu_add() when an event
1394  * is first added to the CPU or rescheduled again to the CPU. It is called
1395  * with pmu disabled.
1396  *
1397  * 1. Reset the trailer of SDBs to get ready for new data.
1398  * 2. Tell the hardware where to put the data by reset the SDBs buffer
1399  *    head(tear/dear).
1400  */
1401 static int aux_output_begin(struct perf_output_handle *handle,
1402 			    struct aux_buffer *aux,
1403 			    struct cpu_hw_sf *cpuhw)
1404 {
1405 	unsigned long range;
1406 	unsigned long i, range_scan, idx;
1407 	unsigned long head, base, offset;
1408 	struct hws_trailer_entry *te;
1409 
1410 	if (WARN_ON_ONCE(handle->head & ~PAGE_MASK))
1411 		return -EINVAL;
1412 
1413 	aux->head = handle->head >> PAGE_SHIFT;
1414 	range = (handle->size + 1) >> PAGE_SHIFT;
1415 	if (range <= 1)
1416 		return -ENOMEM;
1417 
1418 	/*
1419 	 * SDBs between aux->head and aux->empty_mark are already ready
1420 	 * for new data. range_scan is num of SDBs not within them.
1421 	 */
1422 	debug_sprintf_event(sfdbg, 6,
1423 			    "%s: range %ld head %ld alert %ld empty %ld\n",
1424 			    __func__, range, aux->head, aux->alert_mark,
1425 			    aux->empty_mark);
1426 	if (range > AUX_SDB_NUM_EMPTY(aux)) {
1427 		range_scan = range - AUX_SDB_NUM_EMPTY(aux);
1428 		idx = aux->empty_mark + 1;
1429 		for (i = 0; i < range_scan; i++, idx++) {
1430 			te = aux_sdb_trailer(aux, idx);
1431 			te->flags &= ~(SDB_TE_BUFFER_FULL_MASK |
1432 				       SDB_TE_ALERT_REQ_MASK);
1433 			te->overflow = 0;
1434 		}
1435 		/* Save the position of empty SDBs */
1436 		aux->empty_mark = aux->head + range - 1;
1437 	}
1438 
1439 	/* Set alert indicator */
1440 	aux->alert_mark = aux->head + range/2 - 1;
1441 	te = aux_sdb_trailer(aux, aux->alert_mark);
1442 	te->flags = te->flags | SDB_TE_ALERT_REQ_MASK;
1443 
1444 	/* Reset hardware buffer head */
1445 	head = AUX_SDB_INDEX(aux, aux->head);
1446 	base = aux->sdbt_index[head / CPUM_SF_SDB_PER_TABLE];
1447 	offset = head % CPUM_SF_SDB_PER_TABLE;
1448 	cpuhw->lsctl.tear = base + offset * sizeof(unsigned long);
1449 	cpuhw->lsctl.dear = aux->sdb_index[head];
1450 
1451 	debug_sprintf_event(sfdbg, 6, "%s: head %ld alert %ld empty %ld "
1452 			    "index %ld tear %#lx dear %#lx\n", __func__,
1453 			    aux->head, aux->alert_mark, aux->empty_mark,
1454 			    head / CPUM_SF_SDB_PER_TABLE,
1455 			    cpuhw->lsctl.tear, cpuhw->lsctl.dear);
1456 
1457 	return 0;
1458 }
1459 
1460 /*
1461  * Set alert indicator on SDB at index @alert_index while sampler is running.
1462  *
1463  * Return true if successfully.
1464  * Return false if full indicator is already set by hardware sampler.
1465  */
1466 static bool aux_set_alert(struct aux_buffer *aux, unsigned long alert_index,
1467 			  unsigned long long *overflow)
1468 {
1469 	unsigned long long orig_overflow, orig_flags, new_flags;
1470 	struct hws_trailer_entry *te;
1471 
1472 	te = aux_sdb_trailer(aux, alert_index);
1473 	do {
1474 		orig_flags = te->flags;
1475 		*overflow = orig_overflow = te->overflow;
1476 		if (orig_flags & SDB_TE_BUFFER_FULL_MASK) {
1477 			/*
1478 			 * SDB is already set by hardware.
1479 			 * Abort and try to set somewhere
1480 			 * behind.
1481 			 */
1482 			return false;
1483 		}
1484 		new_flags = orig_flags | SDB_TE_ALERT_REQ_MASK;
1485 	} while (!cmpxchg_double(&te->flags, &te->overflow,
1486 				 orig_flags, orig_overflow,
1487 				 new_flags, 0ULL));
1488 	return true;
1489 }
1490 
1491 /*
1492  * aux_reset_buffer() - Scan and setup SDBs for new samples
1493  * @aux:	The AUX buffer to set
1494  * @range:	The range of SDBs to scan started from aux->head
1495  * @overflow:	Set to overflow count
1496  *
1497  * Set alert indicator on the SDB at index of aux->alert_mark. If this SDB is
1498  * marked as empty, check if it is already set full by the hardware sampler.
