xref: /openbmc/linux/arch/s390/kernel/kprobes.c (revision fd589a8f)
1 /*
2  *  Kernel Probes (KProbes)
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; either version 2 of the License, or
7  * (at your option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17  *
18  * Copyright (C) IBM Corporation, 2002, 2006
19  *
20  * s390 port, used ppc64 as template. Mike Grundy <grundym@us.ibm.com>
21  */
22 
23 #include <linux/kprobes.h>
24 #include <linux/ptrace.h>
25 #include <linux/preempt.h>
26 #include <linux/stop_machine.h>
27 #include <linux/kdebug.h>
28 #include <linux/uaccess.h>
29 #include <asm/cacheflush.h>
30 #include <asm/sections.h>
31 #include <linux/module.h>
32 
33 DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
34 DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
35 
36 struct kretprobe_blackpoint kretprobe_blacklist[] = {{NULL, NULL}};
37 
38 int __kprobes arch_prepare_kprobe(struct kprobe *p)
39 {
40 	/* Make sure the probe isn't going on a difficult instruction */
41 	if (is_prohibited_opcode((kprobe_opcode_t *) p->addr))
42 		return -EINVAL;
43 
44 	if ((unsigned long)p->addr & 0x01)
45 		return -EINVAL;
46 
47 	/* Use the get_insn_slot() facility for correctness */
48 	if (!(p->ainsn.insn = get_insn_slot()))
49 		return -ENOMEM;
50 
51 	memcpy(p->ainsn.insn, p->addr, MAX_INSN_SIZE * sizeof(kprobe_opcode_t));
52 
53 	get_instruction_type(&p->ainsn);
54 	p->opcode = *p->addr;
55 	return 0;
56 }
57 
58 int __kprobes is_prohibited_opcode(kprobe_opcode_t *instruction)
59 {
60 	switch (*(__u8 *) instruction) {
61 	case 0x0c:	/* bassm */
62 	case 0x0b:	/* bsm	 */
63 	case 0x83:	/* diag  */
64 	case 0x44:	/* ex	 */
65 		return -EINVAL;
66 	}
67 	switch (*(__u16 *) instruction) {
68 	case 0x0101:	/* pr	 */
69 	case 0xb25a:	/* bsa	 */
70 	case 0xb240:	/* bakr  */
71 	case 0xb258:	/* bsg	 */
72 	case 0xb218:	/* pc	 */
73 	case 0xb228:	/* pt	 */
74 		return -EINVAL;
75 	}
76 	return 0;
77 }
78 
79 void __kprobes get_instruction_type(struct arch_specific_insn *ainsn)
80 {
81 	/* default fixup method */
82 	ainsn->fixup = FIXUP_PSW_NORMAL;
83 
84 	/* save r1 operand */
85 	ainsn->reg = (*ainsn->insn & 0xf0) >> 4;
86 
87 	/* save the instruction length (pop 5-5) in bytes */
88 	switch (*(__u8 *) (ainsn->insn) >> 6) {
89 	case 0:
90 		ainsn->ilen = 2;
91 		break;
92 	case 1:
93 	case 2:
94 		ainsn->ilen = 4;
95 		break;
96 	case 3:
97 		ainsn->ilen = 6;
98 		break;
99 	}
100 
101 	switch (*(__u8 *) ainsn->insn) {
102 	case 0x05:	/* balr	*/
103 	case 0x0d:	/* basr */
104 		ainsn->fixup = FIXUP_RETURN_REGISTER;
105 		/* if r2 = 0, no branch will be taken */
106 		if ((*ainsn->insn & 0x0f) == 0)
107 			ainsn->fixup |= FIXUP_BRANCH_NOT_TAKEN;
108 		break;
109 	case 0x06:	/* bctr	*/
110 	case 0x07:	/* bcr	*/
111 		ainsn->fixup = FIXUP_BRANCH_NOT_TAKEN;
112 		break;
113 	case 0x45:	/* bal	*/
114 	case 0x4d:	/* bas	*/
115 		ainsn->fixup = FIXUP_RETURN_REGISTER;
116 		break;
117 	case 0x47:	/* bc	*/
118 	case 0x46:	/* bct	*/
119 	case 0x86:	/* bxh	*/
