xref: /openbmc/linux/arch/s390/kernel/perf_cpum_cf.c (revision 6aeadf78)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Performance event support for s390x - CPU-measurement Counter Facility
4  *
5  *  Copyright IBM Corp. 2012, 2023
6  *  Author(s): Hendrik Brueckner <brueckner@linux.ibm.com>
7  *	       Thomas Richter <tmricht@linux.ibm.com>
8  */
9 #define KMSG_COMPONENT	"cpum_cf"
10 #define pr_fmt(fmt)	KMSG_COMPONENT ": " fmt
11 
12 #include <linux/kernel.h>
13 #include <linux/kernel_stat.h>
14 #include <linux/percpu.h>
15 #include <linux/notifier.h>
16 #include <linux/init.h>
17 #include <linux/export.h>
18 #include <linux/miscdevice.h>
19 #include <linux/perf_event.h>
20 
21 #include <asm/cpu_mf.h>
22 #include <asm/hwctrset.h>
23 #include <asm/debug.h>
24 
25 enum cpumf_ctr_set {
26 	CPUMF_CTR_SET_BASIC   = 0,    /* Basic Counter Set */
27 	CPUMF_CTR_SET_USER    = 1,    /* Problem-State Counter Set */
28 	CPUMF_CTR_SET_CRYPTO  = 2,    /* Crypto-Activity Counter Set */
29 	CPUMF_CTR_SET_EXT     = 3,    /* Extended Counter Set */
30 	CPUMF_CTR_SET_MT_DIAG = 4,    /* MT-diagnostic Counter Set */
31 
32 	/* Maximum number of counter sets */
33 	CPUMF_CTR_SET_MAX,
34 };
35 
36 #define CPUMF_LCCTL_ENABLE_SHIFT    16
37 #define CPUMF_LCCTL_ACTCTL_SHIFT     0
38 
39 static inline void ctr_set_enable(u64 *state, u64 ctrsets)
40 {
41 	*state |= ctrsets << CPUMF_LCCTL_ENABLE_SHIFT;
42 }
43 
44 static inline void ctr_set_disable(u64 *state, u64 ctrsets)
45 {
46 	*state &= ~(ctrsets << CPUMF_LCCTL_ENABLE_SHIFT);
47 }
48 
49 static inline void ctr_set_start(u64 *state, u64 ctrsets)
50 {
51 	*state |= ctrsets << CPUMF_LCCTL_ACTCTL_SHIFT;
52 }
53 
54 static inline void ctr_set_stop(u64 *state, u64 ctrsets)
55 {
56 	*state &= ~(ctrsets << CPUMF_LCCTL_ACTCTL_SHIFT);
57 }
58 
59 static inline int ctr_stcctm(enum cpumf_ctr_set set, u64 range, u64 *dest)
60 {
61 	switch (set) {
62 	case CPUMF_CTR_SET_BASIC:
63 		return stcctm(BASIC, range, dest);
64 	case CPUMF_CTR_SET_USER:
65 		return stcctm(PROBLEM_STATE, range, dest);
66 	case CPUMF_CTR_SET_CRYPTO:
67 		return stcctm(CRYPTO_ACTIVITY, range, dest);
68 	case CPUMF_CTR_SET_EXT:
69 		return stcctm(EXTENDED, range, dest);
70 	case CPUMF_CTR_SET_MT_DIAG:
71 		return stcctm(MT_DIAG_CLEARING, range, dest);
72 	case CPUMF_CTR_SET_MAX:
73 		return 3;
74 	}
75 	return 3;
76 }
77 
78 struct cpu_cf_events {
79 	refcount_t refcnt;		/* Reference count */
80 	atomic_t		ctr_set[CPUMF_CTR_SET_MAX];
81 	u64			state;		/* For perf_event_open SVC */
82 	u64			dev_state;	/* For /dev/hwctr */
83 	unsigned int		flags;
84 	size_t used;			/* Bytes used in data */
85 	size_t usedss;			/* Bytes used in start/stop */
86 	unsigned char start[PAGE_SIZE];	/* Counter set at event add */
87 	unsigned char stop[PAGE_SIZE];	/* Counter set at event delete */
88 	unsigned char data[PAGE_SIZE];	/* Counter set at /dev/hwctr */
89 	unsigned int sets;		/* # Counter set saved in memory */
90 };
91 
92 static unsigned int cfdiag_cpu_speed;	/* CPU speed for CF_DIAG trailer */
93 static debug_info_t *cf_dbg;
94 
95 /*
96  * The CPU Measurement query counter information instruction contains
97  * information which varies per machine generation, but is constant and
98  * does not change when running on a particular machine, such as counter
99  * first and second version number. This is needed to determine the size
100  * of counter sets. Extract this information at device driver initialization.
101  */
102 static struct cpumf_ctr_info	cpumf_ctr_info;
103 
104 struct cpu_cf_ptr {
105 	struct cpu_cf_events *cpucf;
106 };
107 
108 static struct cpu_cf_root {		/* Anchor to per CPU data */
109 	refcount_t refcnt;		/* Overall active events */
110 	struct cpu_cf_ptr __percpu *cfptr;
111 } cpu_cf_root;
112 
113 /*
114  * Serialize event initialization and event removal. Both are called from
115  * user space in task context with perf_event_open() and close()
116  * system calls.
117  *
118  * This mutex serializes functions cpum_cf_alloc_cpu() called at event
119  * initialization via cpumf_pmu_event_init() and function cpum_cf_free_cpu()
120  * called at event removal via call back function hw_perf_event_destroy()
121  * when the event is deleted. They are serialized to enforce correct
122  * bookkeeping of pointer and reference counts anchored by
123  * struct cpu_cf_root and the access to cpu_cf_root::refcnt and the
124  * per CPU pointers stored in cpu_cf_root::cfptr.
125  */
126 static DEFINE_MUTEX(pmc_reserve_mutex);
127 
128 /*
129  * Get pointer to per-cpu structure.
130  *
131  * Function get_cpu_cfhw() is called from
132  * - cfset_copy_all(): This function is protected by cpus_read_lock(), so
133  *   CPU hot plug remove can not happen. Event removal requires a close()
134  *   first.
135  *
136  * Function this_cpu_cfhw() is called from perf common code functions:
137  * - pmu_{en|dis}able(), pmu_{add|del}()and pmu_{start|stop}():
138  *   All functions execute with interrupts disabled on that particular CPU.
139  * - cfset_ioctl_{on|off}, cfset_cpu_read(): see comment cfset_copy_all().
140  *
141  * Therefore it is safe to access the CPU specific pointer to the event.
142  */
143 static struct cpu_cf_events *get_cpu_cfhw(int cpu)
144 {
145 	struct cpu_cf_ptr __percpu *p = cpu_cf_root.cfptr;
146 
147 	if (p) {
148 		struct cpu_cf_ptr *q = per_cpu_ptr(p, cpu);
149 
150 		return q->cpucf;
151 	}
152 	return NULL;
153 }
154 
155 static struct cpu_cf_events *this_cpu_cfhw(void)
156 {
157 	return get_cpu_cfhw(smp_processor_id());
158 }
159 
160 /* Disable counter sets on dedicated CPU */
161 static void cpum_cf_reset_cpu(void *flags)
162 {
163 	lcctl(0);
164 }
165 
166 /* Free per CPU data when the last event is removed. */
167 static void cpum_cf_free_root(void)
168 {
169 	if (!refcount_dec_and_test(&cpu_cf_root.refcnt))
170 		return;
171 	free_percpu(cpu_cf_root.cfptr);
172 	cpu_cf_root.cfptr = NULL;
173 	irq_subclass_unregister(IRQ_SUBCLASS_MEASUREMENT_ALERT);
174 	on_each_cpu(cpum_cf_reset_cpu, NULL, 1);
175 	debug_sprintf_event(cf_dbg, 4, "%s2 root.refcnt %u cfptr %px\n",
176 			    __func__, refcount_read(&cpu_cf_root.refcnt),
177 			    cpu_cf_root.cfptr);
178 }
179 
180 /*
181  * On initialization of first event also allocate per CPU data dynamically.
182  * Start with an array of pointers, the array size is the maximum number of
183  * CPUs possible, which might be larger than the number of CPUs currently
184  * online.
185  */
186 static int cpum_cf_alloc_root(void)
187 {
188 	int rc = 0;
189 
190 	if (refcount_inc_not_zero(&cpu_cf_root.refcnt))
191 		return rc;
192 
193 	/* The memory is already zeroed. */
194 	cpu_cf_root.cfptr = alloc_percpu(struct cpu_cf_ptr);
195 	if (cpu_cf_root.cfptr) {
196 		refcount_set(&cpu_cf_root.refcnt, 1);
197 		on_each_cpu(cpum_cf_reset_cpu, NULL, 1);
198 		irq_subclass_register(IRQ_SUBCLASS_MEASUREMENT_ALERT);
199 	} else {
200 		rc = -ENOMEM;
201 	}
202 
203 	return rc;
204 }
205 
206 /* Free CPU counter data structure for a PMU */
207 static void cpum_cf_free_cpu(int cpu)
208 {
209 	struct cpu_cf_events *cpuhw;
210 	struct cpu_cf_ptr *p;
211 
212 	mutex_lock(&pmc_reserve_mutex);
213 	/*
214 	 * When invoked via CPU hotplug handler, there might be no events
215 	 * installed or that particular CPU might not have an
216 	 * event installed. This anchor pointer can be NULL!
217 	 */
218 	if (!cpu_cf_root.cfptr)
219 		goto out;
220 	p = per_cpu_ptr(cpu_cf_root.cfptr, cpu);
221 	cpuhw = p->cpucf;
222 	/*
223 	 * Might be zero when called from CPU hotplug handler and no event
224 	 * installed on that CPU, but on different CPUs.
225 	 */
226 	if (!cpuhw)
227 		goto out;
228 
229 	if (refcount_dec_and_test(&cpuhw->refcnt)) {
230 		kfree(cpuhw);
231 		p->cpucf = NULL;
232 	}
233 	cpum_cf_free_root();
234 out:
235 	mutex_unlock(&pmc_reserve_mutex);
236 }
237 
238 /* Allocate CPU counter data structure for a PMU. Called under mutex lock. */
239 static int cpum_cf_alloc_cpu(int cpu)
240 {
241 	struct cpu_cf_events *cpuhw;
242 	struct cpu_cf_ptr *p;
243 	int rc;
244 
245 	mutex_lock(&pmc_reserve_mutex);
246 	rc = cpum_cf_alloc_root();
247 	if (rc)
248 		goto unlock;
249 	p = per_cpu_ptr(cpu_cf_root.cfptr, cpu);
250 	cpuhw = p->cpucf;
251 
252 	if (!cpuhw) {
253 		cpuhw = kzalloc(sizeof(*cpuhw), GFP_KERNEL);
254 		if (cpuhw) {
255 			p->cpucf = cpuhw;
256 			refcount_set(&cpuhw->refcnt, 1);
257 		} else {
258 			rc = -ENOMEM;
259 		}
260 	} else {
261 		refcount_inc(&cpuhw->refcnt);
262 	}
263 	if (rc) {
264 		/*
265 		 * Error in allocation of event, decrement anchor. Since
266 		 * cpu_cf_event in not created, its destroy() function is not
267 		 * invoked. Adjust the reference counter for the anchor.
