1 /* 2 * Kernel Probes (KProbes) 3 * 4 * This program is free software; you can redistribute it and/or modify 5 * it under the terms of the GNU General Public License as published by 6 * the Free Software Foundation; either version 2 of the License, or 7 * (at your option) any later version. 8 * 9 * This program is distributed in the hope that it will be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write to the Free Software 16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. 17 * 18 * Copyright IBM Corp. 2002, 2006 19 * 20 * s390 port, used ppc64 as template. Mike Grundy <grundym@us.ibm.com> 21 */ 22 23 #include <linux/kprobes.h> 24 #include <linux/ptrace.h> 25 #include <linux/preempt.h> 26 #include <linux/stop_machine.h> 27 #include <linux/kdebug.h> 28 #include <linux/uaccess.h> 29 #include <linux/extable.h> 30 #include <linux/module.h> 31 #include <linux/slab.h> 32 #include <linux/hardirq.h> 33 #include <linux/ftrace.h> 34 #include <asm/set_memory.h> 35 #include <asm/sections.h> 36 #include <linux/uaccess.h> 37 #include <asm/dis.h> 38 39 DEFINE_PER_CPU(struct kprobe *, current_kprobe); 40 DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk); 41 42 struct kretprobe_blackpoint kretprobe_blacklist[] = { }; 43 44 DEFINE_INSN_CACHE_OPS(dmainsn); 45 46 static void *alloc_dmainsn_page(void) 47 { 48 void *page; 49 50 page = (void *) __get_free_page(GFP_KERNEL | GFP_DMA); 51 if (page) 52 set_memory_x((unsigned long) page, 1); 53 return page; 54 } 55 56 static void free_dmainsn_page(void *page) 57 { 58 set_memory_nx((unsigned long) page, 1); 59 free_page((unsigned long)page); 60 } 61 62 struct kprobe_insn_cache kprobe_dmainsn_slots = { 63 .mutex = __MUTEX_INITIALIZER(kprobe_dmainsn_slots.mutex), 64 .alloc = alloc_dmainsn_page, 65 .free = free_dmainsn_page, 66 .pages = LIST_HEAD_INIT(kprobe_dmainsn_slots.pages), 67 .insn_size = MAX_INSN_SIZE, 68 }; 69 70 static void copy_instruction(struct kprobe *p) 71 { 72 unsigned long ip = (unsigned long) p->addr; 73 s64 disp, new_disp; 74 u64 addr, new_addr; 75 76 if (ftrace_location(ip) == ip) { 77 /* 78 * If kprobes patches the instruction that is morphed by 79 * ftrace make sure that kprobes always sees the branch 80 * "jg .+24" that skips the mcount block or the "brcl 0,0" 81 * in case of hotpatch. 82 */ 83 ftrace_generate_nop_insn((struct ftrace_insn *)p->ainsn.insn); 84 p->ainsn.is_ftrace_insn = 1; 85 } else 86 memcpy(p->ainsn.insn, p->addr, insn_length(*p->addr >> 8)); 87 p->opcode = p->ainsn.insn[0]; 88 if (!probe_is_insn_relative_long(p->ainsn.insn)) 89 return; 90 /* 91 * For pc-relative instructions in RIL-b or RIL-c format patch the 92 * RI2 displacement field. We have already made sure that the insn 93 * slot for the patched instruction is within the same 2GB area 94 * as the original instruction (either kernel image or module area). 