1 /* 2 * Kernel Probes (KProbes) 3 * 4 * This program is free software; you can redistribute it and/or modify 5 * it under the terms of the GNU General Public License as published by 6 * the Free Software Foundation; either version 2 of the License, or 7 * (at your option) any later version. 8 * 9 * This program is distributed in the hope that it will be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write to the Free Software 16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. 17 * 18 * Copyright (C) IBM Corporation, 2002, 2006 19 * 20 * s390 port, used ppc64 as template. Mike Grundy <grundym@us.ibm.com> 21 */ 22 23 #include <linux/kprobes.h> 24 #include <linux/ptrace.h> 25 #include <linux/preempt.h> 26 #include <linux/stop_machine.h> 27 #include <linux/kdebug.h> 28 #include <linux/uaccess.h> 29 #include <asm/cacheflush.h> 30 #include <asm/sections.h> 31 #include <linux/module.h> 32 33 DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL; 34 DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk); 35 36 struct kretprobe_blackpoint kretprobe_blacklist[] = {{NULL, NULL}}; 37 38 int __kprobes arch_prepare_kprobe(struct kprobe *p) 39 { 40 /* Make sure the probe isn't going on a difficult instruction */ 41 if (is_prohibited_opcode((kprobe_opcode_t *) p->addr)) 42 return -EINVAL; 43 44 if ((unsigned long)p->addr & 0x01) 45 return -EINVAL; 46 47 /* Use the get_insn_slot() facility for correctness */ 48 if (!(p->ainsn.insn = get_insn_slot())) 49 return -ENOMEM; 50 51 memcpy(p->ainsn.insn, p->addr, MAX_INSN_SIZE * sizeof(kprobe_opcode_t)); 52 53 get_instruction_type(&p->ainsn); 54 p->opcode = *p->addr; 55 return 0; 56 } 57 58 int __kprobes is_prohibited_opcode(kprobe_opcode_t *instruction) 59 { 60 switch (*(__u8 *) instruction) { 61 case 0x0c: /* bassm */ 62 case 0x0b: /* bsm */ 63 case 0x83: /* diag */ 64 case 0x44: /* ex */ 65 return -EINVAL; 66 } 67 switch (*(__u16 *) instruction) { 68 case 0x0101: /* pr */ 69 case 0xb25a: /* bsa */ 70 case 0xb240: /* bakr */ 71 case 0xb258: /* bsg */ 72 case 0xb218: /* pc */ 73 case 0xb228: /* pt */ 74 return -EINVAL; 75 } 76 return 0; 77 } 78 79 void __kprobes get_instruction_type(struct arch_specific_insn *ainsn) 80 { 81 /* default fixup method */ 82 ainsn->fixup = FIXUP_PSW_NORMAL; 83 84 /* save r1 operand */ 85 ainsn->reg = (*ainsn->insn & 0xf0) >> 4; 86 87 /* save the instruction length (pop 5-5) in bytes */ 88 switch (*(__u8 *) (ainsn->insn) >> 6) { 89 case 0: 90 ainsn->ilen = 2; 91 break; 92 case 1: 93 case 2: 94 ainsn->ilen = 4; 95 break; 96 case 3: 97 ainsn->ilen = 6; 98 break; 99 } 100 101 switch (*(__u8 *) ainsn->insn) { 102 case 0x05: /* balr */ 103 case 0x0d: /* basr */ 104 ainsn->fixup = FIXUP_RETURN_REGISTER; 105 /* if r2 = 0, no branch will be taken */ 106 if ((*ainsn->insn & 0x0f) == 0) 107 ainsn->fixup |= FIXUP_BRANCH_NOT_TAKEN; 108 break; 109 case 0x06: /* bctr */ 110 case 0x07: /* bcr */ 111 ainsn->fixup = FIXUP_BRANCH_NOT_TAKEN; 112 break; 113 case 0x45: /* bal */ 114 case 0x4d: /* bas */ 115 ainsn->fixup = FIXUP_RETURN_REGISTER; 116 break; 117 case 0x47: /* bc */ 118 case 0x46: /* bct */ 119 case 0x86: /* bxh */ 120 case 0x87: /* bxle */ 121 ainsn->fixup = FIXUP_BRANCH_NOT_TAKEN; 122 break; 123 case 0x82: /* lpsw */ 124 ainsn->fixup = FIXUP_NOT_REQUIRED; 125 break; 126 case 0xb2: /* lpswe */ 127 if (*(((__u8 *) ainsn->insn) + 1) == 0xb2) { 128 ainsn->fixup = FIXUP_NOT_REQUIRED; 129 } 130 break; 131 case 0xa7: /* bras */ 132 if ((*ainsn->insn & 0x0f) == 0x05) { 133 ainsn->fixup |= FIXUP_RETURN_REGISTER; 134 } 135 break; 136 case 0xc0: 137 if ((*ainsn->insn & 0x0f) == 0x00 /* larl */ 138 || (*ainsn->insn & 0x0f) == 0x05) /* brasl */ 139 ainsn->fixup |= FIXUP_RETURN_REGISTER; 140 break; 141 case 0xeb: 142 if (*(((__u8 *) ainsn->insn) + 5 ) == 0x44 || /* bxhg */ 143 *(((__u8 *) ainsn->insn) + 5) == 0x45) {/* bxleg */ 144 ainsn->fixup = FIXUP_BRANCH_NOT_TAKEN; 145 } 146 break; 147 case 0xe3: /* bctg */ 148 if (*(((__u8 *) ainsn->insn) + 5) == 0x46) { 149 ainsn->fixup = FIXUP_BRANCH_NOT_TAKEN; 150 } 151 break; 152 } 153 } 154 155 static int __kprobes swap_instruction(void *aref) 156 { 157 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); 158 unsigned long status = kcb->kprobe_status; 159 struct ins_replace_args *args = aref; 160 int rc; 161 162 kcb->kprobe_status = KPROBE_SWAP_INST; 163 rc = probe_kernel_write(args->ptr, &args->new, sizeof(args->new)); 164 kcb->kprobe_status = status; 165 return rc; 166 } 167 168 void __kprobes arch_arm_kprobe(struct kprobe *p) 169 { 170 struct ins_replace_args args; 171 172 args.ptr = p->addr; 173 args.old = p->opcode; 174 args.new = BREAKPOINT_INSTRUCTION; 175 stop_machine(swap_instruction, &args, NULL); 176 } 177 178 void __kprobes arch_disarm_kprobe(struct kprobe *p) 179 { 180 struct ins_replace_args args; 181 182 args.ptr = p->addr; 183 args.old = BREAKPOINT_INSTRUCTION; 184 args.new = p->opcode; 185 stop_machine(swap_instruction, &args, NULL); 186 } 187 188 void __kprobes arch_remove_kprobe(struct kprobe *p) 189 { 190 if (p->ainsn.insn) { 191 free_insn_slot(p->ainsn.insn, 0); 192 p->ainsn.insn = NULL; 193 } 194 } 195 196 static void __kprobes prepare_singlestep(struct kprobe *p, struct pt_regs *regs) 197 { 198 per_cr_bits kprobe_per_regs[1]; 199 200 memset(kprobe_per_regs, 0, sizeof(per_cr_bits)); 201 regs->psw.addr = (unsigned long)p->ainsn.insn | PSW_ADDR_AMODE; 202 203 /* Set up the per control reg info, will pass to lctl */ 204 kprobe_per_regs[0].em_instruction_fetch = 1; 205 kprobe_per_regs[0].starting_addr = (unsigned long)p->ainsn.insn; 206 kprobe_per_regs[0].ending_addr = (unsigned long)p->ainsn.insn + 1; 207 208 /* Set the PER control regs, turns on single step for this address */ 209 __ctl_load(kprobe_per_regs, 9, 11); 210 regs->psw.mask |= PSW_MASK_PER; 211 regs->psw.mask &= ~(PSW_MASK_IO | PSW_MASK_EXT | PSW_MASK_MCHECK); 212 } 213 214 static void __kprobes save_previous_kprobe(struct kprobe_ctlblk *kcb) 215 { 216 kcb->prev_kprobe.kp = kprobe_running(); 217 kcb->prev_kprobe.status = kcb->kprobe_status; 218 kcb->prev_kprobe.kprobe_saved_imask = kcb->kprobe_saved_imask; 219 memcpy(kcb->prev_kprobe.kprobe_saved_ctl, kcb->kprobe_saved_ctl, 220 sizeof(kcb->kprobe_saved_ctl)); 221 } 222 223 static void __kprobes restore_previous_kprobe(struct kprobe_ctlblk *kcb) 224 { 225 __get_cpu_var(current_kprobe) = kcb->prev_kprobe.kp; 226 kcb->kprobe_status = kcb->prev_kprobe.status; 227 kcb->kprobe_saved_imask = kcb->prev_kprobe.kprobe_saved_imask; 228 memcpy(kcb->kprobe_saved_ctl, kcb->prev_kprobe.kprobe_saved_ctl, 229 sizeof(kcb->kprobe_saved_ctl)); 230 } 231 232 static void __kprobes set_current_kprobe(struct kprobe *p, struct pt_regs *regs, 233 struct kprobe_ctlblk *kcb) 234 { 235 __get_cpu_var(current_kprobe) = p; 236 /* Save the interrupt and per flags */ 237 kcb->kprobe_saved_imask = regs->psw.mask & 238 (PSW_MASK_PER | PSW_MASK_IO | PSW_MASK_EXT | PSW_MASK_MCHECK); 239 /* Save the control regs that govern PER */ 240 __ctl_store(kcb->kprobe_saved_ctl, 9, 11); 241 } 242 243 void __kprobes arch_prepare_kretprobe(struct kretprobe_instance *ri, 244 struct pt_regs *regs) 245 { 246 ri->ret_addr = (kprobe_opcode_t *) regs->gprs[14]; 247 248 /* Replace the return addr with trampoline addr */ 249 regs->gprs[14] = (unsigned long)&kretprobe_trampoline; 250 } 251 252 static int __kprobes kprobe_handler(struct pt_regs *regs) 253 { 254 struct kprobe *p; 255 int ret = 0; 256 unsigned long *addr = (unsigned long *) 257 ((regs->psw.addr & PSW_ADDR_INSN) - 2); 258 struct kprobe_ctlblk *kcb; 259 260 /* 261 * We don't want to be preempted for the entire 262 * duration of kprobe processing 263 */ 264 preempt_disable(); 265 kcb = get_kprobe_ctlblk(); 266 267 /* Check we're not actually recursing */ 268 if (kprobe_running()) { 269 p = get_kprobe(addr); 270 if (p) { 271 if (kcb->kprobe_status == KPROBE_HIT_SS && 272 *p->ainsn.insn == BREAKPOINT_INSTRUCTION) { 273 regs->psw.mask &= ~PSW_MASK_PER; 274 regs->psw.mask |= kcb->kprobe_saved_imask; 275 goto no_kprobe; 276 } 277 /* We have reentered the kprobe_handler(), since 278 * another probe was hit while within the handler. 279 * We here save the original kprobes variables and 280 * just single step on the instruction of the new probe 281 * without calling any user handlers. 282 */ 283 save_previous_kprobe(kcb); 284 set_current_kprobe(p, regs, kcb); 285 kprobes_inc_nmissed_count(p); 286 prepare_singlestep(p, regs); 287 kcb->kprobe_status = KPROBE_REENTER; 288 return 1; 289 } else { 290 p = __get_cpu_var(current_kprobe); 291 if (p->break_handler && p->break_handler(p, regs)) { 292 goto ss_probe; 293 } 294 } 295 goto no_kprobe; 296 } 297 298 p = get_kprobe(addr); 299 if (!p) 300 /* 301 * No kprobe at this address. The fault has not been 302 * caused by a kprobe breakpoint. The race of breakpoint 303 * vs. kprobe remove does not exist because on s390 we 304 * use stop_machine to arm/disarm the breakpoints. 305 */ 306 goto no_kprobe; 307 308 kcb->kprobe_status = KPROBE_HIT_ACTIVE; 309 set_current_kprobe(p, regs, kcb); 310 if (p->pre_handler && p->pre_handler(p, regs)) 311 /* handler has already set things up, so skip ss setup */ 312 return 1; 313 314 ss_probe: 315 prepare_singlestep(p, regs); 316 kcb->kprobe_status = KPROBE_HIT_SS; 317 return 1; 318 319 no_kprobe: 320 preempt_enable_no_resched(); 321 return ret; 322 } 323 324 /* 325 * Function return probe trampoline: 326 * - init_kprobes() establishes a probepoint here 327 * - When