xref: /openbmc/linux/arch/s390/kernel/kprobes.c (revision cd5d5810)
1 /*
2  *  Kernel Probes (KProbes)
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; either version 2 of the License, or
7  * (at your option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17  *
18  * Copyright IBM Corp. 2002, 2006
19  *
20  * s390 port, used ppc64 as template. Mike Grundy <grundym@us.ibm.com>
21  */
22 
23 #include <linux/kprobes.h>
24 #include <linux/ptrace.h>
25 #include <linux/preempt.h>
26 #include <linux/stop_machine.h>
27 #include <linux/kdebug.h>
28 #include <linux/uaccess.h>
29 #include <asm/cacheflush.h>
30 #include <asm/sections.h>
31 #include <linux/module.h>
32 #include <linux/slab.h>
33 #include <linux/hardirq.h>
34 
35 DEFINE_PER_CPU(struct kprobe *, current_kprobe);
36 DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
37 
38 struct kretprobe_blackpoint kretprobe_blacklist[] = { };
39 
40 DEFINE_INSN_CACHE_OPS(dmainsn);
41 
42 static void *alloc_dmainsn_page(void)
43 {
44 	return (void *)__get_free_page(GFP_KERNEL | GFP_DMA);
45 }
46 
47 static void free_dmainsn_page(void *page)
48 {
49 	free_page((unsigned long)page);
50 }
51 
52 struct kprobe_insn_cache kprobe_dmainsn_slots = {
53 	.mutex = __MUTEX_INITIALIZER(kprobe_dmainsn_slots.mutex),
54 	.alloc = alloc_dmainsn_page,
55 	.free = free_dmainsn_page,
56 	.pages = LIST_HEAD_INIT(kprobe_dmainsn_slots.pages),
57 	.insn_size = MAX_INSN_SIZE,
58 };
59 
60 static int __kprobes is_prohibited_opcode(kprobe_opcode_t *insn)
61 {
62 	switch (insn[0] >> 8) {
63 	case 0x0c:	/* bassm */
64 	case 0x0b:	/* bsm	 */
65 	case 0x83:	/* diag  */
66 	case 0x44:	/* ex	 */
67 	case 0xac:	/* stnsm */
68 	case 0xad:	/* stosm */
69 		return -EINVAL;
70 	case 0xc6:
71 		switch (insn[0] & 0x0f) {
72 		case 0x00: /* exrl   */
73 			return -EINVAL;
74 		}
75 	}
76 	switch (insn[0]) {
77 	case 0x0101:	/* pr	 */
78 	case 0xb25a:	/* bsa	 */
79 	case 0xb240:	/* bakr  */
80 	case 0xb258:	/* bsg	 */
81 	case 0xb218:	/* pc	 */
82 	case 0xb228:	/* pt	 */
83 	case 0xb98d:	/* epsw	 */
84 		return -EINVAL;
85 	}
86 	return 0;
87 }
88 
89 static int __kprobes get_fixup_type(kprobe_opcode_t *insn)
90 {
91 	/* default fixup method */
92 	int fixup = FIXUP_PSW_NORMAL;
93 
94 	switch (insn[0] >> 8) {
95 	case 0x05:	/* balr	*/
96 	case 0x0d:	/* basr */
97 		fixup = FIXUP_RETURN_REGISTER;
98 		/* if r2 = 0, no branch will be taken */
99 		if ((insn[0] & 0x0f) == 0)
100 			fixup |= FIXUP_BRANCH_NOT_TAKEN;
101 		break;
102 	case 0x06:	/* bctr	*/
103 	case 0x07:	/* bcr	*/
104 		fixup = FIXUP_BRANCH_NOT_TAKEN;
105 		break;
106 	case 0x45:	/* bal	*/
107 	case 0x4d:	/* bas	*/
108 		fixup = FIXUP_RETURN_REGISTER;
109 		break;
110 	case 0x47:	/* bc	*/
111 	case 0x46:	/* bct	*/
112 	case 0x86:	/* bxh	*/
113 	case 0x87:	/* bxle	*/
114 		fixup = FIXUP_BRANCH_NOT_TAKEN;
115 		break;