268 		 */
269 		cpum_cf_free_root();
270 	}
271 unlock:
272 	mutex_unlock(&pmc_reserve_mutex);
273 	return rc;
274 }
275 
276 /*
277  * Create/delete per CPU data structures for /dev/hwctr interface and events
278  * created by perf_event_open().
279  * If cpu is -1, track task on all available CPUs. This requires
280  * allocation of hardware data structures for all CPUs. This setup handles
281  * perf_event_open() with task context and /dev/hwctr interface.
282  * If cpu is non-zero install event on this CPU only. This setup handles
283  * perf_event_open() with CPU context.
284  */
285 static int cpum_cf_alloc(int cpu)
286 {
287 	cpumask_var_t mask;
288 	int rc;
289 
290 	if (cpu == -1) {
291 		if (!zalloc_cpumask_var(&mask, GFP_KERNEL))
292 			return -ENOMEM;
293 		for_each_online_cpu(cpu) {
294 			rc = cpum_cf_alloc_cpu(cpu);
295 			if (rc) {
296 				for_each_cpu(cpu, mask)
297 					cpum_cf_free_cpu(cpu);
298 				break;
299 			}
300 			cpumask_set_cpu(cpu, mask);
301 		}
302 		free_cpumask_var(mask);
303 	} else {
304 		rc = cpum_cf_alloc_cpu(cpu);
305 	}
306 	return rc;
307 }
308 
309 static void cpum_cf_free(int cpu)
310 {
311 	if (cpu == -1) {
312 		for_each_online_cpu(cpu)
313 			cpum_cf_free_cpu(cpu);
314 	} else {
315 		cpum_cf_free_cpu(cpu);
316 	}
317 }
318 
319 #define	CF_DIAG_CTRSET_DEF		0xfeef	/* Counter set header mark */
320 						/* interval in seconds */
321 
322 /* Counter sets are stored as data stream in a page sized memory buffer and
323  * exported to user space via raw data attached to the event sample data.
324  * Each counter set starts with an eight byte header consisting of:
325  * - a two byte eye catcher (0xfeef)
326  * - a one byte counter set number
327  * - a two byte counter set size (indicates the number of counters in this set)
328  * - a three byte reserved value (must be zero) to make the header the same
329  *   size as a counter value.
330  * All counter values are eight byte in size.
331  *
332  * All counter sets are followed by a 64 byte trailer.
333  * The trailer consists of a:
334  * - flag field indicating valid fields when corresponding bit set
335  * - the counter facility first and second version number
336  * - the CPU speed if nonzero
337  * - the time stamp the counter sets have been collected
338  * - the time of day (TOD) base value
339  * - the machine type.
340  *
341  * The counter sets are saved when the process is prepared to be executed on a
342  * CPU and saved again when the process is going to be removed from a CPU.
343  * The difference of both counter sets are calculated and stored in the event
344  * sample data area.
345  */
346 struct cf_ctrset_entry {	/* CPU-M CF counter set entry (8 byte) */
347 	unsigned int def:16;	/* 0-15  Data Entry Format */
348 	unsigned int set:16;	/* 16-31 Counter set identifier */
349 	unsigned int ctr:16;	/* 32-47 Number of stored counters */
350 	unsigned int res1:16;	/* 48-63 Reserved */
351 };
352 
353 struct cf_trailer_entry {	/* CPU-M CF_DIAG trailer (64 byte) */
354 	/* 0 - 7 */
355 	union {
356 		struct {
357 			unsigned int clock_base:1;	/* TOD clock base set */
358 			unsigned int speed:1;		/* CPU speed set */
359 			/* Measurement alerts */
360 			unsigned int mtda:1;	/* Loss of MT ctr. data alert */
361 			unsigned int caca:1;	/* Counter auth. change alert */
362 			unsigned int lcda:1;	/* Loss of counter data alert */
363 		};
364 		unsigned long flags;	/* 0-63    All indicators */
365 	};
366 	/* 8 - 15 */
367 	unsigned int cfvn:16;			/* 64-79   Ctr First Version */
368 	unsigned int csvn:16;			/* 80-95   Ctr Second Version */
369 	unsigned int cpu_speed:32;		/* 96-127  CPU speed */
370 	/* 16 - 23 */
371 	unsigned long timestamp;		/* 128-191 Timestamp (TOD) */
372 	/* 24 - 55 */
373 	union {
374 		struct {
375 			unsigned long progusage1;
376 			unsigned long progusage2;
377 			unsigned long progusage3;
378 			unsigned long tod_base;
379 		};
380 		unsigned long progusage[4];
381 	};
382 	/* 56 - 63 */
383 	unsigned int mach_type:16;		/* Machine type */
384 	unsigned int res1:16;			/* Reserved */
385 	unsigned int res2:32;			/* Reserved */
386 };
387 
388 /* Create the trailer data at the end of a page. */
389 static void cfdiag_trailer(struct cf_trailer_entry *te)
390 {
391 	struct cpuid cpuid;
392 
393 	te->cfvn = cpumf_ctr_info.cfvn;		/* Counter version numbers */
394 	te->csvn = cpumf_ctr_info.csvn;
395 
396 	get_cpu_id(&cpuid);			/* Machine type */
397 	te->mach_type = cpuid.machine;
398 	te->cpu_speed = cfdiag_cpu_speed;
399 	if (te->cpu_speed)
400 		te->speed = 1;
401 	te->clock_base = 1;			/* Save clock base */
402 	te->tod_base = tod_clock_base.tod;
403 	te->timestamp = get_tod_clock_fast();
404 }
405 
406 /*
407  * The number of counters per counter set varies between machine generations,
408  * but is constant when running on a particular machine generation.
409  * Determine each counter set size at device driver initialization and
410  * retrieve it later.
411  */
412 static size_t cpumf_ctr_setsizes[CPUMF_CTR_SET_MAX];
413 static void cpum_cf_make_setsize(enum cpumf_ctr_set ctrset)
414 {
415 	size_t ctrset_size = 0;
416 
417 	switch (ctrset) {
418 	case CPUMF_CTR_SET_BASIC:
419 		if (cpumf_ctr_info.cfvn >= 1)
420 			ctrset_size = 6;
421 		break;
422 	case CPUMF_CTR_SET_USER:
423 		if (cpumf_ctr_info.cfvn == 1)
424 			ctrset_size = 6;
425 		else if (cpumf_ctr_info.cfvn >= 3)
426 			ctrset_size = 2;
427 		break;
428 	case CPUMF_CTR_SET_CRYPTO:
429 		if (cpumf_ctr_info.csvn >= 1 && cpumf_ctr_info.csvn <= 5)
430 			ctrset_size = 16;
431 		else if (cpumf_ctr_info.csvn == 6 || cpumf_ctr_info.csvn == 7)
432 			ctrset_size = 20;
433 		break;
434 	case CPUMF_CTR_SET_EXT:
435 		if (cpumf_ctr_info.csvn == 1)
436 			ctrset_size = 32;
437 		else if (cpumf_ctr_info.csvn == 2)
438 			ctrset_size = 48;
439 		else if (cpumf_ctr_info.csvn >= 3 && cpumf_ctr_info.csvn <= 5)
440 			ctrset_size = 128;
441 		else if (cpumf_ctr_info.csvn == 6 || cpumf_ctr_info.csvn == 7)
442 			ctrset_size = 160;
443 		break;
444 	case CPUMF_CTR_SET_MT_DIAG:
445 		if (cpumf_ctr_info.csvn > 3)
446 			ctrset_size = 48;
447 		break;
448 	case CPUMF_CTR_SET_MAX:
449 		break;
450 	}
451 	cpumf_ctr_setsizes[ctrset] = ctrset_size;
452 }
453 
454 /*
455  * Return the maximum possible counter set size (in number of 8 byte counters)
456  * depending on type and model number.
457  */
458 static size_t cpum_cf_read_setsize(enum cpumf_ctr_set ctrset)
459 {
460 	return cpumf_ctr_setsizes[ctrset];
461 }
462 
463 /* Read a counter set. The counter set number determines the counter set and
464  * the CPUM-CF first and second version number determine the number of
465  * available counters in each counter set.
466  * Each counter set starts with header containing the counter set number and
467  * the number of eight byte counters.
468  *
469  * The functions returns the number of bytes occupied by this counter set
470  * including the header.
471  * If there is no counter in the counter set, this counter set is useless and
472  * zero is returned on this case.
473  *
474  * Note that the counter sets may not be enabled or active and the stcctm
475  * instruction might return error 3. Depending on error_ok value this is ok,
476  * for example when called from cpumf_pmu_start() call back function.
477  */
478 static size_t cfdiag_getctrset(struct cf_ctrset_entry *ctrdata, int ctrset,
479 			       size_t room, bool error_ok)
480 {
481 	size_t ctrset_size, need = 0;
482 	int rc = 3;				/* Assume write failure */
483 
484 	ctrdata->def = CF_DIAG_CTRSET_DEF;
485 	ctrdata->set = ctrset;
486 	ctrdata->res1 = 0;
487 	ctrset_size = cpum_cf_read_setsize(ctrset);
488 
489 	if (ctrset_size) {			/* Save data */
490 		need = ctrset_size * sizeof(u64) + sizeof(*ctrdata);
491 		if (need <= room) {
492 			rc = ctr_stcctm(ctrset, ctrset_size,
493 					(u64 *)(ctrdata + 1));
494 		}
495 		if (rc != 3 || error_ok)
496 			ctrdata->ctr = ctrset_size;
497 		else
498 			need = 0;
499 	}
500 
501 	return need;
502 }
503 
504 static const u64 cpumf_ctr_ctl[CPUMF_CTR_SET_MAX] = {
505 	[CPUMF_CTR_SET_BASIC]	= 0x02,
506 	[CPUMF_CTR_SET_USER]	= 0x04,
507 	[CPUMF_CTR_SET_CRYPTO]	= 0x08,
508 	[CPUMF_CTR_SET_EXT]	= 0x01,
509 	[CPUMF_CTR_SET_MT_DIAG] = 0x20,
510 };
511 
512 /* Read out all counter sets and save them in the provided data buffer.
