xref: /openbmc/linux/arch/s390/kernel/kprobes.c (revision d3964221)
1 /*
2  *  Kernel Probes (KProbes)
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; either version 2 of the License, or
7  * (at your option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17  *
18  * Copyright IBM Corp. 2002, 2006
19  *
20  * s390 port, used ppc64 as template. Mike Grundy <grundym@us.ibm.com>
21  */
22 
23 #include <linux/kprobes.h>
24 #include <linux/ptrace.h>
25 #include <linux/preempt.h>
26 #include <linux/stop_machine.h>
27 #include <linux/kdebug.h>
28 #include <linux/uaccess.h>
29 #include <linux/extable.h>
30 #include <linux/module.h>
31 #include <linux/slab.h>
32 #include <linux/hardirq.h>
33 #include <linux/ftrace.h>
34 #include <asm/set_memory.h>
35 #include <asm/sections.h>
36 #include <linux/uaccess.h>
37 #include <asm/dis.h>
38 
39 DEFINE_PER_CPU(struct kprobe *, current_kprobe);
40 DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
41 
42 struct kretprobe_blackpoint kretprobe_blacklist[] = { };
43 
44 DEFINE_INSN_CACHE_OPS(dmainsn);
45 
46 static void *alloc_dmainsn_page(void)
47 {
48 	void *page;
49 
50 	page = (void *) __get_free_page(GFP_KERNEL | GFP_DMA);
51 	if (page)
52 		set_memory_x((unsigned long) page, 1);
53 	return page;
54 }
55 
56 static void free_dmainsn_page(void *page)
57 {
58 	set_memory_nx((unsigned long) page, 1);
59 	free_page((unsigned long)page);
60 }
61 
62 struct kprobe_insn_cache kprobe_dmainsn_slots = {
63 	.mutex = __MUTEX_INITIALIZER(kprobe_dmainsn_slots.mutex),
64 	.alloc = alloc_dmainsn_page,
65 	.free = free_dmainsn_page,
66 	.pages = LIST_HEAD_INIT(kprobe_dmainsn_slots.pages),
67 	.insn_size = MAX_INSN_SIZE,
68 };
69 
70 static void copy_instruction(struct kprobe *p)
71 {
72 	unsigned long ip = (unsigned long) p->addr;
73 	s64 disp, new_disp;
74 	u64 addr, new_addr;
75 
76 	if (ftrace_location(ip) == ip) {
77 		/*
78 		 * If kprobes patches the instruction that is morphed by
79 		 * ftrace make sure that kprobes always sees the branch
80 		 * "jg .+24" that skips the mcount block or the "brcl 0,0"
81 		 * in case of hotpatch.
82 		 */
83 		ftrace_generate_nop_insn((struct ftrace_insn *)p->ainsn.insn);
84 		p->ainsn.is_ftrace_insn = 1;
85 	} else
86 		memcpy(p->ainsn.insn, p->addr, insn_length(*p->addr >> 8));
87 	p->opcode = p->ainsn.insn[0];
88 	if (!probe_is_insn_relative_long(p->ainsn.insn))
89 		return;
90 	/*
91 	 * For pc-relative instructions in RIL-b or RIL-c format patch the
92 	 * RI2 displacement field. We have already made sure that the insn
93 	 * slot for the patched instruction is within the same 2GB area
94 	 * as the original instruction (either kernel image or module area).
95 	 * Therefore the new displacement will always fit.
96 	 */
97 	disp = *(s32 *)&p->ainsn.insn[1];
98 	addr = (u64)(unsigned long)p->addr;
99 	new_addr = (u64)(unsigned long)p->ainsn.insn;
100 	new_disp = ((addr + (disp * 2)) - new_addr) / 2;
101 	*(s32 *)&p->ainsn.insn[1] = new_disp;
102 }
103 NOKPROBE_SYMBOL(copy_instruction);
104 
105 static inline int is_kernel_addr(void *addr)
106 {
107 	return addr < (void *)_end;
108 }
109 
110 static int s390_get_insn_slot(struct kprobe *p)
111 {
112 	/*
113 	 * Get an insn slot that is within the same 2GB area like the original
114 	 * instruction. That way instructions with a 32bit signed displacement
115 	 * field can be patched and executed within the insn slot.