116 	case 0x82:	/* lpsw	*/
117 		fixup = FIXUP_NOT_REQUIRED;
118 		break;
119 	case 0xb2:	/* lpswe */
120 		if ((insn[0] & 0xff) == 0xb2)
121 			fixup = FIXUP_NOT_REQUIRED;
122 		break;
123 	case 0xa7:	/* bras	*/
124 		if ((insn[0] & 0x0f) == 0x05)
125 			fixup |= FIXUP_RETURN_REGISTER;
126 		break;
127 	case 0xc0:
128 		if ((insn[0] & 0x0f) == 0x05)	/* brasl */
129 			fixup |= FIXUP_RETURN_REGISTER;
130 		break;
131 	case 0xeb:
132 		switch (insn[2] & 0xff) {
133 		case 0x44: /* bxhg  */
134 		case 0x45: /* bxleg */
135 			fixup = FIXUP_BRANCH_NOT_TAKEN;
136 			break;
137 		}
138 		break;
139 	case 0xe3:	/* bctg	*/
140 		if ((insn[2] & 0xff) == 0x46)
141 			fixup = FIXUP_BRANCH_NOT_TAKEN;
142 		break;
143 	case 0xec:
144 		switch (insn[2] & 0xff) {
145 		case 0xe5: /* clgrb */
146 		case 0xe6: /* cgrb  */
147 		case 0xf6: /* crb   */
148 		case 0xf7: /* clrb  */
149 		case 0xfc: /* cgib  */
150 		case 0xfd: /* cglib */
151 		case 0xfe: /* cib   */
152 		case 0xff: /* clib  */
153 			fixup = FIXUP_BRANCH_NOT_TAKEN;
154 			break;
155 		}
156 		break;
157 	}
158 	return fixup;
159 }
160 
161 static int __kprobes is_insn_relative_long(kprobe_opcode_t *insn)
162 {
163 	/* Check if we have a RIL-b or RIL-c format instruction which
164 	 * we need to modify in order to avoid instruction emulation. */
165 	switch (insn[0] >> 8) {
166 	case 0xc0:
167 		if ((insn[0] & 0x0f) == 0x00) /* larl */
168 			return true;
169 		break;
170 	case 0xc4:
171 		switch (insn[0] & 0x0f) {
172 		case 0x02: /* llhrl  */
173 		case 0x04: /* lghrl  */
174 		case 0x05: /* lhrl   */
175 		case 0x06: /* llghrl */
176 		case 0x07: /* sthrl  */
177 		case 0x08: /* lgrl   */
178 		case 0x0b: /* stgrl  */
179 		case 0x0c: /* lgfrl  */
180 		case 0x0d: /* lrl    */
181 		case 0x0e: /* llgfrl */
182 		case 0x0f: /* strl   */
183 			return true;
184 		}
185 		break;
186 	case 0xc6:
187 		switch (insn[0] & 0x0f) {
188 		case 0x02: /* pfdrl  */
189 		case 0x04: /* cghrl  */
190 		case 0x05: /* chrl   */
191 		case 0x06: /* clghrl */
192 		case 0x07: /* clhrl  */
193 		case 0x08: /* cgrl   */
194 		case 0x0a: /* clgrl  */
195 		case 0x0c: /* cgfrl  */
196 		case 0x0d: /* crl    */
197 		case 0x0e: /* clgfrl */
198 		case 0x0f: /* clrl   */
199 			return true;
200 		}
201 		break;
202 	}
203 	return false;
204 }
205 
206 static void __kprobes copy_instruction(struct kprobe *p)
207 {
208 	s64 disp, new_disp;
209 	u64 addr, new_addr;
210 
211 	memcpy(p->ainsn.insn, p->addr, ((p->opcode >> 14) + 3) & -2);
212 	if (!is_insn_relative_long(p->ainsn.insn))
213 		return;
214 	/*
215 	 * For pc-relative instructions in RIL-b or RIL-c format patch the
216 	 * RI2 displacement field. We have already made sure that the insn
217 	 * slot for the patched instruction is within the same 2GB area
218 	 * as the original instruction (either kernel image or module area).
