xref: /openbmc/linux/arch/s390/kernel/kprobes.c (revision fb960bd2)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  *  Kernel Probes (KProbes)
4  *
5  * Copyright IBM Corp. 2002, 2006
6  *
7  * s390 port, used ppc64 as template. Mike Grundy <grundym@us.ibm.com>
8  */
9 
10 #include <linux/kprobes.h>
11 #include <linux/ptrace.h>
12 #include <linux/preempt.h>
13 #include <linux/stop_machine.h>
14 #include <linux/kdebug.h>
15 #include <linux/uaccess.h>
16 #include <linux/extable.h>
17 #include <linux/module.h>
18 #include <linux/slab.h>
19 #include <linux/hardirq.h>
20 #include <linux/ftrace.h>
21 #include <asm/set_memory.h>
22 #include <asm/sections.h>
23 #include <linux/uaccess.h>
24 #include <asm/dis.h>
25 
26 DEFINE_PER_CPU(struct kprobe *, current_kprobe);
27 DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
28 
29 struct kretprobe_blackpoint kretprobe_blacklist[] = { };
30 
31 DEFINE_INSN_CACHE_OPS(dmainsn);
32 
33 static void *alloc_dmainsn_page(void)
34 {
35 	void *page;
36 
37 	page = (void *) __get_free_page(GFP_KERNEL | GFP_DMA);
38 	if (page)
39 		set_memory_x((unsigned long) page, 1);
40 	return page;
41 }
42 
43 static void free_dmainsn_page(void *page)
44 {
45 	set_memory_nx((unsigned long) page, 1);
46 	free_page((unsigned long)page);
47 }
48 
49 struct kprobe_insn_cache kprobe_dmainsn_slots = {
50 	.mutex = __MUTEX_INITIALIZER(kprobe_dmainsn_slots.mutex),
51 	.alloc = alloc_dmainsn_page,
52 	.free = free_dmainsn_page,
53 	.pages = LIST_HEAD_INIT(kprobe_dmainsn_slots.pages),
54 	.insn_size = MAX_INSN_SIZE,
55 };
56 
57 static void copy_instruction(struct kprobe *p)
58 {
59 	unsigned long ip = (unsigned long) p->addr;
60 	s64 disp, new_disp;
61 	u64 addr, new_addr;
62 
63 	if (ftrace_location(ip) == ip) {
64 		/*
65 		 * If kprobes patches the instruction that is morphed by
66 		 * ftrace make sure that kprobes always sees the branch
67 		 * "jg .+24" that skips the mcount block or the "brcl 0,0"
68 		 * in case of hotpatch.
69 		 */
70 		ftrace_generate_nop_insn((struct ftrace_insn *)p->ainsn.insn);
71 		p->ainsn.is_ftrace_insn = 1;
72 	} else
73 		memcpy(p->ainsn.insn, p->addr, insn_length(*p->addr >> 8));
74 	p->opcode = p->ainsn.insn[0];
75 	if (!probe_is_insn_relative_long(p->ainsn.insn))
76 		return;
77 	/*
78 	 * For pc-relative instructions in RIL-b or RIL-c format patch the
79 	 * RI2 displacement field. We have already made sure that the insn
80 	 * slot for the patched instruction is within the same 2GB area
81 	 * as the original instruction (either kernel image or module area).
82 	 * Therefore the new displacement will always fit.
83 	 */
84 	disp = *(s32 *)&p->ainsn.insn[1];
85 	addr = (u64)(unsigned long)p->addr;
86 	new_addr = (u64)(unsigned long)p->ainsn.insn;
87 	new_disp = ((addr + (disp * 2)) - new_addr) / 2;
88 	*(s32 *)&p->ainsn.insn[1] = new_disp;
89 }
90 NOKPROBE_SYMBOL(copy_instruction);
91 
92 static inline int is_kernel_addr(void *addr)
93 {
94 	return addr < (void *)_end;
95 }
96 
97 static int s390_get_insn_slot(struct kprobe *p)
98 {
99 	/*
100 	 * Get an insn slot that is within the same 2GB area like the original
101 	 * instruction. That way instructions with a 32bit signed displacement
102 	 * field can be patched and executed within the insn slot.