116 	 */
117 	p->ainsn.insn = NULL;
118 	if (is_kernel_addr(p->addr))
119 		p->ainsn.insn = get_dmainsn_slot();
120 	else if (is_module_addr(p->addr))
121 		p->ainsn.insn = get_insn_slot();
122 	return p->ainsn.insn ? 0 : -ENOMEM;
123 }
124 NOKPROBE_SYMBOL(s390_get_insn_slot);
125 
126 static void s390_free_insn_slot(struct kprobe *p)
127 {
128 	if (!p->ainsn.insn)
129 		return;
130 	if (is_kernel_addr(p->addr))
131 		free_dmainsn_slot(p->ainsn.insn, 0);
132 	else
133 		free_insn_slot(p->ainsn.insn, 0);
134 	p->ainsn.insn = NULL;
135 }
136 NOKPROBE_SYMBOL(s390_free_insn_slot);
137 
138 int arch_prepare_kprobe(struct kprobe *p)
139 {
140 	if ((unsigned long) p->addr & 0x01)
141 		return -EINVAL;
142 	/* Make sure the probe isn't going on a difficult instruction */
143 	if (probe_is_prohibited_opcode(p->addr))
144 		return -EINVAL;
145 	if (s390_get_insn_slot(p))
146 		return -ENOMEM;
147 	copy_instruction(p);
148 	return 0;
149 }
150 NOKPROBE_SYMBOL(arch_prepare_kprobe);
151 
152 int arch_check_ftrace_location(struct kprobe *p)
153 {
154 	return 0;
155 }
156 
157 struct swap_insn_args {
158 	struct kprobe *p;
159 	unsigned int arm_kprobe : 1;
160 };
161 
162 static int swap_instruction(void *data)
163 {
164 	struct swap_insn_args *args = data;
165 	struct ftrace_insn new_insn, *insn;
166 	struct kprobe *p = args->p;
167 	size_t len;
168 
169 	new_insn.opc = args->arm_kprobe ? BREAKPOINT_INSTRUCTION : p->opcode;
170 	len = sizeof(new_insn.opc);
171 	if (!p->ainsn.is_ftrace_insn)
172 		goto skip_ftrace;
173 	len = sizeof(new_insn);
174 	insn = (struct ftrace_insn *) p->addr;
175 	if (args->arm_kprobe) {
176 		if (is_ftrace_nop(insn))
177 			new_insn.disp = KPROBE_ON_FTRACE_NOP;
178 		else
179 			new_insn.disp = KPROBE_ON_FTRACE_CALL;
180 	} else {
181 		ftrace_generate_call_insn(&new_insn, (unsigned long)p->addr);
182 		if (insn->disp == KPROBE_ON_FTRACE_NOP)
183 			ftrace_generate_nop_insn(&new_insn);
184 	}
185 skip_ftrace:
186 	s390_kernel_write(p->addr, &new_insn, len);
187 	return 0;
188 }
189 NOKPROBE_SYMBOL(swap_instruction);
190 
191 void arch_arm_kprobe(struct kprobe *p)
192 {
193 	struct swap_insn_args args = {.p = p, .arm_kprobe = 1};
194 
195 	stop_machine_cpuslocked(swap_instruction, &args, NULL);
196 }
197 NOKPROBE_SYMBOL(arch_arm_kprobe);
198 
199 void arch_disarm_kprobe(struct kprobe *p)
200 {
201 	struct swap_insn_args args = {.p = p, .arm_kprobe = 0};
202 
203 	stop_machine_cpuslocked(swap_instruction, &args, NULL);
204 }
205 NOKPROBE_SYMBOL(arch_disarm_kprobe);
206 
207 void arch_remove_kprobe(struct kprobe *p)
208 {
209 	s390_free_insn_slot(p);
210 }
211 NOKPROBE_SYMBOL(arch_remove_kprobe);
212 
213 static void enable_singlestep(struct kprobe_ctlblk *kcb,
214 			      struct pt_regs *regs,
215 			      unsigned long ip)
216 {
217 	struct per_regs per_kprobe;
218 
219 	/* Set up the PER control registers %cr9-%cr11 */
220 	per_kprobe.control = PER_EVENT_IFETCH;
221 	per_kprobe.start = ip;
222 	per_kprobe.end = ip;
223 
224 	/* Save control regs and psw mask */
