1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Performance event support for s390x - CPU-measurement Counter Facility 4 * 5 * Copyright IBM Corp. 2012, 2023 6 * Author(s): Hendrik Brueckner <brueckner@linux.ibm.com> 7 * Thomas Richter <tmricht@linux.ibm.com> 8 */ 9 #define KMSG_COMPONENT "cpum_cf" 10 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt 11 12 #include <linux/kernel.h> 13 #include <linux/kernel_stat.h> 14 #include <linux/percpu.h> 15 #include <linux/notifier.h> 16 #include <linux/init.h> 17 #include <linux/export.h> 18 #include <linux/miscdevice.h> 19 #include <linux/perf_event.h> 20 21 #include <asm/cpu_mf.h> 22 #include <asm/hwctrset.h> 23 #include <asm/debug.h> 24 25 enum cpumf_ctr_set { 26 CPUMF_CTR_SET_BASIC = 0, /* Basic Counter Set */ 27 CPUMF_CTR_SET_USER = 1, /* Problem-State Counter Set */ 28 CPUMF_CTR_SET_CRYPTO = 2, /* Crypto-Activity Counter Set */ 29 CPUMF_CTR_SET_EXT = 3, /* Extended Counter Set */ 30 CPUMF_CTR_SET_MT_DIAG = 4, /* MT-diagnostic Counter Set */ 31 32 /* Maximum number of counter sets */ 33 CPUMF_CTR_SET_MAX, 34 }; 35 36 #define CPUMF_LCCTL_ENABLE_SHIFT 16 37 #define CPUMF_LCCTL_ACTCTL_SHIFT 0 38 39 static inline void ctr_set_enable(u64 *state, u64 ctrsets) 40 { 41 *state |= ctrsets << CPUMF_LCCTL_ENABLE_SHIFT; 42 } 43 44 static inline void ctr_set_disable(u64 *state, u64 ctrsets) 45 { 46 *state &= ~(ctrsets << CPUMF_LCCTL_ENABLE_SHIFT); 47 } 48 49 static inline void ctr_set_start(u64 *state, u64 ctrsets) 50 { 51 *state |= ctrsets << CPUMF_LCCTL_ACTCTL_SHIFT; 52 } 53 54 static inline void ctr_set_stop(u64 *state, u64 ctrsets) 55 { 56 *state &= ~(ctrsets << CPUMF_LCCTL_ACTCTL_SHIFT); 57 } 58 59 static inline int ctr_stcctm(enum cpumf_ctr_set set, u64 range, u64 *dest) 60 { 61 switch (set) { 62 case CPUMF_CTR_SET_BASIC: 63 return stcctm(BASIC, range, dest); 64 case CPUMF_CTR_SET_USER: 65 return stcctm(PROBLEM_STATE, range, dest); 66 case CPUMF_CTR_SET_CRYPTO: 67 return stcctm(CRYPTO_ACTIVITY, range, dest); 68 case CPUMF_CTR_SET_EXT: 69 return stcctm(EXTENDED, range, dest); 70 case CPUMF_CTR_SET_MT_DIAG: 71 return stcctm(MT_DIAG_CLEARING, range, dest); 72 case CPUMF_CTR_SET_MAX: 73 return 3; 74 } 75 return 3; 76 } 77 78 struct cpu_cf_events { 79 refcount_t refcnt; /* Reference count */ 80 atomic_t ctr_set[CPUMF_CTR_SET_MAX]; 81 u64 state; /* For perf_event_open SVC */ 82 u64 dev_state; /* For /dev/hwctr */ 83 unsigned int flags; 84 size_t used; /* Bytes used in data */ 85 size_t usedss; /* Bytes used in start/stop */ 86 unsigned char start[PAGE_SIZE]; /* Counter set at event add */ 87 unsigned char stop[PAGE_SIZE]; /* Counter set at event delete */ 88 unsigned char data[PAGE_SIZE]; /* Counter set at /dev/hwctr */ 89 unsigned int sets; /* # Counter set saved in memory */ 90 }; 91 92 static unsigned int cfdiag_cpu_speed; /* CPU speed for CF_DIAG trailer */ 93 static debug_info_t *cf_dbg; 94 95 /* 96 * The CPU Measurement query counter information instruction contains 97 * information which varies per machine generation, but is constant and 98 * does not change when running on a particular machine, such as counter 99 * first and second version number. This is needed to determine the size 100 * of counter sets. Extract this information at device driver initialization. 101 */ 102 static struct cpumf_ctr_info cpumf_ctr_info; 103 104 struct cpu_cf_ptr { 105 struct cpu_cf_events *cpucf; 106 }; 107 108 static struct cpu_cf_root { /* Anchor to per CPU data */ 109 refcount_t refcnt; /* Overall active events */ 110 struct cpu_cf_ptr __percpu *cfptr; 111 } cpu_cf_root; 112 113 /* 114 * Serialize event initialization and event removal. Both are called from 115 * user space in task context with perf_event_open() and close() 116 * system calls. 117 * 118 * This mutex serializes functions cpum_cf_alloc_cpu() called at event 119 * initialization via cpumf_pmu_event_init() and function cpum_cf_free_cpu() 120 * called at event removal via call back function hw_perf_event_destroy() 121 * when the event is deleted. They are serialized to enforce correct 122 * bookkeeping of pointer and reference counts anchored by 123 * struct cpu_cf_root and the access to cpu_cf_root::refcnt and the 124 * per CPU pointers stored in cpu_cf_root::cfptr. 125 */ 126 static DEFINE_MUTEX(pmc_reserve_mutex); 127 128 /* 129 * Get pointer to per-cpu structure. 130 * 131 * Function get_cpu_cfhw() is called from 132 * - cfset_copy_all(): This function is protected by cpus_read_lock(), so 133 * CPU hot plug remove can not happen. Event removal requires a close() 134 * first. 135 * 136 * Function this_cpu_cfhw() is called from perf common code functions: 137 * - pmu_{en|dis}able(), pmu_{add|del}()and pmu_{start|stop}(): 138 * All functions execute with interrupts disabled on that particular CPU. 139 * - cfset_ioctl_{on|off}, cfset_cpu_read(): see comment cfset_copy_all(). 140 * 141 * Therefore it is safe to access the CPU specific pointer to the event. 142 */ 143 static struct cpu_cf_events *get_cpu_cfhw(int cpu) 144 { 145 struct cpu_cf_ptr __percpu *p = cpu_cf_root.cfptr; 146 147 if (p) { 148 struct cpu_cf_ptr *q = per_cpu_ptr(p, cpu); 149 150 return q->cpucf; 151 } 152 return NULL; 153 } 154 155 static struct cpu_cf_events *this_cpu_cfhw(void) 156 { 157 return get_cpu_cfhw(smp_processor_id()); 158 } 159 160 /* Disable counter sets on dedicated CPU */ 161 static void cpum_cf_reset_cpu(void *flags) 162 { 163 lcctl(0); 164 } 165 166 /* Free per CPU data when the last event is removed. */ 167 static void cpum_cf_free_root(void) 168 { 169 if (!refcount_dec_and_test(&cpu_cf_root.refcnt)) 170 return; 171 free_percpu(cpu_cf_root.cfptr); 172 cpu_cf_root.cfptr = NULL; 173 irq_subclass_unregister(IRQ_SUBCLASS_MEASUREMENT_ALERT); 174 on_each_cpu(cpum_cf_reset_cpu, NULL, 1); 175 debug_sprintf_event(cf_dbg, 4, "%s2 root.refcnt %u cfptr %px\n", 176 __func__, refcount_read(&cpu_cf_root.refcnt), 177 cpu_cf_root.cfptr); 178 } 179 180 /* 181 * On initialization of first event also allocate per CPU data dynamically. 182 * Start with an array of pointers, the array size is the maximum number of 183 * CPUs possible, which might be larger than the number of CPUs currently 184 * online. 185 */ 186 static int cpum_cf_alloc_root(void) 187 { 188 int rc = 0; 189 190 if (refcount_inc_not_zero(&cpu_cf_root.refcnt)) 191 return rc; 192 193 /* The memory is already zeroed. */ 194 cpu_cf_root.cfptr = alloc_percpu(struct cpu_cf_ptr); 195 if (cpu_cf_root.cfptr) { 196 refcount_set(&cpu_cf_root.refcnt, 1); 197 on_each_cpu(cpum_cf_reset_cpu, NULL, 1); 198 irq_subclass_register(IRQ_SUBCLASS_MEASUREMENT_ALERT); 199 } else { 200 rc = -ENOMEM; 201 } 202 203 return rc; 204 } 205 206 /* Free CPU counter data structure for a PMU */ 207 static void cpum_cf_free_cpu(int cpu) 208 { 209 struct cpu_cf_events *cpuhw; 210 struct cpu_cf_ptr *p; 211 212 mutex_lock(&pmc_reserve_mutex); 213 /* 214 * When invoked via CPU hotplug handler, there might be no events 215 * installed or that particular CPU might not have an 216 * event installed. This anchor pointer can be NULL! 217 */ 218 if (!cpu_cf_root.cfptr) 219 goto out; 220 p = per_cpu_ptr(cpu_cf_root.cfptr, cpu); 221 cpuhw = p->cpucf; 222 /* 223 * Might be zero when called from CPU hotplug handler and no event 224 * installed on that CPU, but on different CPUs. 225 */ 226 if (!cpuhw) 227 goto out; 228 229 if (refcount_dec_and_test(&cpuhw->refcnt)) { 230 kfree(cpuhw); 231 p->cpucf = NULL; 232 } 233 cpum_cf_free_root(); 234 out: 235 mutex_unlock(&pmc_reserve_mutex); 236 } 237 238 /* Allocate CPU counter data structure for a PMU. Called under mutex lock. */ 239 static int cpum_cf_alloc_cpu(int cpu) 240 { 241 struct cpu_cf_events *cpuhw; 242 struct cpu_cf_ptr *p; 243 int rc; 244 245 mutex_lock(&pmc_reserve_mutex); 246 rc = cpum_cf_alloc_root(); 247 if (rc) 248 goto unlock; 249 p = per_cpu_ptr(cpu_cf_root.cfptr, cpu); 250 cpuhw = p->cpucf; 251 252 if (!cpuhw) { 253 cpuhw = kzalloc(sizeof(*cpuhw), GFP_KERNEL); 254 if (cpuhw) { 255 p->cpucf = cpuhw; 256 refcount_set(&cpuhw->refcnt, 1); 257 } else { 258 rc = -ENOMEM; 259 } 260 } else { 261 refcount_inc(&cpuhw->refcnt); 262 } 263 if (rc) { 264 /* 265 * Error in allocation of event, decrement anchor. Since 266 * cpu_cf_event in not created, its destroy() function is not 267 * invoked. Adjust the reference counter for the anchor. 