1499  * If yes, that means new data is already there before we can set an alert
1500  * indicator. Caller should try to set alert indicator to some position behind.
1501  *
1502  * Scan the SDBs in AUX buffer from behind aux->empty_mark. They are used
1503  * previously and have already been consumed by user space. Reset these SDBs
1504  * (clear full indicator and alert indicator) for new data.
1505  * If aux->alert_mark fall in this area, just set it. Overflow count is
1506  * recorded while scanning.
1507  *
1508  * SDBs between aux->head and aux->empty_mark are already reset at last time.
1509  * and ready for new samples. So scanning on this area could be skipped.
1510  *
1511  * Return true if alert indicator is set successfully and false if not.
1512  */
1513 static bool aux_reset_buffer(struct aux_buffer *aux, unsigned long range,
1514 			     unsigned long long *overflow)
1515 {
1516 	unsigned long long orig_overflow, orig_flags, new_flags;
1517 	unsigned long i, range_scan, idx, idx_old;
1518 	struct hws_trailer_entry *te;
1519 
1520 	debug_sprintf_event(sfdbg, 6, "%s: range %ld head %ld alert %ld "
1521 			    "empty %ld\n", __func__, range, aux->head,
1522 			    aux->alert_mark, aux->empty_mark);
1523 	if (range <= AUX_SDB_NUM_EMPTY(aux))
1524 		/*
1525 		 * No need to scan. All SDBs in range are marked as empty.
1526 		 * Just set alert indicator. Should check race with hardware
1527 		 * sampler.
1528 		 */
1529 		return aux_set_alert(aux, aux->alert_mark, overflow);
1530 
1531 	if (aux->alert_mark <= aux->empty_mark)
1532 		/*
1533 		 * Set alert indicator on empty SDB. Should check race
1534 		 * with hardware sampler.
1535 		 */
1536 		if (!aux_set_alert(aux, aux->alert_mark, overflow))
1537 			return false;
1538 
1539 	/*
1540 	 * Scan the SDBs to clear full and alert indicator used previously.
1541 	 * Start scanning from one SDB behind empty_mark. If the new alert
1542 	 * indicator fall into this range, set it.
1543 	 */
1544 	range_scan = range - AUX_SDB_NUM_EMPTY(aux);
1545 	idx_old = idx = aux->empty_mark + 1;
1546 	for (i = 0; i < range_scan; i++, idx++) {
1547 		te = aux_sdb_trailer(aux, idx);
1548 		do {
1549 			orig_flags = te->flags;
1550 			orig_overflow = te->overflow;
1551 			new_flags = orig_flags & ~SDB_TE_BUFFER_FULL_MASK;
1552 			if (idx == aux->alert_mark)
1553 				new_flags |= SDB_TE_ALERT_REQ_MASK;
1554 			else
1555 				new_flags &= ~SDB_TE_ALERT_REQ_MASK;
1556 		} while (!cmpxchg_double(&te->flags, &te->overflow,
1557 					 orig_flags, orig_overflow,
1558 					 new_flags, 0ULL));
1559 		*overflow += orig_overflow;
1560 	}
1561 
1562 	/* Update empty_mark to new position */
1563 	aux->empty_mark = aux->head + range - 1;
1564 
1565 	debug_sprintf_event(sfdbg, 6, "%s: range_scan %ld idx %ld..%ld "
1566 			    "empty %ld\n", __func__, range_scan, idx_old,
1567 			    idx - 1, aux->empty_mark);
1568 	return true;
1569 }
1570 
1571 /*
1572  * Measurement alert handler for diagnostic mode sampling.
