1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * Kernel Probes (KProbes) 4 * 5 * Copyright IBM Corp. 2002, 2006 6 * 7 * s390 port, used ppc64 as template. Mike Grundy <grundym@us.ibm.com> 8 */ 9 10 #define pr_fmt(fmt) "kprobes: " fmt 11 12 #include <linux/moduleloader.h> 13 #include <linux/kprobes.h> 14 #include <linux/ptrace.h> 15 #include <linux/preempt.h> 16 #include <linux/stop_machine.h> 17 #include <linux/kdebug.h> 18 #include <linux/uaccess.h> 19 #include <linux/extable.h> 20 #include <linux/module.h> 21 #include <linux/slab.h> 22 #include <linux/hardirq.h> 23 #include <linux/ftrace.h> 24 #include <asm/set_memory.h> 25 #include <asm/sections.h> 26 #include <asm/dis.h> 27 #include "kprobes.h" 28 #include "entry.h" 29 30 DEFINE_PER_CPU(struct kprobe *, current_kprobe); 31 DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk); 32 33 struct kretprobe_blackpoint kretprobe_blacklist[] = { }; 34 35 static int insn_page_in_use; 36 37 void *alloc_insn_page(void) 38 { 39 void *page; 40 41 page = module_alloc(PAGE_SIZE); 42 if (!page) 43 return NULL; 44 __set_memory((unsigned long) page, 1, SET_MEMORY_RO | SET_MEMORY_X); 45 return page; 46 } 47 48 static void *alloc_s390_insn_page(void) 49 { 50 if (xchg(&insn_page_in_use, 1) == 1) 51 return NULL; 52 return &kprobes_insn_page; 53 } 54 55 static void free_s390_insn_page(void *page) 56 { 57 xchg(&insn_page_in_use, 0); 58 } 59 60 struct kprobe_insn_cache kprobe_s390_insn_slots = { 61 .mutex = __MUTEX_INITIALIZER(kprobe_s390_insn_slots.mutex), 62 .alloc = alloc_s390_insn_page, 63 .free = free_s390_insn_page, 64 .pages = LIST_HEAD_INIT(kprobe_s390_insn_slots.pages), 65 .insn_size = MAX_INSN_SIZE, 66 }; 67 68 static void copy_instruction(struct kprobe *p) 69 { 70 kprobe_opcode_t insn[MAX_INSN_SIZE]; 71 s64 disp, new_disp; 72 u64 addr, new_addr; 73 unsigned int len; 74 75 len = insn_length(*p->addr >> 8); 76 memcpy(&insn, p->addr, len); 77 p->opcode = insn[0]; 78 if (probe_is_insn_relative_long(&insn[0])) { 79 /* 80 * For pc-relative instructions in RIL-b or RIL-c format patch 81 * the RI2 displacement field. We have already made sure that 82 * the insn slot for the patched instruction is within the same 83 * 2GB area as the original instruction (either kernel image or 84 * module area). Therefore the new displacement will always fit. 85 */ 86 disp = *(s32 *)&insn[1]; 87 addr = (u64)(unsigned long)p->addr; 88 new_addr = (u64)(unsigned long)p->ainsn.insn; 89 new_disp = ((addr + (disp * 2)) - new_addr) / 2; 90 *(s32 *)&insn[1] = new_disp; 91 } 92 s390_kernel_write(p->ainsn.insn, &insn, len); 93 } 94 NOKPROBE_SYMBOL(copy_instruction); 95 96 static int s390_get_insn_slot(struct kprobe *p) 97 { 98 /* 99 * Get an insn slot that is within the same 2GB area like the original 100 * instruction. That way instructions with a 32bit signed displacement 101 * field can be patched and executed within the insn slot. 102 */ 103 p->ainsn.insn = NULL; 104 if (is_kernel((unsigned long)p->addr)) 105 p->ainsn.insn = get_s390_insn_slot(); 106 else if (is_module_addr(p->addr)) 107 p->ainsn.insn = get_insn_slot(); 108 return p->ainsn.insn ? 