513  * The last 64 byte host an artificial trailer entry.
514  */
515 static size_t cfdiag_getctr(void *data, size_t sz, unsigned long auth,
516 			    bool error_ok)
517 {
518 	struct cf_trailer_entry *trailer;
519 	size_t offset = 0, done;
520 	int i;
521 
522 	memset(data, 0, sz);
523 	sz -= sizeof(*trailer);		/* Always room for trailer */
524 	for (i = CPUMF_CTR_SET_BASIC; i < CPUMF_CTR_SET_MAX; ++i) {
525 		struct cf_ctrset_entry *ctrdata = data + offset;
526 
527 		if (!(auth & cpumf_ctr_ctl[i]))
528 			continue;	/* Counter set not authorized */
529 
530 		done = cfdiag_getctrset(ctrdata, i, sz - offset, error_ok);
531 		offset += done;
532 	}
533 	trailer = data + offset;
534 	cfdiag_trailer(trailer);
535 	return offset + sizeof(*trailer);
536 }
537 
538 /* Calculate the difference for each counter in a counter set. */
539 static void cfdiag_diffctrset(u64 *pstart, u64 *pstop, int counters)
540 {
541 	for (; --counters >= 0; ++pstart, ++pstop)
542 		if (*pstop >= *pstart)
543 			*pstop -= *pstart;
544 		else
545 			*pstop = *pstart - *pstop + 1;
546 }
547 
548 /* Scan the counter sets and calculate the difference of each counter
549  * in each set. The result is the increment of each counter during the
550  * period the counter set has been activated.
551  *
552  * Return true on success.
553  */
554 static int cfdiag_diffctr(struct cpu_cf_events *cpuhw, unsigned long auth)
555 {
556 	struct cf_trailer_entry *trailer_start, *trailer_stop;
557 	struct cf_ctrset_entry *ctrstart, *ctrstop;
558 	size_t offset = 0;
559 
560 	auth &= (1 << CPUMF_LCCTL_ENABLE_SHIFT) - 1;
561 	do {
562 		ctrstart = (struct cf_ctrset_entry *)(cpuhw->start + offset);
563 		ctrstop = (struct cf_ctrset_entry *)(cpuhw->stop + offset);
564 
565 		if (memcmp(ctrstop, ctrstart, sizeof(*ctrstop))) {
566 			pr_err_once("cpum_cf_diag counter set compare error "
567 				    "in set %i\n", ctrstart->set);
568 			return 0;
569 		}
570 		auth &= ~cpumf_ctr_ctl[ctrstart->set];
571 		if (ctrstart->def == CF_DIAG_CTRSET_DEF) {
572 			cfdiag_diffctrset((u64 *)(ctrstart + 1),
573 					  (u64 *)(ctrstop + 1), ctrstart->ctr);
574 			offset += ctrstart->ctr * sizeof(u64) +
575 							sizeof(*ctrstart);
576 		}
577 	} while (ctrstart->def && auth);
578 
579 	/* Save time_stamp from start of event in stop's trailer */
580 	trailer_start = (struct cf_trailer_entry *)(cpuhw->start + offset);
581 	trailer_stop = (struct cf_trailer_entry *)(cpuhw->stop + offset);
582 	trailer_stop->progusage[0] = trailer_start->timestamp;
583 
584 	return 1;
585 }
586 
587 static enum cpumf_ctr_set get_counter_set(u64 event)
588 {
589 	int set = CPUMF_CTR_SET_MAX;
590 
591 	if (event < 32)
592 		set = CPUMF_CTR_SET_BASIC;
593 	else if (event < 64)
594 		set = CPUMF_CTR_SET_USER;
595 	else if (event < 128)
596 		set = CPUMF_CTR_SET_CRYPTO;
597 	else if (event < 288)
598 		set = CPUMF_CTR_SET_EXT;
599 	else if (event >= 448 && event < 496)
600 		set = CPUMF_CTR_SET_MT_DIAG;
601 
602 	return set;
603 }
604 
605 static int validate_ctr_version(const u64 config, enum cpumf_ctr_set set)
606 {
607 	u16 mtdiag_ctl;
608 	int err = 0;
609 
610 	/* check required version for counter sets */
611 	switch (set) {
612 	case CPUMF_CTR_SET_BASIC:
613 	case CPUMF_CTR_SET_USER:
614 		if (cpumf_ctr_info.cfvn < 1)
615 			err = -EOPNOTSUPP;
616 		break;
617 	case CPUMF_CTR_SET_CRYPTO:
618 		if ((cpumf_ctr_info.csvn >= 1 && cpumf_ctr_info.csvn <= 5 &&
619 		     config > 79) || (cpumf_ctr_info.csvn >= 6 && config > 83))
620 			err = -EOPNOTSUPP;
621 		break;
622 	case CPUMF_CTR_SET_EXT:
623 		if (cpumf_ctr_info.csvn < 1)
624 			err = -EOPNOTSUPP;
625 		if ((cpumf_ctr_info.csvn == 1 && config > 159) ||
626 		    (cpumf_ctr_info.csvn == 2 && config > 175) ||
627 		    (cpumf_ctr_info.csvn >= 3 && cpumf_ctr_info.csvn <= 5 &&
628 		     config > 255) ||
629 		    (cpumf_ctr_info.csvn >= 6 && config > 287))
630 			err = -EOPNOTSUPP;
631 		break;
632 	case CPUMF_CTR_SET_MT_DIAG:
633 		if (cpumf_ctr_info.csvn <= 3)
634 			err = -EOPNOTSUPP;
635 		/*
636 		 * MT-diagnostic counters are read-only.  The counter set
637 		 * is automatically enabled and activated on all CPUs with
638 		 * multithreading (SMT).  Deactivation of multithreading
639 		 * also disables the counter set.  State changes are ignored
640 		 * by lcctl().	Because Linux controls SMT enablement through
641 		 * a kernel parameter only, the counter set is either disabled
642 		 * or enabled and active.
643 		 *
644 		 * Thus, the counters can only be used if SMT is on and the
645 		 * counter set is enabled and active.
646 		 */
647 		mtdiag_ctl = cpumf_ctr_ctl[CPUMF_CTR_SET_MT_DIAG];
648 		if (!((cpumf_ctr_info.auth_ctl & mtdiag_ctl) &&
649 		      (cpumf_ctr_info.enable_ctl & mtdiag_ctl) &&
650 		      (cpumf_ctr_info.act_ctl & mtdiag_ctl)))
651 			err = -EOPNOTSUPP;
652 		break;
653 	case CPUMF_CTR_SET_MAX:
654 		err = -EOPNOTSUPP;
655 	}
656 
657 	return err;
658 }
659 
660 /*
661  * Change the CPUMF state to active.
662  * Enable and activate the CPU-counter sets according
663  * to the per-cpu control state.
664  */
665 static void cpumf_pmu_enable(struct pmu *pmu)
666 {
667 	struct cpu_cf_events *cpuhw = this_cpu_cfhw();
668 	int err;
669 
670 	if (!cpuhw || (cpuhw->flags & PMU_F_ENABLED))
671 		return;
672 
673 	err = lcctl(cpuhw->state | cpuhw->dev_state);
674 	if (err)
675 		pr_err("Enabling the performance measuring unit failed with rc=%x\n", err);
676 	else
677 		cpuhw->flags |= PMU_F_ENABLED;
678 }
679 
680 /*
681  * Change the CPUMF state to inactive.
682  * Disable and enable (inactive) the CPU-counter sets according
683  * to the per-cpu control state.
684  */
685 static void cpumf_pmu_disable(struct pmu *pmu)
686 {
687 	struct cpu_cf_events *cpuhw = this_cpu_cfhw();
688 	u64 inactive;
689 	int err;
690 
691 	if (!cpuhw || !(cpuhw->flags & PMU_F_ENABLED))
692 		return;
693 
694 	inactive = cpuhw->state & ~((1 << CPUMF_LCCTL_ENABLE_SHIFT) - 1);
695 	inactive |= cpuhw->dev_state;
696 	err = lcctl(inactive);
697 	if (err)
698 		pr_err("Disabling the performance measuring unit failed with rc=%x\n", err);
699 	else
700 		cpuhw->flags &= ~PMU_F_ENABLED;
701 }
702 
703 /* Release the PMU if event is the last perf event */
704 static void hw_perf_event_destroy(struct perf_event *event)
705 {
706 	cpum_cf_free(event->cpu);
707 }
708 
709 /* CPUMF <-> perf event mappings for kernel+userspace (basic set) */
710 static const int cpumf_generic_events_basic[] = {
711 	[PERF_COUNT_HW_CPU_CYCLES]	    = 0,
712 	[PERF_COUNT_HW_INSTRUCTIONS]	    = 1,
713 	[PERF_COUNT_HW_CACHE_REFERENCES]    = -1,
714 	[PERF_COUNT_HW_CACHE_MISSES]	    = -1,
715 	[PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = -1,
716 	[PERF_COUNT_HW_BRANCH_MISSES]	    = -1,
717 	[PERF_COUNT_HW_BUS_CYCLES]	    = -1,
718 };
719 /* CPUMF <-> perf event mappings for userspace (problem-state set) */
720 static const int cpumf_generic_events_user[] = {
721 	[PERF_COUNT_HW_CPU_CYCLES]	    = 32,
722 	[PERF_COUNT_HW_INSTRUCTIONS]	    = 33,
723 	[PERF_COUNT_HW_CACHE_REFERENCES]    = -1,
724 	[PERF_COUNT_HW_CACHE_MISSES]	    = -1,
725 	[PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = -1,
726 	[PERF_COUNT_HW_BRANCH_MISSES]	    = -1,
727 	[PERF_COUNT_HW_BUS_CYCLES]	    = -1,
728 };
729 
730 static int is_userspace_event(u64 ev)
731 {
732 	return cpumf_generic_events_user[PERF_COUNT_HW_CPU_CYCLES] == ev ||
733 	       cpumf_generic_events_user[PERF_COUNT_HW_INSTRUCTIONS] == ev;
734 }
735 
736 static int __hw_perf_event_init(struct perf_event *event, unsigned int type)
737 {
738 	struct perf_event_attr *attr = &event->attr;
739 	struct hw_perf_event *hwc = &event->hw;
740 	enum cpumf_ctr_set set;
741 	u64 ev;
742 
743 	switch (type) {
744 	case PERF_TYPE_RAW:
745 		/* Raw events are used to access counters directly,
746 		 * hence do not permit excludes */
747 		if (attr->exclude_kernel || attr->exclude_user ||
748 		    attr->exclude_hv)
749 			return -EOPNOTSUPP;
750 		ev = attr->config;
751 		break;
752 
753 	case PERF_TYPE_HARDWARE:
754 		if (is_sampling_event(event))	/* No sampling support */
755 			return -ENOENT;
756 		ev = attr->config;
757 		if (!attr->exclude_user && attr->exclude_kernel) {
758 			/*
759 			 * Count user space (problem-state) only
760 			 * Handle events 32 and 33 as 0:u and 1:u
761 			 */
762 			if (!is_userspace_event(ev)) {
763 				if (ev >= ARRAY_SIZE(cpumf_generic_events_user))
764 					return -EOPNOTSUPP;
765 				ev = cpumf_generic_events_user[ev];
766 			}
767 		} else if (!attr->exclude_kernel && attr->exclude_user) {
768 			/* No support for kernel space counters only */
769 			return -EOPNOTSUPP;
770 		} else {
771 			/* Count user and kernel space, incl. events 32 + 33 */
772 			if (!is_userspace_event(ev)) {
773 				if (ev >= ARRAY_SIZE(cpumf_generic_events_basic))
774 					return -EOPNOTSUPP;
775 				ev = cpumf_generic_events_basic[ev];
776 			}
777 		}
778 		break;
779 
780 	default:
781 		return -ENOENT;
782 	}
783 
784 	if (ev == -1)
785 		return -ENOENT;
786 
787 	if (ev > PERF_CPUM_CF_MAX_CTR)
788 		return -ENOENT;
789 
790 	/* Obtain the counter set to which the specified counter belongs */
791 	set = get_counter_set(ev);
792 	switch (set) {
793 	case CPUMF_CTR_SET_BASIC:
794 	case CPUMF_CTR_SET_USER:
795 	case CPUMF_CTR_SET_CRYPTO:
796 	case CPUMF_CTR_SET_EXT:
797 	case CPUMF_CTR_SET_MT_DIAG:
798 		/*
799 		 * Use the hardware perf event structure to store the
800 		 * counter number in the 'config' member and the counter
801 		 * set number in the 'config_base' as bit mask.