225 	__ctl_store(kcb->kprobe_saved_ctl, 9, 11);
226 	kcb->kprobe_saved_imask = regs->psw.mask &
227 		(PSW_MASK_PER | PSW_MASK_IO | PSW_MASK_EXT);
228 
229 	/* Set PER control regs, turns on single step for the given address */
230 	__ctl_load(per_kprobe, 9, 11);
231 	regs->psw.mask |= PSW_MASK_PER;
232 	regs->psw.mask &= ~(PSW_MASK_IO | PSW_MASK_EXT);
233 	regs->psw.addr = ip;
234 }
235 NOKPROBE_SYMBOL(enable_singlestep);
236 
237 static void disable_singlestep(struct kprobe_ctlblk *kcb,
238 			       struct pt_regs *regs,
239 			       unsigned long ip)
240 {
241 	/* Restore control regs and psw mask, set new psw address */
242 	__ctl_load(kcb->kprobe_saved_ctl, 9, 11);
243 	regs->psw.mask &= ~PSW_MASK_PER;
244 	regs->psw.mask |= kcb->kprobe_saved_imask;
245 	regs->psw.addr = ip;
246 }
247 NOKPROBE_SYMBOL(disable_singlestep);
248 
249 /*
250  * Activate a kprobe by storing its pointer to current_kprobe. The
251  * previous kprobe is stored in kcb->prev_kprobe. A stack of up to
252  * two kprobes can be active, see KPROBE_REENTER.
253  */
254 static void push_kprobe(struct kprobe_ctlblk *kcb, struct kprobe *p)
255 {
256 	kcb->prev_kprobe.kp = __this_cpu_read(current_kprobe);
257 	kcb->prev_kprobe.status = kcb->kprobe_status;
258 	__this_cpu_write(current_kprobe, p);
259 }
260 NOKPROBE_SYMBOL(push_kprobe);
261 
262 /*
263  * Deactivate a kprobe by backing up to the previous state. If the
264  * current state is KPROBE_REENTER prev_kprobe.kp will be non-NULL,
265  * for any other state prev_kprobe.kp will be NULL.
266  */
267 static void pop_kprobe(struct kprobe_ctlblk *kcb)
268 {
269 	__this_cpu_write(current_kprobe, kcb->prev_kprobe.kp);
270 	kcb->kprobe_status = kcb->prev_kprobe.status;
271 }
272 NOKPROBE_SYMBOL(pop_kprobe);
273 
274 void arch_prepare_kretprobe(struct kretprobe_instance *ri, struct pt_regs *regs)
275 {
276 	ri->ret_addr = (kprobe_opcode_t *) regs->gprs[14];
277 
278 	/* Replace the return addr with trampoline addr */
279 	regs->gprs[14] = (unsigned long) &kretprobe_trampoline;
280 }
281 NOKPROBE_SYMBOL(arch_prepare_kretprobe);
282 
283 static void kprobe_reenter_check(struct kprobe_ctlblk *kcb, struct kprobe *p)
284 {
285 	switch (kcb->kprobe_status) {
286 	case KPROBE_HIT_SSDONE:
287 	case KPROBE_HIT_ACTIVE:
288 		kprobes_inc_nmissed_count(p);
289 		break;
290 	case KPROBE_HIT_SS:
291 	case KPROBE_REENTER:
292 	default:
293 		/*
294 		 * A kprobe on the code path to single step an instruction
295 		 * is a BUG. The code path resides in the .kprobes.text
296 		 * section and is executed with interrupts disabled.
297 		 */
298 		printk(KERN_EMERG "Invalid kprobe detected at %p.\n", p->addr);
299 		dump_kprobe(p);
300 		BUG();
301 	}
302 }
303 NOKPROBE_SYMBOL(kprobe_reenter_check);
304 
305 static int kprobe_handler(struct pt_regs *regs)
306 {
307 	struct kprobe_ctlblk *kcb;
308 	struct kprobe *p;
309 
310 	/*
311 	 * We want to disable preemption for the entire duration of kprobe
312 	 * processing. That includes the calls to the pre/post handlers
313 	 * and single stepping the kprobe instruction.