1573  */
1574 static void hw_collect_aux(struct cpu_hw_sf *cpuhw)
1575 {
1576 	struct aux_buffer *aux;
1577 	int done = 0;
1578 	unsigned long range = 0, size;
1579 	unsigned long long overflow = 0;
1580 	struct perf_output_handle *handle = &cpuhw->handle;
1581 	unsigned long num_sdb;
1582 
1583 	aux = perf_get_aux(handle);
1584 	if (WARN_ON_ONCE(!aux))
1585 		return;
1586 
1587 	/* Inform user space new data arrived */
1588 	size = AUX_SDB_NUM_ALERT(aux) << PAGE_SHIFT;
1589 	debug_sprintf_event(sfdbg, 6, "%s: #alert %ld\n", __func__,
1590 			    size >> PAGE_SHIFT);
1591 	perf_aux_output_end(handle, size);
1592 
1593 	num_sdb = aux->sfb.num_sdb;
1594 	while (!done) {
1595 		/* Get an output handle */
1596 		aux = perf_aux_output_begin(handle, cpuhw->event);
1597 		if (handle->size == 0) {
1598 			pr_err("The AUX buffer with %lu pages for the "
1599 			       "diagnostic-sampling mode is full\n",
1600 				num_sdb);
1601 			debug_sprintf_event(sfdbg, 1,
1602 					    "%s: AUX buffer used up\n",
1603 					    __func__);
1604 			break;
1605 		}
1606 		if (WARN_ON_ONCE(!aux))
1607 			return;
1608 
1609 		/* Update head and alert_mark to new position */
1610 		aux->head = handle->head >> PAGE_SHIFT;
1611 		range = (handle->size + 1) >> PAGE_SHIFT;
1612 		if (range == 1)
1613 			aux->alert_mark = aux->head;
1614 		else
1615 			aux->alert_mark = aux->head + range/2 - 1;
1616 
1617 		if (aux_reset_buffer(aux, range, &overflow)) {
1618 			if (!overflow) {
1619 				done = 1;
1620 				break;
1621 			}
1622 			size = range << PAGE_SHIFT;
1623 			perf_aux_output_end(&cpuhw->handle, size);
1624 			pr_err("Sample data caused the AUX buffer with %lu "
1625 			       "pages to overflow\n", aux->sfb.num_sdb);
1626 			debug_sprintf_event(sfdbg, 1, "%s: head %ld range %ld "
1627 					    "overflow %lld\n", __func__,
1628 					    aux->head, range, overflow);
1629 		} else {
1630 			size = AUX_SDB_NUM_ALERT(aux) << PAGE_SHIFT;
1631 			perf_aux_output_end(&cpuhw->handle, size);
1632 			debug_sprintf_event(sfdbg, 6, "%s: head %ld alert %ld "
1633 					    "already full, try another\n",
1634 					    __func__,
1635 					    aux->head, aux->alert_mark);
1636 		}
1637 	}
1638 
1639 	if (done)
1640 		debug_sprintf_event(sfdbg, 6, "%s: head %ld alert %ld "
1641 				    "empty %ld\n", __func__, aux->head,
1642 				    aux->alert_mark, aux->empty_mark);
1643 }
1644 
1645 /*
1646  * Callback when freeing AUX buffers.
1647  */
1648 static void aux_buffer_free(void *data)
1649 {
1650 	struct aux_buffer *aux = data;
1651 	unsigned long i, num_sdbt;
1652 
1653 	if (!aux)
1654 		return;
1655 
1656 	/* Free SDBT. SDB is freed by the caller */
1657 	num_sdbt = aux->sfb.num_sdbt;
1658 	for (i = 0; i < num_sdbt; i++)
1659 		free_page(aux->sdbt_index[i]);
1660 
1661 	kfree(aux->sdbt_index);
1662 	kfree(aux->sdb_index);
1663 	kfree(aux);
1664 
1665 	debug_sprintf_event(sfdbg, 4, "%s: SDBTs %lu\n", __func__, num_sdbt);
1666 }
1667 
1668 static void aux_sdb_init(unsigned long sdb)
1669 {
1670 	struct hws_trailer_entry *te;
1671 
1672 	te = (struct hws_trailer_entry *)trailer_entry_ptr(sdb);
1673 
1674 	/* Save clock base */
1675 	te->clock_base = 1;
1676 	memcpy(&te->progusage2, &tod_clock_base[1], 8);
1677 }
1678 
1679 /*
1680  * aux_buffer_setup() - Setup AUX buffer for diagnostic mode sampling
1681  * @event:	Event the buffer is setup for, event->cpu == -1 means current
1682  * @pages:	Array of pointers to buffer pages passed from perf core
1683  * @nr_pages:	Total pages
1684  * @snapshot:	Flag for snapshot mode
1685  *
1686  * This is the callback when setup an event using AUX buffer. Perf tool can
1687  * trigger this by an additional mmap() call on the event. Unlike the buffer
1688  * for basic samples, AUX buffer belongs to the event. It is scheduled with
1689  * the task among online cpus when it is a per-thread event.
1690  *
1691  * Return the private AUX buffer structure if success or NULL if fails.