0 : -ENOMEM; 109 } 110 NOKPROBE_SYMBOL(s390_get_insn_slot); 111 112 static void s390_free_insn_slot(struct kprobe *p) 113 { 114 if (!p->ainsn.insn) 115 return; 116 if (is_kernel((unsigned long)p->addr)) 117 free_s390_insn_slot(p->ainsn.insn, 0); 118 else 119 free_insn_slot(p->ainsn.insn, 0); 120 p->ainsn.insn = NULL; 121 } 122 NOKPROBE_SYMBOL(s390_free_insn_slot); 123 124 /* Check if paddr is at an instruction boundary */ 125 static bool can_probe(unsigned long paddr) 126 { 127 unsigned long addr, offset = 0; 128 kprobe_opcode_t insn; 129 struct kprobe *kp; 130 131 if (paddr & 0x01) 132 return false; 133 134 if (!kallsyms_lookup_size_offset(paddr, NULL, &offset)) 135 return false; 136 137 /* Decode instructions */ 138 addr = paddr - offset; 139 while (addr < paddr) { 140 if (copy_from_kernel_nofault(&insn, (void *)addr, sizeof(insn))) 141 return false; 142 143 if (insn >> 8 == 0) { 144 if (insn != BREAKPOINT_INSTRUCTION) { 145 /* 146 * Note that QEMU inserts opcode 0x0000 to implement 147 * software breakpoints for guests. Since the size of 148 * the original instruction is unknown, stop following 149 * instructions and prevent setting a kprobe. 150 */ 151 return false; 152 } 153 /* 154 * Check if the instruction has been modified by another 155 * kprobe, in which case the original instruction is 156 * decoded. 157 */ 158 kp = get_kprobe((void *)addr); 159 if (!kp) { 160 /* not a kprobe */ 161 return false; 162 } 163 insn = kp->opcode; 164 } 165 addr += insn_length(insn >> 8); 166 } 167 return addr == paddr; 168 } 169 170 int arch_prepare_kprobe(struct kprobe *p) 171 { 172 if (!can_probe((unsigned long)p->addr)) 173 return -EINVAL; 174 /* Make sure the probe isn't going on a difficult instruction */ 175 if (probe_is_prohibited_opcode(p->addr)) 176 return -EINVAL; 177 if (s390_get_insn_slot(p)) 178 return -ENOMEM; 179 copy_instruction(p); 180 return 0; 181 } 182 NOKPROBE_SYMBOL(arch_prepare_kprobe); 183 184 struct swap_insn_args { 185 struct kprobe *p; 186 unsigned int arm_kprobe : 1; 187 }; 188 189 static int swap_instruction(void *data) 190 { 191 struct swap_insn_args *args = data; 192 struct kprobe *p = args->p; 193 u16 opc; 194 195 opc = args->arm_kprobe ? BREAKPOINT_INSTRUCTION : p->opcode; 196 s390_kernel_write(p->addr, &opc, sizeof(opc)); 197 return 0; 198 } 199 NOKPROBE_SYMBOL(swap_instruction); 200 201 void arch_arm_kprobe(struct kprobe *p) 202 { 203 struct swap_insn_args args = {.p = p, .arm_kprobe = 1}; 204 205 stop_machine_cpuslocked(swap_instruction, &args, NULL); 206 } 207 NOKPROBE_SYMBOL(arch_arm_kprobe); 208 209 void arch_disarm_kprobe(struct kprobe *p) 210 { 211 struct swap_insn_args args = {.p = p, .arm_kprobe = 0}; 212 213 stop_machine_cpuslocked(swap_instruction, &args, NULL); 214 } 215 NOKPROBE_SYMBOL(arch_disarm_kprobe); 216 217 void arch_remove_kprobe(struct kprobe *p) 218 { 219 s390_free_insn_slot(p); 220 } 221 NOKPROBE_SYMBOL(arch_remove_kprobe); 222 223 static void enable_singlestep(struct kprobe_ctlblk *kcb, 224 struct pt_regs *regs, 225 unsigned long ip) 226 { 227 struct per_regs per_kprobe; 228 229 /* Set up the PER control registers %cr9-%cr11 */ 230 per_kprobe.control = PER_EVENT_IFETCH; 231 per_kprobe.start = ip; 232 per_kprobe.end = ip; 233 234 /* Save control regs and psw mask */ 235 __ctl_store(kcb->kprobe_saved_ctl, 