103 	 */
104 	p->ainsn.insn = NULL;
105 	if (is_kernel_addr(p->addr))
106 		p->ainsn.insn = get_dmainsn_slot();
107 	else if (is_module_addr(p->addr))
108 		p->ainsn.insn = get_insn_slot();
109 	return p->ainsn.insn ? 0 : -ENOMEM;
110 }
111 NOKPROBE_SYMBOL(s390_get_insn_slot);
112 
113 static void s390_free_insn_slot(struct kprobe *p)
114 {
115 	if (!p->ainsn.insn)
116 		return;
117 	if (is_kernel_addr(p->addr))
118 		free_dmainsn_slot(p->ainsn.insn, 0);
119 	else
120 		free_insn_slot(p->ainsn.insn, 0);
121 	p->ainsn.insn = NULL;
122 }
123 NOKPROBE_SYMBOL(s390_free_insn_slot);
124 
125 int arch_prepare_kprobe(struct kprobe *p)
126 {
127 	if ((unsigned long) p->addr & 0x01)
128 		return -EINVAL;
129 	/* Make sure the probe isn't going on a difficult instruction */
130 	if (probe_is_prohibited_opcode(p->addr))
131 		return -EINVAL;
132 	if (s390_get_insn_slot(p))
133 		return -ENOMEM;
134 	copy_instruction(p);
135 	return 0;
136 }
137 NOKPROBE_SYMBOL(arch_prepare_kprobe);
138 
139 int arch_check_ftrace_location(struct kprobe *p)
140 {
141 	return 0;
142 }
143 
144 struct swap_insn_args {
145 	struct kprobe *p;
146 	unsigned int arm_kprobe : 1;
147 };
148 
149 static int swap_instruction(void *data)
150 {
151 	struct swap_insn_args *args = data;
152 	struct ftrace_insn new_insn, *insn;
153 	struct kprobe *p = args->p;
154 	size_t len;
155 
156 	new_insn.opc = args->arm_kprobe ? BREAKPOINT_INSTRUCTION : p->opcode;
157 	len = sizeof(new_insn.opc);
158 	if (!p->ainsn.is_ftrace_insn)
159 		goto skip_ftrace;
160 	len = sizeof(new_insn);
161 	insn = (struct ftrace_insn *) p->addr;
162 	if (args->arm_kprobe) {
163 		if (is_ftrace_nop(insn))
164 			new_insn.disp = KPROBE_ON_FTRACE_NOP;
165 		else
166 			new_insn.disp = KPROBE_ON_FTRACE_CALL;
167 	} else {
168 		ftrace_generate_call_insn(&new_insn, (unsigned long)p->addr);
169 		if (insn->disp == KPROBE_ON_FTRACE_NOP)
170 			ftrace_generate_nop_insn(&new_insn);
171 	}
172 skip_ftrace:
173 	s390_kernel_write(p->addr, &new_insn, len);
174 	return 0;
175 }
176 NOKPROBE_SYMBOL(swap_instruction);
177 
178 void arch_arm_kprobe(struct kprobe *p)
179 {
180 	struct swap_insn_args args = {.p = p, .arm_kprobe = 1};
181 
182 	stop_machine_cpuslocked(swap_instruction, &args, NULL);
183 }
184 NOKPROBE_SYMBOL(arch_arm_kprobe);
185 
186 void arch_disarm_kprobe(struct kprobe *p)
187 {
188 	struct swap_insn_args args = {.p = p, .arm_kprobe = 0};
189 
190 	stop_machine_cpuslocked(swap_instruction, &args, NULL);
191 }
192 NOKPROBE_SYMBOL(arch_disarm_kprobe);
193 
194 void arch_remove_kprobe(struct kprobe *p)
195 {
196 	s390_free_insn_slot(p);
197 }
198 NOKPROBE_SYMBOL(arch_remove_kprobe);
199 
200 static void enable_singlestep(struct kprobe_ctlblk *kcb,
201 			      struct pt_regs *regs,
202 			      unsigned long ip)
203 {
204 	struct per_regs per_kprobe;
205 
206 	/* Set up the PER control registers %cr9-%cr11 */
207 	per_kprobe.control = PER_EVENT_IFETCH;
208 	per_kprobe.start = ip;
209 	per_kprobe.end = ip;
210 
211 	/* Save control regs and psw mask */