1692  */
1693 static void *aux_buffer_setup(struct perf_event *event, void **pages,
1694 			      int nr_pages, bool snapshot)
1695 {
1696 	struct sf_buffer *sfb;
1697 	struct aux_buffer *aux;
1698 	unsigned long *new, *tail;
1699 	int i, n_sdbt;
1700 
1701 	if (!nr_pages || !pages)
1702 		return NULL;
1703 
1704 	if (nr_pages > CPUM_SF_MAX_SDB * CPUM_SF_SDB_DIAG_FACTOR) {
1705 		pr_err("AUX buffer size (%i pages) is larger than the "
1706 		       "maximum sampling buffer limit\n",
1707 		       nr_pages);
1708 		return NULL;
1709 	} else if (nr_pages < CPUM_SF_MIN_SDB * CPUM_SF_SDB_DIAG_FACTOR) {
1710 		pr_err("AUX buffer size (%i pages) is less than the "
1711 		       "minimum sampling buffer limit\n",
1712 		       nr_pages);
1713 		return NULL;
1714 	}
1715 
1716 	/* Allocate aux_buffer struct for the event */
1717 	aux = kzalloc(sizeof(struct aux_buffer), GFP_KERNEL);
1718 	if (!aux)
1719 		goto no_aux;
1720 	sfb = &aux->sfb;
1721 
1722 	/* Allocate sdbt_index for fast reference */
1723 	n_sdbt = DIV_ROUND_UP(nr_pages, CPUM_SF_SDB_PER_TABLE);
1724 	aux->sdbt_index = kmalloc_array(n_sdbt, sizeof(void *), GFP_KERNEL);
1725 	if (!aux->sdbt_index)
1726 		goto no_sdbt_index;
1727 
1728 	/* Allocate sdb_index for fast reference */
1729 	aux->sdb_index = kmalloc_array(nr_pages, sizeof(void *), GFP_KERNEL);
1730 	if (!aux->sdb_index)
1731 		goto no_sdb_index;
1732 
1733 	/* Allocate the first SDBT */
1734 	sfb->num_sdbt = 0;
1735 	sfb->sdbt = (unsigned long *) get_zeroed_page(GFP_KERNEL);
1736 	if (!sfb->sdbt)
1737 		goto no_sdbt;
1738 	aux->sdbt_index[sfb->num_sdbt++] = (unsigned long)sfb->sdbt;
1739 	tail = sfb->tail = sfb->sdbt;
1740 
1741 	/*
1742 	 * Link the provided pages of AUX buffer to SDBT.
1743 	 * Allocate SDBT if needed.
1744 	 */
1745 	for (i = 0; i < nr_pages; i++, tail++) {
1746 		if (require_table_link(tail)) {
1747 			new = (unsigned long *) get_zeroed_page(GFP_KERNEL);
1748 			if (!new)
1749 				goto no_sdbt;
1750 			aux->sdbt_index[sfb->num_sdbt++] = (unsigned long)new;
1751 			/* Link current page to tail of chain */
1752 			*tail = (unsigned long)(void *) new + 1;
1753 			tail = new;
1754 		}
1755 		/* Tail is the entry in a SDBT */
1756 		*tail = (unsigned long)pages[i];
1757 		aux->sdb_index[i] = (unsigned long)pages[i];
1758 		aux_sdb_init((unsigned long)pages[i]);
1759 	}
1760 	sfb->num_sdb = nr_pages;
1761 
1762 	/* Link the last entry in the SDBT to the first SDBT */
1763 	*tail = (unsigned long) sfb->sdbt + 1;
1764 	sfb->tail = tail;
1765 
1766 	/*
1767 	 * Initial all SDBs are zeroed. Mark it as empty.
1768 	 * So there is no need to clear the full indicator
1769 	 * when this event is first added.
1770 	 */
1771 	aux->empty_mark = sfb->num_sdb - 1;
1772 
1773 	debug_sprintf_event(sfdbg, 4, "%s: SDBTs %lu SDBs %lu\n", __func__,
1774 			    sfb->num_sdbt, sfb->num_sdb);
1775 
1776 	return aux;
1777 
1778 no_sdbt:
1779 	/* SDBs (AUX buffer pages) are freed by caller */
1780 	for (i = 0; i < sfb->num_sdbt; i++)
1781 		free_page(aux->sdbt_index[i]);
1782 	kfree(aux->sdb_index);
1783 no_sdb_index:
1784 	kfree(aux->sdbt_index);
1785 no_sdbt_index:
1786 	kfree(aux);
1787 no_aux:
1788 	return NULL;
1789 }
1790 
1791 static void cpumsf_pmu_read(struct perf_event *event)
1792 {
1793 	/* Nothing to do ... updates are interrupt-driven */
1794 }
1795 
1796 /* Check if the new sampling period/freqeuncy is appropriate.
1797  *
1798  * Return non-zero on error and zero on passed checks.