268 */ 269 cpum_cf_free_root(); 270 } 271 unlock: 272 mutex_unlock(&pmc_reserve_mutex); 273 return rc; 274 } 275 276 /* 277 * Create/delete per CPU data structures for /dev/hwctr interface and events 278 * created by perf_event_open(). 279 * If cpu is -1, track task on all available CPUs. This requires 280 * allocation of hardware data structures for all CPUs. This setup handles 281 * perf_event_open() with task context and /dev/hwctr interface. 282 * If cpu is non-zero install event on this CPU only. This setup handles 283 * perf_event_open() with CPU context. 284 */ 285 static int cpum_cf_alloc(int cpu) 286 { 287 cpumask_var_t mask; 288 int rc; 289 290 if (cpu == -1) { 291 if (!zalloc_cpumask_var(&mask, GFP_KERNEL)) 292 return -ENOMEM; 293 for_each_online_cpu(cpu) { 294 rc = cpum_cf_alloc_cpu(cpu); 295 if (rc) { 296 for_each_cpu(cpu, mask) 297 cpum_cf_free_cpu(cpu); 298 break; 299 } 300 cpumask_set_cpu(cpu, mask); 301 } 302 free_cpumask_var(mask); 303 } else { 304 rc = cpum_cf_alloc_cpu(cpu); 305 } 306 return rc; 307 } 308 309 static void cpum_cf_free(int cpu) 310 { 311 if (cpu == -1) { 312 for_each_online_cpu(cpu) 313 cpum_cf_free_cpu(cpu); 314 } else { 315 cpum_cf_free_cpu(cpu); 316 } 317 } 318 319 #define CF_DIAG_CTRSET_DEF 0xfeef /* Counter set header mark */ 320 /* interval in seconds */ 321 322 /* Counter sets are stored as data stream in a page sized memory buffer and 323 * exported to user space via raw data attached to the event sample data. 324 * Each counter set starts with an eight byte header consisting of: 325 * - a two byte eye catcher (0xfeef) 326 * - a one byte counter set number 327 * - a two byte counter set size (indicates the number of counters in this set) 328 * - a three byte reserved value (must be zero) to make the header the same 329 * size as a counter value. 330 * All counter values are eight byte in size. 331 * 332 * All counter sets are followed by a 64 byte trailer. 333 * The trailer consists of a: 334 * - flag field indicating valid fields when corresponding bit set 335 * - the counter facility first and second version number 336 * - the CPU speed if nonzero 337 * - the time stamp the counter sets have been collected 338 * - the time of day (TOD) base value 339 * - the machine type. 340 * 341 * The counter sets are saved when the process is prepared to be executed on a 342 * CPU and saved again when the process is going to be removed from a CPU. 343 * The difference of both counter sets are calculated and stored in the event 344 * sample data area. 345 */ 346 struct cf_ctrset_entry { /* CPU-M CF counter set entry (8 byte) */ 347 unsigned int def:16; /* 0-15 Data Entry Format */ 348 unsigned int set:16; /* 16-31 Counter set identifier */ 349 unsigned int ctr:16; /* 32-47 Number of stored counters */ 350 unsigned int res1:16; /* 48-63 Reserved */ 351 }; 352 353 struct cf_trailer_entry { /* CPU-M CF_DIAG trailer (64 byte) */ 354 /* 0 - 7 */ 355 union { 356 struct { 357 unsigned int clock_base:1; /* TOD clock base set */ 358 unsigned int speed:1; /* CPU speed set */ 359 /* Measurement alerts */ 360 unsigned int mtda:1; /* Loss of MT ctr. data alert */ 361 unsigned int caca:1; /* Counter auth. change alert */ 362 unsigned int lcda:1; /* Loss of counter data alert */ 363 }; 364 unsigned long flags; /* 0-63 All indicators */ 365 }; 366 /* 8 - 15 */ 367 unsigned int cfvn:16; /* 64-79 Ctr First Version */ 368 unsigned int csvn:16; /* 80-95 Ctr Second Version */ 369 unsigned int cpu_speed:32; /* 96-127 CPU speed */ 370 /* 16 - 23 */ 371 unsigned long timestamp; /* 128-191 Timestamp (TOD) */ 372 /* 24 - 55 */ 373 union { 374 struct { 375 unsigned long progusage1; 376 unsigned long progusage2; 377 unsigned long progusage3; 378 unsigned long tod_base; 379 }; 380 unsigned long progusage[4]; 381 }; 382 /* 56 - 63 */ 383 unsigned int mach_type:16; /* Machine type */ 384 unsigned int res1:16; /* Reserved */ 385 unsigned int res2:32; /* Reserved */ 386 }; 387 388 /* Create the trailer data at the end of a page. */ 389 static void cfdiag_trailer(struct cf_trailer_entry *te) 390 { 391 struct cpuid cpuid; 392 393 te->cfvn = cpumf_ctr_info.cfvn; /* Counter version numbers */ 394 te->csvn = cpumf_ctr_info.csvn; 395 396 get_cpu_id(&cpuid); /* Machine type */ 397 te->mach_type = cpuid.machine; 398 te->cpu_speed = cfdiag_cpu_speed; 399 if (te->cpu_speed) 400 te->speed = 1; 401 te->clock_base = 1; /* Save clock base */ 402 te->tod_base = tod_clock_base.tod; 403 te->timestamp = get_tod_clock_fast(); 404 } 405 406 /* 407 * The number of counters per counter set varies between machine generations, 408 * but is constant when running on a particular machine generation. 409 * Determine each counter set size at device driver initialization and 410 * retrieve it later. 411 */ 412 static size_t cpumf_ctr_setsizes[CPUMF_CTR_SET_MAX]; 413 static void cpum_cf_make_setsize(enum cpumf_ctr_set ctrset) 414 { 415 size_t ctrset_size = 0; 416 417 switch (ctrset) { 418 case CPUMF_CTR_SET_BASIC: 419 if (cpumf_ctr_info.cfvn >= 1) 420 ctrset_size = 6; 421 break; 422 case CPUMF_CTR_SET_USER: 423 if (cpumf_ctr_info.cfvn == 1) 424 ctrset_size = 6; 425 else if (cpumf_ctr_info.cfvn >= 3) 426 ctrset_size = 2; 427 break; 428 case CPUMF_CTR_SET_CRYPTO: 429 if (cpumf_ctr_info.csvn >= 1 && cpumf_ctr_info.csvn <= 5) 430 ctrset_size = 16; 431 else if (cpumf_ctr_info.csvn == 6 || cpumf_ctr_info.csvn == 7) 432 ctrset_size = 20; 433 break; 434 case CPUMF_CTR_SET_EXT: 435 if (cpumf_ctr_info.csvn == 1) 436 ctrset_size = 32; 437 else if (cpumf_ctr_info.csvn == 2) 438 ctrset_size = 48; 439 else if (cpumf_ctr_info.csvn >= 3 && cpumf_ctr_info.csvn <= 5) 440 ctrset_size = 128; 441 else if (cpumf_ctr_info.csvn == 6 || cpumf_ctr_info.csvn == 7) 442 ctrset_size = 160; 443 break; 444 case CPUMF_CTR_SET_MT_DIAG: 445 if (cpumf_ctr_info.csvn > 3) 446 ctrset_size = 48; 447 break; 448 case CPUMF_CTR_SET_MAX: 449 break; 450 } 451 cpumf_ctr_setsizes[ctrset] = ctrset_size; 452 } 453 454 /* 455 * Return the maximum possible counter set size (in number of 8 byte counters) 456 * depending on type and model number. 457 */ 458 static size_t cpum_cf_read_setsize(enum cpumf_ctr_set ctrset) 459 { 460 return cpumf_ctr_setsizes[ctrset]; 461 } 462 463 /* Read a counter set. The counter set number determines the counter set and 464 * the CPUM-CF first and second version number determine the number of 465 * available counters in each counter set. 466 * Each counter set starts with header containing the counter set number and 467 * the number of eight byte counters. 468 * 469 * The functions returns the number of bytes occupied by this counter set 470 * including the header. 471 * If there is no counter in the counter set, this counter set is useless and 472 * zero is returned on this case. 473 * 474 * Note that the counter sets may not be enabled or active and the stcctm 475 * instruction might return error 3. Depending on error_ok value this is ok, 476 * for example when called from cpumf_pmu_start() call back function. 477 */ 478 static size_t cfdiag_getctrset(struct cf_ctrset_entry *ctrdata, int ctrset, 479 size_t room, bool error_ok) 480 { 481 size_t ctrset_size, need = 0; 482 int rc = 3; /* Assume write failure */ 483 484 ctrdata->def = CF_DIAG_CTRSET_DEF; 485 ctrdata->set = ctrset; 486 ctrdata->res1 = 0; 487 ctrset_size = cpum_cf_read_setsize(ctrset); 488 489 if (ctrset_size) { /* Save data */ 490 need = ctrset_size * sizeof(u64) + sizeof(*ctrdata); 491 if (need <= room) { 492 rc = ctr_stcctm(ctrset, ctrset_size, 493 (u64 *)(ctrdata + 1)); 494 } 495 if (rc != 3 || error_ok) 496 ctrdata->ctr = ctrset_size; 497 else 498 need = 0; 499 } 500 501 return need; 502 } 503 504 static const u64 cpumf_ctr_ctl[CPUMF_CTR_SET_MAX] = { 505 [CPUMF_CTR_SET_BASIC] = 0x02, 506 [CPUMF_CTR_SET_USER] = 0x04, 507 [CPUMF_CTR_SET_CRYPTO] = 0x08, 508 [CPUMF_CTR_SET_EXT] = 0x01, 509 [CPUMF_CTR_SET_MT_DIAG] = 0x20, 510 }; 511 512 /* Read out all counter sets and save them in the provided data buffer. 