314 	 */
315 	preempt_disable();
316 	kcb = get_kprobe_ctlblk();
317 	p = get_kprobe((void *)(regs->psw.addr - 2));
318 
319 	if (p) {
320 		if (kprobe_running()) {
321 			/*
322 			 * We have hit a kprobe while another is still
323 			 * active. This can happen in the pre and post
324 			 * handler. Single step the instruction of the
325 			 * new probe but do not call any handler function
326 			 * of this secondary kprobe.
327 			 * push_kprobe and pop_kprobe saves and restores
328 			 * the currently active kprobe.
329 			 */
330 			kprobe_reenter_check(kcb, p);
331 			push_kprobe(kcb, p);
332 			kcb->kprobe_status = KPROBE_REENTER;
333 		} else {
334 			/*
335 			 * If we have no pre-handler or it returned 0, we
336 			 * continue with single stepping. If we have a
337 			 * pre-handler and it returned non-zero, it prepped
338 			 * for calling the break_handler below on re-entry
339 			 * for jprobe processing, so get out doing nothing
340 			 * more here.
341 			 */
342 			push_kprobe(kcb, p);
343 			kcb->kprobe_status = KPROBE_HIT_ACTIVE;
344 			if (p->pre_handler && p->pre_handler(p, regs))
345 				return 1;
346 			kcb->kprobe_status = KPROBE_HIT_SS;
347 		}
348 		enable_singlestep(kcb, regs, (unsigned long) p->ainsn.insn);
349 		return 1;
350 	} else if (kprobe_running()) {
351 		p = __this_cpu_read(current_kprobe);
352 		if (p->break_handler && p->break_handler(p, regs)) {
353 			/*
354 			 * Continuation after the jprobe completed and
355 			 * caused the jprobe_return trap. The jprobe
356 			 * break_handler "returns" to the original
357 			 * function that still has the kprobe breakpoint
358 			 * installed. We continue with single stepping.
359 			 */
360 			kcb->kprobe_status = KPROBE_HIT_SS;
361 			enable_singlestep(kcb, regs,
362 					  (unsigned long) p->ainsn.insn);
363 			return 1;
364 		} /* else:
365 		   * No kprobe at this address and the current kprobe
366 		   * has no break handler (no jprobe!). The kernel just
367 		   * exploded, let the standard trap handler pick up the
368 		   * pieces.
369 		   */
370 	} /* else:
371 	   * No kprobe at this address and no active kprobe. The trap has
372 	   * not been caused by a kprobe breakpoint. The race of breakpoint
373 	   * vs. kprobe remove does not exist because on s390 as we use
374 	   * stop_machine to arm/disarm the breakpoints.
375 	   */
376 	preempt_enable_no_resched();
377 	return 0;
378 }
379 NOKPROBE_SYMBOL(kprobe_handler);
380 
381 /*
382  * Function return probe trampoline:
383  *	- init_kprobes() establishes a probepoint here
384  *	- When the probed function returns, this probe
385  *		causes the handlers to fire
386  */
387 static void __used kretprobe_trampoline_holder(void)
388 {
389 	asm volatile(".global kretprobe_trampoline\n"
390 		     "kretprobe_trampoline: bcr 0,0\n");
391 }
392 
393 /*
394  * Called when the probe at kretprobe trampoline is hit
395  */
396 static int trampoline_probe_handler(struct kprobe *p, struct pt_regs *regs)
397 {
398 	struct kretprobe_instance *ri;
399 	struct hlist_head *head, empty_rp;
400 	struct hlist_node *tmp;
401 	unsigned long flags, orig_ret_address;
402 	unsigned long trampoline_address;
403 	kprobe_opcode_t *correct_ret_addr;
404 
405 	INIT_HLIST_HEAD(&empty_rp);
406 	kretprobe_hash_lock(current, &head, &flags);
407 
408 	/*
409 	 * It is possible to have multiple instances associated with a given
410 	 * task either because an multiple functions in the call path
411 	 * have a return probe installed on them, and/or more than one return
412 	 * return probe was registered for a target function.