1799  */
1800 static int cpumsf_pmu_check_period(struct perf_event *event, u64 value)
1801 {
1802 	struct hws_qsi_info_block si;
1803 	unsigned long rate;
1804 	bool do_freq;
1805 
1806 	memset(&si, 0, sizeof(si));
1807 	if (event->cpu == -1) {
1808 		if (qsi(&si))
1809 			return -ENODEV;
1810 	} else {
1811 		/* Event is pinned to a particular CPU, retrieve the per-CPU
1812 		 * sampling structure for accessing the CPU-specific QSI.
1813 		 */
1814 		struct cpu_hw_sf *cpuhw = &per_cpu(cpu_hw_sf, event->cpu);
1815 
1816 		si = cpuhw->qsi;
1817 	}
1818 
1819 	do_freq = !!SAMPLE_FREQ_MODE(&event->hw);
1820 	rate = getrate(do_freq, value, &si);
1821 	if (!rate)
1822 		return -EINVAL;
1823 
1824 	event->attr.sample_period = rate;
1825 	SAMPL_RATE(&event->hw) = rate;
1826 	hw_init_period(&event->hw, SAMPL_RATE(&event->hw));
1827 	debug_sprintf_event(sfdbg, 4, "%s:"
1828 			    " cpu %d value %#llx period %#llx freq %d\n",
1829 			    __func__, event->cpu, value,
1830 			    event->attr.sample_period, do_freq);
1831 	return 0;
1832 }
1833 
1834 /* Activate sampling control.
1835  * Next call of pmu_enable() starts sampling.
1836  */
1837 static void cpumsf_pmu_start(struct perf_event *event, int flags)
1838 {
1839 	struct cpu_hw_sf *cpuhw = this_cpu_ptr(&cpu_hw_sf);
1840 
1841 	if (WARN_ON_ONCE(!(event->hw.state & PERF_HES_STOPPED)))
1842 		return;
1843 
1844 	if (flags & PERF_EF_RELOAD)
1845 		WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));
1846 
1847 	perf_pmu_disable(event->pmu);
1848 	event->hw.state = 0;
1849 	cpuhw->lsctl.cs = 1;
1850 	if (SAMPL_DIAG_MODE(&event->hw))
1851 		cpuhw->lsctl.cd = 1;
1852 	perf_pmu_enable(event->pmu);
1853 }
1854 
1855 /* Deactivate sampling control.
1856  * Next call of pmu_enable() stops sampling.
1857  */
1858 static void cpumsf_pmu_stop(struct perf_event *event, int flags)
1859 {
1860 	struct cpu_hw_sf *cpuhw = this_cpu_ptr(&cpu_hw_sf);
1861 
1862 	if (event->hw.state & PERF_HES_STOPPED)
1863 		return;
1864 
1865 	perf_pmu_disable(event->pmu);
1866 	cpuhw->lsctl.cs = 0;
1867 	cpuhw->lsctl.cd = 0;
1868 	event->hw.state |= PERF_HES_STOPPED;
1869 
1870 	if ((flags & PERF_EF_UPDATE) && !(event->hw.state & PERF_HES_UPTODATE)) {
1871 		hw_perf_event_update(event, 1);
1872 		event->hw.state |= PERF_HES_UPTODATE;
1873 	}
1874 	perf_pmu_enable(event->pmu);
1875 }
1876 
1877 static int cpumsf_pmu_add(struct perf_event *event, int flags)
1878 {
1879 	struct cpu_hw_sf *cpuhw = this_cpu_ptr(&cpu_hw_sf);
1880 	struct aux_buffer *aux;
1881 	int err;
1882 
1883 	if (cpuhw->flags & PMU_F_IN_USE)
1884 		return -EAGAIN;
1885 
1886 	if (!SAMPL_DIAG_MODE(&event->hw) && !cpuhw->sfb.sdbt)
1887 		return -EINVAL;
1888 
1889 	err = 0;
1890 	perf_pmu_disable(event->pmu);
1891 
1892 	event->hw.state = PERF_HES_UPTODATE | PERF_HES_STOPPED;
1893 
1894 	/* Set up sampling controls.  Always program the sampling register
1895 	 * using the SDB-table start.  Reset TEAR_REG event hardware register
1896 	 * that is used by hw_perf_event_update() to store the sampling buffer
1897 	 * position after samples have been flushed.