120 	case 0x87:	/* bxle	*/
121 		ainsn->fixup = FIXUP_BRANCH_NOT_TAKEN;
122 		break;
123 	case 0x82:	/* lpsw	*/
124 		ainsn->fixup = FIXUP_NOT_REQUIRED;
125 		break;
126 	case 0xb2:	/* lpswe */
127 		if (*(((__u8 *) ainsn->insn) + 1) == 0xb2) {
128 			ainsn->fixup = FIXUP_NOT_REQUIRED;
129 		}
130 		break;
131 	case 0xa7:	/* bras	*/
132 		if ((*ainsn->insn & 0x0f) == 0x05) {
133 			ainsn->fixup |= FIXUP_RETURN_REGISTER;
134 		}
135 		break;
136 	case 0xc0:
137 		if ((*ainsn->insn & 0x0f) == 0x00  /* larl  */
138 			|| (*ainsn->insn & 0x0f) == 0x05) /* brasl */
139 		ainsn->fixup |= FIXUP_RETURN_REGISTER;
140 		break;
141 	case 0xeb:
142 		if (*(((__u8 *) ainsn->insn) + 5 ) == 0x44 ||	/* bxhg  */
143 			*(((__u8 *) ainsn->insn) + 5) == 0x45) {/* bxleg */
144 			ainsn->fixup = FIXUP_BRANCH_NOT_TAKEN;
145 		}
146 		break;
147 	case 0xe3:	/* bctg	*/
148 		if (*(((__u8 *) ainsn->insn) + 5) == 0x46) {
149 			ainsn->fixup = FIXUP_BRANCH_NOT_TAKEN;
150 		}
151 		break;
152 	}
153 }
154 
155 static int __kprobes swap_instruction(void *aref)
156 {
157 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
158 	unsigned long status = kcb->kprobe_status;
159 	struct ins_replace_args *args = aref;
160 	int rc;
161 
162 	kcb->kprobe_status = KPROBE_SWAP_INST;
163 	rc = probe_kernel_write(args->ptr, &args->new, sizeof(args->new));
164 	kcb->kprobe_status = status;
165 	return rc;
166 }
167 
168 void __kprobes arch_arm_kprobe(struct kprobe *p)
169 {
170 	struct ins_replace_args args;
171 
172 	args.ptr = p->addr;
173 	args.old = p->opcode;
174 	args.new = BREAKPOINT_INSTRUCTION;
175 	stop_machine(swap_instruction, &args, NULL);
176 }
177 
178 void __kprobes arch_disarm_kprobe(struct kprobe *p)
179 {
180 	struct ins_replace_args args;
181 
182 	args.ptr = p->addr;
183 	args.old = BREAKPOINT_INSTRUCTION;
184 	args.new = p->opcode;
185 	stop_machine(swap_instruction, &args, NULL);
186 }
187 
188 void __kprobes arch_remove_kprobe(struct kprobe *p)
189 {
190 	if (p->ainsn.insn) {
191 		free_insn_slot(p->ainsn.insn, 0);
192 		p->ainsn.insn = NULL;
193 	}
194 }
195 
196 static void __kprobes prepare_singlestep(struct kprobe *p, struct pt_regs *regs)
197 {
198 	per_cr_bits kprobe_per_regs[1];
199 
200 	memset(kprobe_per_regs, 0, sizeof(per_cr_bits));
201 	regs->psw.addr = (unsigned long)p->ainsn.insn | PSW_ADDR_AMODE;
202 
203 	/* Set up the per control reg info, will pass to lctl */
204 	kprobe_per_regs[0].em_instruction_fetch = 1;
205 	kprobe_per_regs[0].starting_addr = (unsigned long)p->ainsn.insn;
206 	kprobe_per_regs[0].ending_addr = (unsigned long)p->ainsn.insn + 1;
207 
208 	/* Set the PER control regs, turns on single step for this address */
209 	__ctl_load(kprobe_per_regs, 9, 11);
210 	regs->psw.mask |= PSW_MASK_PER;
211 	regs->psw.mask &= ~(PSW_MASK_IO | PSW_MASK_EXT | PSW_MASK_MCHECK);
212 }
213 
214 static void __kprobes save_previous_kprobe(struct kprobe_ctlblk *kcb)
215 {
216 	kcb->prev_kprobe.kp = kprobe_running();
217 	kcb->prev_kprobe.status = kcb->kprobe_status;
