1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * Kernel Probes (KProbes) 4 * 5 * Copyright IBM Corp. 2002, 2006 6 * 7 * s390 port, used ppc64 as template. Mike Grundy <grundym@us.ibm.com> 8 */ 9 10 #include <linux/kprobes.h> 11 #include <linux/ptrace.h> 12 #include <linux/preempt.h> 13 #include <linux/stop_machine.h> 14 #include <linux/kdebug.h> 15 #include <linux/uaccess.h> 16 #include <linux/extable.h> 17 #include <linux/module.h> 18 #include <linux/slab.h> 19 #include <linux/hardirq.h> 20 #include <linux/ftrace.h> 21 #include <asm/set_memory.h> 22 #include <asm/sections.h> 23 #include <asm/dis.h> 24 25 DEFINE_PER_CPU(struct kprobe *, current_kprobe); 26 DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk); 27 28 struct kretprobe_blackpoint kretprobe_blacklist[] = { }; 29 30 DEFINE_INSN_CACHE_OPS(dmainsn); 31 32 static void *alloc_dmainsn_page(void) 33 { 34 void *page; 35 36 page = (void *) __get_free_page(GFP_KERNEL | GFP_DMA); 37 if (page) 38 set_memory_x((unsigned long) page, 1); 39 return page; 40 } 41 42 static void free_dmainsn_page(void *page) 43 { 44 set_memory_nx((unsigned long) page, 1); 45 free_page((unsigned long)page); 46 } 47 48 struct kprobe_insn_cache kprobe_dmainsn_slots = { 49 .mutex = __MUTEX_INITIALIZER(kprobe_dmainsn_slots.mutex), 50 .alloc = alloc_dmainsn_page, 51 .free = free_dmainsn_page, 52 .pages = LIST_HEAD_INIT(kprobe_dmainsn_slots.pages), 53 .insn_size = MAX_INSN_SIZE, 54 }; 55 56 static void copy_instruction(struct kprobe *p) 57 { 58 unsigned long ip = (unsigned long) p->addr; 59 s64 disp, new_disp; 60 u64 addr, new_addr; 61 62 if (ftrace_location(ip) == ip) { 63 /* 64 * If kprobes patches the instruction that is morphed by 65 * ftrace make sure that kprobes always sees the branch 66 * "jg .+24" that skips the mcount block or the "brcl 0,0" 67 * in case of hotpatch. 68 */ 69 ftrace_generate_nop_insn((struct ftrace_insn *)p->ainsn.insn); 70 p->ainsn.is_ftrace_insn = 1; 71 } else 72 memcpy(p->ainsn.insn, p->addr, insn_length(*p->addr >> 8)); 73 p->opcode = p->ainsn.insn[0]; 74 if (!probe_is_insn_relative_long(p->ainsn.insn)) 75 return; 76 /* 77 * For pc-relative instructions in RIL-b or RIL-c format patch the 78 * RI2 displacement field. We have already made sure that the insn 79 * slot for the patched instruction is within the same 2GB area 80 * as the original instruction (either kernel image or module area). 81 * Therefore the new displacement will always fit. 82 */ 83 disp = *(s32 *)&p->ainsn.insn[1]; 84 addr = (u64)(unsigned long)p->addr; 85 new_addr = (u64)(unsigned long)p->ainsn.insn; 86 new_disp = ((addr + (disp * 2)) - new_addr) / 2; 87 *(s32 *)&p->ainsn.insn[1] = new_disp; 88 } 89 NOKPROBE_SYMBOL(copy_instruction); 90 91 static inline int is_kernel_addr(void *addr) 92 { 93 return addr < (void *)_end; 94 } 95 96 static int s390_get_insn_slot(struct kprobe *p) 97 { 98 /* 99 * Get an insn slot that is within the same 2GB area like the original 100 * instruction. That way instructions with a 32bit signed displacement 101 * field can be patched and executed within the insn slot. 102 */ 103 p->ainsn.insn = NULL; 104 if (is_kernel_addr(p->addr)) 105 p->ainsn.insn = get_dmainsn_slot(); 106 else if (is_module_addr(p->addr)) 107 p->ainsn.insn = get_insn_slot(); 108 return p->ainsn.insn ? 