95 * Therefore the new displacement will always fit. 96 */ 97 disp = *(s32 *)&p->ainsn.insn[1]; 98 addr = (u64)(unsigned long)p->addr; 99 new_addr = (u64)(unsigned long)p->ainsn.insn; 100 new_disp = ((addr + (disp * 2)) - new_addr) / 2; 101 *(s32 *)&p->ainsn.insn[1] = new_disp; 102 } 103 NOKPROBE_SYMBOL(copy_instruction); 104 105 static inline int is_kernel_addr(void *addr) 106 { 107 return addr < (void *)_end; 108 } 109 110 static int s390_get_insn_slot(struct kprobe *p) 111 { 112 /* 113 * Get an insn slot that is within the same 2GB area like the original 114 * instruction. That way instructions with a 32bit signed displacement 115 * field can be patched and executed within the insn slot. 116 */ 117 p->ainsn.insn = NULL; 118 if (is_kernel_addr(p->addr)) 119 p->ainsn.insn = get_dmainsn_slot(); 120 else if (is_module_addr(p->addr)) 121 p->ainsn.insn = get_insn_slot(); 122 return p->ainsn.insn ? 0 : -ENOMEM; 123 } 124 NOKPROBE_SYMBOL(s390_get_insn_slot); 125 126 static void s390_free_insn_slot(struct kprobe *p) 127 { 128 if (!p->ainsn.insn) 129 return; 130 if (is_kernel_addr(p->addr)) 131 free_dmainsn_slot(p->ainsn.insn, 0); 132 else 133 free_insn_slot(p->ainsn.insn, 0); 134 p->ainsn.insn = NULL; 135 } 136 NOKPROBE_SYMBOL(s390_free_insn_slot); 137 138 int arch_prepare_kprobe(struct kprobe *p) 139 { 140 if ((unsigned long) p->addr & 0x01) 141 return -EINVAL; 142 /* Make sure the probe isn't going on a difficult instruction */ 143 if (probe_is_prohibited_opcode(p->addr)) 144 return -EINVAL; 145 if (s390_get_insn_slot(p)) 146 return -ENOMEM; 147 copy_instruction(p); 148 return 0; 149 } 150 NOKPROBE_SYMBOL(arch_prepare_kprobe); 151 152 int arch_check_ftrace_location(struct kprobe *p) 153 { 154 return 0; 155 } 156 157 struct swap_insn_args { 158 struct kprobe *p; 159 unsigned int arm_kprobe : 1; 160 }; 161 162 static int swap_instruction(void *data) 163 { 164 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); 165 unsigned long status = kcb->kprobe_status; 166 struct swap_insn_args *args = data; 167 struct ftrace_insn new_insn, *insn; 168 struct kprobe *p = args->p; 169 size_t len; 170 171 new_insn.opc = args->arm_kprobe ? BREAKPOINT_INSTRUCTION : p->opcode; 172 len = sizeof(new_insn.opc); 173 if (!p->ainsn.is_ftrace_insn) 174 goto skip_ftrace; 175 len = sizeof(new_insn); 176 insn = (struct ftrace_insn *) p->addr; 177 if (args->arm_kprobe) { 178 if (is_ftrace_nop(insn)) 179 new_insn.disp = KPROBE_ON_FTRACE_NOP; 180 else 181 new_insn.disp = KPROBE_ON_FTRACE_CALL; 182 } else { 183 ftrace_generate_call_insn(&new_insn, (unsigned long)p->addr); 184 if (insn->disp == KPROBE_ON_FTRACE_NOP) 185 ftrace_generate_nop_insn(&new_insn); 186 } 187 skip_ftrace: 188 kcb->kprobe_status = KPROBE_SWAP_INST; 189 s390_kernel_write(p->addr, &new_insn, len); 190 kcb->kprobe_status = status; 191 return 0; 192 } 193 NOKPROBE_SYMBOL(swap_instruction); 194 195 void arch_arm_kprobe(struct kprobe *p) 196 { 197 struct swap_insn_args args = {.p = p, .arm_kprobe = 1}; 198 199 stop_machine(swap_instruction, &args, NULL); 200 } 201 NOKPROBE_SYMBOL(arch_arm_kprobe); 202 203 void arch_disarm_kprobe(struct kprobe *p) 204 { 205 struct swap_insn_args args = {.p = p, .arm_kprobe = 0}; 206 207 stop_machine(swap_instruction, &args, NULL); 208 } 209 NOKPROBE_SYMBOL(arch_disarm_kprobe); 210 211 void arch_remove_kprobe(struct kprobe *p) 212 { 213 s390_free_insn_slot(p); 214 } 215 NOKPROBE_SYMBOL(arch_remove_kprobe); 216 217 static void enable_singlestep(struct kprobe_ctlblk *kcb, 218 struct pt_regs *regs, 219 unsigned long ip) 220 { 221 struct per_regs per_kprobe; 222 223 /* Set up the PER control registers %cr9-%cr11 */ 224 per_kprobe.control = PER_EVENT_IFETCH; 225 per_kprobe.start = ip; 226 per_kprobe.end = ip; 227 228 /* Save control regs and psw mask */ 229 __ctl_store(kcb->kprobe_saved_ctl, 9, 11); 230 kcb->kprobe_saved_imask = regs->psw.mask & 231 (PSW_MASK_PER | PSW_MASK_IO | PSW_MASK_EXT); 232 233 /* Set PER control regs, turns on single step for the given address */ 234 __ctl_load(per_kprobe, 9, 11); 235 regs->psw.mask |= PSW_MASK_PER; 236 regs->psw.mask &= ~(PSW_MASK_IO | PSW_MASK_EXT); 237 regs->psw.addr = ip; 238 } 239 NOKPROBE_SYMBOL(enable_singlestep); 240 241 static void disable_singlestep(struct kprobe_ctlblk *kcb, 242 struct pt_regs *regs, 243 unsigned long ip) 244 { 245 /* Restore control regs and psw mask, set new psw address */ 246 __ctl_load(kcb->kprobe_saved_ctl, 9, 11); 247 regs->psw.mask &= ~PSW_MASK_PER; 248 regs->psw.mask |= kcb->kprobe_saved_imask; 249 regs->psw.addr = ip; 250 } 251 NOKPROBE_SYMBOL(disable_singlestep); 252 253 /* 254 * Activate a kprobe by storing its pointer to current_kprobe. The 255 * previous kprobe is stored in kcb->prev_kprobe. A stack of up to 256 * two kprobes can be active, see KPROBE_REENTER. 257 */ 258 static void push_kprobe(struct kprobe_ctlblk *kcb, struct kprobe *p) 259 { 260 kcb->prev_kprobe.kp = __this_cpu_read(current_kprobe); 261 kcb->prev_kprobe.status = kcb->kprobe_status; 262 __this_cpu_write(current_kprobe, p); 263 } 264 NOKPROBE_SYMBOL(push_kprobe); 265 266 /* 267 * Deactivate a kprobe by backing up to the previous state. If the 268 * current state is KPROBE_REENTER prev_kprobe.kp will be non-NULL, 269 * for any other state prev_kprobe.kp will be NULL. 270 */ 271 static void pop_kprobe(struct kprobe_ctlblk *kcb) 272 { 273 __this_cpu_write(current_kprobe, kcb->prev_kprobe.kp); 274 kcb->kprobe_status = kcb->prev_kprobe.status; 275 } 276 NOKPROBE_SYMBOL(pop_kprobe); 277 278 void arch_prepare_kretprobe(struct kretprobe_instance *ri, struct pt_regs *regs) 279 { 280 ri->ret_addr = (kprobe_opcode_t *) regs->gprs[14]; 281 282 /* Replace the return addr with trampoline addr */ 283 regs->gprs[14] = (unsigned long) &kretprobe_trampoline; 284 } 285 NOKPROBE_SYMBOL(arch_prepare_kretprobe); 286 287 static void kprobe_reenter_check(struct kprobe_ctlblk *kcb, struct kprobe *p) 288 { 289 switch (kcb->kprobe_status) { 290 case KPROBE_HIT_SSDONE: 291 case KPROBE_HIT_ACTIVE: 292 kprobes_inc_nmissed_count(p); 293 break; 294 case KPROBE_HIT_SS: 295 case KPROBE_REENTER: 296 default: 297 /* 298 * A kprobe on the code path to single step an instruction 299 * is a BUG. The code path resides in the .kprobes.text 300 * section and is executed with interrupts disabled. 301 */ 302 printk(KERN_EMERG "Invalid kprobe detected at %p.\n", p->addr); 303 dump_kprobe(p); 304 BUG(); 305 } 306 } 307 NOKPROBE_SYMBOL(kprobe_reenter_check); 308 309 static int kprobe_handler(struct pt_regs *regs) 310 { 311 struct kprobe_ctlblk *kcb; 312 struct kprobe *p; 313 314 /* 315 * We want to disable preemption for the entire duration of kprobe 316 * processing. That includes the calls to the pre/post handlers 317 * and single stepping the kprobe instruction. 318 */ 319 preempt_disable(); 320 kcb = get_kprobe_ctlblk(); 321 p = get_kprobe((void *)(regs->psw.addr - 2)); 322 323 if (p) { 324 if (kprobe_running()) { 325 /* 326 * We have hit a kprobe while another is still 327 * active. This can happen in the pre and post 328 * handler. Single step the instruction of the 329 * new probe but do not call any handler function 330 * of this secondary kprobe. 