the probed function returns, this probe 328 * causes the handlers to fire 329 */ 330 static void __used kretprobe_trampoline_holder(void) 331 { 332 asm volatile(".global kretprobe_trampoline\n" 333 "kretprobe_trampoline: bcr 0,0\n"); 334 } 335 336 /* 337 * Called when the probe at kretprobe trampoline is hit 338 */ 339 static int __kprobes trampoline_probe_handler(struct kprobe *p, 340 struct pt_regs *regs) 341 { 342 struct kretprobe_instance *ri = NULL; 343 struct hlist_head *head, empty_rp; 344 struct hlist_node *node, *tmp; 345 unsigned long flags, orig_ret_address = 0; 346 unsigned long trampoline_address = (unsigned long)&kretprobe_trampoline; 347 348 INIT_HLIST_HEAD(&empty_rp); 349 kretprobe_hash_lock(current, &head, &flags); 350 351 /* 352 * It is possible to have multiple instances associated with a given 353 * task either because an multiple functions in the call path 354 * have a return probe installed on them, and/or more than one return 355 * return probe was registered for a target function. 356 * 357 * We can handle this because: 358 * - instances are always inserted at the head of the list 359 * - when multiple return probes are registered for the same 360 * function, the first instance's ret_addr will point to the 361 * real return address, and all the rest will point to 362 * kretprobe_trampoline 363 */ 364 hlist_for_each_entry_safe(ri, node, tmp, head, hlist) { 365 if (ri->task != current) 366 /* another task is sharing our hash bucket */ 367 continue; 368 369 if (ri->rp && ri->rp->handler) 370 ri->rp->handler(ri, regs); 371 372 orig_ret_address = (unsigned long)ri->ret_addr; 373 recycle_rp_inst(ri, &empty_rp); 374 375 if (orig_ret_address != trampoline_address) { 376 /* 377 * This is the real return address. Any other 378 * instances associated with this task are for 379 * other calls deeper on the call stack 380 */ 381 break; 382 } 383 } 384 kretprobe_assert(ri, orig_ret_address, trampoline_address); 385 regs->psw.addr = orig_ret_address | PSW_ADDR_AMODE; 386 387 reset_current_kprobe(); 388 kretprobe_hash_unlock(current, &flags); 389 preempt_enable_no_resched(); 390 391 hlist_for_each_entry_safe(ri, node, tmp, &empty_rp, hlist) { 392 hlist_del(&ri->hlist); 393 kfree(ri); 394 } 395 /* 396 * By returning a non-zero value, we are telling 397 * kprobe_handler() that we don't want the post_handler 398 * to run (and have re-enabled preemption) 399 */ 400 return 1; 401 } 402 403 /* 404 * Called after single-stepping. p->addr is the address of the 405 * instruction whose first byte has been replaced by the "breakpoint" 406 * instruction. To avoid the SMP problems that can occur when we 407 * temporarily put back the original opcode to single-step, we 408 * single-stepped a copy of the instruction. The address of this 409 * copy is p->ainsn.insn. 410 */ 411 static void __kprobes resume_execution(struct kprobe *p, struct pt_regs *regs) 412 { 413 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); 414 415 regs->psw.addr &= PSW_ADDR_INSN; 416 417 if (p->ainsn.fixup & FIXUP_PSW_NORMAL) 418 regs->psw.addr = (unsigned long)p->addr + 419 ((unsigned long)regs->psw.addr - 420 (unsigned