0 : -ENOMEM; 109 } 110 NOKPROBE_SYMBOL(s390_get_insn_slot); 111 112 static void s390_free_insn_slot(struct kprobe *p) 113 { 114 if (!p->ainsn.insn) 115 return; 116 if (is_kernel_addr(p->addr)) 117 free_dmainsn_slot(p->ainsn.insn, 0); 118 else 119 free_insn_slot(p->ainsn.insn, 0); 120 p->ainsn.insn = NULL; 121 } 122 NOKPROBE_SYMBOL(s390_free_insn_slot); 123 124 int arch_prepare_kprobe(struct kprobe *p) 125 { 126 if ((unsigned long) p->addr & 0x01) 127 return -EINVAL; 128 /* Make sure the probe isn't going on a difficult instruction */ 129 if (probe_is_prohibited_opcode(p->addr)) 130 return -EINVAL; 131 if (s390_get_insn_slot(p)) 132 return -ENOMEM; 133 copy_instruction(p); 134 return 0; 135 } 136 NOKPROBE_SYMBOL(arch_prepare_kprobe); 137 138 int arch_check_ftrace_location(struct kprobe *p) 139 { 140 return 0; 141 } 142 143 struct swap_insn_args { 144 struct kprobe *p; 145 unsigned int arm_kprobe : 1; 146 }; 147 148 static int swap_instruction(void *data) 149 { 150 struct swap_insn_args *args = data; 151 struct ftrace_insn new_insn, *insn; 152 struct kprobe *p = args->p; 153 size_t len; 154 155 new_insn.opc = args->arm_kprobe ? BREAKPOINT_INSTRUCTION : p->opcode; 156 len = sizeof(new_insn.opc); 157 if (!p->ainsn.is_ftrace_insn) 158 goto skip_ftrace; 159 len = sizeof(new_insn); 160 insn = (struct ftrace_insn *) p->addr; 161 if (args->arm_kprobe) { 162 if (is_ftrace_nop(insn)) 163 new_insn.disp = KPROBE_ON_FTRACE_NOP; 164 else 165 new_insn.disp = KPROBE_ON_FTRACE_CALL; 166 } else { 167 ftrace_generate_call_insn(&new_insn, (unsigned long)p->addr); 168 if (insn->disp == KPROBE_ON_FTRACE_NOP) 169 ftrace_generate_nop_insn(&new_insn); 170 } 171 skip_ftrace: 172 s390_kernel_write(p->addr, &new_insn, len); 173 return 0; 174 } 175 NOKPROBE_SYMBOL(swap_instruction); 176 177 void arch_arm_kprobe(struct kprobe *p) 178 { 179 struct swap_insn_args args = {.p = p, .arm_kprobe = 1}; 180 181 stop_machine_cpuslocked(swap_instruction, &args, NULL); 182 } 183 NOKPROBE_SYMBOL(arch_arm_kprobe); 184 185 void arch_disarm_kprobe(struct kprobe *p) 186 { 187 struct swap_insn_args args = {.p = p, .arm_kprobe = 0}; 188 189 stop_machine_cpuslocked(swap_instruction, &args, NULL); 190 } 191 NOKPROBE_SYMBOL(arch_disarm_kprobe); 192 193 void arch_remove_kprobe(struct kprobe *p) 194 { 195 s390_free_insn_slot(p); 196 } 197 NOKPROBE_SYMBOL(arch_remove_kprobe); 198 199 static void enable_singlestep(struct kprobe_ctlblk *kcb, 200 struct pt_regs *regs, 201 unsigned long ip) 202 { 203 struct per_regs per_kprobe; 204 205 /* Set up the PER control registers %cr9-%cr11 */ 206 per_kprobe.control = PER_EVENT_IFETCH; 207 per_kprobe.start = ip; 208 per_kprobe.end = ip; 209 210 /* Save control regs and psw mask */ 211 __ctl_store(kcb->kprobe_saved_ctl, 9, 11); 212 kcb->kprobe_saved_imask = regs->psw.mask & 213 (PSW_MASK_PER | PSW_MASK_IO | PSW_MASK_EXT); 214 215 /* Set PER control regs, turns on single step for the given address */ 216 __ctl_load(per_kprobe, 9, 11); 217 regs->psw.mask |= PSW_MASK_PER; 218 regs->psw.mask &= ~(PSW_MASK_IO | PSW_MASK_EXT); 219 regs->psw.addr = ip; 220 } 221 NOKPROBE_SYMBOL(enable_singlestep); 222 223 static void disable_singlestep(struct kprobe_ctlblk *kcb, 224 struct pt_regs *regs, 225 unsigned long ip) 226 { 227 /* Restore control regs and psw mask, set new psw address */ 228 __ctl_load(kcb->kprobe_saved_ctl, 9, 11); 229 regs->psw.mask &= ~PSW_MASK_PER; 230 regs->psw.mask |= kcb->kprobe_saved_imask; 231 regs->psw.addr = ip; 232 } 233 NOKPROBE_SYMBOL(disable_singlestep); 234 235 /* 236 * Activate a kprobe by storing its pointer to current_kprobe. The 237 * previous kprobe is stored in kcb->prev_kprobe. A stack of up to 238 * two kprobes can be active, see KPROBE_REENTER. 