212 	__ctl_store(kcb->kprobe_saved_ctl, 9, 11);
213 	kcb->kprobe_saved_imask = regs->psw.mask &
214 		(PSW_MASK_PER | PSW_MASK_IO | PSW_MASK_EXT);
215 
216 	/* Set PER control regs, turns on single step for the given address */
217 	__ctl_load(per_kprobe, 9, 11);
218 	regs->psw.mask |= PSW_MASK_PER;
219 	regs->psw.mask &= ~(PSW_MASK_IO | PSW_MASK_EXT);
220 	regs->psw.addr = ip;
221 }
222 NOKPROBE_SYMBOL(enable_singlestep);
223 
224 static void disable_singlestep(struct kprobe_ctlblk *kcb,
225 			       struct pt_regs *regs,
226 			       unsigned long ip)
227 {
228 	/* Restore control regs and psw mask, set new psw address */
229 	__ctl_load(kcb->kprobe_saved_ctl, 9, 11);
230 	regs->psw.mask &= ~PSW_MASK_PER;
231 	regs->psw.mask |= kcb->kprobe_saved_imask;
232 	regs->psw.addr = ip;
233 }
234 NOKPROBE_SYMBOL(disable_singlestep);
235 
236 /*
237  * Activate a kprobe by storing its pointer to current_kprobe. The
238  * previous kprobe is stored in kcb->prev_kprobe. A stack of up to
239  * two kprobes can be active, see KPROBE_REENTER.
240  */
241 static void push_kprobe(struct kprobe_ctlblk *kcb, struct kprobe *p)
242 {
243 	kcb->prev_kprobe.kp = __this_cpu_read(current_kprobe);
244 	kcb->prev_kprobe.status = kcb->kprobe_status;
245 	__this_cpu_write(current_kprobe, p);
246 }
247 NOKPROBE_SYMBOL(push_kprobe);
248 
249 /*
250  * Deactivate a kprobe by backing up to the previous state. If the
251  * current state is KPROBE_REENTER prev_kprobe.kp will be non-NULL,
252  * for any other state prev_kprobe.kp will be NULL.
253  */
254 static void pop_kprobe(struct kprobe_ctlblk *kcb)
255 {
256 	__this_cpu_write(current_kprobe, kcb->prev_kprobe.kp);
257 	kcb->kprobe_status = kcb->prev_kprobe.status;
258 }
259 NOKPROBE_SYMBOL(pop_kprobe);
260 
261 void arch_prepare_kretprobe(struct kretprobe_instance *ri, struct pt_regs *regs)
262 {
263 	ri->ret_addr = (kprobe_opcode_t *) regs->gprs[14];
264 
265 	/* Replace the return addr with trampoline addr */
266 	regs->gprs[14] = (unsigned long) &kretprobe_trampoline;
267 }
268 NOKPROBE_SYMBOL(arch_prepare_kretprobe);
269 
270 static void kprobe_reenter_check(struct kprobe_ctlblk *kcb, struct kprobe *p)
271 {
272 	switch (kcb->kprobe_status) {
273 	case KPROBE_HIT_SSDONE:
274 	case KPROBE_HIT_ACTIVE:
275 		kprobes_inc_nmissed_count(p);
276 		break;
277 	case KPROBE_HIT_SS:
278 	case KPROBE_REENTER:
279 	default:
280 		/*
281 		 * A kprobe on the code path to single step an instruction
282 		 * is a BUG. The code path resides in the .kprobes.text
283 		 * section and is executed with interrupts disabled.
284 		 */
285 		printk(KERN_EMERG "Invalid kprobe detected at %p.\n", p->addr);
286 		dump_kprobe(p);
287 		BUG();
288 	}
289 }
290 NOKPROBE_SYMBOL(kprobe_reenter_check);
291 
292 static int kprobe_handler(struct pt_regs *regs)
293 {
294 	struct kprobe_ctlblk *kcb;
295 	struct kprobe *p;
296 
297 	/*
298 	 * We want to disable preemption for the entire duration of kprobe
299 	 * processing. That includes the calls to the pre/post handlers
300 	 * and single stepping the kprobe instruction.