9, 11); 236 kcb->kprobe_saved_imask = regs->psw.mask & 237 (PSW_MASK_PER | PSW_MASK_IO | PSW_MASK_EXT); 238 239 /* Set PER control regs, turns on single step for the given address */ 240 __ctl_load(per_kprobe, 9, 11); 241 regs->psw.mask |= PSW_MASK_PER; 242 regs->psw.mask &= ~(PSW_MASK_IO | PSW_MASK_EXT); 243 regs->psw.addr = ip; 244 } 245 NOKPROBE_SYMBOL(enable_singlestep); 246 247 static void disable_singlestep(struct kprobe_ctlblk *kcb, 248 struct pt_regs *regs, 249 unsigned long ip) 250 { 251 /* Restore control regs and psw mask, set new psw address */ 252 __ctl_load(kcb->kprobe_saved_ctl, 9, 11); 253 regs->psw.mask &= ~PSW_MASK_PER; 254 regs->psw.mask |= kcb->kprobe_saved_imask; 255 regs->psw.addr = ip; 256 } 257 NOKPROBE_SYMBOL(disable_singlestep); 258 259 /* 260 * Activate a kprobe by storing its pointer to current_kprobe. The 261 * previous kprobe is stored in kcb->prev_kprobe. A stack of up to 262 * two kprobes can be active, see KPROBE_REENTER. 263 */ 264 static void push_kprobe(struct kprobe_ctlblk *kcb, struct kprobe *p) 265 { 266 kcb->prev_kprobe.kp = __this_cpu_read(current_kprobe); 267 kcb->prev_kprobe.status = kcb->kprobe_status; 268 __this_cpu_write(current_kprobe, p); 269 } 270 NOKPROBE_SYMBOL(push_kprobe); 271 272 /* 273 * Deactivate a kprobe by backing up to the previous state. If the 274 * current state is KPROBE_REENTER prev_kprobe.kp will be non-NULL, 275 * for any other state prev_kprobe.kp will be NULL. 276 */ 277 static void pop_kprobe(struct kprobe_ctlblk *kcb) 278 { 279 __this_cpu_write(current_kprobe, kcb->prev_kprobe.kp); 280 kcb->kprobe_status = kcb->prev_kprobe.status; 281 } 282 NOKPROBE_SYMBOL(pop_kprobe); 283 284 void arch_prepare_kretprobe(struct kretprobe_instance *ri, struct pt_regs *regs) 285 { 286 ri->ret_addr = (kprobe_opcode_t *)regs->gprs[14]; 287 ri->fp = (void *)regs->gprs[15]; 288 289 /* Replace the return addr with trampoline addr */ 290 regs->gprs[14] = (unsigned long)&__kretprobe_trampoline; 291 } 292 NOKPROBE_SYMBOL(arch_prepare_kretprobe); 293 294 static void kprobe_reenter_check(struct kprobe_ctlblk *kcb, struct kprobe *p) 295 { 296 switch (kcb->kprobe_status) { 297 case KPROBE_HIT_SSDONE: 298 case KPROBE_HIT_ACTIVE: 299 kprobes_inc_nmissed_count(p); 300 break; 301 case KPROBE_HIT_SS: 302 case KPROBE_REENTER: 303 default: 304 /* 305 * A kprobe on the code path to single step an instruction 306 * is a BUG. The code path resides in the .kprobes.text 307 * section and is executed with interrupts disabled. 308 */ 309 pr_err("Failed to recover from reentered kprobes.\n"); 310 dump_kprobe(p); 311 BUG(); 312 } 313 } 314 NOKPROBE_SYMBOL(kprobe_reenter_check); 315 316 static int kprobe_handler(struct pt_regs *regs) 317 { 318 struct kprobe_ctlblk *kcb; 319 struct kprobe *p; 320 321 /* 322 * We want to disable preemption for the entire duration of kprobe 323 * processing. That includes the calls to the pre/post handlers 324 * and single stepping the kprobe instruction. 325 */ 326 preempt_disable(); 327 kcb = get_kprobe_ctlblk(); 328 p = get_kprobe((void *)(regs->psw.addr - 2)); 329 330 if (p) { 331 if (kprobe_running()) { 332 /* 333 * We have hit a kprobe while another is still 334 * active. This can happen in the pre and post 335 * handler. Single step the instruction of the 336 * new probe but do not call any handler function 337 * of this secondary kprobe. 