1898 	 */
1899 	cpuhw->lsctl.s = 0;
1900 	cpuhw->lsctl.h = 1;
1901 	cpuhw->lsctl.interval = SAMPL_RATE(&event->hw);
1902 	if (!SAMPL_DIAG_MODE(&event->hw)) {
1903 		cpuhw->lsctl.tear = (unsigned long) cpuhw->sfb.sdbt;
1904 		cpuhw->lsctl.dear = *(unsigned long *) cpuhw->sfb.sdbt;
1905 		TEAR_REG(&event->hw) = (unsigned long) cpuhw->sfb.sdbt;
1906 	}
1907 
1908 	/* Ensure sampling functions are in the disabled state.  If disabled,
1909 	 * switch on sampling enable control. */
1910 	if (WARN_ON_ONCE(cpuhw->lsctl.es == 1 || cpuhw->lsctl.ed == 1)) {
1911 		err = -EAGAIN;
1912 		goto out;
1913 	}
1914 	if (SAMPL_DIAG_MODE(&event->hw)) {
1915 		aux = perf_aux_output_begin(&cpuhw->handle, event);
1916 		if (!aux) {
1917 			err = -EINVAL;
1918 			goto out;
1919 		}
1920 		err = aux_output_begin(&cpuhw->handle, aux, cpuhw);
1921 		if (err)
1922 			goto out;
1923 		cpuhw->lsctl.ed = 1;
1924 	}
1925 	cpuhw->lsctl.es = 1;
1926 
1927 	/* Set in_use flag and store event */
1928 	cpuhw->event = event;
1929 	cpuhw->flags |= PMU_F_IN_USE;
1930 
1931 	if (flags & PERF_EF_START)
1932 		cpumsf_pmu_start(event, PERF_EF_RELOAD);
1933 out:
1934 	perf_event_update_userpage(event);
1935 	perf_pmu_enable(event->pmu);
1936 	return err;
1937 }
1938 
1939 static void cpumsf_pmu_del(struct perf_event *event, int flags)
1940 {
1941 	struct cpu_hw_sf *cpuhw = this_cpu_ptr(&cpu_hw_sf);
1942 
1943 	perf_pmu_disable(event->pmu);
1944 	cpumsf_pmu_stop(event, PERF_EF_UPDATE);
1945 
1946 	cpuhw->lsctl.es = 0;
1947 	cpuhw->lsctl.ed = 0;
1948 	cpuhw->flags &= ~PMU_F_IN_USE;
1949 	cpuhw->event = NULL;
1950 
1951 	if (SAMPL_DIAG_MODE(&event->hw))
1952 		aux_output_end(&cpuhw->handle);
1953 	perf_event_update_userpage(event);
1954 	perf_pmu_enable(event->pmu);
1955 }
1956 
1957 CPUMF_EVENT_ATTR(SF, SF_CYCLES_BASIC, PERF_EVENT_CPUM_SF);
1958 CPUMF_EVENT_ATTR(SF, SF_CYCLES_BASIC_DIAG, PERF_EVENT_CPUM_SF_DIAG);
1959 
1960 /* Attribute list for CPU_SF.
1961  *
1962  * The availablitiy depends on the CPU_MF sampling facility authorization
1963  * for basic + diagnositic samples. This is determined at initialization
1964  * time by the sampling facility device driver.
1965  * If the authorization for basic samples is turned off, it should be
1966  * also turned off for diagnostic sampling.
1967  *
1968  * During initialization of the device driver, check the authorization
1969  * level for diagnostic sampling and installs the attribute
1970  * file for diagnostic sampling if necessary.
1971  *
1972  * For now install a placeholder to reference all possible attributes:
1973  * SF_CYCLES_BASIC and SF_CYCLES_BASIC_DIAG.
1974  * Add another entry for the final NULL pointer.
1975  */
1976 enum {
1977 	SF_CYCLES_BASIC_ATTR_IDX = 0,
1978 	SF_CYCLES_BASIC_DIAG_ATTR_IDX,
1979 	SF_CYCLES_ATTR_MAX
1980 };
1981 
1982 static struct attribute *cpumsf_pmu_events_attr[SF_CYCLES_ATTR_MAX + 1] = {
1983 	[SF_CYCLES_BASIC_ATTR_IDX] = CPUMF_EVENT_PTR(SF, SF_CYCLES_BASIC)
1984 };
1985 
1986 PMU_FORMAT_ATTR(event, "config:0-63");
1987 