219 	 * Therefore the new displacement will always fit.
220 	 */
221 	disp = *(s32 *)&p->ainsn.insn[1];
222 	addr = (u64)(unsigned long)p->addr;
223 	new_addr = (u64)(unsigned long)p->ainsn.insn;
224 	new_disp = ((addr + (disp * 2)) - new_addr) / 2;
225 	*(s32 *)&p->ainsn.insn[1] = new_disp;
226 }
227 
228 static inline int is_kernel_addr(void *addr)
229 {
230 	return addr < (void *)_end;
231 }
232 
233 static inline int is_module_addr(void *addr)
234 {
235 #ifdef CONFIG_64BIT
236 	BUILD_BUG_ON(MODULES_LEN > (1UL << 31));
237 	if (addr < (void *)MODULES_VADDR)
238 		return 0;
239 	if (addr > (void *)MODULES_END)
240 		return 0;
241 #endif
242 	return 1;
243 }
244 
245 static int __kprobes s390_get_insn_slot(struct kprobe *p)
246 {
247 	/*
248 	 * Get an insn slot that is within the same 2GB area like the original
249 	 * instruction. That way instructions with a 32bit signed displacement
250 	 * field can be patched and executed within the insn slot.
251 	 */
252 	p->ainsn.insn = NULL;
253 	if (is_kernel_addr(p->addr))
254 		p->ainsn.insn = get_dmainsn_slot();
255 	if (is_module_addr(p->addr))
256 		p->ainsn.insn = get_insn_slot();
257 	return p->ainsn.insn ? 0 : -ENOMEM;
258 }
259 
260 static void __kprobes s390_free_insn_slot(struct kprobe *p)
261 {
262 	if (!p->ainsn.insn)
263 		return;
264 	if (is_kernel_addr(p->addr))
265 		free_dmainsn_slot(p->ainsn.insn, 0);
266 	else
267 		free_insn_slot(p->ainsn.insn, 0);
268 	p->ainsn.insn = NULL;
269 }
270 
271 int __kprobes arch_prepare_kprobe(struct kprobe *p)
272 {
273 	if ((unsigned long) p->addr & 0x01)
274 		return -EINVAL;
275 	/* Make sure the probe isn't going on a difficult instruction */
276 	if (is_prohibited_opcode(p->addr))
277 		return -EINVAL;
278 	if (s390_get_insn_slot(p))
279 		return -ENOMEM;
280 	p->opcode = *p->addr;
281 	copy_instruction(p);
282 	return 0;
283 }
284 
285 struct ins_replace_args {
286 	kprobe_opcode_t *ptr;
287 	kprobe_opcode_t opcode;
288 };
289 
290 static int __kprobes swap_instruction(void *aref)
291 {
292 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
293 	unsigned long status = kcb->kprobe_status;
294 	struct ins_replace_args *args = aref;
295 
296 	kcb->kprobe_status = KPROBE_SWAP_INST;
297 	probe_kernel_write(args->ptr, &args->opcode, sizeof(args->opcode));
298 	kcb->kprobe_status = status;
299 	return 0;
300 }
301 
302 void __kprobes arch_arm_kprobe(struct kprobe *p)
303 {
304 	struct ins_replace_args args;
305 
306 	args.ptr = p->addr;
307 	args.opcode = BREAKPOINT_INSTRUCTION;
308 	stop_machine(swap_instruction, &args, NULL);
309 }
310 
311 void __kprobes arch_disarm_kprobe(struct kprobe *p)
312 {
313 	struct ins_replace_args args;
314 
315 	args.ptr = p->addr;
316 	args.opcode = p->opcode;
317 	stop_machine(swap_instruction, &args, NULL);
318 }
319 
320 void __kprobes arch_remove_kprobe(struct kprobe *p)
321 {