239 */ 240 static void push_kprobe(struct kprobe_ctlblk *kcb, struct kprobe *p) 241 { 242 kcb->prev_kprobe.kp = __this_cpu_read(current_kprobe); 243 kcb->prev_kprobe.status = kcb->kprobe_status; 244 __this_cpu_write(current_kprobe, p); 245 } 246 NOKPROBE_SYMBOL(push_kprobe); 247 248 /* 249 * Deactivate a kprobe by backing up to the previous state. If the 250 * current state is KPROBE_REENTER prev_kprobe.kp will be non-NULL, 251 * for any other state prev_kprobe.kp will be NULL. 252 */ 253 static void pop_kprobe(struct kprobe_ctlblk *kcb) 254 { 255 __this_cpu_write(current_kprobe, kcb->prev_kprobe.kp); 256 kcb->kprobe_status = kcb->prev_kprobe.status; 257 } 258 NOKPROBE_SYMBOL(pop_kprobe); 259 260 void arch_prepare_kretprobe(struct kretprobe_instance *ri, struct pt_regs *regs) 261 { 262 ri->ret_addr = (kprobe_opcode_t *) regs->gprs[14]; 263 264 /* Replace the return addr with trampoline addr */ 265 regs->gprs[14] = (unsigned long) &kretprobe_trampoline; 266 } 267 NOKPROBE_SYMBOL(arch_prepare_kretprobe); 268 269 static void kprobe_reenter_check(struct kprobe_ctlblk *kcb, struct kprobe *p) 270 { 271 switch (kcb->kprobe_status) { 272 case KPROBE_HIT_SSDONE: 273 case KPROBE_HIT_ACTIVE: 274 kprobes_inc_nmissed_count(p); 275 break; 276 case KPROBE_HIT_SS: 277 case KPROBE_REENTER: 278 default: 279 /* 280 * A kprobe on the code path to single step an instruction 281 * is a BUG. The code path resides in the .kprobes.text 282 * section and is executed with interrupts disabled. 283 */ 284 pr_err("Invalid kprobe detected.\n"); 285 dump_kprobe(p); 286 BUG(); 287 } 288 } 289 NOKPROBE_SYMBOL(kprobe_reenter_check); 290 291 static int kprobe_handler(struct pt_regs *regs) 292 { 293 struct kprobe_ctlblk *kcb; 294 struct kprobe *p; 295 296 /* 297 * We want to disable preemption for the entire duration of kprobe 298 * processing. That includes the calls to the pre/post handlers 299 * and single stepping the kprobe instruction. 300 */ 301 preempt_disable(); 302 kcb = get_kprobe_ctlblk(); 303 p = get_kprobe((void *)(regs->psw.addr - 2)); 304 305 if (p) { 306 if (kprobe_running()) { 307 /* 308 * We have hit a kprobe while another is still 309 * active. This can happen in the pre and post 310 * handler. Single step the instruction of the 311 * new probe but do not call any handler function 312 * of this secondary kprobe. 313 * push_kprobe and pop_kprobe saves and restores 314 * the currently active kprobe. 