802 		 * It is later used to enable/disable the counter(s).
803 		 */
804 		hwc->config = ev;
805 		hwc->config_base = cpumf_ctr_ctl[set];
806 		break;
807 	case CPUMF_CTR_SET_MAX:
808 		/* The counter could not be associated to a counter set */
809 		return -EINVAL;
810 	}
811 
812 	/* Initialize for using the CPU-measurement counter facility */
813 	if (cpum_cf_alloc(event->cpu))
814 		return -ENOMEM;
815 	event->destroy = hw_perf_event_destroy;
816 
817 	/*
818 	 * Finally, validate version and authorization of the counter set.
819 	 * If the particular CPU counter set is not authorized,
820 	 * return with -ENOENT in order to fall back to other
821 	 * PMUs that might suffice the event request.
822 	 */
823 	if (!(hwc->config_base & cpumf_ctr_info.auth_ctl))
824 		return -ENOENT;
825 	return validate_ctr_version(hwc->config, set);
826 }
827 
828 /* Events CPU_CYLCES and INSTRUCTIONS can be submitted with two different
829  * attribute::type values:
830  * - PERF_TYPE_HARDWARE:
831  * - pmu->type:
832  * Handle both type of invocations identical. They address the same hardware.
833  * The result is different when event modifiers exclude_kernel and/or
834  * exclude_user are also set.
835  */
836 static int cpumf_pmu_event_type(struct perf_event *event)
837 {
838 	u64 ev = event->attr.config;
839 
840 	if (cpumf_generic_events_basic[PERF_COUNT_HW_CPU_CYCLES] == ev ||
841 	    cpumf_generic_events_basic[PERF_COUNT_HW_INSTRUCTIONS] == ev ||
842 	    cpumf_generic_events_user[PERF_COUNT_HW_CPU_CYCLES] == ev ||
843 	    cpumf_generic_events_user[PERF_COUNT_HW_INSTRUCTIONS] == ev)
844 		return PERF_TYPE_HARDWARE;
845 	return PERF_TYPE_RAW;
846 }
847 
848 static int cpumf_pmu_event_init(struct perf_event *event)
849 {
850 	unsigned int type = event->attr.type;
851 	int err;
852 
853 	if (type == PERF_TYPE_HARDWARE || type == PERF_TYPE_RAW)
854 		err = __hw_perf_event_init(event, type);
855 	else if (event->pmu->type == type)
856 		/* Registered as unknown PMU */
857 		err = __hw_perf_event_init(event, cpumf_pmu_event_type(event));
858 	else
859 		return -ENOENT;
860 
861 	if (unlikely(err) && event->destroy)
862 		event->destroy(event);
863 
864 	return err;
865 }
866 
867 static int hw_perf_event_reset(struct perf_event *event)
868 {
869 	u64 prev, new;
870 	int err;
871 
872 	do {
873 		prev = local64_read(&event->hw.prev_count);
874 		err = ecctr(event->hw.config, &new);
875 		if (err) {
876 			if (err != 3)
877 				break;
878 			/* The counter is not (yet) available. This
879 			 * might happen if the counter set to which
880 			 * this counter belongs is in the disabled
881 			 * state.
882 			 */
883 			new = 0;
884 		}
885 	} while (local64_cmpxchg(&event->hw.prev_count, prev, new) != prev);
886 
887 	return err;
888 }
889 
890 static void hw_perf_event_update(struct perf_event *event)
891 {
892 	u64 prev, new, delta;
893 	int err;
894 
895 	do {
896 		prev = local64_read(&event->hw.prev_count);
897 		err = ecctr(event->hw.config, &new);
898 		if (err)
899 			return;
900 	} while (local64_cmpxchg(&event->hw.prev_count, prev, new) != prev);
901 
902 	delta = (prev <= new) ? new - prev
903 			      : (-1ULL - prev) + new + 1;	 /* overflow */
904 	local64_add(delta, &event->count);
905 }
906 
907 static void cpumf_pmu_read(struct perf_event *event)
908 {
909 	if (event->hw.state & PERF_HES_STOPPED)
910 		return;
911 
912 	hw_perf_event_update(event);
913 }
914 
915 static void cpumf_pmu_start(struct perf_event *event, int flags)
916 {
917 	struct cpu_cf_events *cpuhw = this_cpu_cfhw();
918 	struct hw_perf_event *hwc = &event->hw;
919 	int i;
920 
921 	if (!(hwc->state & PERF_HES_STOPPED))
922 		return;
923 
924 	hwc->state = 0;
925 
926 	/* (Re-)enable and activate the counter set */
927 	ctr_set_enable(&cpuhw->state, hwc->config_base);
928 	ctr_set_start(&cpuhw->state, hwc->config_base);
929 
930 	/* The counter set to which this counter belongs can be already active.
931 	 * Because all counters in a set are active, the event->hw.prev_count
932 	 * needs to be synchronized.  At this point, the counter set can be in
933 	 * the inactive or disabled state.
934 	 */
935 	if (hwc->config == PERF_EVENT_CPUM_CF_DIAG) {
936 		cpuhw->usedss = cfdiag_getctr(cpuhw->start,
937 					      sizeof(cpuhw->start),
938 					      hwc->config_base, true);
939 	} else {
940 		hw_perf_event_reset(event);
941 	}
942 
943 	/* Increment refcount for counter sets */
944 	for (i = CPUMF_CTR_SET_BASIC; i < CPUMF_CTR_SET_MAX; ++i)
945 		if ((hwc->config_base & cpumf_ctr_ctl[i]))
946 			atomic_inc(&cpuhw->ctr_set[i]);
947 }
948 
949 /* Create perf event sample with the counter sets as raw data.	The sample
950  * is then pushed to the event subsystem and the function checks for
951  * possible event overflows. If an event overflow occurs, the PMU is
952  * stopped.
953  *
954  * Return non-zero if an event overflow occurred.
955  */
956 static int cfdiag_push_sample(struct perf_event *event,
957 			      struct cpu_cf_events *cpuhw)
958 {
959 	struct perf_sample_data data;
960 	struct perf_raw_record raw;
961 	struct pt_regs regs;
962 	int overflow;
963 
964 	/* Setup perf sample */
965 	perf_sample_data_init(&data, 0, event->hw.last_period);
966 	memset(&regs, 0, sizeof(regs));
967 	memset(&raw, 0, sizeof(raw));
968 
969 	if (event->attr.sample_type & PERF_SAMPLE_CPU)
970 		data.cpu_entry.cpu = event->cpu;
971 	if (event->attr.sample_type & PERF_SAMPLE_RAW) {
972 		raw.frag.size = cpuhw->usedss;
973 		raw.frag.data = cpuhw->stop;
974 		perf_sample_save_raw_data(&data, &raw);
975 	}
976 
977 	overflow = perf_event_overflow(event, &data, &regs);
978 	debug_sprintf_event(cf_dbg, 3,
979 			    "%s event %#llx sample_type %#llx raw %d ov %d\n",
980 			    __func__, event->hw.config,
981 			    event->attr.sample_type, raw.size, overflow);
982 	if (overflow)
983 		event->pmu->stop(event, 0);
984 
985 	perf_event_update_userpage(event);
986 	return overflow;
987 }
988 
989 static void cpumf_pmu_stop(struct perf_event *event, int flags)
990 {
991 	struct cpu_cf_events *cpuhw = this_cpu_cfhw();
992 	struct hw_perf_event *hwc = &event->hw;
993 	int i;
994 
995 	if (!(hwc->state & PERF_HES_STOPPED)) {
996 		/* Decrement reference count for this counter set and if this
997 		 * is the last used counter in the set, clear activation
998 		 * control and set the counter set state to inactive.