322 	s390_free_insn_slot(p);
323 }
324 
325 static void __kprobes enable_singlestep(struct kprobe_ctlblk *kcb,
326 					struct pt_regs *regs,
327 					unsigned long ip)
328 {
329 	struct per_regs per_kprobe;
330 
331 	/* Set up the PER control registers %cr9-%cr11 */
332 	per_kprobe.control = PER_EVENT_IFETCH;
333 	per_kprobe.start = ip;
334 	per_kprobe.end = ip;
335 
336 	/* Save control regs and psw mask */
337 	__ctl_store(kcb->kprobe_saved_ctl, 9, 11);
338 	kcb->kprobe_saved_imask = regs->psw.mask &
339 		(PSW_MASK_PER | PSW_MASK_IO | PSW_MASK_EXT);
340 
341 	/* Set PER control regs, turns on single step for the given address */
342 	__ctl_load(per_kprobe, 9, 11);
343 	regs->psw.mask |= PSW_MASK_PER;
344 	regs->psw.mask &= ~(PSW_MASK_IO | PSW_MASK_EXT);
345 	regs->psw.addr = ip | PSW_ADDR_AMODE;
346 }
347 
348 static void __kprobes disable_singlestep(struct kprobe_ctlblk *kcb,
349 					 struct pt_regs *regs,
350 					 unsigned long ip)
351 {
352 	/* Restore control regs and psw mask, set new psw address */
353 	__ctl_load(kcb->kprobe_saved_ctl, 9, 11);
354 	regs->psw.mask &= ~PSW_MASK_PER;
355 	regs->psw.mask |= kcb->kprobe_saved_imask;
356 	regs->psw.addr = ip | PSW_ADDR_AMODE;
357 }
358 
359 /*
360  * Activate a kprobe by storing its pointer to current_kprobe. The
361  * previous kprobe is stored in kcb->prev_kprobe. A stack of up to
362  * two kprobes can be active, see KPROBE_REENTER.
363  */
364 static void __kprobes push_kprobe(struct kprobe_ctlblk *kcb, struct kprobe *p)
365 {
366 	kcb->prev_kprobe.kp = __get_cpu_var(current_kprobe);
367 	kcb->prev_kprobe.status = kcb->kprobe_status;
368 	__get_cpu_var(current_kprobe) = p;
369 }
370 
371 /*
372  * Deactivate a kprobe by backing up to the previous state. If the
373  * current state is KPROBE_REENTER prev_kprobe.kp will be non-NULL,
374  * for any other state prev_kprobe.kp will be NULL.
375  */
376 static void __kprobes pop_kprobe(struct kprobe_ctlblk *kcb)
377 {
378 	__get_cpu_var(current_kprobe) = kcb->prev_kprobe.kp;
379 	kcb->kprobe_status = kcb->prev_kprobe.status;
380 }
381 
382 void __kprobes arch_prepare_kretprobe(struct kretprobe_instance *ri,
383 					struct pt_regs *regs)
384 {
385 	ri->ret_addr = (kprobe_opcode_t *) regs->gprs[14];
386 
387 	/* Replace the return addr with trampoline addr */
388 	regs->gprs[14] = (unsigned long) &kretprobe_trampoline;
389 }
390 
391 static void __kprobes kprobe_reenter_check(struct kprobe_ctlblk *kcb,
392 					   struct kprobe *p)
393 {
394 	switch (kcb->kprobe_status) {
395 	case KPROBE_HIT_SSDONE:
396 	case KPROBE_HIT_ACTIVE:
397 		kprobes_inc_nmissed_count(p);
398 		break;
399 	case KPROBE_HIT_SS:
400 	case KPROBE_REENTER:
401 	default:
402 		/*
403 		 * A kprobe on the code path to single step an instruction
404 		 * is a BUG. The code path resides in the .kprobes.text
405 		 * section and is executed with interrupts disabled.