315 */ 316 kprobe_reenter_check(kcb, p); 317 push_kprobe(kcb, p); 318 kcb->kprobe_status = KPROBE_REENTER; 319 } else { 320 /* 321 * If we have no pre-handler or it returned 0, we 322 * continue with single stepping. If we have a 323 * pre-handler and it returned non-zero, it prepped 324 * for changing execution path, so get out doing 325 * nothing more here. 326 */ 327 push_kprobe(kcb, p); 328 kcb->kprobe_status = KPROBE_HIT_ACTIVE; 329 if (p->pre_handler && p->pre_handler(p, regs)) { 330 pop_kprobe(kcb); 331 preempt_enable_no_resched(); 332 return 1; 333 } 334 kcb->kprobe_status = KPROBE_HIT_SS; 335 } 336 enable_singlestep(kcb, regs, (unsigned long) p->ainsn.insn); 337 return 1; 338 } /* else: 339 * No kprobe at this address and no active kprobe. The trap has 340 * not been caused by a kprobe breakpoint. The race of breakpoint 341 * vs. kprobe remove does not exist because on s390 as we use 342 * stop_machine to arm/disarm the breakpoints. 343 */ 344 preempt_enable_no_resched(); 345 return 0; 346 } 347 NOKPROBE_SYMBOL(kprobe_handler); 348 349 /* 350 * Function return probe trampoline: 351 * - init_kprobes() establishes a probepoint here 352 * - When the probed function returns, this probe 353 * causes the handlers to fire 354 */ 355 static void __used kretprobe_trampoline_holder(void) 356 { 357 asm volatile(".global kretprobe_trampoline\n" 358 "kretprobe_trampoline: bcr 0,0\n"); 359 } 360 361 /* 362 * Called when the probe at kretprobe trampoline is hit 363 */ 364 static int trampoline_probe_handler(struct kprobe *p, struct pt_regs *regs) 365 { 366 struct kretprobe_instance *ri; 367 struct hlist_head *head, empty_rp; 368 struct hlist_node *tmp; 369 unsigned long flags, orig_ret_address; 370 unsigned long trampoline_address; 371 kprobe_opcode_t *correct_ret_addr; 372 373 INIT_HLIST_HEAD(&empty_rp); 374 kretprobe_hash_lock(current, &head, &flags); 375 376 /* 377 * It is possible to have multiple instances associated with a given 378 * task either because an multiple functions in the call path 379 * have a return probe installed on them, and/or more than one return 380 * return probe was registered for a target function. 381 * 382 * We can handle this because: 383 * - instances are always inserted at the head of the list 384 * - when multiple return probes are registered for the same 385 * function, the first instance's ret_addr will point to the 386 * real return address, and all the rest will point to 387 * kretprobe_trampoline 388 */ 389 ri = NULL; 390 orig_ret_address = 0; 391 correct_ret_addr = NULL; 392 trampoline_address = (unsigned long) &kretprobe_trampoline; 393 hlist_for_each_entry_safe(ri, tmp, head, hlist) { 394 if (ri->task != current) 395 /* another task is sharing our hash bucket */ 396 continue; 397 398 orig_ret_address = (unsigned long) ri->ret_addr; 399 400 if (orig_ret_address != trampoline_address) 401 /* 402 * This is the real return address. Any other 403 * instances associated with this task are for 404 * other calls deeper on the call stack 405 */ 406 break; 407 } 408 409 kretprobe_assert(ri, orig_ret_address, trampoline_address); 410 411 correct_ret_addr = ri->ret_addr; 412 hlist_for_each_entry_safe(ri, tmp, head, hlist) { 413 if (ri->task != current) 414 /* another task is sharing our hash bucket */ 415 continue; 416 417 orig_ret_address = (unsigned long) ri->ret_addr; 418 419 if (ri->rp && ri->rp->handler) { 420 ri->ret_addr = correct_ret_addr; 421 ri->rp->handler(ri, regs); 422 } 423 424 recycle_rp_inst(ri, &empty_rp); 425 426 if (orig_ret_address != trampoline_address) 427 /* 428 * This is the real return address. Any other 429 * instances associated with this task are for 430 * other calls deeper on the call stack 431 */ 432 break; 433 } 434 435 