long)p->ainsn.insn); 421 422 if (p->ainsn.fixup & FIXUP_BRANCH_NOT_TAKEN) 423 if ((unsigned long)regs->psw.addr - 424 (unsigned long)p->ainsn.insn == p->ainsn.ilen) 425 regs->psw.addr = (unsigned long)p->addr + p->ainsn.ilen; 426 427 if (p->ainsn.fixup & FIXUP_RETURN_REGISTER) 428 regs->gprs[p->ainsn.reg] = ((unsigned long)p->addr + 429 (regs->gprs[p->ainsn.reg] - 430 (unsigned long)p->ainsn.insn)) 431 | PSW_ADDR_AMODE; 432 433 regs->psw.addr |= PSW_ADDR_AMODE; 434 /* turn off PER mode */ 435 regs->psw.mask &= ~PSW_MASK_PER; 436 /* Restore the original per control regs */ 437 __ctl_load(kcb->kprobe_saved_ctl, 9, 11); 438 regs->psw.mask |= kcb->kprobe_saved_imask; 439 } 440 441 static int __kprobes post_kprobe_handler(struct pt_regs *regs) 442 { 443 struct kprobe *cur = kprobe_running(); 444 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); 445 446 if (!cur) 447 return 0; 448 449 if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) { 450 kcb->kprobe_status = KPROBE_HIT_SSDONE; 451 cur->post_handler(cur, regs, 0); 452 } 453 454 resume_execution(cur, regs); 455 456 /*Restore back the original saved kprobes variables and continue. */ 457 if (kcb->kprobe_status == KPROBE_REENTER) { 458 restore_previous_kprobe(kcb); 459 goto out; 460 } 461 reset_current_kprobe(); 462 out: 463 preempt_enable_no_resched(); 464 465 /* 466 * if somebody else is singlestepping across a probe point, psw mask 467 * will have PER set, in which case, continue the remaining processing 468 * of do_single_step, as if this is not a probe hit. 469 */ 470 if (regs->psw.mask & PSW_MASK_PER) { 471 return 0; 472 } 473 474 return 1; 475 } 476 477 int __kprobes kprobe_fault_handler(struct pt_regs *regs, int trapnr) 478 { 479 struct kprobe *cur = kprobe_running(); 480 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); 481 const struct exception_table_entry *entry; 482 483 switch(kcb->kprobe_status) { 484 case KPROBE_SWAP_INST: 485 /* We are here because the instruction replacement failed */ 486 return 0; 487 case KPROBE_HIT_SS: 488 case KPROBE_REENTER: 489 /* 490 * We are here because the instruction being single 491 * stepped caused a page fault. We reset the current 492 * kprobe and the nip points back to the probe address 493 * and allow the page fault handler to continue as a 494 * normal page fault. 495 */ 496 regs->psw.addr = (unsigned long)cur->addr | PSW_ADDR_AMODE; 497 regs->psw.mask &= ~PSW_MASK_PER; 498 regs->psw.mask |= kcb->kprobe_saved_imask; 499 if (kcb->kprobe_status == KPROBE_REENTER) 500 restore_previous_kprobe(kcb); 501 else 502 reset_current_kprobe(); 503 preempt_enable_no_resched(); 504 break; 505 case KPROBE_HIT_ACTIVE: 506 case KPROBE_HIT_SSDONE: 507 /* 508 * We increment the nmissed count for accounting, 509 * we can also use npre/npostfault count for accouting 510 * these specific fault cases. 511 */ 512 kprobes_inc_nmissed_count(cur); 513 514 /* 515 * We come here because instructions in the pre/post 516 * handler caused the page_fault, this could happen 517 * if handler tries to access user space by 518 * copy_from_user(), get_user() etc. Let the 519 * user-specified handler try to fix it first. 