406 		 */
407 		printk(KERN_EMERG "Invalid kprobe detected at %p.\n", p->addr);
408 		dump_kprobe(p);
409 		BUG();
410 	}
411 }
412 
413 static int __kprobes kprobe_handler(struct pt_regs *regs)
414 {
415 	struct kprobe_ctlblk *kcb;
416 	struct kprobe *p;
417 
418 	/*
419 	 * We want to disable preemption for the entire duration of kprobe
420 	 * processing. That includes the calls to the pre/post handlers
421 	 * and single stepping the kprobe instruction.
422 	 */
423 	preempt_disable();
424 	kcb = get_kprobe_ctlblk();
425 	p = get_kprobe((void *)((regs->psw.addr & PSW_ADDR_INSN) - 2));
426 
427 	if (p) {
428 		if (kprobe_running()) {
429 			/*
430 			 * We have hit a kprobe while another is still
431 			 * active. This can happen in the pre and post
432 			 * handler. Single step the instruction of the
433 			 * new probe but do not call any handler function
434 			 * of this secondary kprobe.
435 			 * push_kprobe and pop_kprobe saves and restores
436 			 * the currently active kprobe.
437 			 */
438 			kprobe_reenter_check(kcb, p);
439 			push_kprobe(kcb, p);
440 			kcb->kprobe_status = KPROBE_REENTER;
441 		} else {
442 			/*
443 			 * If we have no pre-handler or it returned 0, we
444 			 * continue with single stepping. If we have a
445 			 * pre-handler and it returned non-zero, it prepped
446 			 * for calling the break_handler below on re-entry
447 			 * for jprobe processing, so get out doing nothing
448 			 * more here.
449 			 */
450 			push_kprobe(kcb, p);
451 			kcb->kprobe_status = KPROBE_HIT_ACTIVE;
452 			if (p->pre_handler && p->pre_handler(p, regs))
453 				return 1;
454 			kcb->kprobe_status = KPROBE_HIT_SS;
455 		}
456 		enable_singlestep(kcb, regs, (unsigned long) p->ainsn.insn);
457 		return 1;
458 	} else if (kprobe_running()) {
459 		p = __get_cpu_var(current_kprobe);
460 		if (p->break_handler && p->break_handler(p, regs)) {
461 			/*
462 			 * Continuation after the jprobe completed and
463 			 * caused the jprobe_return trap. The jprobe
464 			 * break_handler "returns" to the original
465 			 * function that still has the kprobe breakpoint
466 			 * installed. We continue with single stepping.
467 			 */
468 			kcb->kprobe_status = KPROBE_HIT_SS;
469 			enable_singlestep(kcb, regs,
470 					  (unsigned long) p->ainsn.insn);
471 			return 1;
472 		} /* else:
473 		   * No kprobe at this address and the current kprobe
474 		   * has no break handler (no jprobe!). The kernel just
475 		   * exploded, let the standard trap handler pick up the
476 		   * pieces.
477 		   */
478 	} /* else:
479 	   * No kprobe at this address and no active kprobe. The trap has
480 	   * not been caused by a kprobe breakpoint. The race of breakpoint
481 	   * vs. kprobe remove does not exist because on s390 as we use
482 	   * stop_machine to arm/disarm the breakpoints.
