1 /* 2 * Kernel Probes (KProbes) 3 * 4 * This program is free software; you can redistribute it and/or modify 5 * it under the terms of the GNU General Public License as published by 6 * the Free Software Foundation; either version 2 of the License, or 7 * (at your option) any later version. 8 * 9 * This program is distributed in the hope that it will be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write to the Free Software 16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. 17 * 18 * Copyright IBM Corp. 2002, 2006 19 * 20 * s390 port, used ppc64 as template. Mike Grundy <grundym@us.ibm.com> 21 */ 22 23 #include <linux/kprobes.h> 24 #include <linux/ptrace.h> 25 #include <linux/preempt.h> 26 #include <linux/stop_machine.h> 27 #include <linux/kdebug.h> 28 #include <linux/uaccess.h> 29 #include <asm/cacheflush.h> 30 #include <asm/sections.h> 31 #include <linux/module.h> 32 #include <linux/slab.h> 33 #include <linux/hardirq.h> 34 35 DEFINE_PER_CPU(struct kprobe *, current_kprobe); 36 DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk); 37 38 struct kretprobe_blackpoint kretprobe_blacklist[] = { }; 39 40 DEFINE_INSN_CACHE_OPS(dmainsn); 41 42 static void *alloc_dmainsn_page(void) 43 { 44 return (void *)__get_free_page(GFP_KERNEL | GFP_DMA); 45 } 46 47 static void free_dmainsn_page(void *page) 48 { 49 free_page((unsigned long)page); 50 } 51 52 struct kprobe_insn_cache kprobe_dmainsn_slots = { 53 .mutex = __MUTEX_INITIALIZER(kprobe_dmainsn_slots.mutex), 54 .alloc = alloc_dmainsn_page, 55 .free = free_dmainsn_page, 56 .pages = LIST_HEAD_INIT(kprobe_dmainsn_slots.pages), 57 .insn_size = MAX_INSN_SIZE, 58 }; 59 60 static int __kprobes is_prohibited_opcode(kprobe_opcode_t *insn) 61 { 62 switch (insn[0] >> 8) { 63 case 0x0c: /* bassm */ 64 case 0x0b: /* bsm */ 65 case 0x83: /* diag */ 66 case 0x44: /* ex */ 67 case 0xac: /* stnsm */ 68 case 0xad: /* stosm */ 69 return -EINVAL; 70 case 0xc6: 71 switch (insn[0] & 0x0f) { 72 case 0x00: /* exrl */ 73 return -EINVAL; 74 } 75 } 76 switch (insn[0]) { 77 case 0x0101: /* pr */ 78 case 0xb25a: /* bsa */ 79 case 0xb240: /* bakr */ 80 case 0xb258: /* bsg */ 81 case 0xb218: /* pc */ 82 case 0xb228: /* pt */ 83 case 0xb98d: /* epsw */ 84 return -EINVAL; 85 } 86 return 0; 87 } 88 89 static int __kprobes get_fixup_type(kprobe_opcode_t *insn) 90 { 91 /* default fixup method */ 92 int fixup = FIXUP_PSW_NORMAL; 93 94 switch (insn[0] >> 8) { 95 case 0x05: /* balr */ 96 case 0x0d: /* basr */ 97 fixup = FIXUP_RETURN_REGISTER; 98 /* if r2 = 0, no branch will be taken */ 99 if ((insn[0] & 0x0f) == 0) 100 fixup |= FIXUP_BRANCH_NOT_TAKEN; 101 break; 102 case 0x06: /* bctr */ 103 case 0x07: /* bcr */ 104 fixup = FIXUP_BRANCH_NOT_TAKEN; 105 break; 106 case 0x45: /* bal */ 107 case 0x4d: /* bas */ 108 fixup = FIXUP_RETURN_REGISTER; 109 break; 110 case 0x47: /* bc */ 111 case 0x46: /* bct */ 112 case 0x86: /* bxh */ 113 case 0x87: /* bxle */ 114 fixup = FIXUP_BRANCH_NOT_TAKEN; 115 break; 116 case 0x82: /* lpsw */ 117 fixup = FIXUP_NOT_REQUIRED; 118 break; 119 case 0xb2: /* lpswe */ 120 if ((insn[0] & 0xff) == 0xb2) 121 fixup = FIXUP_NOT_REQUIRED; 122 break; 123 case 0xa7: /* bras */ 124 if ((insn[0] & 0x0f) == 0x05) 125 fixup |= FIXUP_RETURN_REGISTER; 126 break; 127 case 0xc0: 128 if ((insn[0] & 0x0f) == 0x05) /* brasl */ 129 fixup |= FIXUP_RETURN_REGISTER; 130 break; 131 case 0xeb: 132 switch (insn[2] & 0xff) { 