999 		 */
1000 		for (i = CPUMF_CTR_SET_BASIC; i < CPUMF_CTR_SET_MAX; ++i) {
1001 			if (!(hwc->config_base & cpumf_ctr_ctl[i]))
1002 				continue;
1003 			if (!atomic_dec_return(&cpuhw->ctr_set[i]))
1004 				ctr_set_stop(&cpuhw->state, cpumf_ctr_ctl[i]);
1005 		}
1006 		hwc->state |= PERF_HES_STOPPED;
1007 	}
1008 
1009 	if ((flags & PERF_EF_UPDATE) && !(hwc->state & PERF_HES_UPTODATE)) {
1010 		if (hwc->config == PERF_EVENT_CPUM_CF_DIAG) {
1011 			local64_inc(&event->count);
1012 			cpuhw->usedss = cfdiag_getctr(cpuhw->stop,
1013 						      sizeof(cpuhw->stop),
1014 						      event->hw.config_base,
1015 						      false);
1016 			if (cfdiag_diffctr(cpuhw, event->hw.config_base))
1017 				cfdiag_push_sample(event, cpuhw);
1018 		} else {
1019 			hw_perf_event_update(event);
1020 		}
1021 		hwc->state |= PERF_HES_UPTODATE;
1022 	}
1023 }
1024 
1025 static int cpumf_pmu_add(struct perf_event *event, int flags)
1026 {
1027 	struct cpu_cf_events *cpuhw = this_cpu_cfhw();
1028 
1029 	ctr_set_enable(&cpuhw->state, event->hw.config_base);
1030 	event->hw.state = PERF_HES_UPTODATE | PERF_HES_STOPPED;
1031 
1032 	if (flags & PERF_EF_START)
1033 		cpumf_pmu_start(event, PERF_EF_RELOAD);
1034 
1035 	return 0;
1036 }
1037 
1038 static void cpumf_pmu_del(struct perf_event *event, int flags)
1039 {
1040 	struct cpu_cf_events *cpuhw = this_cpu_cfhw();
1041 	int i;
1042 
1043 	cpumf_pmu_stop(event, PERF_EF_UPDATE);
1044 
1045 	/* Check if any counter in the counter set is still used.  If not used,
1046 	 * change the counter set to the disabled state.  This also clears the
1047 	 * content of all counters in the set.
1048 	 *
1049 	 * When a new perf event has been added but not yet started, this can
1050 	 * clear enable control and resets all counters in a set.  Therefore,
1051 	 * cpumf_pmu_start() always has to reenable a counter set.
1052 	 */
1053 	for (i = CPUMF_CTR_SET_BASIC; i < CPUMF_CTR_SET_MAX; ++i)
1054 		if (!atomic_read(&cpuhw->ctr_set[i]))
1055 			ctr_set_disable(&cpuhw->state, cpumf_ctr_ctl[i]);
1056 }
1057 
1058 /* Performance monitoring unit for s390x */
1059 static struct pmu cpumf_pmu = {
1060 	.task_ctx_nr  = perf_sw_context,
1061 	.capabilities = PERF_PMU_CAP_NO_INTERRUPT,
1062 	.pmu_enable   = cpumf_pmu_enable,
1063 	.pmu_disable  = cpumf_pmu_disable,
1064 	.event_init   = cpumf_pmu_event_init,
1065 	.add	      = cpumf_pmu_add,
1066 	.del	      = cpumf_pmu_del,
1067 	.start	      = cpumf_pmu_start,
1068 	.stop	      = cpumf_pmu_stop,
1069 	.read	      = cpumf_pmu_read,
1070 };
1071 
1072 static struct cfset_session {		/* CPUs and counter set bit mask */
1073 	struct list_head head;		/* Head of list of active processes */
1074 } cfset_session = {
1075 	.head = LIST_HEAD_INIT(cfset_session.head)
1076 };
1077 
1078 static refcount_t cfset_opencnt = REFCOUNT_INIT(0);	/* Access count */
1079 /*
1080  * Synchronize access to device /dev/hwc. This mutex protects against
1081  * concurrent access to functions cfset_open() and cfset_release().
1082  * Same for CPU hotplug add and remove events triggering
1083  * cpum_cf_online_cpu() and cpum_cf_offline_cpu().
1084  * It also serializes concurrent device ioctl access from multiple
1085  * processes accessing /dev/hwc.
1086  *
1087  * The mutex protects concurrent access to the /dev/hwctr session management
1088  * struct cfset_session and reference counting variable cfset_opencnt.
1089  */
1090 static DEFINE_MUTEX(cfset_ctrset_mutex);
1091 
1092 /*
1093  * CPU hotplug handles only /dev/hwctr device.
1094  * For perf_event_open() the CPU hotplug handling is done on kernel common
1095  * code:
1096  * - CPU add: Nothing is done since a file descriptor can not be created
1097  *   and returned to the user.
1098  * - CPU delete: Handled by common code via pmu_disable(), pmu_stop() and
1099  *   pmu_delete(). The event itself is removed when the file descriptor is
1100  *   closed.
1101  */
1102 static int cfset_online_cpu(unsigned int cpu);
1103 
1104 static int cpum_cf_online_cpu(unsigned int cpu)
1105 {
1106 	int rc = 0;
1107 
1108 	debug_sprintf_event(cf_dbg, 4, "%s cpu %d root.refcnt %d "
1109 			    "opencnt %d\n", __func__, cpu,
1110 			    refcount_read(&cpu_cf_root.refcnt),
1111 			    refcount_read(&cfset_opencnt));
1112 	/*
1113 	 * Ignore notification for perf_event_open().
1114 	 * Handle only /dev/hwctr device sessions.
1115 	 */
1116 	mutex_lock(&cfset_ctrset_mutex);
1117 	if (refcount_read(&cfset_opencnt)) {
1118 		rc = cpum_cf_alloc_cpu(cpu);
1119 		if (!rc)
1120 			cfset_online_cpu(cpu);
1121 	}
1122 	mutex_unlock(&cfset_ctrset_mutex);
1123 	return rc;
1124 }
1125 
1126 static int cfset_offline_cpu(unsigned int cpu);
1127 
1128 static int cpum_cf_offline_cpu(unsigned int cpu)
1129 {
1130 	debug_sprintf_event(cf_dbg, 4, "%s cpu %d root.refcnt %d opencnt %d\n",
1131 			    __func__, cpu, refcount_read(&cpu_cf_root.refcnt),
1132 			    refcount_read(&cfset_opencnt));
1133 	/*
1134 	 * During task exit processing of grouped perf events triggered by CPU
1135 	 * hotplug processing, pmu_disable() is called as part of perf context
1136 	 * removal process. Therefore do not trigger event removal now for
1137 	 * perf_event_open() created events. Perf common code triggers event
1138 	 * destruction when the event file descriptor is closed.
1139 	 *
1140 	 * Handle only /dev/hwctr device sessions.
1141 	 */
1142 	mutex_lock(&cfset_ctrset_mutex);
1143 	if (refcount_read(&cfset_opencnt)) {
1144 		cfset_offline_cpu(cpu);
1145 		cpum_cf_free_cpu(cpu);
1146 	}
1147 	mutex_unlock(&cfset_ctrset_mutex);
1148 	return 0;
1149 }
1150 
1151 /* Return true if store counter set multiple instruction is available */
1152 static inline int stccm_avail(void)
1153 {
1154 	return test_facility(142);
1155 }
1156 
1157 /* CPU-measurement alerts for the counter facility */
1158 static void cpumf_measurement_alert(struct ext_code ext_code,
1159 				    unsigned int alert, unsigned long unused)
1160 {
1161 	struct cpu_cf_events *cpuhw;
1162 
1163 	if (!(alert & CPU_MF_INT_CF_MASK))
1164 		return;
1165 
1166 	inc_irq_stat(IRQEXT_CMC);
1167 
1168 	/*
1169 	 * Measurement alerts are shared and might happen when the PMU
1170 	 * is not reserved.  Ignore these alerts in this case.
1171 	 */
1172 	cpuhw = this_cpu_cfhw();
1173 	if (!cpuhw)
1174 		return;
1175 
1176 	/* counter authorization change alert */
1177 	if (alert & CPU_MF_INT_CF_CACA)
1178 		qctri(&cpumf_ctr_info);
1179 
1180 	/* loss of counter data alert */
1181 	if (alert & CPU_MF_INT_CF_LCDA)
1182 		pr_err("CPU[%i] Counter data was lost\n", smp_processor_id());
1183 
1184 	/* loss of MT counter data alert */
1185 	if (alert & CPU_MF_INT_CF_MTDA)
1186 		pr_warn("CPU[%i] MT counter data was lost\n",
1187 			smp_processor_id());
1188 }
1189 
1190 static int cfset_init(void);
1191 static int __init cpumf_pmu_init(void)
1192 {
1193 	int rc;
1194 
1195 	/* Extract counter measurement facility information */
1196 	if (!cpum_cf_avail() || qctri(&cpumf_ctr_info))
1197 		return -ENODEV;
1198 
1199 	/* Determine and store counter set sizes for later reference */
1200 	for (rc = CPUMF_CTR_SET_BASIC; rc < CPUMF_CTR_SET_MAX; ++rc)
1201 		cpum_cf_make_setsize(rc);
1202 
1203 	/*
1204 	 * Clear bit 15 of cr0 to unauthorize problem-state to
1205 	 * extract measurement counters
1206 	 */
1207 	ctl_clear_bit(0, 48);
1208 
1209 	/* register handler for measurement-alert interruptions */
1210 	rc = register_external_irq(EXT_IRQ_MEASURE_ALERT,
1211 				   cpumf_measurement_alert);
1212 	if (rc) {
1213 		pr_err("Registering for CPU-measurement alerts failed with rc=%i\n", rc);
1214 		return rc;
1215 	}
1216 
1217 	/* Setup s390dbf facility */
1218 	cf_dbg = debug_register(KMSG_COMPONENT, 2, 1, 128);
1219 	if (!cf_dbg) {
1220 		pr_err("Registration of s390dbf(cpum_cf) failed\n");
1221 		rc = -ENOMEM;
1222 		goto out1;
1223 	}
1224 	debug_register_view(cf_dbg, &debug_sprintf_view);
1225 
1226 	cpumf_pmu.attr_groups = cpumf_cf_event_group();
1227 	rc = perf_pmu_register(&cpumf_pmu, "cpum_cf", -1);
1228 	if (rc) {
1229 		pr_err("Registering the cpum_cf PMU failed with rc=%i\n", rc);
1230 		goto out2;
1231 	} else if (stccm_avail()) {	/* Setup counter set device */
1232 		cfset_init();
1233 	}
1234 
1235 	rc = cpuhp_setup_state(CPUHP_AP_PERF_S390_CF_ONLINE,
1236 			       "perf/s390/cf:online",
1237 			       cpum_cf_online_cpu, cpum_cf_offline_cpu);
1238 	return rc;
1239 
1240 out2:
1241 	debug_unregister_view(cf_dbg, &debug_sprintf_view);
1242 	debug_unregister(cf_dbg);
1243 out1:
1244 	unregister_external_irq(EXT_IRQ_MEASURE_ALERT, cpumf_measurement_alert);
1245 	return rc;
1246 }
1247 
1248 /* Support for the CPU Measurement Facility counter set extraction using
1249  * device /dev/hwctr. This allows user space programs to extract complete
1250  * counter set via normal file operations.