483 	   */
484 	preempt_enable_no_resched();
485 	return 0;
486 }
487 
488 /*
489  * Function return probe trampoline:
490  *	- init_kprobes() establishes a probepoint here
491  *	- When the probed function returns, this probe
492  *		causes the handlers to fire
493  */
494 static void __used kretprobe_trampoline_holder(void)
495 {
496 	asm volatile(".global kretprobe_trampoline\n"
497 		     "kretprobe_trampoline: bcr 0,0\n");
498 }
499 
500 /*
501  * Called when the probe at kretprobe trampoline is hit
502  */
503 static int __kprobes trampoline_probe_handler(struct kprobe *p,
504 					      struct pt_regs *regs)
505 {
506 	struct kretprobe_instance *ri;
507 	struct hlist_head *head, empty_rp;
508 	struct hlist_node *tmp;
509 	unsigned long flags, orig_ret_address;
510 	unsigned long trampoline_address;
511 	kprobe_opcode_t *correct_ret_addr;
512 
513 	INIT_HLIST_HEAD(&empty_rp);
514 	kretprobe_hash_lock(current, &head, &flags);
515 
516 	/*
517 	 * It is possible to have multiple instances associated with a given
518 	 * task either because an multiple functions in the call path
519 	 * have a return probe installed on them, and/or more than one return
520 	 * return probe was registered for a target function.
521 	 *
522 	 * We can handle this because:
523 	 *     - instances are always inserted at the head of the list
524 	 *     - when multiple return probes are registered for the same
525 	 *	 function, the first instance's ret_addr will point to the
526 	 *	 real return address, and all the rest will point to
527 	 *	 kretprobe_trampoline
528 	 */
529 	ri = NULL;
530 	orig_ret_address = 0;
531 	correct_ret_addr = NULL;
532 	trampoline_address = (unsigned long) &kretprobe_trampoline;
533 	hlist_for_each_entry_safe(ri, tmp, head, hlist) {
534 		if (ri->task != current)
535 			/* another task is sharing our hash bucket */
536 			continue;
537 
538 		orig_ret_address = (unsigned long) ri->ret_addr;
539 
540 		if (orig_ret_address != trampoline_address)
541 			/*
542 			 * This is the real return address. Any other
543 			 * instances associated with this task are for
544 			 * other calls deeper on the call stack
545 			 */
546 			break;
547 	}
548 
549 	kretprobe_assert(ri, orig_ret_address, trampoline_address);
550 
551 	correct_ret_addr = ri->ret_addr;
552 	hlist_for_each_entry_safe(ri, tmp, head, hlist) {
553 		if (ri->task != current)
554 			/* another task is sharing our hash bucket */
555 			continue;
556 
557 		orig_ret_address = (unsigned long) ri->ret_addr;
558 
559 		if (ri->rp && ri->rp->handler) {
560 			ri->ret_addr = correct_ret_addr;
561 			ri->rp->handler(ri, regs);
562 		}
563 
564 		recycle_rp_inst(ri, &empty_rp);
565 
566 		if (orig_ret_address != trampoline_address)
567 			/*
568 			 * This is the real return address. Any other
569 			 * instances associated with this task are for
570 			 * other calls deeper on the call stack
571 			 */
572 			break;
573 	}
574 
575 	regs->psw.addr = orig_ret_address | PSW_ADDR_AMODE;
576 
577 	pop_kprobe(get_kprobe_ctlblk());
578 	kretprobe_hash_unlock(current, &flags);
579 	preempt_enable_no_resched();
580 
581 	hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) {
582 		hlist_del(&ri->hlist);
583 		kfree(ri);
584 	}
585 	/*
586 	 * By returning a non-zero value, we are telling
587 	 * kprobe_handler() that we don't want the post_handler
588 	 * to run (and have re-enabled preemption)
589 	 */
590 	return 1;
591 }
592 
593 /*
594  * Called after single-stepping.  p->addr is the address of the
595  * instruction whose first byte has been replaced by the "breakpoint"
596  * instruction.  To avoid the SMP problems that can occur when we
597  * temporarily put back the original opcode to single-step, we
598  * single-stepped a copy of the instruction.  The address of this
599  * copy is p->ainsn.insn.