1988 static struct attribute *cpumsf_pmu_format_attr[] = {
1989 	&format_attr_event.attr,
1990 	NULL,
1991 };
1992 
1993 static struct attribute_group cpumsf_pmu_events_group = {
1994 	.name = "events",
1995 	.attrs = cpumsf_pmu_events_attr,
1996 };
1997 
1998 static struct attribute_group cpumsf_pmu_format_group = {
1999 	.name = "format",
2000 	.attrs = cpumsf_pmu_format_attr,
2001 };
2002 
2003 static const struct attribute_group *cpumsf_pmu_attr_groups[] = {
2004 	&cpumsf_pmu_events_group,
2005 	&cpumsf_pmu_format_group,
2006 	NULL,
2007 };
2008 
2009 static struct pmu cpumf_sampling = {
2010 	.pmu_enable   = cpumsf_pmu_enable,
2011 	.pmu_disable  = cpumsf_pmu_disable,
2012 
2013 	.event_init   = cpumsf_pmu_event_init,
2014 	.add	      = cpumsf_pmu_add,
2015 	.del	      = cpumsf_pmu_del,
2016 
2017 	.start	      = cpumsf_pmu_start,
2018 	.stop	      = cpumsf_pmu_stop,
2019 	.read	      = cpumsf_pmu_read,
2020 
2021 	.attr_groups  = cpumsf_pmu_attr_groups,
2022 
2023 	.setup_aux    = aux_buffer_setup,
2024 	.free_aux     = aux_buffer_free,
2025 
2026 	.check_period = cpumsf_pmu_check_period,
2027 };
2028 
2029 static void cpumf_measurement_alert(struct ext_code ext_code,
2030 				    unsigned int alert, unsigned long unused)
2031 {
2032 	struct cpu_hw_sf *cpuhw;
2033 
2034 	if (!(alert & CPU_MF_INT_SF_MASK))
2035 		return;
2036 	inc_irq_stat(IRQEXT_CMS);
2037 	cpuhw = this_cpu_ptr(&cpu_hw_sf);
2038 
2039 	/* Measurement alerts are shared and might happen when the PMU
2040 	 * is not reserved.  Ignore these alerts in this case. */
2041 	if (!(cpuhw->flags & PMU_F_RESERVED))
2042 		return;
2043 
2044 	/* The processing below must take care of multiple alert events that
2045 	 * might be indicated concurrently. */
2046 
2047 	/* Program alert request */
2048 	if (alert & CPU_MF_INT_SF_PRA) {
2049 		if (cpuhw->flags & PMU_F_IN_USE)
2050 			if (SAMPL_DIAG_MODE(&cpuhw->event->hw))
2051 				hw_collect_aux(cpuhw);
2052 			else
2053 				hw_perf_event_update(cpuhw->event, 0);
2054 		else
2055 			WARN_ON_ONCE(!(cpuhw->flags & PMU_F_IN_USE));
2056 	}
2057 
2058 	/* Report measurement alerts only for non-PRA codes */
2059 	if (alert != CPU_MF_INT_SF_PRA)
2060 		debug_sprintf_event(sfdbg, 6, "%s: alert %#x\n", __func__,
2061 				    alert);
2062 
2063 	/* Sampling authorization change request */
2064 	if (alert & CPU_MF_INT_SF_SACA)
2065 		qsi(&cpuhw->qsi);
2066 
2067 	/* Loss of sample data due to high-priority machine activities */
2068 	if (alert & CPU_MF_INT_SF_LSDA) {
2069 		pr_err("Sample data was lost\n");
2070 		cpuhw->flags |= PMU_F_ERR_LSDA;
2071 		sf_disable();
2072 	}
2073 
2074 	/* Invalid sampling buffer entry */
2075 	if (alert & (CPU_MF_INT_SF_IAE|CPU_MF_INT_SF_ISE)) {
2076 		pr_err("A sampling buffer entry is incorrect (alert=0x%x)\n",
2077 		       alert);
2078 		cpuhw->flags |= PMU_F_ERR_IBE;
2079 		sf_disable();
2080 	}
2081 }
2082 
2083 static int cpusf_pmu_setup(unsigned int cpu, int flags)
2084 {
2085 	/* Ignore the notification if no events are scheduled on the PMU.
2086 	 * This might be racy...