413 	 *
414 	 * We can handle this because:
415 	 *     - instances are always inserted at the head of the list
416 	 *     - when multiple return probes are registered for the same
417 	 *	 function, the first instance's ret_addr will point to the
418 	 *	 real return address, and all the rest will point to
419 	 *	 kretprobe_trampoline
420 	 */
421 	ri = NULL;
422 	orig_ret_address = 0;
423 	correct_ret_addr = NULL;
424 	trampoline_address = (unsigned long) &kretprobe_trampoline;
425 	hlist_for_each_entry_safe(ri, tmp, head, hlist) {
426 		if (ri->task != current)
427 			/* another task is sharing our hash bucket */
428 			continue;
429 
430 		orig_ret_address = (unsigned long) ri->ret_addr;
431 
432 		if (orig_ret_address != trampoline_address)
433 			/*
434 			 * This is the real return address. Any other
435 			 * instances associated with this task are for
436 			 * other calls deeper on the call stack
437 			 */
438 			break;
439 	}
440 
441 	kretprobe_assert(ri, orig_ret_address, trampoline_address);
442 
443 	correct_ret_addr = ri->ret_addr;
444 	hlist_for_each_entry_safe(ri, tmp, head, hlist) {
445 		if (ri->task != current)
446 			/* another task is sharing our hash bucket */
447 			continue;
448 
449 		orig_ret_address = (unsigned long) ri->ret_addr;
450 
451 		if (ri->rp && ri->rp->handler) {
452 			ri->ret_addr = correct_ret_addr;
453 			ri->rp->handler(ri, regs);
454 		}
455 
456 		recycle_rp_inst(ri, &empty_rp);
457 
458 		if (orig_ret_address != trampoline_address)
459 			/*
460 			 * This is the real return address. Any other
461 			 * instances associated with this task are for
462 			 * other calls deeper on the call stack
463 			 */
464 			break;
465 	}
466 
467 	regs->psw.addr = orig_ret_address;
468 
469 	pop_kprobe(get_kprobe_ctlblk());
470 	kretprobe_hash_unlock(current, &flags);
471 	preempt_enable_no_resched();
472 
473 	hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) {
474 		hlist_del(&ri->hlist);
475 		kfree(ri);
476 	}
477 	/*
478 	 * By returning a non-zero value, we are telling
479 	 * kprobe_handler() that we don't want the post_handler
480 	 * to run (and have re-enabled preemption)
481 	 */
482 	return 1;
483 }
484 NOKPROBE_SYMBOL(trampoline_probe_handler);
485 
486 /*
487  * Called after single-stepping.  p->addr is the address of the
488  * instruction whose first byte has been replaced by the "breakpoint"
489  * instruction.  To avoid the SMP problems that can occur when we
490  * temporarily put back the original opcode to single-step, we
491  * single-stepped a copy of the instruction.  The address of this
492  * copy is p->ainsn.insn.
493  */
494 static void resume_execution(struct kprobe *p, struct pt_regs *regs)
495 {
496 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
497 	unsigned long ip = regs->psw.addr;
498 	int fixup = probe_get_fixup_type(p->ainsn.insn);
499 
500 	/* Check if the kprobes location is an enabled ftrace caller */
501 	if (p->ainsn.is_ftrace_insn) {
502 		struct ftrace_insn *insn = (struct ftrace_insn *) p->addr;
503 		struct ftrace_insn call_insn;
504 
505 		ftrace_generate_call_insn(&call_insn, (unsigned long) p->addr);
506 		/*
507 		 * A kprobe on an enabled ftrace call site actually single
508 		 * stepped an unconditional branch (ftrace nop equivalent).
509 		 * Now we need to fixup things and pretend that a brasl r0,...
510 		 * was executed instead.