133 case 0x44: /* bxhg */ 134 case 0x45: /* bxleg */ 135 fixup = FIXUP_BRANCH_NOT_TAKEN; 136 break; 137 } 138 break; 139 case 0xe3: /* bctg */ 140 if ((insn[2] & 0xff) == 0x46) 141 fixup = FIXUP_BRANCH_NOT_TAKEN; 142 break; 143 case 0xec: 144 switch (insn[2] & 0xff) { 145 case 0xe5: /* clgrb */ 146 case 0xe6: /* cgrb */ 147 case 0xf6: /* crb */ 148 case 0xf7: /* clrb */ 149 case 0xfc: /* cgib */ 150 case 0xfd: /* cglib */ 151 case 0xfe: /* cib */ 152 case 0xff: /* clib */ 153 fixup = FIXUP_BRANCH_NOT_TAKEN; 154 break; 155 } 156 break; 157 } 158 return fixup; 159 } 160 161 static int __kprobes is_insn_relative_long(kprobe_opcode_t *insn) 162 { 163 /* Check if we have a RIL-b or RIL-c format instruction which 164 * we need to modify in order to avoid instruction emulation. */ 165 switch (insn[0] >> 8) { 166 case 0xc0: 167 if ((insn[0] & 0x0f) == 0x00) /* larl */ 168 return true; 169 break; 170 case 0xc4: 171 switch (insn[0] & 0x0f) { 172 case 0x02: /* llhrl */ 173 case 0x04: /* lghrl */ 174 case 0x05: /* lhrl */ 175 case 0x06: /* llghrl */ 176 case 0x07: /* sthrl */ 177 case 0x08: /* lgrl */ 178 case 0x0b: /* stgrl */ 179 case 0x0c: /* lgfrl */ 180 case 0x0d: /* lrl */ 181 case 0x0e: /* llgfrl */ 182 case 0x0f: /* strl */ 183 return true; 184 } 185 break; 186 case 0xc6: 187 switch (insn[0] & 0x0f) { 188 case 0x02: /* pfdrl */ 189 case 0x04: /* cghrl */ 190 case 0x05: /* chrl */ 191 case 0x06: /* clghrl */ 192 case 0x07: /* clhrl */ 193 case 0x08: /* cgrl */ 194 case 0x0a: /* clgrl */ 195 case 0x0c: /* cgfrl */ 196 case 0x0d: /* crl */ 197 case 0x0e: /* clgfrl */ 198 case 0x0f: /* clrl */ 199 return true; 200 } 201 break; 202 } 203 return false; 204 } 205 206 static void __kprobes copy_instruction(struct kprobe *p) 207 { 208 s64 disp, new_disp; 209 u64 addr, new_addr; 210 211 memcpy(p->ainsn.insn, p->addr, ((p->opcode >> 14) + 3) & -2); 212 if (!is_insn_relative_long(p->ainsn.insn)) 213 return; 214 /* 215 * For pc-relative instructions in RIL-b or RIL-c format patch the 216 * RI2 displacement field. We have already made sure that the insn 217 * slot for the patched instruction is within the same 2GB area 218 * as the original instruction (either kernel image or module area). 219 * Therefore the new displacement will always fit. 220 */ 221 disp = *(s32 *)&p->ainsn.insn[1]; 222 addr = (u64)(unsigned long)p->addr; 223 new_addr = (u64)(unsigned long)p->ainsn.insn; 224 new_disp = ((addr + (disp * 2)) - new_addr) / 2; 225 *(s32 *)&p->ainsn.insn[1] = new_disp; 226 } 227 228 static inline int is_kernel_addr(void *addr) 229 { 230 return addr < (void *)_end; 231 } 232 233 static inline int is_module_addr(void *addr) 234 { 235 #ifdef CONFIG_64BIT 236 BUILD_BUG_ON(MODULES_LEN > (1UL << 31)); 237 if (addr < (void *)MODULES_VADDR) 238 return 0; 239 if (addr > (void *)MODULES_END) 240 return 0; 241 #endif 242 return 1; 243 } 244 245 static int __kprobes s390_get_insn_slot(struct kprobe *p) 246 { 247 /* 248 * Get an insn slot that is within the same 2GB area like the original 249 * instruction. That way instructions with a 32bit signed displacement 250 * field can be patched and executed within the insn slot. 251 */ 252 p->ainsn.insn = NULL; 253 if (is_kernel_addr(p->addr)) 254 p->ainsn.insn = get_dmainsn_slot(); 255 if (is_module_addr(p->addr)) 256 p->ainsn.insn = get_insn_slot(); 257 return p->ainsn.insn ? 