218 	kcb->prev_kprobe.kprobe_saved_imask = kcb->kprobe_saved_imask;
219 	memcpy(kcb->prev_kprobe.kprobe_saved_ctl, kcb->kprobe_saved_ctl,
220 					sizeof(kcb->kprobe_saved_ctl));
221 }
222 
223 static void __kprobes restore_previous_kprobe(struct kprobe_ctlblk *kcb)
224 {
225 	__get_cpu_var(current_kprobe) = kcb->prev_kprobe.kp;
226 	kcb->kprobe_status = kcb->prev_kprobe.status;
227 	kcb->kprobe_saved_imask = kcb->prev_kprobe.kprobe_saved_imask;
228 	memcpy(kcb->kprobe_saved_ctl, kcb->prev_kprobe.kprobe_saved_ctl,
229 					sizeof(kcb->kprobe_saved_ctl));
230 }
231 
232 static void __kprobes set_current_kprobe(struct kprobe *p, struct pt_regs *regs,
233 						struct kprobe_ctlblk *kcb)
234 {
235 	__get_cpu_var(current_kprobe) = p;
236 	/* Save the interrupt and per flags */
237 	kcb->kprobe_saved_imask = regs->psw.mask &
238 	    (PSW_MASK_PER | PSW_MASK_IO | PSW_MASK_EXT | PSW_MASK_MCHECK);
239 	/* Save the control regs that govern PER */
240 	__ctl_store(kcb->kprobe_saved_ctl, 9, 11);
241 }
242 
243 void __kprobes arch_prepare_kretprobe(struct kretprobe_instance *ri,
244 					struct pt_regs *regs)
245 {
246 	ri->ret_addr = (kprobe_opcode_t *) regs->gprs[14];
247 
248 	/* Replace the return addr with trampoline addr */
249 	regs->gprs[14] = (unsigned long)&kretprobe_trampoline;
250 }
251 
252 static int __kprobes kprobe_handler(struct pt_regs *regs)
253 {
254 	struct kprobe *p;
255 	int ret = 0;
256 	unsigned long *addr = (unsigned long *)
257 		((regs->psw.addr & PSW_ADDR_INSN) - 2);
258 	struct kprobe_ctlblk *kcb;
259 
260 	/*
261 	 * We don't want to be preempted for the entire
262 	 * duration of kprobe processing
263 	 */
264 	preempt_disable();
265 	kcb = get_kprobe_ctlblk();
266 
267 	/* Check we're not actually recursing */
268 	if (kprobe_running()) {
269 		p = get_kprobe(addr);
270 		if (p) {
271 			if (kcb->kprobe_status == KPROBE_HIT_SS &&
272 			    *p->ainsn.insn == BREAKPOINT_INSTRUCTION) {
273 				regs->psw.mask &= ~PSW_MASK_PER;
274 				regs->psw.mask |= kcb->kprobe_saved_imask;
275 				goto no_kprobe;
276 			}
277 			/* We have reentered the kprobe_handler(), since
278 			 * another probe was hit while within the handler.
279 			 * We here save the original kprobes variables and
280 			 * just single step on the instruction of the new probe
281 			 * without calling any user handlers.
282 			 */
283 			save_previous_kprobe(kcb);
284 			set_current_kprobe(p, regs, kcb);
285 			kprobes_inc_nmissed_count(p);
286 			prepare_singlestep(p, regs);
287 			kcb->kprobe_status = KPROBE_REENTER;
288 			return 1;
289 		} else {
290 			p = __get_cpu_var(current_kprobe);
291 			if (p->break_handler && p->break_handler(p, regs)) {
292 				goto ss_probe;
293 			}
294 		}
295 		goto no_kprobe;
296 	}
297 
298 	p = get_kprobe(addr);
299 	if (!p)
300 		/*
301 		 * No kprobe at this address. The fault has not been
302 		 * caused by a kprobe breakpoint. The race of breakpoint
303 		 * vs. kprobe remove does not exist because on s390 we
304 		 * use stop_machine to arm/disarm the breakpoints.