regs->psw.addr = orig_ret_address; 436 437 kretprobe_hash_unlock(current, &flags); 438 439 hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) { 440 hlist_del(&ri->hlist); 441 kfree(ri); 442 } 443 /* 444 * By returning a non-zero value, we are telling 445 * kprobe_handler() that we don't want the post_handler 446 * to run (and have re-enabled preemption) 447 */ 448 return 1; 449 } 450 NOKPROBE_SYMBOL(trampoline_probe_handler); 451 452 /* 453 * Called after single-stepping. p->addr is the address of the 454 * instruction whose first byte has been replaced by the "breakpoint" 455 * instruction. To avoid the SMP problems that can occur when we 456 * temporarily put back the original opcode to single-step, we 457 * single-stepped a copy of the instruction. The address of this 458 * copy is p->ainsn.insn. 459 */ 460 static void resume_execution(struct kprobe *p, struct pt_regs *regs) 461 { 462 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); 463 unsigned long ip = regs->psw.addr; 464 int fixup = probe_get_fixup_type(p->ainsn.insn); 465 466 /* Check if the kprobes location is an enabled ftrace caller */ 467 if (p->ainsn.is_ftrace_insn) { 468 struct ftrace_insn *insn = (struct ftrace_insn *) p->addr; 469 struct ftrace_insn call_insn; 470 471 ftrace_generate_call_insn(&call_insn, (unsigned long) p->addr); 472 /* 473 * A kprobe on an enabled ftrace call site actually single 474 * stepped an unconditional branch (ftrace nop equivalent). 475 * Now we need to fixup things and pretend that a brasl r0,... 476 * was executed instead. 477 */ 478 if (insn->disp == KPROBE_ON_FTRACE_CALL) { 479 ip += call_insn.disp * 2 - MCOUNT_INSN_SIZE; 480 regs->gprs[0] = (unsigned long)p->addr + sizeof(*insn); 481 } 482 } 483 484 if (fixup & FIXUP_PSW_NORMAL) 485 ip += (unsigned long) p->addr - (unsigned long) p->ainsn.insn; 486 487 if (fixup & FIXUP_BRANCH_NOT_TAKEN) { 488 int ilen = insn_length(p->ainsn.insn[0] >> 8); 489 if (ip - (unsigned long) p->ainsn.insn == ilen) 490 ip = (unsigned long) p->addr + ilen; 491 } 492 493 if (fixup & FIXUP_RETURN_REGISTER) { 494 int reg = (p->ainsn.insn[0] & 0xf0) >> 4; 495 regs->gprs[reg] += (unsigned long) p->addr - 496 (unsigned long) p->ainsn.insn; 497 } 498 499 disable_singlestep(kcb, regs, ip); 500 } 501 NOKPROBE_SYMBOL(resume_execution); 502 503 static int post_kprobe_handler(struct pt_regs *regs) 504 { 505 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); 506 struct kprobe *p = kprobe_running(); 507 508 if (!p) 509 return 0; 510 511 if (kcb->kprobe_status != KPROBE_REENTER && p->post_handler) { 512 kcb->kprobe_status = KPROBE_HIT_SSDONE; 513 p->post_handler(p, regs, 0); 514 } 515 516 resume_execution(p, regs); 517 pop_kprobe(kcb); 518 preempt_enable_no_resched(); 519 520 /* 521 * if somebody else is singlestepping across a probe point, psw mask 522 * will have PER set, in which case, continue the remaining processing 523 * of do_single_step, as if this is not a probe hit. 524 */ 525 if (regs->psw.mask & PSW_MASK_PER) 526 return 0; 527 528 return 1; 529 } 530 NOKPROBE_SYMBOL(post_kprobe_handler); 531 532 static int kprobe_trap_handler(struct pt_regs *regs, int trapnr) 533 { 534 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); 535 struct kprobe *p = kprobe_running(); 536 const struct exception_table_entry *entry; 537 538 switch(kcb->kprobe_status) { 539 case KPROBE_HIT_SS: 540 case KPROBE_REENTER: 541 /* 542 * We are here because the instruction being single 543 * stepped caused a page fault. We reset the current 544 * kprobe and the nip points back to the probe address 545 * and allow the page fault handler to continue as a 546 * normal page fault. 