331 * push_kprobe and pop_kprobe saves and restores 332 * the currently active kprobe. 333 */ 334 kprobe_reenter_check(kcb, p); 335 push_kprobe(kcb, p); 336 kcb->kprobe_status = KPROBE_REENTER; 337 } else { 338 /* 339 * If we have no pre-handler or it returned 0, we 340 * continue with single stepping. If we have a 341 * pre-handler and it returned non-zero, it prepped 342 * for calling the break_handler below on re-entry 343 * for jprobe processing, so get out doing nothing 344 * more here. 345 */ 346 push_kprobe(kcb, p); 347 kcb->kprobe_status = KPROBE_HIT_ACTIVE; 348 if (p->pre_handler && p->pre_handler(p, regs)) 349 return 1; 350 kcb->kprobe_status = KPROBE_HIT_SS; 351 } 352 enable_singlestep(kcb, regs, (unsigned long) p->ainsn.insn); 353 return 1; 354 } else if (kprobe_running()) { 355 p = __this_cpu_read(current_kprobe); 356 if (p->break_handler && p->break_handler(p, regs)) { 357 /* 358 * Continuation after the jprobe completed and 359 * caused the jprobe_return trap. The jprobe 360 * break_handler "returns" to the original 361 * function that still has the kprobe breakpoint 362 * installed. We continue with single stepping. 363 */ 364 kcb->kprobe_status = KPROBE_HIT_SS; 365 enable_singlestep(kcb, regs, 366 (unsigned long) p->ainsn.insn); 367 return 1; 368 } /* else: 369 * No kprobe at this address and the current kprobe 370 * has no break handler (no jprobe!). The kernel just 371 * exploded, let the standard trap handler pick up the 372 * pieces. 373 */ 374 } /* else: 375 * No kprobe at this address and no active kprobe. The trap has 376 * not been caused by a kprobe breakpoint. The race of breakpoint 377 * vs. kprobe remove does not exist because on s390 as we use 378 * stop_machine to arm/disarm the breakpoints. 379 */ 380 preempt_enable_no_resched(); 381 return 0; 382 } 383 NOKPROBE_SYMBOL(kprobe_handler); 384 385 /* 386 * Function return probe trampoline: 387 * - init_kprobes() establishes a probepoint here 388 * - When the probed function returns, this probe 389 * causes the handlers to fire 390 */ 391 static void __used kretprobe_trampoline_holder(void) 392 { 393 asm volatile(".global kretprobe_trampoline\n" 394 "kretprobe_trampoline: bcr 0,0\n"); 395 } 396 397 /* 398 * Called when the probe at kretprobe trampoline is hit 399 */ 400 static int trampoline_probe_handler(struct kprobe *p, struct pt_regs *regs) 401 { 402 struct kretprobe_instance *ri; 403 struct hlist_head *head, empty_rp; 404 struct hlist_node *tmp; 405 unsigned long flags, orig_ret_address; 406 unsigned long trampoline_address; 407 kprobe_opcode_t *correct_ret_addr; 408 409 INIT_HLIST_HEAD(&empty_rp); 410 kretprobe_hash_lock(current, &head, &flags); 411 412 /* 413 * It is possible to have multiple instances associated with a given 414 * task either because an multiple functions in the call path 415 * have a return probe installed on them, and/or more than one return 416 * return probe was registered for a target function. 