301 	 */
302 	preempt_disable();
303 	kcb = get_kprobe_ctlblk();
304 	p = get_kprobe((void *)(regs->psw.addr - 2));
305 
306 	if (p) {
307 		if (kprobe_running()) {
308 			/*
309 			 * We have hit a kprobe while another is still
310 			 * active. This can happen in the pre and post
311 			 * handler. Single step the instruction of the
312 			 * new probe but do not call any handler function
313 			 * of this secondary kprobe.
314 			 * push_kprobe and pop_kprobe saves and restores
315 			 * the currently active kprobe.
316 			 */
317 			kprobe_reenter_check(kcb, p);
318 			push_kprobe(kcb, p);
319 			kcb->kprobe_status = KPROBE_REENTER;
320 		} else {
321 			/*
322 			 * If we have no pre-handler or it returned 0, we
323 			 * continue with single stepping. If we have a
324 			 * pre-handler and it returned non-zero, it prepped
325 			 * for calling the break_handler below on re-entry
326 			 * for jprobe processing, so get out doing nothing
327 			 * more here.
328 			 */
329 			push_kprobe(kcb, p);
330 			kcb->kprobe_status = KPROBE_HIT_ACTIVE;
331 			if (p->pre_handler && p->pre_handler(p, regs))
332 				return 1;
333 			kcb->kprobe_status = KPROBE_HIT_SS;
334 		}
335 		enable_singlestep(kcb, regs, (unsigned long) p->ainsn.insn);
336 		return 1;
337 	} else if (kprobe_running()) {
338 		p = __this_cpu_read(current_kprobe);
339 		if (p->break_handler && p->break_handler(p, regs)) {
340 			/*
341 			 * Continuation after the jprobe completed and
342 			 * caused the jprobe_return trap. The jprobe
343 			 * break_handler "returns" to the original
344 			 * function that still has the kprobe breakpoint
345 			 * installed. We continue with single stepping.
346 			 */
347 			kcb->kprobe_status = KPROBE_HIT_SS;
348 			enable_singlestep(kcb, regs,
349 					  (unsigned long) p->ainsn.insn);
350 			return 1;
351 		} /* else:
352 		   * No kprobe at this address and the current kprobe
353 		   * has no break handler (no jprobe!). The kernel just
354 		   * exploded, let the standard trap handler pick up the
355 		   * pieces.
356 		   */
357 	} /* else:
358 	   * No kprobe at this address and no active kprobe. The trap has
359 	   * not been caused by a kprobe breakpoint. The race of breakpoint
360 	   * vs. kprobe remove does not exist because on s390 as we use
361 	   * stop_machine to arm/disarm the breakpoints.
362 	   */
363 	preempt_enable_no_resched();
364 	return 0;
365 }
366 NOKPROBE_SYMBOL(kprobe_handler);
367 
368 /*
369  * Function return probe trampoline:
370  *	- init_kprobes() establishes a probepoint here
371  *	- When the probed function returns, this probe
372  *		causes the handlers to fire
373  */
374 static void __used kretprobe_trampoline_holder(void)
375 {
376 	asm volatile(".global kretprobe_trampoline\n"
377 		     "kretprobe_trampoline: bcr 0,0\n");
378 }
379 
380 /*
381  * Called when the probe at kretprobe trampoline is hit
382  */
383 static int trampoline_probe_handler(struct kprobe *p, struct pt_regs *regs)
384 {
385 	struct kretprobe_instance *ri;
386 	struct hlist_head *head, empty_rp;
387 	struct hlist_node *tmp;
388 	unsigned long flags, orig_ret_address;
389 	unsigned long trampoline_address;
390 	kprobe_opcode_t *correct_ret_addr;
391 
392 	INIT_HLIST_HEAD(&empty_rp);
393 	kretprobe_hash_lock(current, &head, &flags);
394 
395 	/*
396 	 * It is possible to have multiple instances associated with a given
397 	 * task either because an multiple functions in the call path
398 	 * have a return probe installed on them, and/or more than one return
399 	 * return probe was registered for a target function.