338 * push_kprobe and pop_kprobe saves and restores 339 * the currently active kprobe. 340 */ 341 kprobe_reenter_check(kcb, p); 342 push_kprobe(kcb, p); 343 kcb->kprobe_status = KPROBE_REENTER; 344 } else { 345 /* 346 * If we have no pre-handler or it returned 0, we 347 * continue with single stepping. If we have a 348 * pre-handler and it returned non-zero, it prepped 349 * for changing execution path, so get out doing 350 * nothing more here. 351 */ 352 push_kprobe(kcb, p); 353 kcb->kprobe_status = KPROBE_HIT_ACTIVE; 354 if (p->pre_handler && p->pre_handler(p, regs)) { 355 pop_kprobe(kcb); 356 preempt_enable_no_resched(); 357 return 1; 358 } 359 kcb->kprobe_status = KPROBE_HIT_SS; 360 } 361 enable_singlestep(kcb, regs, (unsigned long) p->ainsn.insn); 362 return 1; 363 } /* else: 364 * No kprobe at this address and no active kprobe. The trap has 365 * not been caused by a kprobe breakpoint. The race of breakpoint 366 * vs. kprobe remove does not exist because on s390 as we use 367 * stop_machine to arm/disarm the breakpoints. 368 */ 369 preempt_enable_no_resched(); 370 return 0; 371 } 372 NOKPROBE_SYMBOL(kprobe_handler); 373 374 void arch_kretprobe_fixup_return(struct pt_regs *regs, 375 kprobe_opcode_t *correct_ret_addr) 376 { 377 /* Replace fake return address with real one. */ 378 regs->gprs[14] = (unsigned long)correct_ret_addr; 379 } 380 NOKPROBE_SYMBOL(arch_kretprobe_fixup_return); 381 382 /* 383 * Called from __kretprobe_trampoline 384 */ 385 void trampoline_probe_handler(struct pt_regs *regs) 386 { 387 kretprobe_trampoline_handler(regs, (void *)regs->gprs[15]); 388 } 389 NOKPROBE_SYMBOL(trampoline_probe_handler); 390 391 /* assembler function that handles the kretprobes must not be probed itself */ 392 NOKPROBE_SYMBOL(__kretprobe_trampoline); 393 394 /* 395 * Called after single-stepping. p->addr is the address of the 396 * instruction whose first byte has been replaced by the "breakpoint" 397 * instruction. To avoid the SMP problems that can occur when we 398 * temporarily put back the original opcode to single-step, we 399 * single-stepped a copy of the instruction. The address of this 400 * copy is p->ainsn.insn. 401 */ 402 static void resume_execution(struct kprobe *p, struct pt_regs *regs) 403 { 404 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); 405 unsigned long ip = regs->psw.addr; 406 int fixup = probe_get_fixup_type(p->ainsn.insn); 407 408 if (fixup & FIXUP_PSW_NORMAL) 409 ip += (unsigned long) p->addr - (unsigned long) p->ainsn.insn; 410 411 if (fixup & FIXUP_BRANCH_NOT_TAKEN) { 412 int ilen = insn_length(p->ainsn.insn[0] >> 8); 413 if (ip - (unsigned long) p->ainsn.insn == ilen) 414 ip = (unsigned long) p->addr + ilen; 415 } 416 417 if (fixup & FIXUP_RETURN_REGISTER) { 418 int reg = (p->ainsn.insn[0] & 0xf0) >> 4; 419 regs->gprs[reg] += (unsigned long) p->addr - 420 (unsigned long) p->ainsn.insn; 421 } 422 423 disable_singlestep(kcb, regs, ip); 424 } 425 NOKPROBE_SYMBOL(resume_execution); 426 427 static int post_kprobe_handler(struct pt_regs *regs) 428 { 429 