511 		 */
512 		if (insn->disp == KPROBE_ON_FTRACE_CALL) {
513 			ip += call_insn.disp * 2 - MCOUNT_INSN_SIZE;
514 			regs->gprs[0] = (unsigned long)p->addr + sizeof(*insn);
515 		}
516 	}
517 
518 	if (fixup & FIXUP_PSW_NORMAL)
519 		ip += (unsigned long) p->addr - (unsigned long) p->ainsn.insn;
520 
521 	if (fixup & FIXUP_BRANCH_NOT_TAKEN) {
522 		int ilen = insn_length(p->ainsn.insn[0] >> 8);
523 		if (ip - (unsigned long) p->ainsn.insn == ilen)
524 			ip = (unsigned long) p->addr + ilen;
525 	}
526 
527 	if (fixup & FIXUP_RETURN_REGISTER) {
528 		int reg = (p->ainsn.insn[0] & 0xf0) >> 4;
529 		regs->gprs[reg] += (unsigned long) p->addr -
530 				   (unsigned long) p->ainsn.insn;
531 	}
532 
533 	disable_singlestep(kcb, regs, ip);
534 }
535 NOKPROBE_SYMBOL(resume_execution);
536 
537 static int post_kprobe_handler(struct pt_regs *regs)
538 {
539 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
540 	struct kprobe *p = kprobe_running();
541 
542 	if (!p)
543 		return 0;
544 
545 	if (kcb->kprobe_status != KPROBE_REENTER && p->post_handler) {
546 		kcb->kprobe_status = KPROBE_HIT_SSDONE;
547 		p->post_handler(p, regs, 0);
548 	}
549 
550 	resume_execution(p, regs);
551 	pop_kprobe(kcb);
552 	preempt_enable_no_resched();
553 
554 	/*
555 	 * if somebody else is singlestepping across a probe point, psw mask
556 	 * will have PER set, in which case, continue the remaining processing
557 	 * of do_single_step, as if this is not a probe hit.
558 	 */
559 	if (regs->psw.mask & PSW_MASK_PER)
560 		return 0;
561 
562 	return 1;
563 }
564 NOKPROBE_SYMBOL(post_kprobe_handler);
565 
566 static int kprobe_trap_handler(struct pt_regs *regs, int trapnr)
567 {
568 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
569 	struct kprobe *p = kprobe_running();
570 	const struct exception_table_entry *entry;
571 
572 	switch(kcb->kprobe_status) {
573 	case KPROBE_HIT_SS:
574 	case KPROBE_REENTER:
575 		/*
576 		 * We are here because the instruction being single
577 		 * stepped caused a page fault. We reset the current
578 		 * kprobe and the nip points back to the probe address
579 		 * and allow the page fault handler to continue as a
580 		 * normal page fault.
581 		 */
582 		disable_singlestep(kcb, regs, (unsigned long) p->addr);
583 		pop_kprobe(kcb);
584 		preempt_enable_no_resched();
585 		break;
586 	case KPROBE_HIT_ACTIVE:
587 	case KPROBE_HIT_SSDONE:
588 		/*
589 		 * We increment the nmissed count for accounting,
590 		 * we can also use npre/npostfault count for accounting
591 		 * these specific fault cases.
592 		 */
593 		kprobes_inc_nmissed_count(p);
594 
595 		/*
596 		 * We come here because instructions in the pre/post
597 		 * handler caused the page_fault, this could happen
598 		 * if handler tries to access user space by
599 		 * copy_from_user(), get_user() etc. Let the
600 		 * user-specified handler try to fix it first.
601 		 */
602 		if (p->fault_handler && p->fault_handler(p, regs, trapnr))
603 			return 1;
604 
605 		/*
606 		 * In case the user-specified fault handler returned
607 		 * zero, try to fix up.
608 		 */
609 		entry = search_exception_tables(regs->psw.addr);
610 		if (entry) {
611 			regs->psw.addr = extable_fixup(entry);
612 			return 1;
613 		}
614 
615 		/*
616 		 * fixup_exception() could not handle it,
617 		 * Let do_page_fault() fix it.