417 * 418 * We can handle this because: 419 * - instances are always inserted at the head of the list 420 * - when multiple return probes are registered for the same 421 * function, the first instance's ret_addr will point to the 422 * real return address, and all the rest will point to 423 * kretprobe_trampoline 424 */ 425 ri = NULL; 426 orig_ret_address = 0; 427 correct_ret_addr = NULL; 428 trampoline_address = (unsigned long) &kretprobe_trampoline; 429 hlist_for_each_entry_safe(ri, tmp, head, hlist) { 430 if (ri->task != current) 431 /* another task is sharing our hash bucket */ 432 continue; 433 434 orig_ret_address = (unsigned long) ri->ret_addr; 435 436 if (orig_ret_address != trampoline_address) 437 /* 438 * This is the real return address. Any other 439 * instances associated with this task are for 440 * other calls deeper on the call stack 441 */ 442 break; 443 } 444 445 kretprobe_assert(ri, orig_ret_address, trampoline_address); 446 447 correct_ret_addr = ri->ret_addr; 448 hlist_for_each_entry_safe(ri, tmp, head, hlist) { 449 if (ri->task != current) 450 /* another task is sharing our hash bucket */ 451 continue; 452 453 orig_ret_address = (unsigned long) ri->ret_addr; 454 455 if (ri->rp && ri->rp->handler) { 456 ri->ret_addr = correct_ret_addr; 457 ri->rp->handler(ri, regs); 458 } 459 460 recycle_rp_inst(ri, &empty_rp); 461 462 if (orig_ret_address != trampoline_address) 463 /* 464 * This is the real return address. Any other 465 * instances associated with this task are for 466 * other calls deeper on the call stack 467 */ 468 break; 469 } 470 471 regs->psw.addr = orig_ret_address; 472 473 pop_kprobe(get_kprobe_ctlblk()); 474 kretprobe_hash_unlock(current, &flags); 475 preempt_enable_no_resched(); 476 477 hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) { 478 hlist_del(&ri->hlist); 479 kfree(ri); 480 } 481 /* 482 * By returning a non-zero value, we are telling 483 * kprobe_handler() that we don't want the post_handler 484 * to run (and have re-enabled preemption) 485 */ 486 return 1; 487 } 488 NOKPROBE_SYMBOL(trampoline_probe_handler); 489 490 /* 491 * Called after single-stepping. p->addr is the address of the 492 * instruction whose first byte has been replaced by the "breakpoint" 493 * instruction. To avoid the SMP problems that can occur when we 494 * temporarily put back the original opcode to single-step, we 495 * single-stepped a copy of the instruction. The address of this 496 * copy is p->ainsn.insn. 497 */ 498 static void resume_execution(struct kprobe *p, struct pt_regs *regs) 499 { 500 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); 501 unsigned long ip = regs->psw.addr; 502 int fixup = probe_get_fixup_type(p->ainsn.insn); 503 504 /* Check if the kprobes location is an enabled ftrace caller */ 505 if (p->ainsn.is_ftrace_insn) { 506 struct ftrace_insn *insn = (struct ftrace_insn *) p->addr; 507 struct ftrace_insn call_insn; 508 509 ftrace_generate_call_insn(&call_insn, (unsigned long) p->addr); 510 /* 511 * A kprobe on an enabled ftrace call site actually single 512 * stepped an unconditional branch (ftrace nop equivalent). 513 * Now we need to fixup things and pretend that a brasl r0,... 514 * was executed instead. 