1251  */
1252 
1253 struct cfset_call_on_cpu_parm {		/* Parm struct for smp_call_on_cpu */
1254 	unsigned int sets;		/* Counter set bit mask */
1255 	atomic_t cpus_ack;		/* # CPUs successfully executed func */
1256 };
1257 
1258 struct cfset_request {			/* CPUs and counter set bit mask */
1259 	unsigned long ctrset;		/* Bit mask of counter set to read */
1260 	cpumask_t mask;			/* CPU mask to read from */
1261 	struct list_head node;		/* Chain to cfset_session.head */
1262 };
1263 
1264 static void cfset_session_init(void)
1265 {
1266 	INIT_LIST_HEAD(&cfset_session.head);
1267 }
1268 
1269 /* Remove current request from global bookkeeping. Maintain a counter set bit
1270  * mask on a per CPU basis.
1271  * Done in process context under mutex protection.
1272  */
1273 static void cfset_session_del(struct cfset_request *p)
1274 {
1275 	list_del(&p->node);
1276 }
1277 
1278 /* Add current request to global bookkeeping. Maintain a counter set bit mask
1279  * on a per CPU basis.
1280  * Done in process context under mutex protection.
1281  */
1282 static void cfset_session_add(struct cfset_request *p)
1283 {
1284 	list_add(&p->node, &cfset_session.head);
1285 }
1286 
1287 /* The /dev/hwctr device access uses PMU_F_IN_USE to mark the device access
1288  * path is currently used.
1289  * The cpu_cf_events::dev_state is used to denote counter sets in use by this
1290  * interface. It is always or'ed in. If this interface is not active, its
1291  * value is zero and no additional counter sets will be included.
1292  *
1293  * The cpu_cf_events::state is used by the perf_event_open SVC and remains
1294  * unchanged.
1295  *
1296  * perf_pmu_enable() and perf_pmu_enable() and its call backs
1297  * cpumf_pmu_enable() and  cpumf_pmu_disable() are called by the
1298  * performance measurement subsystem to enable per process
1299  * CPU Measurement counter facility.
1300  * The XXX_enable() and XXX_disable functions are used to turn off
1301  * x86 performance monitoring interrupt (PMI) during scheduling.
1302  * s390 uses these calls to temporarily stop and resume the active CPU
1303  * counters sets during scheduling.
1304  *
1305  * We do allow concurrent access of perf_event_open() SVC and /dev/hwctr
1306  * device access.  The perf_event_open() SVC interface makes a lot of effort
1307  * to only run the counters while the calling process is actively scheduled
1308  * to run.
1309  * When /dev/hwctr interface is also used at the same time, the counter sets
1310  * will keep running, even when the process is scheduled off a CPU.
1311  * However this is not a problem and does not lead to wrong counter values
1312  * for the perf_event_open() SVC. The current counter value will be recorded
1313  * during schedule-in. At schedule-out time the current counter value is
1314  * extracted again and the delta is calculated and added to the event.
1315  */
1316 /* Stop all counter sets via ioctl interface */
1317 static void cfset_ioctl_off(void *parm)
1318 {
1319 	struct cpu_cf_events *cpuhw = this_cpu_cfhw();
1320 	struct cfset_call_on_cpu_parm *p = parm;
1321 	int rc;
1322 
1323 	/* Check if any counter set used by /dev/hwctr */
1324 	for (rc = CPUMF_CTR_SET_BASIC; rc < CPUMF_CTR_SET_MAX; ++rc)
1325 		if ((p->sets & cpumf_ctr_ctl[rc])) {
1326 			if (!atomic_dec_return(&cpuhw->ctr_set[rc])) {
1327 				ctr_set_disable(&cpuhw->dev_state,
1328 						cpumf_ctr_ctl[rc]);
1329 				ctr_set_stop(&cpuhw->dev_state,
1330 					     cpumf_ctr_ctl[rc]);
1331 			}
1332 		}
1333 	/* Keep perf_event_open counter sets */
1334 	rc = lcctl(cpuhw->dev_state | cpuhw->state);
1335 	if (rc)
1336 		pr_err("Counter set stop %#llx of /dev/%s failed rc=%i\n",
1337 		       cpuhw->state, S390_HWCTR_DEVICE, rc);
1338 	if (!cpuhw->dev_state)
1339 		cpuhw->flags &= ~PMU_F_IN_USE;
1340 	debug_sprintf_event(cf_dbg, 4, "%s rc %d state %#llx dev_state %#llx\n",
1341 			    __func__, rc, cpuhw->state, cpuhw->dev_state);
1342 }
1343 
1344 /* Start counter sets on particular CPU */
1345 static void cfset_ioctl_on(void *parm)
1346 {
1347 	struct cpu_cf_events *cpuhw = this_cpu_cfhw();
1348 	struct cfset_call_on_cpu_parm *p = parm;
1349 	int rc;
1350 
1351 	cpuhw->flags |= PMU_F_IN_USE;
1352 	ctr_set_enable(&cpuhw->dev_state, p->sets);
1353 	ctr_set_start(&cpuhw->dev_state, p->sets);
1354 	for (rc = CPUMF_CTR_SET_BASIC; rc < CPUMF_CTR_SET_MAX; ++rc)
1355 		if ((p->sets & cpumf_ctr_ctl[rc]))
1356 			atomic_inc(&cpuhw->ctr_set[rc]);
1357 	rc = lcctl(cpuhw->dev_state | cpuhw->state);	/* Start counter sets */
1358 	if (!rc)
1359 		atomic_inc(&p->cpus_ack);
1360 	else
1361 		pr_err("Counter set start %#llx of /dev/%s failed rc=%i\n",
1362 		       cpuhw->dev_state | cpuhw->state, S390_HWCTR_DEVICE, rc);
1363 	debug_sprintf_event(cf_dbg, 4, "%s rc %d state %#llx dev_state %#llx\n",
1364 			    __func__, rc, cpuhw->state, cpuhw->dev_state);
1365 }
1366 
1367 static void cfset_release_cpu(void *p)
1368 {
1369 	struct cpu_cf_events *cpuhw = this_cpu_cfhw();
1370 	int rc;
1371 
1372 	debug_sprintf_event(cf_dbg, 4, "%s state %#llx dev_state %#llx\n",
1373 			    __func__, cpuhw->state, cpuhw->dev_state);
1374 	cpuhw->dev_state = 0;
1375 	rc = lcctl(cpuhw->state);	/* Keep perf_event_open counter sets */
1376 	if (rc)
1377 		pr_err("Counter set release %#llx of /dev/%s failed rc=%i\n",
1378 		       cpuhw->state, S390_HWCTR_DEVICE, rc);
1379 }
1380 
1381 /* This modifies the process CPU mask to adopt it to the currently online
1382  * CPUs. Offline CPUs can not be addresses. This call terminates the access
1383  * and is usually followed by close() or a new iotcl(..., START, ...) which
1384  * creates a new request structure.
1385  */
1386 static void cfset_all_stop(struct cfset_request *req)
1387 {
1388 	struct cfset_call_on_cpu_parm p = {
1389 		.sets = req->ctrset,
1390 	};
1391 
1392 	cpumask_and(&req->mask, &req->mask, cpu_online_mask);
1393 	on_each_cpu_mask(&req->mask, cfset_ioctl_off, &p, 1);
1394 }
1395 
1396 /* Release function is also called when application gets terminated without
1397  * doing a proper ioctl(..., S390_HWCTR_STOP, ...) command.
1398  */
1399 static int cfset_release(struct inode *inode, struct file *file)
1400 {
1401 	mutex_lock(&cfset_ctrset_mutex);
1402 	/* Open followed by close/exit has no private_data */
1403 	if (file->private_data) {
1404 		cfset_all_stop(file->private_data);
1405 		cfset_session_del(file->private_data);
1406 		kfree(file->private_data);
1407 		file->private_data = NULL;
1408 	}
1409 	if (refcount_dec_and_test(&cfset_opencnt)) {	/* Last close */
1410 		on_each_cpu(cfset_release_cpu, NULL, 1);
1411 		cpum_cf_free(-1);
1412 	}
1413 	mutex_unlock(&cfset_ctrset_mutex);
1414 	return 0;
1415 }
1416 
1417 /*
1418  * Open via /dev/hwctr device. Allocate all per CPU resources on the first
1419  * open of the device. The last close releases all per CPU resources.
1420  * Parallel perf_event_open system calls also use per CPU resources.
1421  * These invocations are handled via reference counting on the per CPU data
1422  * structures.
1423  */
1424 static int cfset_open(struct inode *inode, struct file *file)
1425 {
1426 	int rc = 0;
1427 
1428 	if (!perfmon_capable())
1429 		return -EPERM;
1430 	file->private_data = NULL;
1431 
1432 	mutex_lock(&cfset_ctrset_mutex);
1433 	if (!refcount_inc_not_zero(&cfset_opencnt)) {	/* First open */
1434 		rc = cpum_cf_alloc(-1);
1435 		if (!rc) {
1436 			cfset_session_init();
1437 			refcount_set(&cfset_opencnt, 1);
1438 		}
1439 	}
1440 	mutex_unlock(&cfset_ctrset_mutex);
1441 
1442 	/* nonseekable_open() never fails */
1443 	return rc ?: nonseekable_open(inode, file);
1444 }
1445 
1446 static int cfset_all_start(struct cfset_request *req)
1447 {
1448 	struct cfset_call_on_cpu_parm p = {
1449 		.sets = req->ctrset,
1450 		.cpus_ack = ATOMIC_INIT(0),
1451 	};
1452 	cpumask_var_t mask;
1453 	int rc = 0;
1454 
1455 	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
1456 		return -ENOMEM;
1457 	cpumask_and(mask, &req->mask, cpu_online_mask);
1458 	on_each_cpu_mask(mask, cfset_ioctl_on, &p, 1);
1459 	if (atomic_read(&p.cpus_ack) != cpumask_weight(mask)) {
1460 		on_each_cpu_mask(mask, cfset_ioctl_off, &p, 1);
1461 		rc = -EIO;
1462 		debug_sprintf_event(cf_dbg, 4, "%s CPUs missing", __func__);
1463 	}
1464 	free_cpumask_var(mask);
1465 	return rc;
1466 }
1467 
1468 /* Return the maximum required space for all possible CPUs in case one
1469  * CPU will be onlined during the START, READ, STOP cycles.
1470  * To find out the size of the counter sets, any one CPU will do. They
1471  * all have the same counter sets.