618 		 */
619 		break;
620 	default:
621 		break;
622 	}
623 	return 0;
624 }
625 NOKPROBE_SYMBOL(kprobe_trap_handler);
626 
627 int kprobe_fault_handler(struct pt_regs *regs, int trapnr)
628 {
629 	int ret;
630 
631 	if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT))
632 		local_irq_disable();
633 	ret = kprobe_trap_handler(regs, trapnr);
634 	if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT))
635 		local_irq_restore(regs->psw.mask & ~PSW_MASK_PER);
636 	return ret;
637 }
638 NOKPROBE_SYMBOL(kprobe_fault_handler);
639 
640 /*
641  * Wrapper routine to for handling exceptions.
642  */
643 int kprobe_exceptions_notify(struct notifier_block *self,
644 			     unsigned long val, void *data)
645 {
646 	struct die_args *args = (struct die_args *) data;
647 	struct pt_regs *regs = args->regs;
648 	int ret = NOTIFY_DONE;
649 
650 	if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT))
651 		local_irq_disable();
652 
653 	switch (val) {
654 	case DIE_BPT:
655 		if (kprobe_handler(regs))
656 			ret = NOTIFY_STOP;
657 		break;
658 	case DIE_SSTEP:
659 		if (post_kprobe_handler(regs))
660 			ret = NOTIFY_STOP;
661 		break;
662 	case DIE_TRAP:
663 		if (!preemptible() && kprobe_running() &&
664 		    kprobe_trap_handler(regs, args->trapnr))
665 			ret = NOTIFY_STOP;
666 		break;
667 	default:
668 		break;
669 	}
670 
671 	if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT))
672 		local_irq_restore(regs->psw.mask & ~PSW_MASK_PER);
673 
674 	return ret;
675 }
676 NOKPROBE_SYMBOL(kprobe_exceptions_notify);
677 
678 int setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs)
679 {
680 	struct jprobe *jp = container_of(p, struct jprobe, kp);
681 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
682 	unsigned long stack;
683 
684 	memcpy(&kcb->jprobe_saved_regs, regs, sizeof(struct pt_regs));
685 
686 	/* setup return addr to the jprobe handler routine */
687 	regs->psw.addr = (unsigned long) jp->entry;
688 	regs->psw.mask &= ~(PSW_MASK_IO | PSW_MASK_EXT);
689 
690 	/* r15 is the stack pointer */
691 	stack = (unsigned long) regs->gprs[15];
692 
693 	memcpy(kcb->jprobes_stack, (void *) stack, MIN_STACK_SIZE(stack));
694 
695 	/*
696 	 * jprobes use jprobe_return() which skips the normal return
697 	 * path of the function, and this messes up the accounting of the
698 	 * function graph tracer to get messed up.
699 	 *
700 	 * Pause function graph tracing while performing the jprobe function.
701 	 */
702 	pause_graph_tracing();
703 	return 1;
704 }
705 NOKPROBE_SYMBOL(setjmp_pre_handler);
706 
707 void jprobe_return(void)
708 {
709 	asm volatile(".word 0x0002");
710 }
711 NOKPROBE_SYMBOL(jprobe_return);
712 
713 int longjmp_break_handler(struct kprobe *p, struct pt_regs *regs)
714 {
715 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
716 	unsigned long stack;
717 
718 	/* It's OK to start function graph tracing again */
719 	unpause_graph_tracing();
720 
721 	stack = (unsigned long) kcb->jprobe_saved_regs.gprs[15];
722 
723 	/* Put the regs back */
724 	memcpy(regs, &kcb->jprobe_saved_regs, sizeof(struct pt_regs));
725 	/* put the stack back */
726 	memcpy((void *) stack, kcb->jprobes_stack, MIN_STACK_SIZE(stack));
727 	preempt_enable_no_resched();
728 	return 1;
729 }
730 NOKPROBE_SYMBOL(longjmp_break_handler);
731 
732 static struct kprobe trampoline = {
733 	.addr = (kprobe_opcode_t *) &kretprobe_trampoline,
734 	.pre_handler = trampoline_probe_handler
735 };
736 
737 int __init arch_init_kprobes(void)
738 {
739 	return register_kprobe(&trampoline);
740 }
741 
742 int arch_trampoline_kprobe(struct kprobe *p)
743 {
744 	return p->addr == (kprobe_opcode_t *) &kretprobe_trampoline;
745 }
746 NOKPROBE_SYMBOL(arch_trampoline_kprobe);
747