0 : -ENOMEM; 258 } 259 260 static void __kprobes s390_free_insn_slot(struct kprobe *p) 261 { 262 if (!p->ainsn.insn) 263 return; 264 if (is_kernel_addr(p->addr)) 265 free_dmainsn_slot(p->ainsn.insn, 0); 266 else 267 free_insn_slot(p->ainsn.insn, 0); 268 p->ainsn.insn = NULL; 269 } 270 271 int __kprobes arch_prepare_kprobe(struct kprobe *p) 272 { 273 if ((unsigned long) p->addr & 0x01) 274 return -EINVAL; 275 /* Make sure the probe isn't going on a difficult instruction */ 276 if (is_prohibited_opcode(p->addr)) 277 return -EINVAL; 278 if (s390_get_insn_slot(p)) 279 return -ENOMEM; 280 p->opcode = *p->addr; 281 copy_instruction(p); 282 return 0; 283 } 284 285 struct ins_replace_args { 286 kprobe_opcode_t *ptr; 287 kprobe_opcode_t opcode; 288 }; 289 290 static int __kprobes swap_instruction(void *aref) 291 { 292 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); 293 unsigned long status = kcb->kprobe_status; 294 struct ins_replace_args *args = aref; 295 296 kcb->kprobe_status = KPROBE_SWAP_INST; 297 probe_kernel_write(args->ptr, &args->opcode, sizeof(args->opcode)); 298 kcb->kprobe_status = status; 299 return 0; 300 } 301 302 void __kprobes arch_arm_kprobe(struct kprobe *p) 303 { 304 struct ins_replace_args args; 305 306 args.ptr = p->addr; 307 args.opcode = BREAKPOINT_INSTRUCTION; 308 stop_machine(swap_instruction, &args, NULL); 309 } 310 311 void __kprobes arch_disarm_kprobe(struct kprobe *p) 312 { 313 struct ins_replace_args args; 314 315 args.ptr = p->addr; 316 args.opcode = p->opcode; 317 stop_machine(swap_instruction, &args, NULL); 318 } 319 320 void __kprobes arch_remove_kprobe(struct kprobe *p) 321 { 322 s390_free_insn_slot(p); 323 } 324 325 static void __kprobes enable_singlestep(struct kprobe_ctlblk *kcb, 326 struct pt_regs *regs, 327 unsigned long ip) 328 { 329 struct per_regs per_kprobe; 330 331 /* Set up the PER control registers %cr9-%cr11 */ 332 per_kprobe.control = PER_EVENT_IFETCH; 333 per_kprobe.start = ip; 334 per_kprobe.end = ip; 335 336 /* Save control regs and psw mask */ 337 __ctl_store(kcb->kprobe_saved_ctl, 9, 11); 338 kcb->kprobe_saved_imask = regs->psw.mask & 339 (PSW_MASK_PER | PSW_MASK_IO | PSW_MASK_EXT); 340 341 /* Set PER control regs, turns on single step for the given address */ 342 __ctl_load(per_kprobe, 9, 11); 343 regs->psw.mask |= PSW_MASK_PER; 344 regs->psw.mask &= ~(PSW_MASK_IO | PSW_MASK_EXT); 345 regs->psw.addr = ip | PSW_ADDR_AMODE; 346 } 347 348 static void __kprobes disable_singlestep(struct kprobe_ctlblk *kcb, 349 struct pt_regs *regs, 350 unsigned long ip) 351 { 352 /* Restore control regs and psw mask, set new psw address */ 353 __ctl_load(kcb->kprobe_saved_ctl, 9, 11); 354 regs->psw.mask &= ~PSW_MASK_PER; 355 regs->psw.mask |= kcb->kprobe_saved_imask; 356 regs->psw.addr = ip | PSW_ADDR_AMODE; 357 } 358 359 /* 360 * Activate a kprobe by storing its pointer to current_kprobe. The 361 * previous kprobe is stored in kcb->prev_kprobe. A stack of up to 362 * two kprobes can be active, see KPROBE_REENTER. 