1472  */
1473 static size_t cfset_needspace(unsigned int sets)
1474 {
1475 	size_t bytes = 0;
1476 	int i;
1477 
1478 	for (i = CPUMF_CTR_SET_BASIC; i < CPUMF_CTR_SET_MAX; ++i) {
1479 		if (!(sets & cpumf_ctr_ctl[i]))
1480 			continue;
1481 		bytes += cpum_cf_read_setsize(i) * sizeof(u64) +
1482 			 sizeof(((struct s390_ctrset_setdata *)0)->set) +
1483 			 sizeof(((struct s390_ctrset_setdata *)0)->no_cnts);
1484 	}
1485 	bytes = sizeof(((struct s390_ctrset_read *)0)->no_cpus) + nr_cpu_ids *
1486 		(bytes + sizeof(((struct s390_ctrset_cpudata *)0)->cpu_nr) +
1487 		     sizeof(((struct s390_ctrset_cpudata *)0)->no_sets));
1488 	return bytes;
1489 }
1490 
1491 static int cfset_all_copy(unsigned long arg, cpumask_t *mask)
1492 {
1493 	struct s390_ctrset_read __user *ctrset_read;
1494 	unsigned int cpu, cpus, rc = 0;
1495 	void __user *uptr;
1496 
1497 	ctrset_read = (struct s390_ctrset_read __user *)arg;
1498 	uptr = ctrset_read->data;
1499 	for_each_cpu(cpu, mask) {
1500 		struct cpu_cf_events *cpuhw = get_cpu_cfhw(cpu);
1501 		struct s390_ctrset_cpudata __user *ctrset_cpudata;
1502 
1503 		ctrset_cpudata = uptr;
1504 		rc  = put_user(cpu, &ctrset_cpudata->cpu_nr);
1505 		rc |= put_user(cpuhw->sets, &ctrset_cpudata->no_sets);
1506 		rc |= copy_to_user(ctrset_cpudata->data, cpuhw->data,
1507 				   cpuhw->used);
1508 		if (rc) {
1509 			rc = -EFAULT;
1510 			goto out;
1511 		}
1512 		uptr += sizeof(struct s390_ctrset_cpudata) + cpuhw->used;
1513 		cond_resched();
1514 	}
1515 	cpus = cpumask_weight(mask);
1516 	if (put_user(cpus, &ctrset_read->no_cpus))
1517 		rc = -EFAULT;
1518 out:
1519 	debug_sprintf_event(cf_dbg, 4, "%s rc %d copied %ld\n", __func__, rc,
1520 			    uptr - (void __user *)ctrset_read->data);
1521 	return rc;
1522 }
1523 
1524 static size_t cfset_cpuset_read(struct s390_ctrset_setdata *p, int ctrset,
1525 				int ctrset_size, size_t room)
1526 {
1527 	size_t need = 0;
1528 	int rc = -1;
1529 
1530 	need = sizeof(*p) + sizeof(u64) * ctrset_size;
1531 	if (need <= room) {
1532 		p->set = cpumf_ctr_ctl[ctrset];
1533 		p->no_cnts = ctrset_size;
1534 		rc = ctr_stcctm(ctrset, ctrset_size, (u64 *)p->cv);
1535 		if (rc == 3)		/* Nothing stored */
1536 			need = 0;
1537 	}
1538 	return need;
1539 }
1540 
1541 /* Read all counter sets. */
1542 static void cfset_cpu_read(void *parm)
1543 {
1544 	struct cpu_cf_events *cpuhw = this_cpu_cfhw();
1545 	struct cfset_call_on_cpu_parm *p = parm;
1546 	int set, set_size;
1547 	size_t space;
1548 
1549 	/* No data saved yet */
1550 	cpuhw->used = 0;
1551 	cpuhw->sets = 0;
1552 	memset(cpuhw->data, 0, sizeof(cpuhw->data));
1553 
1554 	/* Scan the counter sets */
1555 	for (set = CPUMF_CTR_SET_BASIC; set < CPUMF_CTR_SET_MAX; ++set) {
1556 		struct s390_ctrset_setdata *sp = (void *)cpuhw->data +
1557 						 cpuhw->used;
1558 
1559 		if (!(p->sets & cpumf_ctr_ctl[set]))
1560 			continue;	/* Counter set not in list */
1561 		set_size = cpum_cf_read_setsize(set);
1562 		space = sizeof(cpuhw->data) - cpuhw->used;
1563 		space = cfset_cpuset_read(sp, set, set_size, space);
1564 		if (space) {
1565 			cpuhw->used += space;
1566 			cpuhw->sets += 1;
1567 		}
1568 		debug_sprintf_event(cf_dbg, 4, "%s sets %d used %zd\n", __func__,
1569 				    cpuhw->sets, cpuhw->used);
1570 	}
1571 }
1572 
1573 static int cfset_all_read(unsigned long arg, struct cfset_request *req)
1574 {
1575 	struct cfset_call_on_cpu_parm p;
1576 	cpumask_var_t mask;
1577 	int rc;
1578 
1579 	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
1580 		return -ENOMEM;
1581 
1582 	p.sets = req->ctrset;
1583 	cpumask_and(mask, &req->mask, cpu_online_mask);
1584 	on_each_cpu_mask(mask, cfset_cpu_read, &p, 1);
1585 	rc = cfset_all_copy(arg, mask);
1586 	free_cpumask_var(mask);
1587 	return rc;
1588 }
1589 
1590 static long cfset_ioctl_read(unsigned long arg, struct cfset_request *req)
1591 {
1592 	int ret = -ENODATA;
1593 
1594 	if (req && req->ctrset)
1595 		ret = cfset_all_read(arg, req);
1596 	return ret;
1597 }
1598 
1599 static long cfset_ioctl_stop(struct file *file)
1600 {
1601 	struct cfset_request *req = file->private_data;
1602 	int ret = -ENXIO;
1603 
1604 	if (req) {
1605 		cfset_all_stop(req);
1606 		cfset_session_del(req);
1607 		kfree(req);
1608 		file->private_data = NULL;
1609 		ret = 0;
1610 	}
1611 	return ret;
1612 }
1613 
1614 static long cfset_ioctl_start(unsigned long arg, struct file *file)
1615 {
1616 	struct s390_ctrset_start __user *ustart;
1617 	struct s390_ctrset_start start;
1618 	struct cfset_request *preq;
1619 	void __user *umask;
1620 	unsigned int len;
1621 	int ret = 0;
1622 	size_t need;
1623 
1624 	if (file->private_data)
1625 		return -EBUSY;
1626 	ustart = (struct s390_ctrset_start __user *)arg;
1627 	if (copy_from_user(&start, ustart, sizeof(start)))
1628 		return -EFAULT;
1629 	if (start.version != S390_HWCTR_START_VERSION)
1630 		return -EINVAL;
1631 	if (start.counter_sets & ~(cpumf_ctr_ctl[CPUMF_CTR_SET_BASIC] |
1632 				   cpumf_ctr_ctl[CPUMF_CTR_SET_USER] |
1633 				   cpumf_ctr_ctl[CPUMF_CTR_SET_CRYPTO] |
1634 				   cpumf_ctr_ctl[CPUMF_CTR_SET_EXT] |
1635 				   cpumf_ctr_ctl[CPUMF_CTR_SET_MT_DIAG]))
1636 		return -EINVAL;		/* Invalid counter set */
1637 	if (!start.counter_sets)
1638 		return -EINVAL;		/* No counter set at all? */
1639 
1640 	preq = kzalloc(sizeof(*preq), GFP_KERNEL);
1641 	if (!preq)
1642 		return -ENOMEM;
1643 	cpumask_clear(&preq->mask);
1644 	len = min_t(u64, start.cpumask_len, cpumask_size());
1645 	umask = (void __user *)start.cpumask;
1646 	if (copy_from_user(&preq->mask, umask, len)) {
1647 		kfree(preq);
1648 		return -EFAULT;
1649 	}
1650 	if (cpumask_empty(&preq->mask)) {
1651 		kfree(preq);
1652 		return -EINVAL;
1653 	}
1654 	need = cfset_needspace(start.counter_sets);
1655 	if (put_user(need, &ustart->data_bytes)) {
1656 		kfree(preq);
1657 		return -EFAULT;
1658 	}
1659 	preq->ctrset = start.counter_sets;
1660 	ret = cfset_all_start(preq);
1661 	if (!ret) {
1662 		cfset_session_add(preq);
1663 		file->private_data = preq;
1664 		debug_sprintf_event(cf_dbg, 4, "%s set %#lx need %ld ret %d\n",
1665 				    __func__, preq->ctrset, need, ret);
1666 	} else {
1667 		kfree(preq);
1668 	}
1669 	return ret;
1670 }
1671 
1672 /* Entry point to the /dev/hwctr device interface.
1673  * The ioctl system call supports three subcommands:
1674  * S390_HWCTR_START: Start the specified counter sets on a CPU list. The
1675  *    counter set keeps running until explicitly stopped. Returns the number
1676  *    of bytes needed to store the counter values. If another S390_HWCTR_START
1677  *    ioctl subcommand is called without a previous S390_HWCTR_STOP stop
1678  *    command on the same file descriptor, -EBUSY is returned.
1679  * S390_HWCTR_READ: Read the counter set values from specified CPU list given
1680  *    with the S390_HWCTR_START command.
1681  * S390_HWCTR_STOP: Stops the counter sets on the CPU list given with the
1682  *    previous S390_HWCTR_START subcommand.
1683  */
1684 static long cfset_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
1685 {
1686 	int ret;
1687 
1688 	cpus_read_lock();
1689 	mutex_lock(&cfset_ctrset_mutex);
1690 	switch (cmd) {
1691 	case S390_HWCTR_START:
1692 		ret = cfset_ioctl_start(arg, file);
1693 		break;
1694 	case S390_HWCTR_STOP:
1695 		ret = cfset_ioctl_stop(file);
1696 		break;
1697 	case S390_HWCTR_READ:
1698 		ret = cfset_ioctl_read(arg, file->private_data);
1699 		break;
1700 	default:
1701 		ret = -ENOTTY;
1702 		break;
1703 	}
1704 	mutex_unlock(&cfset_ctrset_mutex);
1705 	cpus_read_unlock();
1706 	return ret;
1707 }
1708 
1709 static const struct file_operations cfset_fops = {
1710 	.owner = THIS_MODULE,
1711 	.open = cfset_open,
1712 	.release = cfset_release,
1713 	.unlocked_ioctl	= cfset_ioctl,
1714 	.compat_ioctl = cfset_ioctl,
1715 	.llseek = no_llseek
1716 };
1717 
1718 static struct miscdevice cfset_dev = {
1719 	.name	= S390_HWCTR_DEVICE,
1720 	.minor	= MISC_DYNAMIC_MINOR,
1721 	.fops	= &cfset_fops,
1722 	.mode	= 0666,
1723 };
1724 
1725 /* Hotplug add of a CPU. Scan through all active processes and add
1726  * that CPU to the list of CPUs supplied with ioctl(..., START, ...).