305 		 */
306 		goto no_kprobe;
307 
308 	kcb->kprobe_status = KPROBE_HIT_ACTIVE;
309 	set_current_kprobe(p, regs, kcb);
310 	if (p->pre_handler && p->pre_handler(p, regs))
311 		/* handler has already set things up, so skip ss setup */
312 		return 1;
313 
314 ss_probe:
315 	prepare_singlestep(p, regs);
316 	kcb->kprobe_status = KPROBE_HIT_SS;
317 	return 1;
318 
319 no_kprobe:
320 	preempt_enable_no_resched();
321 	return ret;
322 }
323 
324 /*
325  * Function return probe trampoline:
326  *	- init_kprobes() establishes a probepoint here
327  *	- When the probed function returns, this probe
328  *		causes the handlers to fire
329  */
330 static void __used kretprobe_trampoline_holder(void)
331 {
332 	asm volatile(".global kretprobe_trampoline\n"
333 		     "kretprobe_trampoline: bcr 0,0\n");
334 }
335 
336 /*
337  * Called when the probe at kretprobe trampoline is hit
338  */
339 static int __kprobes trampoline_probe_handler(struct kprobe *p,
340 					      struct pt_regs *regs)
341 {
342 	struct kretprobe_instance *ri = NULL;
343 	struct hlist_head *head, empty_rp;
344 	struct hlist_node *node, *tmp;
345 	unsigned long flags, orig_ret_address = 0;
346 	unsigned long trampoline_address = (unsigned long)&kretprobe_trampoline;
347 
348 	INIT_HLIST_HEAD(&empty_rp);
349 	kretprobe_hash_lock(current, &head, &flags);
350 
351 	/*
352 	 * It is possible to have multiple instances associated with a given
353 	 * task either because an multiple functions in the call path
354 	 * have a return probe installed on them, and/or more than one return
355 	 * return probe was registered for a target function.
356 	 *
357 	 * We can handle this because:
358 	 *     - instances are always inserted at the head of the list
359 	 *     - when multiple return probes are registered for the same
360 	 *	 function, the first instance's ret_addr will point to the
361 	 *	 real return address, and all the rest will point to
362 	 *	 kretprobe_trampoline
363 	 */
364 	hlist_for_each_entry_safe(ri, node, tmp, head, hlist) {
365 		if (ri->task != current)
366 			/* another task is sharing our hash bucket */
367 			continue;
368 
369 		if (ri->rp && ri->rp->handler)
370 			ri->rp->handler(ri, regs);
371 
372 		orig_ret_address = (unsigned long)ri->ret_addr;
373 		recycle_rp_inst(ri, &empty_rp);
374 
375 		if (orig_ret_address != trampoline_address) {
376 			/*
377 			 * This is the real return address. Any other
378 			 * instances associated with this task are for
379 			 * other calls deeper on the call stack
380 			 */
381 			break;
382 		}
383 	}
384 	kretprobe_assert(ri, orig_ret_address, trampoline_address);
385 	regs->psw.addr = orig_ret_address | PSW_ADDR_AMODE;
386 
387 	reset_current_kprobe();
388 	kretprobe_hash_unlock(current, &flags);
389 	preempt_enable_no_resched();
390 
391 	hlist_for_each_entry_safe(ri, node, tmp, &empty_rp, hlist) {
392 		hlist_del(&ri->hlist);
393 		kfree(ri);
394 	}
395 	/*
396 	 * By returning a non-zero value, we are telling
397 	 * kprobe_handler() that we don't want the post_handler
398 	 * to run (and have re-enabled preemption)
399 	 */
400 	return 1;
401 }
402 
403 /*
404  * Called after single-stepping.  p->addr is the address of the
405  * instruction whose first byte has been replaced by the "breakpoint"
406  * instruction.  To avoid the SMP problems that can occur when we
407  * temporarily put back the original opcode to single-step, we
408  * single-stepped a copy of the instruction.  The address of this
409  * copy is p->ainsn.insn.