515 */ 516 if (insn->disp == KPROBE_ON_FTRACE_CALL) { 517 ip += call_insn.disp * 2 - MCOUNT_INSN_SIZE; 518 regs->gprs[0] = (unsigned long)p->addr + sizeof(*insn); 519 } 520 } 521 522 if (fixup & FIXUP_PSW_NORMAL) 523 ip += (unsigned long) p->addr - (unsigned long) p->ainsn.insn; 524 525 if (fixup & FIXUP_BRANCH_NOT_TAKEN) { 526 int ilen = insn_length(p->ainsn.insn[0] >> 8); 527 if (ip - (unsigned long) p->ainsn.insn == ilen) 528 ip = (unsigned long) p->addr + ilen; 529 } 530 531 if (fixup & FIXUP_RETURN_REGISTER) { 532 int reg = (p->ainsn.insn[0] & 0xf0) >> 4; 533 regs->gprs[reg] += (unsigned long) p->addr - 534 (unsigned long) p->ainsn.insn; 535 } 536 537 disable_singlestep(kcb, regs, ip); 538 } 539 NOKPROBE_SYMBOL(resume_execution); 540 541 static int post_kprobe_handler(struct pt_regs *regs) 542 { 543 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); 544 struct kprobe *p = kprobe_running(); 545 546 if (!p) 547 return 0; 548 549 if (kcb->kprobe_status != KPROBE_REENTER && p->post_handler) { 550 kcb->kprobe_status = KPROBE_HIT_SSDONE; 551 p->post_handler(p, regs, 0); 552 } 553 554 resume_execution(p, regs); 555 pop_kprobe(kcb); 556 preempt_enable_no_resched(); 557 558 /* 559 * if somebody else is singlestepping across a probe point, psw mask 560 * will have PER set, in which case, continue the remaining processing 561 * of do_single_step, as if this is not a probe hit. 562 */ 563 if (regs->psw.mask & PSW_MASK_PER) 564 return 0; 565 566 return 1; 567 } 568 NOKPROBE_SYMBOL(post_kprobe_handler); 569 570 static int kprobe_trap_handler(struct pt_regs *regs, int trapnr) 571 { 572 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); 573 struct kprobe *p = kprobe_running(); 574 const struct exception_table_entry *entry; 575 576 switch(kcb->kprobe_status) { 577 case KPROBE_SWAP_INST: 578 /* We are here because the instruction replacement failed */ 579 return 0; 580 case KPROBE_HIT_SS: 581 case KPROBE_REENTER: 582 /* 583 * We are here because the instruction being single 584 * stepped caused a page fault. We reset the current 585 * kprobe and the nip points back to the probe address 586 * and allow the page fault handler to continue as a 587 * normal page fault. 588 */ 589 disable_singlestep(kcb, regs, (unsigned long) p->addr); 590 pop_kprobe(kcb); 591 preempt_enable_no_resched(); 592 break; 593 case KPROBE_HIT_ACTIVE: 594 case KPROBE_HIT_SSDONE: 595 /* 596 * We increment the nmissed count for accounting, 597 * we can also use npre/npostfault count for accounting 598 * these specific fault cases. 599 */ 600 kprobes_inc_nmissed_count(p); 601 602 /* 603 * We come here because instructions in the pre/post 604 * handler caused the page_fault, this could happen 605 * if handler tries to access user space by 606 * copy_from_user(), get_user() etc. Let the 607 * user-specified handler try to fix it first. 608 */ 609 if (p->fault_handler && p->fault_handler(p, regs, trapnr)) 610 return 1; 611 612 /* 613 * In case the user-specified fault handler returned 614 * zero, try to fix up. 615 */ 616 entry = search_exception_tables(regs->psw.addr); 617 if (entry) { 618 regs->psw.addr = extable_fixup(entry); 619 return 1; 620 } 621 622 /* 623 * fixup_exception() could not handle it, 624 * Let do_page_fault() fix it. 625 */ 626 break; 627 default: 628 break; 629 } 630 return 0; 631 } 632 NOKPROBE_SYMBOL(kprobe_trap_handler); 633 634 int kprobe_fault_handler(struct pt_regs *regs, int trapnr) 635 { 636 int ret; 637 638 if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT)) 639 local_irq_disable(); 640 ret = kprobe_trap_handler(regs, trapnr); 641 if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT)) 642 local_irq_restore(regs->psw.mask & ~PSW_MASK_PER); 643 return ret; 644 } 645 NOKPROBE_SYMBOL(kprobe_fault_handler); 646 647 /* 648 * Wrapper routine to for handling exceptions. 