520 */ 521 if (cur->fault_handler && cur->fault_handler(cur, regs, trapnr)) 522 return 1; 523 524 /* 525 * In case the user-specified fault handler returned 526 * zero, try to fix up. 527 */ 528 entry = search_exception_tables(regs->psw.addr & PSW_ADDR_INSN); 529 if (entry) { 530 regs->psw.addr = entry->fixup | PSW_ADDR_AMODE; 531 return 1; 532 } 533 534 /* 535 * fixup_exception() could not handle it, 536 * Let do_page_fault() fix it. 537 */ 538 break; 539 default: 540 break; 541 } 542 return 0; 543 } 544 545 /* 546 * Wrapper routine to for handling exceptions. 547 */ 548 int __kprobes kprobe_exceptions_notify(struct notifier_block *self, 549 unsigned long val, void *data) 550 { 551 struct die_args *args = (struct die_args *)data; 552 int ret = NOTIFY_DONE; 553 554 switch (val) { 555 case DIE_BPT: 556 if (kprobe_handler(args->regs)) 557 ret = NOTIFY_STOP; 558 break; 559 case DIE_SSTEP: 560 if (post_kprobe_handler(args->regs)) 561 ret = NOTIFY_STOP; 562 break; 563 case DIE_TRAP: 564 /* kprobe_running() needs smp_processor_id() */ 565 preempt_disable(); 566 if (kprobe_running() && 567 kprobe_fault_handler(args->regs, args->trapnr)) 568 ret = NOTIFY_STOP; 569 preempt_enable(); 570 break; 571 default: 572 break; 573 } 574 return ret; 575 } 576 577 int __kprobes setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs) 578 { 579 struct jprobe *jp = container_of(p, struct jprobe, kp); 580 unsigned long addr; 581 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); 582 583 memcpy(&kcb->jprobe_saved_regs, regs, sizeof(struct pt_regs)); 584 585 /* setup return addr to the jprobe handler routine */ 586 regs->psw.addr = (unsigned long)(jp->entry) | PSW_ADDR_AMODE; 587 588 /* r14 is the function return address */ 589 kcb->jprobe_saved_r14 = (unsigned long)regs->gprs[14]; 590 /* r15 is the stack pointer */ 591 kcb->jprobe_saved_r15 = (unsigned long)regs->gprs[15]; 592 addr = (unsigned long)kcb->jprobe_saved_r15; 593 594 memcpy(kcb->jprobes_stack, (kprobe_opcode_t *) addr, 595 MIN_STACK_SIZE(addr)); 596 return 1; 597 } 598 599 void __kprobes jprobe_return(void) 600 { 601 asm volatile(".word 0x0002"); 602 } 603 604 void __kprobes jprobe_return_end(void) 605 { 606 asm volatile("bcr 0,0"); 607 } 608 609 int __kprobes longjmp_break_handler(struct kprobe *p, struct pt_regs *regs) 610 { 611 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); 612 unsigned long stack_addr = (unsigned long)(kcb->jprobe_saved_r15); 613 614 /* Put the regs back */ 615 memcpy(regs, &kcb->jprobe_saved_regs, sizeof(struct pt_regs)); 616 /* put the stack back */ 617 memcpy((kprobe_opcode_t *) stack_addr, kcb->jprobes_stack, 618 MIN_STACK_SIZE(stack_addr)); 619 preempt_enable_no_resched(); 620 return 1; 621 } 622 623 static struct kprobe trampoline_p = { 624 .addr = (kprobe_opcode_t *) & kretprobe_trampoline, 625 .pre_handler = trampoline_probe_handler 626 }; 627 628 int __init arch_init_kprobes(void) 629 { 630 return register_kprobe(&trampoline_p); 631 } 632 633 int __kprobes arch_trampoline_kprobe(struct kprobe *p) 634 { 635 if (p->addr == (kprobe_opcode_t *) & kretprobe_trampoline) 636 return 1; 637 return 0; 638 } 639