410  */
411 static void __kprobes resume_execution(struct kprobe *p, struct pt_regs *regs)
412 {
413 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
414 
415 	regs->psw.addr &= PSW_ADDR_INSN;
416 
417 	if (p->ainsn.fixup & FIXUP_PSW_NORMAL)
418 		regs->psw.addr = (unsigned long)p->addr +
419 				((unsigned long)regs->psw.addr -
420 				 (unsigned long)p->ainsn.insn);
421 
422 	if (p->ainsn.fixup & FIXUP_BRANCH_NOT_TAKEN)
423 		if ((unsigned long)regs->psw.addr -
424 		    (unsigned long)p->ainsn.insn == p->ainsn.ilen)
425 			regs->psw.addr = (unsigned long)p->addr + p->ainsn.ilen;
426 
427 	if (p->ainsn.fixup & FIXUP_RETURN_REGISTER)
428 		regs->gprs[p->ainsn.reg] = ((unsigned long)p->addr +
429 						(regs->gprs[p->ainsn.reg] -
430 						(unsigned long)p->ainsn.insn))
431 						| PSW_ADDR_AMODE;
432 
433 	regs->psw.addr |= PSW_ADDR_AMODE;
434 	/* turn off PER mode */
435 	regs->psw.mask &= ~PSW_MASK_PER;
436 	/* Restore the original per control regs */
437 	__ctl_load(kcb->kprobe_saved_ctl, 9, 11);
438 	regs->psw.mask |= kcb->kprobe_saved_imask;
439 }
440 
441 static int __kprobes post_kprobe_handler(struct pt_regs *regs)
442 {
443 	struct kprobe *cur = kprobe_running();
444 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
445 
446 	if (!cur)
447 		return 0;
448 
449 	if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) {
450 		kcb->kprobe_status = KPROBE_HIT_SSDONE;
451 		cur->post_handler(cur, regs, 0);
452 	}
453 
454 	resume_execution(cur, regs);
455 
456 	/*Restore back the original saved kprobes variables and continue. */
457 	if (kcb->kprobe_status == KPROBE_REENTER) {
458 		restore_previous_kprobe(kcb);
459 		goto out;
460 	}
461 	reset_current_kprobe();
462 out:
463 	preempt_enable_no_resched();
464 
465 	/*
466 	 * if somebody else is singlestepping across a probe point, psw mask
467 	 * will have PER set, in which case, continue the remaining processing
468 	 * of do_single_step, as if this is not a probe hit.
469 	 */
470 	if (regs->psw.mask & PSW_MASK_PER) {
471 		return 0;
472 	}
473 
474 	return 1;
475 }
476 
477 int __kprobes kprobe_fault_handler(struct pt_regs *regs, int trapnr)
478 {
479 	struct kprobe *cur = kprobe_running();
480 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
481 	const struct exception_table_entry *entry;
482 
483 	switch(kcb->kprobe_status) {
484 	case KPROBE_SWAP_INST:
485 		/* We are here because the instruction replacement failed */
486 		return 0;
487 	case KPROBE_HIT_SS:
488 	case KPROBE_REENTER:
489 		/*
490 		 * We are here because the instruction being single
491 		 * stepped caused a page fault. We reset the current
492 		 * kprobe and the nip points back to the probe address
493 		 * and allow the page fault handler to continue as a
494 		 * normal page fault.
495 		 */
496 		regs->psw.addr = (unsigned long)cur->addr | PSW_ADDR_AMODE;
497 		regs->psw.mask &= ~PSW_MASK_PER;
498 		regs->psw.mask |= kcb->kprobe_saved_imask;
499 		if (kcb->kprobe_status == KPROBE_REENTER)
500 			restore_previous_kprobe(kcb);
501 		else
502 			reset_current_kprobe();
503 		preempt_enable_no_resched();
504 		break;
505 	case KPROBE_HIT_ACTIVE:
506 	case KPROBE_HIT_SSDONE:
507 		/*
508 		 * We increment the nmissed count for accounting,
509 		 * we can also use npre/npostfault count for accouting
510 		 * these specific fault cases.
511 		 */
512 		kprobes_inc_nmissed_count(cur);
513 
514 		/*
515 		 * We come here because instructions in the pre/post
516 		 * handler caused the page_fault, this could happen
517 		 * if handler tries to access user space by
518 		 * copy_from_user(), get_user() etc. Let the
519 		 * user-specified handler try to fix it first.