363 */ 364 static void __kprobes push_kprobe(struct kprobe_ctlblk *kcb, struct kprobe *p) 365 { 366 kcb->prev_kprobe.kp = __get_cpu_var(current_kprobe); 367 kcb->prev_kprobe.status = kcb->kprobe_status; 368 __get_cpu_var(current_kprobe) = p; 369 } 370 371 /* 372 * Deactivate a kprobe by backing up to the previous state. If the 373 * current state is KPROBE_REENTER prev_kprobe.kp will be non-NULL, 374 * for any other state prev_kprobe.kp will be NULL. 375 */ 376 static void __kprobes pop_kprobe(struct kprobe_ctlblk *kcb) 377 { 378 __get_cpu_var(current_kprobe) = kcb->prev_kprobe.kp; 379 kcb->kprobe_status = kcb->prev_kprobe.status; 380 } 381 382 void __kprobes arch_prepare_kretprobe(struct kretprobe_instance *ri, 383 struct pt_regs *regs) 384 { 385 ri->ret_addr = (kprobe_opcode_t *) regs->gprs[14]; 386 387 /* Replace the return addr with trampoline addr */ 388 regs->gprs[14] = (unsigned long) &kretprobe_trampoline; 389 } 390 391 static void __kprobes kprobe_reenter_check(struct kprobe_ctlblk *kcb, 392 struct kprobe *p) 393 { 394 switch (kcb->kprobe_status) { 395 case KPROBE_HIT_SSDONE: 396 case KPROBE_HIT_ACTIVE: 397 kprobes_inc_nmissed_count(p); 398 break; 399 case KPROBE_HIT_SS: 400 case KPROBE_REENTER: 401 default: 402 /* 403 * A kprobe on the code path to single step an instruction 404 * is a BUG. The code path resides in the .kprobes.text 405 * section and is executed with interrupts disabled. 406 */ 407 printk(KERN_EMERG "Invalid kprobe detected at %p.\n", p->addr); 408 dump_kprobe(p); 409 BUG(); 410 } 411 } 412 413 static int __kprobes kprobe_handler(struct pt_regs *regs) 414 { 415 struct kprobe_ctlblk *kcb; 416 struct kprobe *p; 417 418 /* 419 * We want to disable preemption for the entire duration of kprobe 420 * processing. That includes the calls to the pre/post handlers 421 * and single stepping the kprobe instruction. 422 */ 423 preempt_disable(); 424 kcb = get_kprobe_ctlblk(); 425 p = get_kprobe((void *)((regs->psw.addr & PSW_ADDR_INSN) - 2)); 426 427 if (p) { 428 if (kprobe_running()) { 429 /* 430 * We have hit a kprobe while another is still 431 * active. This can happen in the pre and post 432 * handler. Single step the instruction of the 433 * new probe but do not call any handler function 434 * of this secondary kprobe. 435 * push_kprobe and pop_kprobe saves and restores 436 * the currently active kprobe. 437 */ 438 kprobe_reenter_check(kcb, p); 439 push_kprobe(kcb, p); 440 kcb->kprobe_status = KPROBE_REENTER; 441 } else { 442 /* 443 * If we have no pre-handler or it returned 0, we 444 * continue with single stepping. If we have a 445 * pre-handler and it returned non-zero, it prepped 446 * for calling the break_handler below on re-entry 447 * for jprobe processing, so get out doing nothing 448 * more here. 449 */ 450 push_kprobe(kcb, p); 451 kcb->kprobe_status = KPROBE_HIT_ACTIVE; 452 if (p->pre_handler && p->pre_handler(p, regs)) 453 return 1; 454 kcb->kprobe_status = KPROBE_HIT_SS; 455 } 456 enable_singlestep(kcb, regs, (unsigned long) p->ainsn.insn); 457 return 1; 458 } else if (kprobe_running()) { 459 p = __get_cpu_var(current_kprobe); 460 if (p->break_handler && p->break_handler(p, regs)) { 461 /* 462 * Continuation after the jprobe completed and 463 * caused the jprobe_return trap. The jprobe 464 * break_handler "returns" to the original 465 * function that still has the kprobe breakpoint 466 * installed. We continue with single stepping. 467 */ 468 kcb->kprobe_status = KPROBE_HIT_SS; 469 enable_singlestep(kcb, regs, 470 (unsigned long) p->ainsn.insn); 471 return 1; 472 } /* else: 473 * No kprobe at this address and the current kprobe 474 * has no break handler (no jprobe!). The kernel just 475 * exploded, let the standard trap handler pick up the 476 * pieces. 