400 	 *
401 	 * We can handle this because:
402 	 *     - instances are always inserted at the head of the list
403 	 *     - when multiple return probes are registered for the same
404 	 *	 function, the first instance's ret_addr will point to the
405 	 *	 real return address, and all the rest will point to
406 	 *	 kretprobe_trampoline
407 	 */
408 	ri = NULL;
409 	orig_ret_address = 0;
410 	correct_ret_addr = NULL;
411 	trampoline_address = (unsigned long) &kretprobe_trampoline;
412 	hlist_for_each_entry_safe(ri, tmp, head, hlist) {
413 		if (ri->task != current)
414 			/* another task is sharing our hash bucket */
415 			continue;
416 
417 		orig_ret_address = (unsigned long) ri->ret_addr;
418 
419 		if (orig_ret_address != trampoline_address)
420 			/*
421 			 * This is the real return address. Any other
422 			 * instances associated with this task are for
423 			 * other calls deeper on the call stack
424 			 */
425 			break;
426 	}
427 
428 	kretprobe_assert(ri, orig_ret_address, trampoline_address);
429 
430 	correct_ret_addr = ri->ret_addr;
431 	hlist_for_each_entry_safe(ri, tmp, head, hlist) {
432 		if (ri->task != current)
433 			/* another task is sharing our hash bucket */
434 			continue;
435 
436 		orig_ret_address = (unsigned long) ri->ret_addr;
437 
438 		if (ri->rp && ri->rp->handler) {
439 			ri->ret_addr = correct_ret_addr;
440 			ri->rp->handler(ri, regs);
441 		}
442 
443 		recycle_rp_inst(ri, &empty_rp);
444 
445 		if (orig_ret_address != trampoline_address)
446 			/*
447 			 * This is the real return address. Any other
448 			 * instances associated with this task are for
449 			 * other calls deeper on the call stack
450 			 */
451 			break;
452 	}
453 
454 	regs->psw.addr = orig_ret_address;
455 
456 	pop_kprobe(get_kprobe_ctlblk());
457 	kretprobe_hash_unlock(current, &flags);
458 	preempt_enable_no_resched();
459 
460 	hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) {
461 		hlist_del(&ri->hlist);
462 		kfree(ri);
463 	}
464 	/*
465 	 * By returning a non-zero value, we are telling
466 	 * kprobe_handler() that we don't want the post_handler
467 	 * to run (and have re-enabled preemption)
468 	 */
469 	return 1;
470 }
471 NOKPROBE_SYMBOL(trampoline_probe_handler);
472 
473 /*
474  * Called after single-stepping.  p->addr is the address of the
475  * instruction whose first byte has been replaced by the "breakpoint"
476  * instruction.  To avoid the SMP problems that can occur when we
477  * temporarily put back the original opcode to single-step, we
478  * single-stepped a copy of the instruction.  The address of this
479  * copy is p->ainsn.insn.
480  */
481 static void resume_execution(struct kprobe *p, struct pt_regs *regs)
482 {
483 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
484 	unsigned long ip = regs->psw.addr;
485 	int fixup = probe_get_fixup_type(p->ainsn.insn);
486 
487 	/* Check if the kprobes location is an enabled ftrace caller */
488 	if (p->ainsn.is_ftrace_insn) {
489 		struct ftrace_insn *insn = (struct ftrace_insn *) p->addr;
490 		struct ftrace_insn call_insn;
491 
492 		ftrace_generate_call_insn(&call_insn, (unsigned long) p->addr);
493 		/*
494 		 * A kprobe on an enabled ftrace call site actually single
495 		 * stepped an unconditional branch (ftrace nop equivalent).
496 		 * Now we need to fixup things and pretend that a brasl r0,...
497 		 * was executed instead.