649 */ 650 int kprobe_exceptions_notify(struct notifier_block *self, 651 unsigned long val, void *data) 652 { 653 struct die_args *args = (struct die_args *) data; 654 struct pt_regs *regs = args->regs; 655 int ret = NOTIFY_DONE; 656 657 if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT)) 658 local_irq_disable(); 659 660 switch (val) { 661 case DIE_BPT: 662 if (kprobe_handler(regs)) 663 ret = NOTIFY_STOP; 664 break; 665 case DIE_SSTEP: 666 if (post_kprobe_handler(regs)) 667 ret = NOTIFY_STOP; 668 break; 669 case DIE_TRAP: 670 if (!preemptible() && kprobe_running() && 671 kprobe_trap_handler(regs, args->trapnr)) 672 ret = NOTIFY_STOP; 673 break; 674 default: 675 break; 676 } 677 678 if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT)) 679 local_irq_restore(regs->psw.mask & ~PSW_MASK_PER); 680 681 return ret; 682 } 683 NOKPROBE_SYMBOL(kprobe_exceptions_notify); 684 685 int setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs) 686 { 687 struct jprobe *jp = container_of(p, struct jprobe, kp); 688 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); 689 unsigned long stack; 690 691 memcpy(&kcb->jprobe_saved_regs, regs, sizeof(struct pt_regs)); 692 693 /* setup return addr to the jprobe handler routine */ 694 regs->psw.addr = (unsigned long) jp->entry; 695 regs->psw.mask &= ~(PSW_MASK_IO | PSW_MASK_EXT); 696 697 /* r15 is the stack pointer */ 698 stack = (unsigned long) regs->gprs[15]; 699 700 memcpy(kcb->jprobes_stack, (void *) stack, MIN_STACK_SIZE(stack)); 701 702 /* 703 * jprobes use jprobe_return() which skips the normal return 704 * path of the function, and this messes up the accounting of the 705 * function graph tracer to get messed up. 706 * 707 * Pause function graph tracing while performing the jprobe function. 708 */ 709 pause_graph_tracing(); 710 return 1; 711 } 712 NOKPROBE_SYMBOL(setjmp_pre_handler); 713 714 void jprobe_return(void) 715 { 716 asm volatile(".word 0x0002"); 717 } 718 NOKPROBE_SYMBOL(jprobe_return); 719 720 int longjmp_break_handler(struct kprobe *p, struct pt_regs *regs) 721 { 722 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); 723 unsigned long stack; 724 725 /* It's OK to start function graph tracing again */ 726 unpause_graph_tracing(); 727 728 stack = (unsigned long) kcb->jprobe_saved_regs.gprs[15]; 729 730 /* Put the regs back */ 731 memcpy(regs, &kcb->jprobe_saved_regs, sizeof(struct pt_regs)); 732 /* put the stack back */ 733 memcpy((void *) stack, kcb->jprobes_stack, MIN_STACK_SIZE(stack)); 734 preempt_enable_no_resched(); 735 return 1; 736 } 737 NOKPROBE_SYMBOL(longjmp_break_handler); 738 739 static struct kprobe trampoline = { 740 .addr = (kprobe_opcode_t *) &kretprobe_trampoline, 741 .pre_handler = trampoline_probe_handler 742 }; 743 744 int __init arch_init_kprobes(void) 745 { 746 return register_kprobe(&trampoline); 747 } 748 749 int arch_trampoline_kprobe(struct kprobe *p) 750 { 751 return p->addr == (kprobe_opcode_t *) &kretprobe_trampoline; 752 } 753 NOKPROBE_SYMBOL(arch_trampoline_kprobe); 754