513 * The last 64 byte host an artificial trailer entry. 514 */ 515 static size_t cfdiag_getctr(void *data, size_t sz, unsigned long auth, 516 bool error_ok) 517 { 518 struct cf_trailer_entry *trailer; 519 size_t offset = 0, done; 520 int i; 521 522 memset(data, 0, sz); 523 sz -= sizeof(*trailer); /* Always room for trailer */ 524 for (i = CPUMF_CTR_SET_BASIC; i < CPUMF_CTR_SET_MAX; ++i) { 525 struct cf_ctrset_entry *ctrdata = data + offset; 526 527 if (!(auth & cpumf_ctr_ctl[i])) 528 continue; /* Counter set not authorized */ 529 530 done = cfdiag_getctrset(ctrdata, i, sz - offset, error_ok); 531 offset += done; 532 } 533 trailer = data + offset; 534 cfdiag_trailer(trailer); 535 return offset + sizeof(*trailer); 536 } 537 538 /* Calculate the difference for each counter in a counter set. */ 539 static void cfdiag_diffctrset(u64 *pstart, u64 *pstop, int counters) 540 { 541 for (; --counters >= 0; ++pstart, ++pstop) 542 if (*pstop >= *pstart) 543 *pstop -= *pstart; 544 else 545 *pstop = *pstart - *pstop + 1; 546 } 547 548 /* Scan the counter sets and calculate the difference of each counter 549 * in each set. The result is the increment of each counter during the 550 * period the counter set has been activated. 551 * 552 * Return true on success. 553 */ 554 static int cfdiag_diffctr(struct cpu_cf_events *cpuhw, unsigned long auth) 555 { 556 struct cf_trailer_entry *trailer_start, *trailer_stop; 557 struct cf_ctrset_entry *ctrstart, *ctrstop; 558 size_t offset = 0; 559 560 auth &= (1 << CPUMF_LCCTL_ENABLE_SHIFT) - 1; 561 do { 562 ctrstart = (struct cf_ctrset_entry *)(cpuhw->start + offset); 563 ctrstop = (struct cf_ctrset_entry *)(cpuhw->stop + offset); 564 565 if (memcmp(ctrstop, ctrstart, sizeof(*ctrstop))) { 566 pr_err_once("cpum_cf_diag counter set compare error " 567 "in set %i\n", ctrstart->set); 568 return 0; 569 } 570 auth &= ~cpumf_ctr_ctl[ctrstart->set]; 571 if (ctrstart->def == CF_DIAG_CTRSET_DEF) { 572 cfdiag_diffctrset((u64 *)(ctrstart + 1), 573 (u64 *)(ctrstop + 1), ctrstart->ctr); 574 offset += ctrstart->ctr * sizeof(u64) + 575 sizeof(*ctrstart); 576 } 577 } while (ctrstart->def && auth); 578 579 /* Save time_stamp from start of event in stop's trailer */ 580 trailer_start = (struct cf_trailer_entry *)(cpuhw->start + offset); 581 trailer_stop = (struct cf_trailer_entry *)(cpuhw->stop + offset); 582 trailer_stop->progusage[0] = trailer_start->timestamp; 583 584 return 1; 585 } 586 587 static enum cpumf_ctr_set get_counter_set(u64 event) 588 { 589 int set = CPUMF_CTR_SET_MAX; 590 591 if (event < 32) 592 set = CPUMF_CTR_SET_BASIC; 593 else if (event < 64) 594 set = CPUMF_CTR_SET_USER; 595 else if (event < 128) 596 set = CPUMF_CTR_SET_CRYPTO; 597 else if (event < 288) 598 set = CPUMF_CTR_SET_EXT; 599 else if (event >= 448 && event < 496) 600 set = CPUMF_CTR_SET_MT_DIAG; 601 602 return set; 603 } 604 605 static int validate_ctr_version(const u64 config, enum cpumf_ctr_set set) 606 { 607 u16 mtdiag_ctl; 608 int err = 0; 609 610 /* check required version for counter sets */ 611 switch (set) { 612 case CPUMF_CTR_SET_BASIC: 613 case CPUMF_CTR_SET_USER: 614 if (cpumf_ctr_info.cfvn < 1) 615 err = -EOPNOTSUPP; 616 break; 617 case CPUMF_CTR_SET_CRYPTO: 618 if ((cpumf_ctr_info.csvn >= 1 && cpumf_ctr_info.csvn <= 5 && 619 config > 79) || (cpumf_ctr_info.csvn >= 6 && config > 83)) 620 err = -EOPNOTSUPP; 621 break; 622 case CPUMF_CTR_SET_EXT: 623 if (cpumf_ctr_info.csvn < 1) 624 err = -EOPNOTSUPP; 625 if ((cpumf_ctr_info.csvn == 1 && config > 159) || 626 (cpumf_ctr_info.csvn == 2 && config > 175) || 627 (cpumf_ctr_info.csvn >= 3 && cpumf_ctr_info.csvn <= 5 && 628 config > 255) || 629 (cpumf_ctr_info.csvn >= 6 && config > 287)) 630 err = -EOPNOTSUPP; 631 break; 632 case CPUMF_CTR_SET_MT_DIAG: 633 if (cpumf_ctr_info.csvn <= 3) 634 err = -EOPNOTSUPP; 635 /* 636 * MT-diagnostic counters are read-only. The counter set 637 * is automatically enabled and activated on all CPUs with 638 * multithreading (SMT). Deactivation of multithreading 639 * also disables the counter set. State changes are ignored 640 * by lcctl(). Because Linux controls SMT enablement through 641 * a kernel parameter only, the counter set is either disabled 642 * or enabled and active. 643 * 644 * Thus, the counters can only be used if SMT is on and the 645 * counter set is enabled and active. 646 */ 647 mtdiag_ctl = cpumf_ctr_ctl[CPUMF_CTR_SET_MT_DIAG]; 648 if (!((cpumf_ctr_info.auth_ctl & mtdiag_ctl) && 649 (cpumf_ctr_info.enable_ctl & mtdiag_ctl) && 650 (cpumf_ctr_info.act_ctl & mtdiag_ctl))) 651 err = -EOPNOTSUPP; 652 break; 653 case CPUMF_CTR_SET_MAX: 654 err = -EOPNOTSUPP; 655 } 656 657 return err; 658 } 659 660 /* 661 * Change the CPUMF state to active. 662 * Enable and activate the CPU-counter sets according 663 * to the per-cpu control state. 664 */ 665 static void cpumf_pmu_enable(struct pmu *pmu) 666 { 667 struct cpu_cf_events *cpuhw = this_cpu_cfhw(); 668 int err; 669 670 if (!cpuhw || (cpuhw->flags & PMU_F_ENABLED)) 671 return; 672 673 err = lcctl(cpuhw->state | cpuhw->dev_state); 674 if (err) 675 pr_err("Enabling the performance measuring unit failed with rc=%x\n", err); 676 else 677 cpuhw->flags |= PMU_F_ENABLED; 678 } 679 680 /* 681 * Change the CPUMF state to inactive. 682 * Disable and enable (inactive) the CPU-counter sets according 683 * to the per-cpu control state. 684 */ 685 static void cpumf_pmu_disable(struct pmu *pmu) 686 { 687 struct cpu_cf_events *cpuhw = this_cpu_cfhw(); 688 u64 inactive; 689 int err; 690 691 if (!cpuhw || !(cpuhw->flags & PMU_F_ENABLED)) 692 return; 693 694 inactive = cpuhw->state & ~((1 << CPUMF_LCCTL_ENABLE_SHIFT) - 1); 695 inactive |= cpuhw->dev_state; 696 err = lcctl(inactive); 697 if (err) 698 pr_err("Disabling the performance measuring unit failed with rc=%x\n", err); 699 else 700 cpuhw->flags &= ~PMU_F_ENABLED; 701 } 702 703 /* Release the PMU if event is the last perf event */ 704 static void hw_perf_event_destroy(struct perf_event *event) 705 { 706 cpum_cf_free(event->cpu); 707 } 708 709 /* CPUMF <-> perf event mappings for kernel+userspace (basic set) */ 710 static const int cpumf_generic_events_basic[] = { 711 [PERF_COUNT_HW_CPU_CYCLES] = 0, 712 [PERF_COUNT_HW_INSTRUCTIONS] = 1, 713 [PERF_COUNT_HW_CACHE_REFERENCES] = -1, 714 [PERF_COUNT_HW_CACHE_MISSES] = -1, 715 [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = -1, 716 [PERF_COUNT_HW_BRANCH_MISSES] = -1, 717 [PERF_COUNT_HW_BUS_CYCLES] = -1, 718 }; 719 /* CPUMF <-> perf event mappings for userspace (problem-state set) */ 720 static const int cpumf_generic_events_user[] = { 721 [PERF_COUNT_HW_CPU_CYCLES] = 32, 722 [PERF_COUNT_HW_INSTRUCTIONS] = 33, 723 [PERF_COUNT_HW_CACHE_REFERENCES] = -1, 724 [PERF_COUNT_HW_CACHE_MISSES] = -1, 725 [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = -1, 726 [PERF_COUNT_HW_BRANCH_MISSES] = -1, 727 [PERF_COUNT_HW_BUS_CYCLES] = -1, 728 }; 729 730 static int is_userspace_event(u64 ev) 731 { 732 return cpumf_generic_events_user[PERF_COUNT_HW_CPU_CYCLES] == ev || 733 cpumf_generic_events_user[PERF_COUNT_HW_INSTRUCTIONS] == ev; 734 } 735 736 static int __hw_perf_event_init(struct perf_event *event, unsigned int type) 737 { 738 struct perf_event_attr *attr = &event->attr; 739 struct hw_perf_event *hwc = &event->hw; 740 enum cpumf_ctr_set set; 741 u64 ev; 742 743 switch (type) { 744 case PERF_TYPE_RAW: 745 /* Raw events are used to access counters directly, 746 * hence do not permit excludes */ 747 if (attr->exclude_kernel || attr->exclude_user || 748 attr->exclude_hv) 749 return -EOPNOTSUPP; 750 ev = attr->config; 751 break; 752 753 case PERF_TYPE_HARDWARE: 754 if (is_sampling_event(event)) /* No sampling support */ 755 return -ENOENT; 756 ev = attr->config; 757 if (!attr->exclude_user && attr->exclude_kernel) { 758 /* 759 * Count user space (problem-state) only 760 * Handle events 32 and 33 as 0:u and 1:u 761 */ 762 if (!is_userspace_event(ev)) { 763 if (ev >= ARRAY_SIZE(cpumf_generic_events_user)) 764 return -EOPNOTSUPP; 765 ev = cpumf_generic_events_user[ev]; 766 } 767 } else if (!attr->exclude_kernel && attr->exclude_user) { 768 /* No support for kernel space counters only */ 769 return -EOPNOTSUPP; 770 } else { 771 /* Count user and kernel space, incl. events 32 + 33 */ 772 if (!is_userspace_event(ev)) { 773 if (ev >= ARRAY_SIZE(cpumf_generic_events_basic)) 774 return -EOPNOTSUPP; 775 ev = cpumf_generic_events_basic[ev]; 776 } 777 } 778 break; 779 780 default: 781 return -ENOENT; 782 } 783 784 if (ev == -1) 785 return -ENOENT; 786 787 if (ev > PERF_CPUM_CF_MAX_CTR) 788 return -ENOENT; 789 790 /* Obtain the counter set to which the specified counter belongs */ 791 set = get_counter_set(ev); 792 switch (set) { 793 case CPUMF_CTR_SET_BASIC: 794 case CPUMF_CTR_SET_USER: 795 case CPUMF_CTR_SET_CRYPTO: 796 case CPUMF_CTR_SET_EXT: 797 case CPUMF_CTR_SET_MT_DIAG: 798 /* 799 * Use the hardware perf event structure to store the 800 * counter number in the 'config' member and the counter 801 * set number in the 'config_base' as bit mask. 802 * It is later used to enable/disable the counter(s). 803 */ 804 hwc->config = ev; 805 hwc->config_base = cpumf_ctr_ctl[set]; 806 break; 807 case CPUMF_CTR_SET_MAX: 808 /* The counter could not be associated to a counter set */ 809 return -EINVAL; 810 } 811 812 /* Initialize for using the CPU-measurement counter facility */ 813 if (cpum_cf_alloc(event->cpu)) 814 return -ENOMEM; 815 event->destroy = hw_perf_event_destroy; 816 817 /* 818 * Finally, validate version and authorization of the counter set. 819 * If the particular CPU counter set is not authorized, 820 * return with -ENOENT in order to fall back to other 821 * PMUs that might suffice the event request. 822 */ 823 if (!(hwc->config_base & cpumf_ctr_info.auth_ctl)) 824 return -ENOENT; 825 return validate_ctr_version(hwc->config, set); 826 } 827 828 /* Events CPU_CYLCES and INSTRUCTIONS can be submitted with two different 829 * attribute::type values: 830 * - PERF_TYPE_HARDWARE: 831 * - pmu->type: 832 * Handle both type of invocations identical. They address the same hardware. 833 * The result is different when event modifiers exclude_kernel and/or 834 * exclude_user are also set. 835 */ 836 static int cpumf_pmu_event_type(struct perf_event *event) 837 { 838 u64 ev = event->attr.config; 839 840 if (cpumf_generic_events_basic[PERF_COUNT_HW_CPU_CYCLES] == ev || 841 cpumf_generic_events_basic[PERF_COUNT_HW_INSTRUCTIONS] == ev || 842 cpumf_generic_events_user[PERF_COUNT_HW_CPU_CYCLES] == ev || 843 cpumf_generic_events_user[PERF_COUNT_HW_INSTRUCTIONS] == ev) 844 return PERF_TYPE_HARDWARE; 845 return PERF_TYPE_RAW; 846 } 847 848 static int cpumf_pmu_event_init(struct perf_event *event) 849 { 850 unsigned int type = event->attr.type; 851 int err; 852 853 if (type == PERF_TYPE_HARDWARE || type == PERF_TYPE_RAW) 854 err = __hw_perf_event_init(event, type); 855 else if (event->pmu->type == type) 856 /* Registered as unknown PMU */ 857 err = __hw_perf_event_init(event, cpumf_pmu_event_type(event)); 858 else 859 return -ENOENT; 860 861 if (unlikely(err) && event->destroy) 862 event->destroy(event); 863 864 return err; 865 } 866 867 static int hw_perf_event_reset(struct perf_event *event) 868 { 869 u64 prev, new; 870 int err; 871 872 do { 873 prev = local64_read(&event->hw.prev_count); 874 err = ecctr(event->hw.config, &new); 875 if (err) { 876 if (err != 3) 877 break; 878 /* The counter is not (yet) available. This 879 * might happen if the counter set to which 880 * this counter belongs is in the disabled 881 * state. 882 */ 883 new = 0; 884 } 885 } while (local64_cmpxchg(&event->hw.prev_count, prev, new) != prev); 886 887 return err; 888 } 889 890 static void hw_perf_event_update(struct perf_event *event) 891 { 892 u64 prev, new, delta; 893 int err; 894 895 do { 896 prev = local64_read(&event->hw.prev_count); 897 err = ecctr(event->hw.config, &new); 898 if (err) 899 return; 900 } while (local64_cmpxchg(&event->hw.prev_count, prev, new) != prev); 901 902 delta = (prev <= new) ? new - prev 903 : (-1ULL - prev) + new + 1; /* overflow */ 904 local64_add(delta, &event->count); 905 } 906 907 static void cpumf_pmu_read(struct perf_event *event) 908 { 909 if (event->hw.state & PERF_HES_STOPPED) 910 return; 911 912 hw_perf_event_update(event); 913 } 914 915 static void cpumf_pmu_start(struct perf_event *event, int flags) 916 { 917 struct cpu_cf_events *cpuhw = this_cpu_cfhw(); 918 struct hw_perf_event *hwc = &event->hw; 919 int i; 920 921 if (!(hwc->state & PERF_HES_STOPPED)) 922 return; 923 924 hwc->state = 0; 925 926 /* (Re-)enable and activate the counter set */ 927 ctr_set_enable(&cpuhw->state, hwc->config_base); 928 ctr_set_start(&cpuhw->state, hwc->config_base); 929 930 /* The counter set to which this counter belongs can be already active. 931 * Because all counters in a set are active, the event->hw.prev_count 932 * needs to be synchronized. At this point, the counter set can be in 933 * the inactive or disabled state. 934 */ 935 if (hwc->config == PERF_EVENT_CPUM_CF_DIAG) { 936 cpuhw->usedss = cfdiag_getctr(cpuhw->start, 937 sizeof(cpuhw->start), 938 hwc->config_base, true); 939 } else { 940 hw_perf_event_reset(event); 941 } 942 943 /* Increment refcount for counter sets */ 944 for (i = CPUMF_CTR_SET_BASIC; i < CPUMF_CTR_SET_MAX; ++i) 945 if ((hwc->config_base & cpumf_ctr_ctl[i])) 946 atomic_inc(&cpuhw->ctr_set[i]); 947 } 948 949 /* Create perf event sample with the counter sets as raw data. The sample 950 * is then pushed to the event subsystem and the function checks for 951 * possible event overflows. If an event overflow occurs, the PMU is 952 * stopped. 953 * 954 * Return non-zero if an event overflow occurred. 955 */ 956 static int cfdiag_push_sample(struct perf_event *event, 957 struct cpu_cf_events *cpuhw) 958 { 959 struct perf_sample_data data; 960 struct perf_raw_record raw; 961 struct pt_regs regs; 962 int overflow; 963 964 /* Setup perf sample */ 965 perf_sample_data_init(&data, 0, event->hw.last_period); 966 memset(®s, 0, sizeof(regs)); 967 memset(&raw, 0, sizeof(raw)); 968 969 if (event->attr.sample_type & PERF_SAMPLE_CPU) 970 data.cpu_entry.cpu = event->cpu; 971 if (event->attr.sample_type & PERF_SAMPLE_RAW) { 972 raw.frag.size = cpuhw->usedss; 973 raw.frag.data = cpuhw->stop; 974 perf_sample_save_raw_data(&data, &raw); 975 } 976 977 overflow = perf_event_overflow(event, &data, ®s); 978 debug_sprintf_event(cf_dbg, 3, 979 "%s event %#llx sample_type %#llx raw %d ov %d\n", 980 __func__, event->hw.config, 981 event->attr.sample_type, raw.size, overflow); 982 if (overflow) 983 event->pmu->stop(event, 0); 984 985 perf_event_update_userpage(event); 986 return overflow; 987 } 988 989 static void cpumf_pmu_stop(struct perf_event *event, int flags) 990 { 991 struct cpu_cf_events *cpuhw = this_cpu_cfhw(); 992 struct hw_perf_event *hwc = &event->hw; 993 int i; 994 995 if (!(hwc->state & PERF_HES_STOPPED)) { 996 /* Decrement reference count for this counter set and if this 997 * is the last used counter in the set, clear activation 998 * control and set the counter set state to inactive. 999 */ 1000 for (i = CPUMF_CTR_SET_BASIC; i < CPUMF_CTR_SET_MAX; ++i) { 1001 if (!(hwc->config_base & cpumf_ctr_ctl[i])) 1002 continue; 1003 if (!atomic_dec_return(&cpuhw->ctr_set[i])) 1004 ctr_set_stop(&cpuhw->state, cpumf_ctr_ctl[i]); 1005 } 1006 hwc->state |= PERF_HES_STOPPED; 1007 } 1008 1009 if ((flags & PERF_EF_UPDATE) && !