498 		 */
499 		if (insn->disp == KPROBE_ON_FTRACE_CALL) {
500 			ip += call_insn.disp * 2 - MCOUNT_INSN_SIZE;
501 			regs->gprs[0] = (unsigned long)p->addr + sizeof(*insn);
502 		}
503 	}
504 
505 	if (fixup & FIXUP_PSW_NORMAL)
506 		ip += (unsigned long) p->addr - (unsigned long) p->ainsn.insn;
507 
508 	if (fixup & FIXUP_BRANCH_NOT_TAKEN) {
509 		int ilen = insn_length(p->ainsn.insn[0] >> 8);
510 		if (ip - (unsigned long) p->ainsn.insn == ilen)
511 			ip = (unsigned long) p->addr + ilen;
512 	}
513 
514 	if (fixup & FIXUP_RETURN_REGISTER) {
515 		int reg = (p->ainsn.insn[0] & 0xf0) >> 4;
516 		regs->gprs[reg] += (unsigned long) p->addr -
517 				   (unsigned long) p->ainsn.insn;
518 	}
519 
520 	disable_singlestep(kcb, regs, ip);
521 }
522 NOKPROBE_SYMBOL(resume_execution);
523 
524 static int post_kprobe_handler(struct pt_regs *regs)
525 {
526 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
527 	struct kprobe *p = kprobe_running();
528 
529 	if (!p)
530 		return 0;
531 
532 	if (kcb->kprobe_status != KPROBE_REENTER && p->post_handler) {
533 		kcb->kprobe_status = KPROBE_HIT_SSDONE;
534 		p->post_handler(p, regs, 0);
535 	}
536 
537 	resume_execution(p, regs);
538 	pop_kprobe(kcb);
539 	preempt_enable_no_resched();
540 
541 	/*
542 	 * if somebody else is singlestepping across a probe point, psw mask
543 	 * will have PER set, in which case, continue the remaining processing
544 	 * of do_single_step, as if this is not a probe hit.
545 	 */
546 	if (regs->psw.mask & PSW_MASK_PER)
547 		return 0;
548 
549 	return 1;
550 }
551 NOKPROBE_SYMBOL(post_kprobe_handler);
552 
553 static int kprobe_trap_handler(struct pt_regs *regs, int trapnr)
554 {
555 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
556 	struct kprobe *p = kprobe_running();
557 	const struct exception_table_entry *entry;
558 
559 	switch(kcb->kprobe_status) {
560 	case KPROBE_HIT_SS:
561 	case KPROBE_REENTER:
562 		/*
563 		 * We are here because the instruction being single
564 		 * stepped caused a page fault. We reset the current
565 		 * kprobe and the nip points back to the probe address
566 		 * and allow the page fault handler to continue as a
567 		 * normal page fault.
568 		 */
569 		disable_singlestep(kcb, regs, (unsigned long) p->addr);
570 		pop_kprobe(kcb);
571 		preempt_enable_no_resched();
572 		break;
573 	case KPROBE_HIT_ACTIVE:
574 	case KPROBE_HIT_SSDONE:
575 		/*
576 		 * We increment the nmissed count for accounting,
577 		 * we can also use npre/npostfault count for accounting
578 		 * these specific fault cases.
579 		 */
580 		kprobes_inc_nmissed_count(p);
581 
582 		/*
583 		 * We come here because instructions in the pre/post
584 		 * handler caused the page_fault, this could happen
585 		 * if handler tries to access user space by
586 		 * copy_from_user(), get_user() etc. Let the
587 		 * user-specified handler try to fix it first.
588 		 */
589 		if (p->fault_handler && p->fault_handler(p, regs, trapnr))
590 			return 1;
591 
592 		/*
593 		 * In case the user-specified fault handler returned
594 		 * zero, try to fix up.
595 		 */
596 		entry = search_exception_tables(regs->psw.addr);
597 		if (entry) {
598 			regs->psw.addr = extable_fixup(entry);
599 			return 1;
600 		}
601 
602 		/*
603 		 * fixup_exception() could not handle it,
604 		 * Let do_page_fault() fix it.