477 */ 478 } /* else: 479 * No kprobe at this address and no active kprobe. The trap has 480 * not been caused by a kprobe breakpoint. The race of breakpoint 481 * vs. kprobe remove does not exist because on s390 as we use 482 * stop_machine to arm/disarm the breakpoints. 483 */ 484 preempt_enable_no_resched(); 485 return 0; 486 } 487 488 /* 489 * Function return probe trampoline: 490 * - init_kprobes() establishes a probepoint here 491 * - When the probed function returns, this probe 492 * causes the handlers to fire 493 */ 494 static void __used kretprobe_trampoline_holder(void) 495 { 496 asm volatile(".global kretprobe_trampoline\n" 497 "kretprobe_trampoline: bcr 0,0\n"); 498 } 499 500 /* 501 * Called when the probe at kretprobe trampoline is hit 502 */ 503 static int __kprobes trampoline_probe_handler(struct kprobe *p, 504 struct pt_regs *regs) 505 { 506 struct kretprobe_instance *ri; 507 struct hlist_head *head, empty_rp; 508 struct hlist_node *tmp; 509 unsigned long flags, orig_ret_address; 510 unsigned long trampoline_address; 511 kprobe_opcode_t *correct_ret_addr; 512 513 INIT_HLIST_HEAD(&empty_rp); 514 kretprobe_hash_lock(current, &head, &flags); 515 516 /* 517 * It is possible to have multiple instances associated with a given 518 * task either because an multiple functions in the call path 519 * have a return probe installed on them, and/or more than one return 520 * return probe was registered for a target function. 521 * 522 * We can handle this because: 523 * - instances are always inserted at the head of the list 524 * - when multiple return probes are registered for the same 525 * function, the first instance's ret_addr will point to the 526 * real return address, and all the rest will point to 527 * kretprobe_trampoline 528 */ 529 ri = NULL; 530 orig_ret_address = 0; 531 correct_ret_addr = NULL; 532 trampoline_address = (unsigned long) &kretprobe_trampoline; 533 hlist_for_each_entry_safe(ri, tmp, head, hlist) { 534 if (ri->task != current) 535 /* another task is sharing our hash bucket */ 536 continue; 537 538 orig_ret_address = (unsigned long) ri->ret_addr; 539 540 if (orig_ret_address != trampoline_address) 541 /* 542 * This is the real return address. Any other 543 * instances associated with this task are for 544 * other calls deeper on the call stack 545 */ 546 break; 547 } 548 549 kretprobe_assert(ri, orig_ret_address, trampoline_address); 550 551 correct_ret_addr = ri->ret_addr; 552 hlist_for_each_entry_safe(ri, tmp, head, hlist) { 553 if (ri->task != current) 554 /* another task is sharing our hash bucket */ 555 continue; 556 557 orig_ret_address = (unsigned long) ri->ret_addr; 558 559 if (ri->rp && ri->rp->handler) { 560 ri->ret_addr = correct_ret_addr; 561 ri->rp->handler(ri, regs); 562 } 563 564 recycle_rp_inst(ri, &empty_rp); 565 566 if (orig_ret_address != trampoline_address) 567 /* 568 * This is the real return address. Any other 569 * instances associated with this task are for 570 * other calls deeper on the call stack 571 */ 572 break; 573 } 574 575 regs->psw.addr = orig_ret_address | PSW_ADDR_AMODE; 576 577 pop_kprobe(get_kprobe_ctlblk()); 578 kretprobe_hash_unlock(current, &flags); 579 preempt_enable_no_resched(); 580 581 hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) { 582 hlist_del(&ri->hlist); 583 kfree(ri); 584 } 585 /* 586 * By returning a non-zero value, we are telling 587 * kprobe_handler() that we don't want the post_handler 588 * to run (and have re-enabled preemption) 589 */ 590 return 1; 591 } 592 593 /* 594 * Called after single-stepping. p->addr is the address of the 595 * instruction whose first byte has been replaced by the "breakpoint" 596 * instruction. To avoid the SMP problems that can occur when we 597 * temporarily put back the original opcode to single-step, we 598 * single-stepped a copy of the instruction. The address of this 599 * copy is p->ainsn.insn. 600 */ 601 static void __kprobes resume_execution(struct kprobe *p, struct pt_regs *regs) 602 { 603 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); 604 unsigned long ip = regs->psw.addr & PSW_ADDR_INSN; 605 int fixup = get_fixup_type(p->ainsn.insn); 606 607 if (fixup & FIXUP_PSW_NORMAL) 608 ip += (unsigned long) p->addr - (unsigned long) p->ainsn.insn; 609 610 if (fixup & FIXUP_BRANCH_NOT_TAKEN) { 611 int ilen = ((p->ainsn.insn[0] >> 14) + 3) & -2; 612 if (ip - (unsigned long) p->ainsn.insn == ilen) 613 ip = (unsigned long) p->addr + ilen; 614 } 615 616 if (fixup & FIXUP_RETURN_REGISTER) { 617 int reg = (p->ainsn.insn[0] & 0xf0) >> 4; 618 regs->gprs[reg] += (unsigned long) p->addr - 619 (unsigned long) p->ainsn.insn; 620 } 621 622 disable_singlestep(kcb, regs, ip); 623 } 624 625 static int __kprobes post_kprobe_handler(struct pt_regs *regs) 626 { 627 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); 628 struct kprobe *p = kprobe_running(); 629 630 if (!p) 631 return 0; 632 633 if (kcb->kprobe_status != KPROBE_REENTER && p->post_handler) { 634 kcb->kprobe_status = KPROBE_HIT_SSDONE; 635 p->post_handler(p, regs, 0); 636 } 637 638 resume_execution(p, regs); 639 pop_kprobe(kcb); 640 preempt_enable_no_resched(); 641 642 /* 643 * if somebody else is singlestepping across a probe point, psw mask 644 * will have PER set, in which case, continue the remaining processing 645 * of do_single_step, as if this is not a probe hit. 646 */ 647 if (regs->psw.mask & PSW_MASK_PER) 648 return 0; 649 650 return 1; 651 } 652 653 static int __kprobes kprobe_trap_handler(struct pt_regs *regs, int trapnr) 654 { 655 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); 656 struct kprobe *p = kprobe_running(); 657 const struct exception_table_entry *entry; 658 659 switch(kcb->kprobe_status) { 660 case KPROBE_SWAP_INST: 661 /* We are here because the instruction replacement failed */ 662 return 0; 663 case KPROBE_HIT_SS: 664 case KPROBE_REENTER: 665 /* 666 * We are here because the instruction being single 667 * stepped caused a page fault. We reset the current 668 * kprobe and the nip points back to the probe address 669 * and allow the page fault handler to continue as a 670 * normal page fault. 671 */ 672 disable_singlestep(kcb, regs, (unsigned long) p->addr); 673 pop_kprobe(kcb); 674 preempt_enable_no_resched(); 675 break; 676 case KPROBE_HIT_ACTIVE: 677 case KPROBE_HIT_SSDONE: 678 /* 679 * We increment the nmissed count for accounting, 680 * we can also use npre/npostfault count for accouting 681 * these specific fault cases. 682 */ 683 kprobes_inc_nmissed_count(p); 684 685 /* 686 * We come here because instructions in the pre/post 687 * handler caused the page_fault, this could happen 688 * if handler tries to access user space by 689 * copy_from_user(), get_user() etc. Let the 690 * user-specified handler try to fix it first. 