520 		 */
521 		if (cur->fault_handler && cur->fault_handler(cur, regs, trapnr))
522 			return 1;
523 
524 		/*
525 		 * In case the user-specified fault handler returned
526 		 * zero, try to fix up.
527 		 */
528 		entry = search_exception_tables(regs->psw.addr & PSW_ADDR_INSN);
529 		if (entry) {
530 			regs->psw.addr = entry->fixup | PSW_ADDR_AMODE;
531 			return 1;
532 		}
533 
534 		/*
535 		 * fixup_exception() could not handle it,
536 		 * Let do_page_fault() fix it.
537 		 */
538 		break;
539 	default:
540 		break;
541 	}
542 	return 0;
543 }
544 
545 /*
546  * Wrapper routine to for handling exceptions.
547  */
548 int __kprobes kprobe_exceptions_notify(struct notifier_block *self,
549 				       unsigned long val, void *data)
550 {
551 	struct die_args *args = (struct die_args *)data;
552 	int ret = NOTIFY_DONE;
553 
554 	switch (val) {
555 	case DIE_BPT:
556 		if (kprobe_handler(args->regs))
557 			ret = NOTIFY_STOP;
558 		break;
559 	case DIE_SSTEP:
560 		if (post_kprobe_handler(args->regs))
561 			ret = NOTIFY_STOP;
562 		break;
563 	case DIE_TRAP:
564 		/* kprobe_running() needs smp_processor_id() */
565 		preempt_disable();
566 		if (kprobe_running() &&
567 		    kprobe_fault_handler(args->regs, args->trapnr))
568 			ret = NOTIFY_STOP;
569 		preempt_enable();
570 		break;
571 	default:
572 		break;
573 	}
574 	return ret;
575 }
576 
577 int __kprobes setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs)
578 {
579 	struct jprobe *jp = container_of(p, struct jprobe, kp);
580 	unsigned long addr;
581 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
582 
583 	memcpy(&kcb->jprobe_saved_regs, regs, sizeof(struct pt_regs));
584 
585 	/* setup return addr to the jprobe handler routine */
586 	regs->psw.addr = (unsigned long)(jp->entry) | PSW_ADDR_AMODE;
587 
588 	/* r14 is the function return address */
589 	kcb->jprobe_saved_r14 = (unsigned long)regs->gprs[14];
590 	/* r15 is the stack pointer */
591 	kcb->jprobe_saved_r15 = (unsigned long)regs->gprs[15];
592 	addr = (unsigned long)kcb->jprobe_saved_r15;
593 
594 	memcpy(kcb->jprobes_stack, (kprobe_opcode_t *) addr,
595 	       MIN_STACK_SIZE(addr));
596 	return 1;
597 }
598 
599 void __kprobes jprobe_return(void)
600 {
601 	asm volatile(".word 0x0002");
602 }
603 
604 void __kprobes jprobe_return_end(void)
605 {
606 	asm volatile("bcr 0,0");
607 }
608 
609 int __kprobes longjmp_break_handler(struct kprobe *p, struct pt_regs *regs)
610 {
611 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
612 	unsigned long stack_addr = (unsigned long)(kcb->jprobe_saved_r15);
613 
614 	/* Put the regs back */
615 	memcpy(regs, &kcb->jprobe_saved_regs, sizeof(struct pt_regs));
616 	/* put the stack back */
617 	memcpy((kprobe_opcode_t *) stack_addr, kcb->jprobes_stack,
618 	       MIN_STACK_SIZE(stack_addr));
619 	preempt_enable_no_resched();
620 	return 1;
621 }
622 
623 static struct kprobe trampoline_p = {
624 	.addr = (kprobe_opcode_t *) & kretprobe_trampoline,
625 	.pre_handler = trampoline_probe_handler
626 };
627 
628 int __init arch_init_kprobes(void)
629 {
630 	return register_kprobe(&trampoline_p);
631 }
632 
633 int __kprobes arch_trampoline_kprobe(struct kprobe *p)
634 {
635 	if (p->addr == (kprobe_opcode_t *) & kretprobe_trampoline)
636 		return 1;
637 	return 0;
638 }
639