2087 	 */
2088 	if (!atomic_read(&num_events))
2089 		return 0;
2090 
2091 	local_irq_disable();
2092 	setup_pmc_cpu(&flags);
2093 	local_irq_enable();
2094 	return 0;
2095 }
2096 
2097 static int s390_pmu_sf_online_cpu(unsigned int cpu)
2098 {
2099 	return cpusf_pmu_setup(cpu, PMC_INIT);
2100 }
2101 
2102 static int s390_pmu_sf_offline_cpu(unsigned int cpu)
2103 {
2104 	return cpusf_pmu_setup(cpu, PMC_RELEASE);
2105 }
2106 
2107 static int param_get_sfb_size(char *buffer, const struct kernel_param *kp)
2108 {
2109 	if (!cpum_sf_avail())
2110 		return -ENODEV;
2111 	return sprintf(buffer, "%lu,%lu", CPUM_SF_MIN_SDB, CPUM_SF_MAX_SDB);
2112 }
2113 
2114 static int param_set_sfb_size(const char *val, const struct kernel_param *kp)
2115 {
2116 	int rc;
2117 	unsigned long min, max;
2118 
2119 	if (!cpum_sf_avail())
2120 		return -ENODEV;
2121 	if (!val || !strlen(val))
2122 		return -EINVAL;
2123 
2124 	/* Valid parameter values: "min,max" or "max" */
2125 	min = CPUM_SF_MIN_SDB;
2126 	max = CPUM_SF_MAX_SDB;
2127 	if (strchr(val, ','))
2128 		rc = (sscanf(val, "%lu,%lu", &min, &max) == 2) ? 0 : -EINVAL;
2129 	else
2130 		rc = kstrtoul(val, 10, &max);
2131 
2132 	if (min < 2 || min >= max || max > get_num_physpages())
2133 		rc = -EINVAL;
2134 	if (rc)
2135 		return rc;
2136 
2137 	sfb_set_limits(min, max);
2138 	pr_info("The sampling buffer limits have changed to: "
2139 		"min %lu max %lu (diag %lu)\n",
2140 		CPUM_SF_MIN_SDB, CPUM_SF_MAX_SDB, CPUM_SF_SDB_DIAG_FACTOR);
2141 	return 0;
2142 }
2143 
2144 #define param_check_sfb_size(name, p) __param_check(name, p, void)
2145 static const struct kernel_param_ops param_ops_sfb_size = {
2146 	.set = param_set_sfb_size,
2147 	.get = param_get_sfb_size,
2148 };
2149 
2150 #define RS_INIT_FAILURE_QSI	  0x0001
2151 #define RS_INIT_FAILURE_BSDES	  0x0002
2152 #define RS_INIT_FAILURE_ALRT	  0x0003
2153 #define RS_INIT_FAILURE_PERF	  0x0004
2154 static void __init pr_cpumsf_err(unsigned int reason)
2155 {
2156 	pr_err("Sampling facility support for perf is not available: "
2157 	       "reason %#x\n", reason);
2158 }
2159 
2160 static int __init init_cpum_sampling_pmu(void)
2161 {
2162 	struct hws_qsi_info_block si;
2163 	int err;
2164 
2165 	if (!cpum_sf_avail())
2166 		return -ENODEV;
2167 
2168 	memset(&si, 0, sizeof(si));
2169 	if (qsi(&si)) {
2170 		pr_cpumsf_err(RS_INIT_FAILURE_QSI);
2171 		return -ENODEV;
2172 	}
2173 
2174 	if (!si.as && !si.ad)
2175 		return -ENODEV;
2176 
2177 	if (si.bsdes != sizeof(struct hws_basic_entry)) {
2178 		pr_cpumsf_err(RS_INIT_FAILURE_BSDES);
2179 		return -EINVAL;
2180 	}
2181 
2182 	if (si.ad) {
2183 		sfb_set_limits(CPUM_SF_MIN_SDB, CPUM_SF_MAX_SDB);
2184 		/* Sampling of diagnostic data authorized,
2185 		 * install event into attribute list of PMU device.
2186 		 */
2187 		cpumsf_pmu_events_attr[SF_CYCLES_BASIC_DIAG_ATTR_IDX] =
2188 			CPUMF_EVENT_PTR(SF, SF_CYCLES_BASIC_DIAG);
2189 	}
2190 
2191 	sfdbg = debug_register(KMSG_COMPONENT, 2, 1, 80);
2192 	if (!sfdbg) {
2193 		pr_err("Registering for s390dbf failed\n");
2194 		return -ENOMEM;
2195 	}
2196 	debug_register_view(sfdbg, &debug_sprintf_view);
2197 
2198 	err = register_external_irq(EXT_IRQ_MEASURE_ALERT,
2199 				    cpumf_measurement_alert);
2200 	if (err) {
2201 		pr_cpumsf_err(RS_INIT_FAILURE_ALRT);
2202 		debug_unregister(sfdbg);
2203 		goto out;
2204 	}
2205 
2206 	err = perf_pmu_register(&cpumf_sampling, "cpum_sf", PERF_TYPE_RAW);
2207 	if (err) {
2208 		pr_cpumsf_err(RS_INIT_FAILURE_PERF);
2209 		unregister_external_irq(EXT_IRQ_MEASURE_ALERT,
2210 					cpumf_measurement_alert);
2211 		debug_unregister(sfdbg);
2212 		goto out;
2213 	}
2214 
2215 	cpuhp_setup_state(CPUHP_AP_PERF_S390_SF_ONLINE, "perf/s390/sf:online",
2216 			  s390_pmu_sf_online_cpu, s390_pmu_sf_offline_cpu);
2217 out:
2218 	return err;
2219 }
2220 
2221 arch_initcall(init_cpum_sampling_pmu);
2222 core_param(cpum_sfb_size, CPUM_SF_MAX_SDB, sfb_size, 0640);
2223