691 */ 692 if (p->fault_handler && p->fault_handler(p, regs, trapnr)) 693 return 1; 694 695 /* 696 * In case the user-specified fault handler returned 697 * zero, try to fix up. 698 */ 699 entry = search_exception_tables(regs->psw.addr & PSW_ADDR_INSN); 700 if (entry) { 701 regs->psw.addr = extable_fixup(entry) | PSW_ADDR_AMODE; 702 return 1; 703 } 704 705 /* 706 * fixup_exception() could not handle it, 707 * Let do_page_fault() fix it. 708 */ 709 break; 710 default: 711 break; 712 } 713 return 0; 714 } 715 716 int __kprobes kprobe_fault_handler(struct pt_regs *regs, int trapnr) 717 { 718 int ret; 719 720 if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT)) 721 local_irq_disable(); 722 ret = kprobe_trap_handler(regs, trapnr); 723 if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT)) 724 local_irq_restore(regs->psw.mask & ~PSW_MASK_PER); 725 return ret; 726 } 727 728 /* 729 * Wrapper routine to for handling exceptions. 730 */ 731 int __kprobes kprobe_exceptions_notify(struct notifier_block *self, 732 unsigned long val, void *data) 733 { 734 struct die_args *args = (struct die_args *) data; 735 struct pt_regs *regs = args->regs; 736 int ret = NOTIFY_DONE; 737 738 if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT)) 739 local_irq_disable(); 740 741 switch (val) { 742 case DIE_BPT: 743 if (kprobe_handler(regs)) 744 ret = NOTIFY_STOP; 745 break; 746 case DIE_SSTEP: 747 if (post_kprobe_handler(regs)) 748 ret = NOTIFY_STOP; 749 break; 750 case DIE_TRAP: 751 if (!preemptible() && kprobe_running() && 752 kprobe_trap_handler(regs, args->trapnr)) 753 ret = NOTIFY_STOP; 754 break; 755 default: 756 break; 757 } 758 759 if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT)) 760 local_irq_restore(regs->psw.mask & ~PSW_MASK_PER); 761 762 return ret; 763 } 764 765 int __kprobes setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs) 766 { 767 struct jprobe *jp = container_of(p, struct jprobe, kp); 768 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); 769 unsigned long stack; 770 771 memcpy(&kcb->jprobe_saved_regs, regs, sizeof(struct pt_regs)); 772 773 /* setup return addr to the jprobe handler routine */ 774 regs->psw.addr = (unsigned long) jp->entry | PSW_ADDR_AMODE; 775 regs->psw.mask &= ~(PSW_MASK_IO | PSW_MASK_EXT); 776 777 /* r15 is the stack pointer */ 778 stack = (unsigned long) regs->gprs[15]; 779 780 memcpy(kcb->jprobes_stack, (void *) stack, MIN_STACK_SIZE(stack)); 781 return 1; 782 } 783 784 void __kprobes jprobe_return(void) 785 { 786 asm volatile(".word 0x0002"); 787 } 788 789 static void __used __kprobes jprobe_return_end(void) 790 { 791 asm volatile("bcr 0,0"); 792 } 793 794 int __kprobes longjmp_break_handler(struct kprobe *p, struct pt_regs *regs) 795 { 796 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); 797 unsigned long stack; 798 799 stack = (unsigned long) kcb->jprobe_saved_regs.gprs[15]; 800 801 /* Put the regs back */ 802 memcpy(regs, &kcb->jprobe_saved_regs, sizeof(struct pt_regs)); 803 /* put the stack back */ 804 memcpy((void *) stack, kcb->jprobes_stack, MIN_STACK_SIZE(stack)); 805 preempt_enable_no_resched(); 806 return 1; 807 } 808 809 static struct kprobe trampoline = { 810 .addr = (kprobe_opcode_t *) &kretprobe_trampoline, 811 .pre_handler = trampoline_probe_handler 812 }; 813 814 int __init arch_init_kprobes(void) 815 { 816 return register_kprobe(&trampoline); 817 } 818 819 int __kprobes arch_trampoline_kprobe(struct kprobe *p) 820 { 821 return p->addr == (kprobe_opcode_t *) &kretprobe_trampoline; 822 } 823