1727  */
1728 static int cfset_online_cpu(unsigned int cpu)
1729 {
1730 	struct cfset_call_on_cpu_parm p;
1731 	struct cfset_request *rp;
1732 
1733 	if (!list_empty(&cfset_session.head)) {
1734 		list_for_each_entry(rp, &cfset_session.head, node) {
1735 			p.sets = rp->ctrset;
1736 			cfset_ioctl_on(&p);
1737 			cpumask_set_cpu(cpu, &rp->mask);
1738 		}
1739 	}
1740 	return 0;
1741 }
1742 
1743 /* Hotplug remove of a CPU. Scan through all active processes and clear
1744  * that CPU from the list of CPUs supplied with ioctl(..., START, ...).
1745  * Adjust reference counts.
1746  */
1747 static int cfset_offline_cpu(unsigned int cpu)
1748 {
1749 	struct cfset_call_on_cpu_parm p;
1750 	struct cfset_request *rp;
1751 
1752 	if (!list_empty(&cfset_session.head)) {
1753 		list_for_each_entry(rp, &cfset_session.head, node) {
1754 			p.sets = rp->ctrset;
1755 			cfset_ioctl_off(&p);
1756 			cpumask_clear_cpu(cpu, &rp->mask);
1757 		}
1758 	}
1759 	return 0;
1760 }
1761 
1762 static void cfdiag_read(struct perf_event *event)
1763 {
1764 	debug_sprintf_event(cf_dbg, 3, "%s event %#llx count %ld\n", __func__,
1765 			    event->attr.config, local64_read(&event->count));
1766 }
1767 
1768 static int get_authctrsets(void)
1769 {
1770 	unsigned long auth = 0;
1771 	enum cpumf_ctr_set i;
1772 
1773 	for (i = CPUMF_CTR_SET_BASIC; i < CPUMF_CTR_SET_MAX; ++i) {
1774 		if (cpumf_ctr_info.auth_ctl & cpumf_ctr_ctl[i])
1775 			auth |= cpumf_ctr_ctl[i];
1776 	}
1777 	return auth;
1778 }
1779 
1780 /* Setup the event. Test for authorized counter sets and only include counter
1781  * sets which are authorized at the time of the setup. Including unauthorized
1782  * counter sets result in specification exception (and panic).
1783  */
1784 static int cfdiag_event_init2(struct perf_event *event)
1785 {
1786 	struct perf_event_attr *attr = &event->attr;
1787 	int err = 0;
1788 
1789 	/* Set sample_period to indicate sampling */
1790 	event->hw.config = attr->config;
1791 	event->hw.sample_period = attr->sample_period;
1792 	local64_set(&event->hw.period_left, event->hw.sample_period);
1793 	local64_set(&event->count, 0);
1794 	event->hw.last_period = event->hw.sample_period;
1795 
1796 	/* Add all authorized counter sets to config_base. The
1797 	 * the hardware init function is either called per-cpu or just once
1798 	 * for all CPUS (event->cpu == -1).  This depends on the whether
1799 	 * counting is started for all CPUs or on a per workload base where
1800 	 * the perf event moves from one CPU to another CPU.
1801 	 * Checking the authorization on any CPU is fine as the hardware
1802 	 * applies the same authorization settings to all CPUs.
1803 	 */
1804 	event->hw.config_base = get_authctrsets();
1805 
1806 	/* No authorized counter sets, nothing to count/sample */
1807 	if (!event->hw.config_base)
1808 		err = -EINVAL;
1809 
1810 	debug_sprintf_event(cf_dbg, 5, "%s err %d config_base %#lx\n",
1811 			    __func__, err, event->hw.config_base);
1812 	return err;
1813 }
1814 
1815 static int cfdiag_event_init(struct perf_event *event)
1816 {
1817 	struct perf_event_attr *attr = &event->attr;
1818 	int err = -ENOENT;
1819 
1820 	if (event->attr.config != PERF_EVENT_CPUM_CF_DIAG ||
1821 	    event->attr.type != event->pmu->type)
1822 		goto out;
1823 
1824 	/* Raw events are used to access counters directly,
1825 	 * hence do not permit excludes.
1826 	 * This event is useless without PERF_SAMPLE_RAW to return counter set
1827 	 * values as raw data.
1828 	 */
1829 	if (attr->exclude_kernel || attr->exclude_user || attr->exclude_hv ||
1830 	    !(attr->sample_type & (PERF_SAMPLE_CPU | PERF_SAMPLE_RAW))) {
1831 		err = -EOPNOTSUPP;
1832 		goto out;
1833 	}
1834 
1835 	/* Initialize for using the CPU-measurement counter facility */
1836 	if (cpum_cf_alloc(event->cpu))
1837 		return -ENOMEM;
1838 	event->destroy = hw_perf_event_destroy;
1839 
1840 	err = cfdiag_event_init2(event);
1841 	if (unlikely(err))
1842 		event->destroy(event);
1843 out:
1844 	return err;
1845 }
1846 
1847 /* Create cf_diag/events/CF_DIAG event sysfs file. This counter is used
1848  * to collect the complete counter sets for a scheduled process. Target
1849  * are complete counter sets attached as raw data to the artificial event.
1850  * This results in complete counter sets available when a process is
1851  * scheduled. Contains the delta of every counter while the process was
1852  * running.
1853  */
1854 CPUMF_EVENT_ATTR(CF_DIAG, CF_DIAG, PERF_EVENT_CPUM_CF_DIAG);
1855 
1856 static struct attribute *cfdiag_events_attr[] = {
1857 	CPUMF_EVENT_PTR(CF_DIAG, CF_DIAG),
1858 	NULL,
1859 };
1860 
1861 PMU_FORMAT_ATTR(event, "config:0-63");
1862 
1863 static struct attribute *cfdiag_format_attr[] = {
1864 	&format_attr_event.attr,
1865 	NULL,
1866 };
1867 
1868 static struct attribute_group cfdiag_events_group = {
1869 	.name = "events",
1870 	.attrs = cfdiag_events_attr,
1871 };
1872 static struct attribute_group cfdiag_format_group = {
1873 	.name = "format",
1874 	.attrs = cfdiag_format_attr,
1875 };
1876 static const struct attribute_group *cfdiag_attr_groups[] = {
1877 	&cfdiag_events_group,
1878 	&cfdiag_format_group,
1879 	NULL,
1880 };
1881 
1882 /* Performance monitoring unit for event CF_DIAG. Since this event
1883  * is also started and stopped via the perf_event_open() system call, use
1884  * the same event enable/disable call back functions. They do not
1885  * have a pointer to the perf_event strcture as first parameter.
1886  *
1887  * The functions XXX_add, XXX_del, XXX_start and XXX_stop are also common.
1888  * Reuse them and distinguish the event (always first parameter) via
1889  * 'config' member.
1890  */
1891 static struct pmu cf_diag = {
1892 	.task_ctx_nr  = perf_sw_context,
1893 	.event_init   = cfdiag_event_init,
1894 	.pmu_enable   = cpumf_pmu_enable,
1895 	.pmu_disable  = cpumf_pmu_disable,
1896 	.add	      = cpumf_pmu_add,
1897 	.del	      = cpumf_pmu_del,
1898 	.start	      = cpumf_pmu_start,
1899 	.stop	      = cpumf_pmu_stop,
1900 	.read	      = cfdiag_read,
1901 
1902 	.attr_groups  = cfdiag_attr_groups
1903 };
1904 
1905 /* Calculate memory needed to store all counter sets together with header and
1906  * trailer data. This is independent of the counter set authorization which
1907  * can vary depending on the configuration.
1908  */
1909 static size_t cfdiag_maxsize(struct cpumf_ctr_info *info)
1910 {
1911 	size_t max_size = sizeof(struct cf_trailer_entry);
1912 	enum cpumf_ctr_set i;
1913 
1914 	for (i = CPUMF_CTR_SET_BASIC; i < CPUMF_CTR_SET_MAX; ++i) {
1915 		size_t size = cpum_cf_read_setsize(i);
1916 
1917 		if (size)
1918 			max_size += size * sizeof(u64) +
1919 				    sizeof(struct cf_ctrset_entry);
1920 	}
1921 	return max_size;
1922 }
1923 
1924 /* Get the CPU speed, try sampling facility first and CPU attributes second. */
1925 static void cfdiag_get_cpu_speed(void)
1926 {
1927 	unsigned long mhz;
1928 
1929 	if (cpum_sf_avail()) {			/* Sampling facility first */
1930 		struct hws_qsi_info_block si;
1931 
1932 		memset(&si, 0, sizeof(si));
1933 		if (!qsi(&si)) {
1934 			cfdiag_cpu_speed = si.cpu_speed;
1935 			return;
1936 		}
1937 	}
1938 
1939 	/* Fallback: CPU speed extract static part. Used in case
1940 	 * CPU Measurement Sampling Facility is turned off.
1941 	 */
1942 	mhz = __ecag(ECAG_CPU_ATTRIBUTE, 0);
1943 	if (mhz != -1UL)
1944 		cfdiag_cpu_speed = mhz & 0xffffffff;
1945 }
1946 
1947 static int cfset_init(void)
1948 {
1949 	size_t need;
1950 	int rc;
1951 
1952 	cfdiag_get_cpu_speed();
1953 	/* Make sure the counter set data fits into predefined buffer. */
1954 	need = cfdiag_maxsize(&cpumf_ctr_info);
1955 	if (need > sizeof(((struct cpu_cf_events *)0)->start)) {
1956 		pr_err("Insufficient memory for PMU(cpum_cf_diag) need=%zu\n",
1957 		       need);
1958 		return -ENOMEM;
1959 	}
1960 
1961 	rc = misc_register(&cfset_dev);
1962 	if (rc) {
1963 		pr_err("Registration of /dev/%s failed rc=%i\n",
1964 		       cfset_dev.name, rc);
1965 		goto out;
1966 	}
1967 
1968 	rc = perf_pmu_register(&cf_diag, "cpum_cf_diag", -1);
1969 	if (rc) {
1970 		misc_deregister(&cfset_dev);
1971 		pr_err("Registration of PMU(cpum_cf_diag) failed with rc=%i\n",
1972 		       rc);
1973 	}
1974 out:
1975 	return rc;
1976 }
1977 
1978 device_initcall(cpumf_pmu_init);
1979