(hwc->state & PERF_HES_UPTODATE)) { 1010 if (hwc->config == PERF_EVENT_CPUM_CF_DIAG) { 1011 local64_inc(&event->count); 1012 cpuhw->usedss = cfdiag_getctr(cpuhw->stop, 1013 sizeof(cpuhw->stop), 1014 event->hw.config_base, 1015 false); 1016 if (cfdiag_diffctr(cpuhw, event->hw.config_base)) 1017 cfdiag_push_sample(event, cpuhw); 1018 } else { 1019 hw_perf_event_update(event); 1020 } 1021 hwc->state |= PERF_HES_UPTODATE; 1022 } 1023 } 1024 1025 static int cpumf_pmu_add(struct perf_event *event, int flags) 1026 { 1027 struct cpu_cf_events *cpuhw = this_cpu_cfhw(); 1028 1029 ctr_set_enable(&cpuhw->state, event->hw.config_base); 1030 event->hw.state = PERF_HES_UPTODATE | PERF_HES_STOPPED; 1031 1032 if (flags & PERF_EF_START) 1033 cpumf_pmu_start(event, PERF_EF_RELOAD); 1034 1035 return 0; 1036 } 1037 1038 static void cpumf_pmu_del(struct perf_event *event, int flags) 1039 { 1040 struct cpu_cf_events *cpuhw = this_cpu_cfhw(); 1041 int i; 1042 1043 cpumf_pmu_stop(event, PERF_EF_UPDATE); 1044 1045 /* Check if any counter in the counter set is still used. If not used, 1046 * change the counter set to the disabled state. This also clears the 1047 * content of all counters in the set. 1048 * 1049 * When a new perf event has been added but not yet started, this can 1050 * clear enable control and resets all counters in a set. Therefore, 1051 * cpumf_pmu_start() always has to reenable a counter set. 1052 */ 1053 for (i = CPUMF_CTR_SET_BASIC; i < CPUMF_CTR_SET_MAX; ++i) 1054 if (!atomic_read(&cpuhw->ctr_set[i])) 1055 ctr_set_disable(&cpuhw->state, cpumf_ctr_ctl[i]); 1056 } 1057 1058 /* Performance monitoring unit for s390x */ 1059 static struct pmu cpumf_pmu = { 1060 .task_ctx_nr = perf_sw_context, 1061 .capabilities = PERF_PMU_CAP_NO_INTERRUPT, 1062 .pmu_enable = cpumf_pmu_enable, 1063 .pmu_disable = cpumf_pmu_disable, 1064 .event_init = cpumf_pmu_event_init, 1065 .add = cpumf_pmu_add, 1066 .del = cpumf_pmu_del, 1067 .start = cpumf_pmu_start, 1068 .stop = cpumf_pmu_stop, 1069 .read = cpumf_pmu_read, 1070 }; 1071 1072 static struct cfset_session { /* CPUs and counter set bit mask */ 1073 struct list_head head; /* Head of list of active processes */ 1074 } cfset_session = { 1075 .head = LIST_HEAD_INIT(cfset_session.head) 1076 }; 1077 1078 static refcount_t cfset_opencnt = REFCOUNT_INIT(0); /* Access count */ 1079 /* 1080 * Synchronize access to device /dev/hwc. This mutex protects against 1081 * concurrent access to functions cfset_open() and cfset_release(). 1082 * Same for CPU hotplug add and remove events triggering 1083 * cpum_cf_online_cpu() and cpum_cf_offline_cpu(). 1084 * It also serializes concurrent device ioctl access from multiple 1085 * processes accessing /dev/hwc. 1086 * 1087 * The mutex protects concurrent access to the /dev/hwctr session management 1088 * struct cfset_session and reference counting variable cfset_opencnt. 1089 */ 1090 static DEFINE_MUTEX(cfset_ctrset_mutex); 1091 1092 /* 1093 * CPU hotplug handles only /dev/hwctr device. 1094 * For perf_event_open() the CPU hotplug handling is done on kernel common 1095 * code: 1096 * - CPU add: Nothing is done since a file descriptor can not be created 1097 * and returned to the user. 1098 * - CPU delete: Handled by common code via pmu_disable(), pmu_stop() and 1099 * pmu_delete(). The event itself is removed when the file descriptor is 1100 * closed. 1101 */ 1102 static int cfset_online_cpu(unsigned int cpu); 1103 1104 static int cpum_cf_online_cpu(unsigned int cpu) 1105 { 1106 int rc = 0; 1107 1108 debug_sprintf_event(cf_dbg, 4, "%s cpu %d root.refcnt %d " 1109 "opencnt %d\n", __func__, cpu, 1110 refcount_read(&cpu_cf_root.refcnt), 1111 refcount_read(&cfset_opencnt)); 1112 /* 1113 * Ignore notification for perf_event_open(). 1114 * Handle only /dev/hwctr device sessions. 1115 */ 1116 mutex_lock(&cfset_ctrset_mutex); 1117 if (refcount_read(&cfset_opencnt)) { 1118 rc = cpum_cf_alloc_cpu(cpu); 1119 if (!rc) 1120 cfset_online_cpu(cpu); 1121 } 1122 mutex_unlock(&cfset_ctrset_mutex); 1123 return rc; 1124 } 1125 1126 static int cfset_offline_cpu(unsigned int cpu); 1127 1128 static int cpum_cf_offline_cpu(unsigned int cpu) 1129 { 1130 debug_sprintf_event(cf_dbg, 4, "%s cpu %d root.refcnt %d opencnt %d\n", 1131 __func__, cpu, refcount_read(&cpu_cf_root.refcnt), 1132 refcount_read(&cfset_opencnt)); 1133 /* 1134 * During task exit processing of grouped perf events triggered by CPU 1135 * hotplug processing, pmu_disable() is called as part of perf context 1136 * removal process. Therefore do not trigger event removal now for 1137 * perf_event_open() created events. Perf common code triggers event 1138 * destruction when the event file descriptor is closed. 1139 * 1140 * Handle only /dev/hwctr device sessions. 1141 */ 1142 mutex_lock(&cfset_ctrset_mutex); 1143 if (refcount_read(&cfset_opencnt)) { 1144 cfset_offline_cpu(cpu); 1145 cpum_cf_free_cpu(cpu); 1146 } 1147 mutex_unlock(&cfset_ctrset_mutex); 1148 return 0; 1149 } 1150 1151 /* Return true if store counter set multiple instruction is available */ 1152 static inline int stccm_avail(void) 1153 { 1154 return test_facility(142); 1155 } 1156 1157 /* CPU-measurement alerts for the counter facility */ 1158 static void cpumf_measurement_alert(struct ext_code ext_code, 1159 unsigned int alert, unsigned long unused) 1160 { 1161 struct cpu_cf_events *cpuhw; 1162 1163 if (!(alert & CPU_MF_INT_CF_MASK)) 1164 return; 1165 1166 inc_irq_stat(IRQEXT_CMC); 1167 1168 /* 1169 * Measurement alerts are shared and might happen when the PMU 1170 * is not reserved. Ignore these alerts in this case. 1171 */ 1172 cpuhw = this_cpu_cfhw(); 1173 if (!cpuhw) 1174 return; 1175 1176 /* counter authorization change alert */ 1177 if (alert & CPU_MF_INT_CF_CACA) 1178 qctri(&cpumf_ctr_info); 1179 1180 /* loss of counter data alert */ 1181 if (alert & CPU_MF_INT_CF_LCDA) 1182 pr_err("CPU[%i] Counter data was lost\n", smp_processor_id()); 1183 1184 /* loss of MT counter data alert */ 1185 if (alert & CPU_MF_INT_CF_MTDA) 1186 pr_warn("CPU[%i] MT counter data was lost\n", 1187 smp_processor_id()); 1188 } 1189 1190 static int cfset_init(void); 1191 static int __init cpumf_pmu_init(void) 1192 { 1193 int rc; 1194 1195 /* Extract counter measurement facility information */ 1196 if (!cpum_cf_avail() || qctri(&cpumf_ctr_info)) 1197 return -ENODEV; 1198 1199 /* Determine and store counter set sizes for later reference */ 1200 for (rc = CPUMF_CTR_SET_BASIC; rc < CPUMF_CTR_SET_MAX; ++rc) 1201 cpum_cf_make_setsize(rc); 1202 1203 /* 1204 * Clear bit 15 of cr0 to unauthorize problem-state to 1205 * extract measurement counters 1206 */ 1207 ctl_clear_bit(0, 48); 1208 1209 /* register handler for measurement-alert interruptions */ 1210 rc = register_external_irq(EXT_IRQ_MEASURE_ALERT, 1211 cpumf_measurement_alert); 1212 if (rc) { 1213 pr_err("Registering for CPU-measurement alerts failed with rc=%i\n", rc); 1214 return rc; 1215 } 1216 1217 /* Setup s390dbf facility */ 1218 cf_dbg = debug_register(KMSG_COMPONENT, 2, 1, 128); 1219 if (!cf_dbg) { 1220 pr_err("Registration of s390dbf(cpum_cf) failed\n"); 1221 rc = -ENOMEM; 1222 goto out1; 1223 } 1224 debug_register_view(cf_dbg, &debug_sprintf_view); 1225 1226 cpumf_pmu.attr_groups = cpumf_cf_event_group(); 1227 rc = perf_pmu_register(&cpumf_pmu, "cpum_cf", -1); 1228 if (rc) { 1229 pr_err("Registering the cpum_cf PMU failed with rc=%i\n", rc); 1230 goto out2; 1231 } else if (stccm_avail()) { /* Setup counter set device */ 1232 cfset_init(); 1233 } 1234 1235 rc = cpuhp_setup_state(CPUHP_AP_PERF_S390_CF_ONLINE, 1236 "perf/s390/cf:online", 1237 cpum_cf_online_cpu, cpum_cf_offline_cpu); 1238 return rc; 1239 1240 out2: 1241 debug_unregister_view(cf_dbg, &debug_sprintf_view); 1242 debug_unregister(cf_dbg); 1243 out1: 1244 unregister_external_irq(EXT_IRQ_MEASURE_ALERT, cpumf_measurement_alert); 1245 return rc; 1246 } 1247 1248 /* Support for the CPU Measurement Facility counter set extraction using 1249 * device /dev/hwctr. This allows user space programs to extract complete 1250 * counter set via normal file operations. 