605 		 */
606 		break;
607 	default:
608 		break;
609 	}
610 	return 0;
611 }
612 NOKPROBE_SYMBOL(kprobe_trap_handler);
613 
614 int kprobe_fault_handler(struct pt_regs *regs, int trapnr)
615 {
616 	int ret;
617 
618 	if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT))
619 		local_irq_disable();
620 	ret = kprobe_trap_handler(regs, trapnr);
621 	if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT))
622 		local_irq_restore(regs->psw.mask & ~PSW_MASK_PER);
623 	return ret;
624 }
625 NOKPROBE_SYMBOL(kprobe_fault_handler);
626 
627 /*
628  * Wrapper routine to for handling exceptions.
629  */
630 int kprobe_exceptions_notify(struct notifier_block *self,
631 			     unsigned long val, void *data)
632 {
633 	struct die_args *args = (struct die_args *) data;
634 	struct pt_regs *regs = args->regs;
635 	int ret = NOTIFY_DONE;
636 
637 	if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT))
638 		local_irq_disable();
639 
640 	switch (val) {
641 	case DIE_BPT:
642 		if (kprobe_handler(regs))
643 			ret = NOTIFY_STOP;
644 		break;
645 	case DIE_SSTEP:
646 		if (post_kprobe_handler(regs))
647 			ret = NOTIFY_STOP;
648 		break;
649 	case DIE_TRAP:
650 		if (!preemptible() && kprobe_running() &&
651 		    kprobe_trap_handler(regs, args->trapnr))
652 			ret = NOTIFY_STOP;
653 		break;
654 	default:
655 		break;
656 	}
657 
658 	if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT))
659 		local_irq_restore(regs->psw.mask & ~PSW_MASK_PER);
660 
661 	return ret;
662 }
663 NOKPROBE_SYMBOL(kprobe_exceptions_notify);
664 
665 int setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs)
666 {
667 	struct jprobe *jp = container_of(p, struct jprobe, kp);
668 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
669 	unsigned long stack;
670 
671 	memcpy(&kcb->jprobe_saved_regs, regs, sizeof(struct pt_regs));
672 
673 	/* setup return addr to the jprobe handler routine */
674 	regs->psw.addr = (unsigned long) jp->entry;
675 	regs->psw.mask &= ~(PSW_MASK_IO | PSW_MASK_EXT);
676 
677 	/* r15 is the stack pointer */
678 	stack = (unsigned long) regs->gprs[15];
679 
680 	memcpy(kcb->jprobes_stack, (void *) stack, MIN_STACK_SIZE(stack));
681 
682 	/*
683 	 * jprobes use jprobe_return() which skips the normal return
684 	 * path of the function, and this messes up the accounting of the
685 	 * function graph tracer to get messed up.
686 	 *
687 	 * Pause function graph tracing while performing the jprobe function.
688 	 */
689 	pause_graph_tracing();
690 	return 1;
691 }
692 NOKPROBE_SYMBOL(setjmp_pre_handler);
693 
694 void jprobe_return(void)
695 {
696 	asm volatile(".word 0x0002");
697 }
698 NOKPROBE_SYMBOL(jprobe_return);
699 
700 int longjmp_break_handler(struct kprobe *p, struct pt_regs *regs)
701 {
702 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
703 	unsigned long stack;
704 
705 	/* It's OK to start function graph tracing again */
706 	unpause_graph_tracing();
707 
708 	stack = (unsigned long) kcb->jprobe_saved_regs.gprs[15];
709 
710 	/* Put the regs back */
711 	memcpy(regs, &kcb->jprobe_saved_regs, sizeof(struct pt_regs));
712 	/* put the stack back */
713 	memcpy((void *) stack, kcb->jprobes_stack, MIN_STACK_SIZE(stack));
714 	preempt_enable_no_resched();
715 	return 1;
716 }
717 NOKPROBE_SYMBOL(longjmp_break_handler);
718 
719 static struct kprobe trampoline = {
720 	.addr = (kprobe_opcode_t *) &kretprobe_trampoline,
721 	.pre_handler = trampoline_probe_handler
722 };
723 
724 int __init arch_init_kprobes(void)
725 {
726 	return register_kprobe(&trampoline);
727 }
728 
729 int arch_trampoline_kprobe(struct kprobe *p)
730 {
731 	return p->addr == (kprobe_opcode_t *) &kretprobe_trampoline;
732 }
733 NOKPROBE_SYMBOL(arch_trampoline_kprobe);
734