600  */
601 static void __kprobes resume_execution(struct kprobe *p, struct pt_regs *regs)
602 {
603 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
604 	unsigned long ip = regs->psw.addr & PSW_ADDR_INSN;
605 	int fixup = get_fixup_type(p->ainsn.insn);
606 
607 	if (fixup & FIXUP_PSW_NORMAL)
608 		ip += (unsigned long) p->addr - (unsigned long) p->ainsn.insn;
609 
610 	if (fixup & FIXUP_BRANCH_NOT_TAKEN) {
611 		int ilen = ((p->ainsn.insn[0] >> 14) + 3) & -2;
612 		if (ip - (unsigned long) p->ainsn.insn == ilen)
613 			ip = (unsigned long) p->addr + ilen;
614 	}
615 
616 	if (fixup & FIXUP_RETURN_REGISTER) {
617 		int reg = (p->ainsn.insn[0] & 0xf0) >> 4;
618 		regs->gprs[reg] += (unsigned long) p->addr -
619 				   (unsigned long) p->ainsn.insn;
620 	}
621 
622 	disable_singlestep(kcb, regs, ip);
623 }
624 
625 static int __kprobes post_kprobe_handler(struct pt_regs *regs)
626 {
627 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
628 	struct kprobe *p = kprobe_running();
629 
630 	if (!p)
631 		return 0;
632 
633 	if (kcb->kprobe_status != KPROBE_REENTER && p->post_handler) {
634 		kcb->kprobe_status = KPROBE_HIT_SSDONE;
635 		p->post_handler(p, regs, 0);
636 	}
637 
638 	resume_execution(p, regs);
639 	pop_kprobe(kcb);
640 	preempt_enable_no_resched();
641 
642 	/*
643 	 * if somebody else is singlestepping across a probe point, psw mask
644 	 * will have PER set, in which case, continue the remaining processing
645 	 * of do_single_step, as if this is not a probe hit.
646 	 */
647 	if (regs->psw.mask & PSW_MASK_PER)
648 		return 0;
649 
650 	return 1;
651 }
652 
653 static int __kprobes kprobe_trap_handler(struct pt_regs *regs, int trapnr)
654 {
655 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
656 	struct kprobe *p = kprobe_running();
657 	const struct exception_table_entry *entry;
658 
659 	switch(kcb->kprobe_status) {
660 	case KPROBE_SWAP_INST:
661 		/* We are here because the instruction replacement failed */
662 		return 0;
663 	case KPROBE_HIT_SS:
664 	case KPROBE_REENTER:
665 		/*
666 		 * We are here because the instruction being single
667 		 * stepped caused a page fault. We reset the current
668 		 * kprobe and the nip points back to the probe address
669 		 * and allow the page fault handler to continue as a
670 		 * normal page fault.
671 		 */
672 		disable_singlestep(kcb, regs, (unsigned long) p->addr);
673 		pop_kprobe(kcb);
674 		preempt_enable_no_resched();
675 		break;
676 	case KPROBE_HIT_ACTIVE:
677 	case KPROBE_HIT_SSDONE:
678 		/*
679 		 * We increment the nmissed count for accounting,
680 		 * we can also use npre/npostfault count for accouting
681 		 * these specific fault cases.
682 		 */
683 		kprobes_inc_nmissed_count(p);
684 
685 		/*
686 		 * We come here because instructions in the pre/post
687 		 * handler caused the page_fault, this could happen
688 		 * if handler tries to access user space by
689 		 * copy_from_user(), get_user() etc. Let the
690 		 * user-specified handler try to fix it first.
691 		 */
692 		if (p->fault_handler && p->fault_handler(p, regs, trapnr))
693 			return 1;
694 
695 		/*
696 		 * In case the user-specified fault handler returned
697 		 * zero, try to fix up.
698 		 */
699 		entry = search_exception_tables(regs->psw.addr & PSW_ADDR_INSN);
700 		if (entry) {
701 			regs->psw.addr = extable_fixup(entry) | PSW_ADDR_AMODE;
702 			return 1;
703 		}
704 
705 		/*
706 		 * fixup_exception() could not handle it,
707 		 * Let do_page_fault() fix it.