1251 */ 1252 1253 struct cfset_call_on_cpu_parm { /* Parm struct for smp_call_on_cpu */ 1254 unsigned int sets; /* Counter set bit mask */ 1255 atomic_t cpus_ack; /* # CPUs successfully executed func */ 1256 }; 1257 1258 struct cfset_request { /* CPUs and counter set bit mask */ 1259 unsigned long ctrset; /* Bit mask of counter set to read */ 1260 cpumask_t mask; /* CPU mask to read from */ 1261 struct list_head node; /* Chain to cfset_session.head */ 1262 }; 1263 1264 static void cfset_session_init(void) 1265 { 1266 INIT_LIST_HEAD(&cfset_session.head); 1267 } 1268 1269 /* Remove current request from global bookkeeping. Maintain a counter set bit 1270 * mask on a per CPU basis. 1271 * Done in process context under mutex protection. 1272 */ 1273 static void cfset_session_del(struct cfset_request *p) 1274 { 1275 list_del(&p->node); 1276 } 1277 1278 /* Add current request to global bookkeeping. Maintain a counter set bit mask 1279 * on a per CPU basis. 1280 * Done in process context under mutex protection. 1281 */ 1282 static void cfset_session_add(struct cfset_request *p) 1283 { 1284 list_add(&p->node, &cfset_session.head); 1285 } 1286 1287 /* The /dev/hwctr device access uses PMU_F_IN_USE to mark the device access 1288 * path is currently used. 1289 * The cpu_cf_events::dev_state is used to denote counter sets in use by this 1290 * interface. It is always or'ed in. If this interface is not active, its 1291 * value is zero and no additional counter sets will be included. 1292 * 1293 * The cpu_cf_events::state is used by the perf_event_open SVC and remains 1294 * unchanged. 1295 * 1296 * perf_pmu_enable() and perf_pmu_enable() and its call backs 1297 * cpumf_pmu_enable() and cpumf_pmu_disable() are called by the 1298 * performance measurement subsystem to enable per process 1299 * CPU Measurement counter facility. 1300 * The XXX_enable() and XXX_disable functions are used to turn off 1301 * x86 performance monitoring interrupt (PMI) during scheduling. 1302 * s390 uses these calls to temporarily stop and resume the active CPU 1303 * counters sets during scheduling. 1304 * 1305 * We do allow concurrent access of perf_event_open() SVC and /dev/hwctr 1306 * device access. The perf_event_open() SVC interface makes a lot of effort 1307 * to only run the counters while the calling process is actively scheduled 1308 * to run. 1309 * When /dev/hwctr interface is also used at the same time, the counter sets 1310 * will keep running, even when the process is scheduled off a CPU. 1311 * However this is not a problem and does not lead to wrong counter values 1312 * for the perf_event_open() SVC. The current counter value will be recorded 1313 * during schedule-in. At schedule-out time the current counter value is 1314 * extracted again and the delta is calculated and added to the event. 1315 */ 1316 /* Stop all counter sets via ioctl interface */ 1317 static void cfset_ioctl_off(void *parm) 1318 { 1319 struct cpu_cf_events *cpuhw = this_cpu_cfhw(); 1320 struct cfset_call_on_cpu_parm *p = parm; 1321 int rc; 1322 1323 /* Check if any counter set used by /dev/hwctr */ 1324 for (rc = CPUMF_CTR_SET_BASIC; rc < CPUMF_CTR_SET_MAX; ++rc) 1325 if ((p->sets & cpumf_ctr_ctl[rc])) { 1326 if (!atomic_dec_return(&cpuhw->ctr_set[rc])) { 1327 ctr_set_disable(&cpuhw->dev_state, 1328 cpumf_ctr_ctl[rc]); 1329 ctr_set_stop(&cpuhw->dev_state, 1330 cpumf_ctr_ctl[rc]); 1331 } 1332 } 1333 /* Keep perf_event_open counter sets */ 1334 rc = lcctl(cpuhw->dev_state | cpuhw->state); 1335 if (rc) 1336 pr_err("Counter set stop %#llx of /dev/%s failed rc=%i\n", 1337 cpuhw->state, S390_HWCTR_DEVICE, rc); 1338 if (!cpuhw->dev_state) 1339 cpuhw->flags &= ~PMU_F_IN_USE; 1340 debug_sprintf_event(cf_dbg, 4, "%s rc %d state %#llx dev_state %#llx\n", 1341 __func__, rc, cpuhw->state, cpuhw->dev_state); 1342 } 1343 1344 /* Start counter sets on particular CPU */ 1345 static void cfset_ioctl_on(void *parm) 1346 { 1347 struct cpu_cf_events *cpuhw = this_cpu_cfhw(); 1348 struct cfset_call_on_cpu_parm *p = parm; 1349 int rc; 1350 1351 cpuhw->flags |= PMU_F_IN_USE; 1352 ctr_set_enable(&cpuhw->dev_state, p->sets); 1353 ctr_set_start(&cpuhw->dev_state, p->sets); 1354 for (rc = CPUMF_CTR_SET_BASIC; rc < CPUMF_CTR_SET_MAX; ++rc) 1355 if ((p->sets & cpumf_ctr_ctl[rc])) 1356 atomic_inc(&cpuhw->ctr_set[rc]); 1357 rc = lcctl(cpuhw->dev_state | cpuhw->state); /* Start counter sets */ 1358 if (!rc) 1359 atomic_inc(&p->cpus_ack); 1360 else 1361 pr_err("Counter set start %#llx of /dev/%s failed rc=%i\n", 1362 cpuhw->dev_state | cpuhw->state, S390_HWCTR_DEVICE, rc); 1363 debug_sprintf_event(cf_dbg, 4, "%s rc %d state %#llx dev_state %#llx\n", 1364 __func__, rc, cpuhw->state, cpuhw->dev_state); 1365 } 1366 1367 static void cfset_release_cpu(void *p) 1368 { 1369 struct cpu_cf_events *cpuhw = this_cpu_cfhw(); 1370 int rc; 1371 1372 debug_sprintf_event(cf_dbg, 4, "%s state %#llx dev_state %#llx\n", 1373 __func__, cpuhw->state, cpuhw->dev_state); 1374 cpuhw->dev_state = 0; 1375 rc = lcctl(cpuhw->state); /* Keep perf_event_open counter sets */ 1376 if (rc) 1377 pr_err("Counter set release %#llx of /dev/%s failed rc=%i\n", 1378 cpuhw->state, S390_HWCTR_DEVICE, rc); 1379 } 1380 1381 /* This modifies the process CPU mask to adopt it to the currently online 1382 * CPUs. Offline CPUs can not be addresses. This call terminates the access 1383 * and is usually followed by close() or a new iotcl(..., START, ...) which 1384 * creates a new request structure. 1385 */ 1386 static void cfset_all_stop(struct cfset_request *req) 1387 { 1388 struct cfset_call_on_cpu_parm p = { 1389 .sets = req->ctrset, 1390 }; 1391 1392 cpumask_and(&req->mask, &req->mask, cpu_online_mask); 1393 on_each_cpu_mask(&req->mask, cfset_ioctl_off, &p, 1); 1394 } 1395 1396 /* Release function is also called when application gets terminated without 1397 * doing a proper ioctl(..., S390_HWCTR_STOP, ...) command. 1398 */ 1399 static int cfset_release(struct inode *inode, struct file *file) 1400 { 1401 mutex_lock(&cfset_ctrset_mutex); 1402 /* Open followed by close/exit has no private_data */ 1403 if (file->private_data) { 1404 cfset_all_stop(file->private_data); 1405 cfset_session_del(file->private_data); 1406 kfree(file->private_data); 1407 file->private_data = NULL; 1408 } 1409 if (refcount_dec_and_test(&cfset_opencnt)) { /* Last close */ 1410 on_each_cpu(cfset_release_cpu, NULL, 1); 1411 cpum_cf_free(-1); 1412 } 1413 mutex_unlock(&cfset_ctrset_mutex); 1414 return 0; 1415 } 1416 1417 /* 1418 * Open via /dev/hwctr device. Allocate all per CPU resources on the first 1419 * open of the device. The last close releases all per CPU resources. 1420 * Parallel perf_event_open system calls also use per CPU resources. 1421 * These invocations are handled via reference counting on the per CPU data 1422 * structures. 1423 */ 1424 static int cfset_open(struct inode *inode, struct file *file) 1425 { 1426 int rc = 0; 1427 1428 if (!perfmon_capable()) 1429 return -EPERM; 1430 file->private_data = NULL; 1431 1432 mutex_lock(&cfset_ctrset_mutex); 1433 if (!refcount_inc_not_zero(&cfset_opencnt)) { /* First open */ 1434 rc = cpum_cf_alloc(-1); 1435 if (!rc) { 1436 cfset_session_init(); 1437 refcount_set(&cfset_opencnt, 1); 1438 } 1439 } 1440 mutex_unlock(&cfset_ctrset_mutex); 1441 1442 /* nonseekable_open() never fails */ 1443 return rc ?: nonseekable_open(inode, file); 1444 } 1445 1446 static int cfset_all_start(struct cfset_request *req) 1447 { 1448 struct cfset_call_on_cpu_parm p = { 1449 .sets = req->ctrset, 1450 .cpus_ack = ATOMIC_INIT(0), 1451 }; 1452 cpumask_var_t mask; 1453 int rc = 0; 1454 1455 if (!alloc_cpumask_var(&mask, GFP_KERNEL)) 1456 return -ENOMEM; 1457 cpumask_and(mask, &req->mask, cpu_online_mask); 1458 on_each_cpu_mask(mask, cfset_ioctl_on, &p, 1); 1459 if (atomic_read(&p.cpus_ack) != cpumask_weight(mask)) { 1460 on_each_cpu_mask(mask, cfset_ioctl_off, &p, 1); 1461 rc = -EIO; 1462 debug_sprintf_event(cf_dbg, 4, "%s CPUs missing", __func__); 1463 } 1464 free_cpumask_var(mask); 1465 return rc; 1466 } 1467 1468 /* Return the maximum required space for all possible CPUs in case one 1469 * CPU will be onlined during the START, READ, STOP cycles. 