547 */ 548 disable_singlestep(kcb, regs, (unsigned long) p->addr); 549 pop_kprobe(kcb); 550 preempt_enable_no_resched(); 551 break; 552 case KPROBE_HIT_ACTIVE: 553 case KPROBE_HIT_SSDONE: 554 /* 555 * We increment the nmissed count for accounting, 556 * we can also use npre/npostfault count for accounting 557 * these specific fault cases. 558 */ 559 kprobes_inc_nmissed_count(p); 560 561 /* 562 * We come here because instructions in the pre/post 563 * handler caused the page_fault, this could happen 564 * if handler tries to access user space by 565 * copy_from_user(), get_user() etc. Let the 566 * user-specified handler try to fix it first. 567 */ 568 if (p->fault_handler && p->fault_handler(p, regs, trapnr)) 569 return 1; 570 571 /* 572 * In case the user-specified fault handler returned 573 * zero, try to fix up. 574 */ 575 entry = search_exception_tables(regs->psw.addr); 576 if (entry) { 577 regs->psw.addr = extable_fixup(entry); 578 return 1; 579 } 580 581 /* 582 * fixup_exception() could not handle it, 583 * Let do_page_fault() fix it. 584 */ 585 break; 586 default: 587 break; 588 } 589 return 0; 590 } 591 NOKPROBE_SYMBOL(kprobe_trap_handler); 592 593 int kprobe_fault_handler(struct pt_regs *regs, int trapnr) 594 { 595 int ret; 596 597 if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT)) 598 local_irq_disable(); 599 ret = kprobe_trap_handler(regs, trapnr); 600 if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT)) 601 local_irq_restore(regs->psw.mask & ~PSW_MASK_PER); 602 return ret; 603 } 604 NOKPROBE_SYMBOL(kprobe_fault_handler); 605 606 /* 607 * Wrapper routine to for handling exceptions. 608 */ 609 int kprobe_exceptions_notify(struct notifier_block *self, 610 unsigned long val, void *data) 611 { 612 struct die_args *args = (struct die_args *) data; 613 struct pt_regs *regs = args->regs; 614 int ret = NOTIFY_DONE; 615 616 if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT)) 617 local_irq_disable(); 618 619 switch (val) { 620 case DIE_BPT: 621 if (kprobe_handler(regs)) 622 ret = NOTIFY_STOP; 623 break; 624 case DIE_SSTEP: 625 if (post_kprobe_handler(regs)) 626 ret = NOTIFY_STOP; 627 break; 628 case DIE_TRAP: 629 if (!preemptible() && kprobe_running() && 630 kprobe_trap_handler(regs, args->trapnr)) 631 ret = NOTIFY_STOP; 632 break; 633 default: 634 break; 635 } 636 637 if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT)) 638 local_irq_restore(regs->psw.mask & ~PSW_MASK_PER); 639 640 return ret; 641 } 642 NOKPROBE_SYMBOL(kprobe_exceptions_notify); 643 644 static struct kprobe trampoline = { 645 .addr = (kprobe_opcode_t *) &kretprobe_trampoline, 646 .pre_handler = trampoline_probe_handler 647 }; 648 649 int __init arch_init_kprobes(void) 650 { 651 return register_kprobe(&trampoline); 652 } 653 654 int arch_trampoline_kprobe(struct kprobe *p) 655 { 656 return p->addr == (kprobe_opcode_t *) &kretprobe_trampoline; 657 } 658 NOKPROBE_SYMBOL(arch_trampoline_kprobe); 659