708 		 */
709 		break;
710 	default:
711 		break;
712 	}
713 	return 0;
714 }
715 
716 int __kprobes kprobe_fault_handler(struct pt_regs *regs, int trapnr)
717 {
718 	int ret;
719 
720 	if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT))
721 		local_irq_disable();
722 	ret = kprobe_trap_handler(regs, trapnr);
723 	if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT))
724 		local_irq_restore(regs->psw.mask & ~PSW_MASK_PER);
725 	return ret;
726 }
727 
728 /*
729  * Wrapper routine to for handling exceptions.
730  */
731 int __kprobes kprobe_exceptions_notify(struct notifier_block *self,
732 				       unsigned long val, void *data)
733 {
734 	struct die_args *args = (struct die_args *) data;
735 	struct pt_regs *regs = args->regs;
736 	int ret = NOTIFY_DONE;
737 
738 	if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT))
739 		local_irq_disable();
740 
741 	switch (val) {
742 	case DIE_BPT:
743 		if (kprobe_handler(regs))
744 			ret = NOTIFY_STOP;
745 		break;
746 	case DIE_SSTEP:
747 		if (post_kprobe_handler(regs))
748 			ret = NOTIFY_STOP;
749 		break;
750 	case DIE_TRAP:
751 		if (!preemptible() && kprobe_running() &&
752 		    kprobe_trap_handler(regs, args->trapnr))
753 			ret = NOTIFY_STOP;
754 		break;
755 	default:
756 		break;
757 	}
758 
759 	if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT))
760 		local_irq_restore(regs->psw.mask & ~PSW_MASK_PER);
761 
762 	return ret;
763 }
764 
765 int __kprobes setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs)
766 {
767 	struct jprobe *jp = container_of(p, struct jprobe, kp);
768 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
769 	unsigned long stack;
770 
771 	memcpy(&kcb->jprobe_saved_regs, regs, sizeof(struct pt_regs));
772 
773 	/* setup return addr to the jprobe handler routine */
774 	regs->psw.addr = (unsigned long) jp->entry | PSW_ADDR_AMODE;
775 	regs->psw.mask &= ~(PSW_MASK_IO | PSW_MASK_EXT);
776 
777 	/* r15 is the stack pointer */
778 	stack = (unsigned long) regs->gprs[15];
779 
780 	memcpy(kcb->jprobes_stack, (void *) stack, MIN_STACK_SIZE(stack));
781 	return 1;
782 }
783 
784 void __kprobes jprobe_return(void)
785 {
786 	asm volatile(".word 0x0002");
787 }
788 
789 static void __used __kprobes jprobe_return_end(void)
790 {
791 	asm volatile("bcr 0,0");
792 }
793 
794 int __kprobes longjmp_break_handler(struct kprobe *p, struct pt_regs *regs)
795 {
796 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
797 	unsigned long stack;
798 
799 	stack = (unsigned long) kcb->jprobe_saved_regs.gprs[15];
800 
801 	/* Put the regs back */
802 	memcpy(regs, &kcb->jprobe_saved_regs, sizeof(struct pt_regs));
803 	/* put the stack back */
804 	memcpy((void *) stack, kcb->jprobes_stack, MIN_STACK_SIZE(stack));
805 	preempt_enable_no_resched();
806 	return 1;
807 }
808 
809 static struct kprobe trampoline = {
810 	.addr = (kprobe_opcode_t *) &kretprobe_trampoline,
811 	.pre_handler = trampoline_probe_handler
812 };
813 
814 int __init arch_init_kprobes(void)
815 {
816 	return register_kprobe(&trampoline);
817 }
818 
819 int __kprobes arch_trampoline_kprobe(struct kprobe *p)
820 {
821 	return p->addr == (kprobe_opcode_t *) &kretprobe_trampoline;
822 }
823