1470 * To find out the size of the counter sets, any one CPU will do. They 1471 * all have the same counter sets. 1472 */ 1473 static size_t cfset_needspace(unsigned int sets) 1474 { 1475 size_t bytes = 0; 1476 int i; 1477 1478 for (i = CPUMF_CTR_SET_BASIC; i < CPUMF_CTR_SET_MAX; ++i) { 1479 if (!(sets & cpumf_ctr_ctl[i])) 1480 continue; 1481 bytes += cpum_cf_read_setsize(i) * sizeof(u64) + 1482 sizeof(((struct s390_ctrset_setdata *)0)->set) + 1483 sizeof(((struct s390_ctrset_setdata *)0)->no_cnts); 1484 } 1485 bytes = sizeof(((struct s390_ctrset_read *)0)->no_cpus) + nr_cpu_ids * 1486 (bytes + sizeof(((struct s390_ctrset_cpudata *)0)->cpu_nr) + 1487 sizeof(((struct s390_ctrset_cpudata *)0)->no_sets)); 1488 return bytes; 1489 } 1490 1491 static int cfset_all_copy(unsigned long arg, cpumask_t *mask) 1492 { 1493 struct s390_ctrset_read __user *ctrset_read; 1494 unsigned int cpu, cpus, rc = 0; 1495 void __user *uptr; 1496 1497 ctrset_read = (struct s390_ctrset_read __user *)arg; 1498 uptr = ctrset_read->data; 1499 for_each_cpu(cpu, mask) { 1500 struct cpu_cf_events *cpuhw = get_cpu_cfhw(cpu); 1501 struct s390_ctrset_cpudata __user *ctrset_cpudata; 1502 1503 ctrset_cpudata = uptr; 1504 rc = put_user(cpu, &ctrset_cpudata->cpu_nr); 1505 rc |= put_user(cpuhw->sets, &ctrset_cpudata->no_sets); 1506 rc |= copy_to_user(ctrset_cpudata->data, cpuhw->data, 1507 cpuhw->used); 1508 if (rc) { 1509 rc = -EFAULT; 1510 goto out; 1511 } 1512 uptr += sizeof(struct s390_ctrset_cpudata) + cpuhw->used; 1513 cond_resched(); 1514 } 1515 cpus = cpumask_weight(mask); 1516 if (put_user(cpus, &ctrset_read->no_cpus)) 1517 rc = -EFAULT; 1518 out: 1519 debug_sprintf_event(cf_dbg, 4, "%s rc %d copied %ld\n", __func__, rc, 1520 uptr - (void __user *)ctrset_read->data); 1521 return rc; 1522 } 1523 1524 static size_t cfset_cpuset_read(struct s390_ctrset_setdata *p, int ctrset, 1525 int ctrset_size, size_t room) 1526 { 1527 size_t need = 0; 1528 int rc = -1; 1529 1530 need = sizeof(*p) + sizeof(u64) * ctrset_size; 1531 if (need <= room) { 1532 p->set = cpumf_ctr_ctl[ctrset]; 1533 p->no_cnts = ctrset_size; 1534 rc = ctr_stcctm(ctrset, ctrset_size, (u64 *)p->cv); 1535 if (rc == 3) /* Nothing stored */ 1536 need = 0; 1537 } 1538 return need; 1539 } 1540 1541 /* Read all counter sets. */ 1542 static void cfset_cpu_read(void *parm) 1543 { 1544 struct cpu_cf_events *cpuhw = this_cpu_cfhw(); 1545 struct cfset_call_on_cpu_parm *p = parm; 1546 int set, set_size; 1547 size_t space; 1548 1549 /* No data saved yet */ 1550 cpuhw->used = 0; 1551 cpuhw->sets = 0; 1552 memset(cpuhw->data, 0, sizeof(cpuhw->data)); 1553 1554 /* Scan the counter sets */ 1555 for (set = CPUMF_CTR_SET_BASIC; set < CPUMF_CTR_SET_MAX; ++set) { 1556 struct s390_ctrset_setdata *sp = (void *)cpuhw->data + 1557 cpuhw->used; 1558 1559 if (!(p->sets & cpumf_ctr_ctl[set])) 1560 continue; /* Counter set not in list */ 1561 set_size = cpum_cf_read_setsize(set); 1562 space = sizeof(cpuhw->data) - cpuhw->used; 1563 space = cfset_cpuset_read(sp, set, set_size, space); 1564 if (space) { 1565 cpuhw->used += space; 1566 cpuhw->sets += 1; 1567 } 1568 debug_sprintf_event(cf_dbg, 4, "%s sets %d used %zd\n", __func__, 1569 cpuhw->sets, cpuhw->used); 1570 } 1571 } 1572 1573 static int cfset_all_read(unsigned long arg, struct cfset_request *req) 1574 { 1575 struct cfset_call_on_cpu_parm p; 1576 cpumask_var_t mask; 1577 int rc; 1578 1579 if (!alloc_cpumask_var(&mask, GFP_KERNEL)) 1580 return -ENOMEM; 1581 1582 p.sets = req->ctrset; 1583 cpumask_and(mask, &req->mask, cpu_online_mask); 1584 on_each_cpu_mask(mask, cfset_cpu_read, &p, 1); 1585 rc = cfset_all_copy(arg, mask); 1586 free_cpumask_var(mask); 1587 return rc; 1588 } 1589 1590 static long cfset_ioctl_read(unsigned long arg, struct cfset_request *req) 1591 { 1592 int ret = -ENODATA; 1593 1594 if (req && req->ctrset) 1595 ret = cfset_all_read(arg, req); 1596 return ret; 1597 } 1598 1599 static long cfset_ioctl_stop(struct file *file) 1600 { 1601 struct cfset_request *req = file->private_data; 1602 int ret = -ENXIO; 1603 1604 if (req) { 1605 cfset_all_stop(req); 1606 cfset_session_del(req); 1607 kfree(req); 1608 file->private_data = NULL; 1609 ret = 0; 1610 } 1611 return ret; 1612 } 1613 1614 static long cfset_ioctl_start(unsigned long arg, struct file *file) 1615 { 1616 struct s390_ctrset_start __user *ustart; 1617 struct s390_ctrset_start start; 1618 struct cfset_request *preq; 1619 void __user *umask; 1620 unsigned int len; 1621 int ret = 0; 1622 size_t need; 1623 1624 if (file->private_data) 1625 return -EBUSY; 1626 ustart = (struct s390_ctrset_start __user *)arg; 1627 if (copy_from_user(&start, ustart, sizeof(start))) 1628 return -EFAULT; 1629 if (start.version != S390_HWCTR_START_VERSION) 1630 return -EINVAL; 1631 if (start.counter_sets & ~(cpumf_ctr_ctl[CPUMF_CTR_SET_BASIC] | 1632 cpumf_ctr_ctl[CPUMF_CTR_SET_USER] | 1633 cpumf_ctr_ctl[CPUMF_CTR_SET_CRYPTO] | 1634 cpumf_ctr_ctl[CPUMF_CTR_SET_EXT] | 1635 cpumf_ctr_ctl[CPUMF_CTR_SET_MT_DIAG])) 1636 return -EINVAL; /* Invalid counter set */ 1637 if (!start.counter_sets) 1638 return -EINVAL; /* No counter set at all? */ 1639 1640 preq = kzalloc(sizeof(*preq), GFP_KERNEL); 1641 if (!preq) 1642 return -ENOMEM; 1643 cpumask_clear(&preq->mask); 1644 len = min_t(u64, start.cpumask_len, cpumask_size()); 1645 umask = (void __user *)start.cpumask; 1646 if (copy_from_user(&preq->mask, umask, len)) { 1647 kfree(preq); 1648 return -EFAULT; 1649 } 1650 if (cpumask_empty(&preq->mask)) { 1651 kfree(preq); 1652 return -EINVAL; 1653 } 1654 need = cfset_needspace(start.counter_sets); 1655 if (put_user(need, &ustart->data_bytes)) { 1656 kfree(preq); 1657 return -EFAULT; 1658 } 1659 preq->ctrset = start.counter_sets; 1660 ret = cfset_all_start(preq); 1661 if (!ret) { 1662 cfset_session_add(preq); 1663 file->private_data = preq; 1664 debug_sprintf_event(cf_dbg, 4, "%s set %#lx need %ld ret %d\n", 1665 __func__, preq->ctrset, need, ret); 1666 } else { 1667 kfree(preq); 1668 } 1669 return ret; 1670 } 1671 1672 /* Entry point to the /dev/hwctr device interface. 1673 * The ioctl system call supports three subcommands: 1674 * S390_HWCTR_START: Start the specified counter sets on a CPU list. The 1675 * counter set keeps running until explicitly stopped. Returns the number 1676 * of bytes needed to store the counter values. If another S390_HWCTR_START 1677 * ioctl subcommand is called without a previous S390_HWCTR_STOP stop 1678 * command on the same file descriptor, -EBUSY is returned. 1679 * S390_HWCTR_READ: Read the counter set values from specified CPU list given 1680 * with the S390_HWCTR_START command. 1681 * S390_HWCTR_STOP: Stops the counter sets on the CPU list given with the 1682 * previous S390_HWCTR_START subcommand. 1683 */ 1684 static long cfset_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 1685 { 1686 int ret; 1687 1688 cpus_read_lock(); 1689 mutex_lock(&cfset_ctrset_mutex); 1690 switch (cmd) { 1691 case S390_HWCTR_START: 1692 ret = cfset_ioctl_start(arg, file); 1693 break; 1694 case S390_HWCTR_STOP: 1695 ret = cfset_ioctl_stop(file); 1696 break; 1697 case S390_HWCTR_READ: 1698 ret = cfset_ioctl_read(arg, file->private_data); 1699 break; 1700 default: 1701 ret = -ENOTTY; 1702 break; 1703 } 1704 mutex_unlock(&cfset_ctrset_mutex); 1705 cpus_read_unlock(); 1706 return ret; 1707 } 1708 1709 static const struct file_operations cfset_fops = { 1710 .owner = THIS_MODULE, 1711 .open = cfset_open, 1712 .release = cfset_release, 1713 .unlocked_ioctl = cfset_ioctl, 1714 .compat_ioctl = cfset_ioctl, 1715 .llseek = no_llseek 1716 }; 1717 1718 static struct miscdevice cfset_dev = { 1719 .name = S390_HWCTR_DEVICE, 1720 .minor = MISC_DYNAMIC_MINOR, 1721 .fops = &cfset_fops, 1722 .mode = 0666, 1723 }; 1724 1725 /* Hotplug add of a CPU. Scan through all active processes and add 1726 * that CPU to the list of CPUs supplied with ioctl(..., START, ...). 1727 */ 1728 static int cfset_online_cpu(unsigned int cpu) 1729 { 1730 struct cfset_call_on_cpu_parm p; 1731 struct cfset_request *rp; 1732 1733 if (!list_empty(&cfset_session.head)) { 1734 list_for_each_entry(rp, &cfset_session.head, node) { 1735 p.sets = rp->ctrset; 1736 cfset_ioctl_on(&p); 1737 cpumask_set_cpu(cpu, &rp->mask); 1738 } 1739 } 1740 return 0; 1741 } 1742 1743 /* Hotplug remove of a CPU. Scan through all active processes and clear 1744 * that CPU from the list of CPUs supplied with ioctl(..., START, ...). 1745 * Adjust reference counts. 1746 */ 1747 static int cfset_offline_cpu(unsigned int cpu) 1748 { 1749 struct cfset_call_on_cpu_parm p; 1750 struct cfset_request *rp; 1751 1752 if (!list_empty(&cfset_session.head)) { 1753 list_for_each_entry(rp, &cfset_session.head, node) { 1754 p.sets = rp->ctrset; 1755 cfset_ioctl_off(&p); 1756 cpumask_clear_cpu(cpu, &rp->mask); 1757 } 1758 } 1759 return 0; 1760 } 1761 1762 static void cfdiag_read(struct perf_event *event) 1763 { 1764 debug_sprintf_event(cf_dbg, 3, "%s event %#llx count %ld\n", __func__, 1765 event->attr.config, local64_read(&event->count)); 1766 } 1767 1768 static int get_authctrsets(void) 1769 { 1770 unsigned long auth = 0; 1771 enum cpumf_ctr_set i; 1772 1773 for (i = CPUMF_CTR_SET_BASIC; i < CPUMF_CTR_SET_MAX; ++i) { 1774 if (cpumf_ctr_info.auth_ctl & cpumf_ctr_ctl[i]) 1775 auth |= cpumf_ctr_ctl[i]; 1776 } 1777 return auth; 1778 } 1779 1780 /* Setup the event. Test for authorized counter sets and only include counter 1781 * sets which are authorized at the time of the setup. Including unauthorized 1782 * counter sets result in specification exception (and panic). 1783 */ 1784 static int cfdiag_event_init2(struct perf_event *event) 1785 { 1786 struct perf_event_attr *attr = &event->attr; 1787 int err = 0; 1788 1789 /* Set sample_period to indicate sampling */ 1790 event->hw.config = attr->config; 1791 event->hw.sample_period = attr->sample_period; 1792 local64_set(&event->hw.period_left, event->hw.sample_period); 1793 local64_set(&event->count, 0); 1794 event->hw.last_period = event->hw.sample_period; 1795 1796 /* Add all authorized counter sets to config_base. The 1797 * the hardware init function is either called per-cpu or just once 1798 * for all CPUS (event->cpu == -1). This depends on the whether 1799 * counting is started for all CPUs or on a per workload base where 1800 * the perf event moves from one CPU to another CPU. 1801 * Checking the authorization on any CPU is fine as the hardware 1802 * applies the same authorization settings to all CPUs. 1803 */ 1804 event->hw.config_base = get_authctrsets(); 1805 1806 /* No authorized counter sets, nothing to count/sample */ 1807 if (!event->hw.config_base) 1808 err = -EINVAL; 1809 1810 debug_sprintf_event(cf_dbg, 5, "%s err %d config_base %#lx\n", 1811 __func__, err, event->hw.config_base); 1812 return err; 1813 } 1814 1815 static int cfdiag_event_init(struct perf_event *event) 1816 { 1817 struct perf_event_attr *attr = &event->attr; 1818 int err = -ENOENT; 1819 1820 if (event->attr.config != PERF_EVENT_CPUM_CF_DIAG || 1821 event->attr.type != event->pmu->type) 1822 goto out; 1823 1824 /* Raw events are used to access counters directly, 1825 * hence do not permit excludes. 1826 * This event is useless without PERF_SAMPLE_RAW to return counter set 1827 * values as raw data. 1828 */ 1829 if (attr->exclude_kernel || attr->exclude_user || attr->exclude_hv || 1830 !(attr->sample_type & (PERF_SAMPLE_CPU | PERF_SAMPLE_RAW))) { 1831 err = -EOPNOTSUPP; 1832 goto out; 1833 } 1834 1835 /* Initialize for using the CPU-measurement counter facility */ 1836 if (cpum_cf_alloc(event->cpu)) 1837 return -ENOMEM; 1838 event->destroy = hw_perf_event_destroy; 1839 1840 err = cfdiag_event_init2(event); 1841 if (unlikely(err)) 1842 event->destroy(event); 1843 out: 1844 return err; 1845 } 1846 1847 /* Create cf_diag/events/CF_DIAG event sysfs file. This counter is used 1848 * to collect the complete counter sets for a scheduled process. Target 1849 * are complete counter sets attached as raw data to the artificial event. 1850 * This results in complete counter sets available when a process is 1851 * scheduled. Contains the delta of every counter while the process was 1852 * running. 1853 */ 1854 CPUMF_EVENT_ATTR(CF_DIAG, CF_DIAG, PERF_EVENT_CPUM_CF_DIAG); 1855 1856 static struct attribute *cfdiag_events_attr[] = { 1857 CPUMF_EVENT_PTR(CF_DIAG, CF_DIAG), 1858 NULL, 1859 }; 1860 1861 PMU_FORMAT_ATTR(event, "config:0-63"); 1862 1863 static struct attribute *cfdiag_format_attr[] = { 1864 &format_attr_event.attr, 1865 NULL, 1866 }; 1867 1868 static struct attribute_group cfdiag_events_group = { 1869 .name = "events", 1870 .attrs = cfdiag_events_attr, 1871 }; 1872 static struct attribute_group cfdiag_format_group = { 1873 .name = "format", 1874 .attrs = cfdiag_format_attr, 1875 }; 1876 static const struct attribute_group *cfdiag_attr_groups[] = { 1877 &cfdiag_events_group, 1878 &cfdiag_format_group, 1879 NULL, 1880 }; 1881 1882 /* Performance monitoring unit for event CF_DIAG. Since this event 1883 * is also started and stopped via the perf_event_open() system call, use 1884 * the same event enable/disable call back functions. They do not 1885 * have a pointer to the perf_event strcture as first parameter. 1886 * 1887 * The functions XXX_add, XXX_del, XXX_start and XXX_stop are also common. 1888 * Reuse them and distinguish the event (always first parameter) via 1889 * 'config' member. 1890 */ 1891 static struct pmu cf_diag = { 1892 .task_ctx_nr = perf_sw_context, 1893 .event_init = cfdiag_event_init, 1894 .pmu_enable = cpumf_pmu_enable, 1895 .pmu_disable = cpumf_pmu_disable, 1896 .add = cpumf_pmu_add, 1897 .del = cpumf_pmu_del, 1898 .start = cpumf_pmu_start, 1899 .stop = cpumf_pmu_stop, 1900 .read = cfdiag_read, 1901 1902 .attr_groups = cfdiag_attr_groups 1903 }; 1904 1905 /* Calculate memory needed to store all counter sets together with header and 1906 * trailer data. This is independent of the counter set authorization which 1907 * can vary depending on the configuration. 1908 */ 1909 static size_t cfdiag_maxsize(struct cpumf_ctr_info *info) 1910 { 1911 size_t max_size = sizeof(struct cf_trailer_entry); 1912 enum cpumf_ctr_set i; 1913 1914 for (i = CPUMF_CTR_SET_BASIC; i < CPUMF_CTR_SET_MAX; ++i) { 1915 size_t size = cpum_cf_read_setsize(i); 1916 1917 if (size) 1918 max_size += size * sizeof(u64) + 1919 sizeof(struct cf_ctrset_entry); 1920 } 1921 return max_size; 1922 } 1923 1924 /* Get the CPU speed, try sampling facility first and CPU attributes second. */ 1925 static void cfdiag_get_cpu_speed(void) 1926 { 1927 unsigned long mhz; 1928 1929 if (cpum_sf_avail()) { /* Sampling facility first */ 1930 struct hws_qsi_info_block si; 1931 1932 memset(&si, 0, sizeof(si)); 1933 if (!qsi(&si)) { 1934 cfdiag_cpu_speed = si.cpu_speed; 1935 return; 1936 } 1937 } 1938 1939 /* Fallback: CPU speed extract static part. Used in case 1940 * CPU Measurement Sampling Facility is turned off. 1941 */ 1942 mhz = __ecag(ECAG_CPU_ATTRIBUTE, 0); 1943 if (mhz != -1UL) 1944 cfdiag_cpu_speed = mhz & 0xffffffff; 1945 } 1946 1947 static int cfset_init(void) 1948 { 1949 size_t need; 1950 int rc; 1951 1952 cfdiag_get_cpu_speed(); 1953 /* Make sure the counter set data fits into predefined buffer. */ 1954 need = cfdiag_maxsize(&cpumf_ctr_info); 1955 if (need > sizeof(((struct cpu_cf_events *)0)->start)) { 1956 pr_err("Insufficient memory for PMU(cpum_cf_diag) need=%zu\n", 1957 need); 1958 return -ENOMEM; 1959 } 1960 1961 rc = misc_register(&cfset_dev); 1962 if (rc) { 1963 pr_err("Registration of /dev/%s failed rc=%i\n", 1964 cfset_dev.name, rc); 1965 goto out; 1966 } 1967 1968 rc = perf_pmu_register(&cf_diag, "cpum_cf_diag", -1); 1969 if (rc) { 1970 misc_deregister(&cfset_dev); 1971 pr_err("Registration of PMU(cpum_cf_diag) failed with rc=%i\n", 1972 rc); 1973 } 1974 out: 1975 return rc; 1976 } 1977 1978 device_initcall(cpumf_pmu_init); 1979