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); 430 struct kprobe *p = kprobe_running(); 431 432 if (!p) 433 return 0; 434 435 if (kcb->kprobe_status != KPROBE_REENTER && p->post_handler) { 436 kcb->kprobe_status = KPROBE_HIT_SSDONE; 437 p->post_handler(p, regs, 0); 438 } 439 440 resume_execution(p, regs); 441 pop_kprobe(kcb); 442 preempt_enable_no_resched(); 443 444 /* 445 * if somebody else is singlestepping across a probe point, psw mask 446 * will have PER set, in which case, continue the remaining processing 447 * of do_single_step, as if this is not a probe hit. 448 */ 449 if (regs->psw.mask & PSW_MASK_PER) 450 return 0; 451 452 return 1; 453 } 454 NOKPROBE_SYMBOL(post_kprobe_handler); 455 456 static int kprobe_trap_handler(struct pt_regs *regs, int trapnr) 457 { 458 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); 459 struct kprobe *p = kprobe_running(); 460 461 switch(kcb->kprobe_status) { 462 case KPROBE_HIT_SS: 463 case KPROBE_REENTER: 464 /* 465 * We are here because the instruction being single 466 * stepped caused a page fault. We reset the current 467 * kprobe and the nip points back to the probe address 468 * and allow the page fault handler to continue as a 469 * normal page fault. 470 */ 471 disable_singlestep(kcb, regs, (unsigned long) p->addr); 472 pop_kprobe(kcb); 473 preempt_enable_no_resched(); 474 break; 475 case KPROBE_HIT_ACTIVE: 476 case KPROBE_HIT_SSDONE: 477 /* 478 * In case the user-specified fault handler returned 479 * zero, try to fix up. 480 */ 481 if (fixup_exception(regs)) 482 return 1; 483 /* 484 * fixup_exception() could not handle it, 485 * Let do_page_fault() fix it. 486 */ 487 break; 488 default: 489 break; 490 } 491 return 0; 492 } 493 NOKPROBE_SYMBOL(kprobe_trap_handler); 494 495 int kprobe_fault_handler(struct pt_regs *regs, int trapnr) 496 { 497 int ret; 498 499 if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT)) 500 local_irq_disable(); 501 ret = kprobe_trap_handler(regs, trapnr); 502 if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT)) 503 local_irq_restore(regs->psw.mask & ~PSW_MASK_PER); 504 return ret; 505 } 506 NOKPROBE_SYMBOL(kprobe_fault_handler); 507 508 /* 509 * Wrapper routine to for handling exceptions. 510 */ 511 int kprobe_exceptions_notify(struct notifier_block *self, 512 unsigned long val, void *data) 513 { 514 struct die_args *args = (struct die_args *) data; 515 struct pt_regs *regs = args->regs; 516 int ret = NOTIFY_DONE; 517 518 if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT)) 519 local_irq_disable(); 520 521 switch (val) { 522 case DIE_BPT: 523 if (kprobe_handler(regs)) 524 ret = NOTIFY_STOP; 525 break; 526 case DIE_SSTEP: 527 if (post_kprobe_handler(regs)) 528 ret = NOTIFY_STOP; 529 break; 530 case DIE_TRAP: 531 if (!preemptible() && kprobe_running() && 532 kprobe_trap_handler(regs, args->trapnr)) 533 ret = NOTIFY_STOP; 534 break; 535 default: 536 break; 537 } 538 539 if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT)) 540 local_irq_restore(regs->psw.mask & ~PSW_MASK_PER); 541 542 return ret; 543 } 544 NOKPROBE_SYMBOL(kprobe_exceptions_notify); 545 546 int __init arch_init_kprobes(void) 547 { 548 return 0; 549 } 550 551 int arch_trampoline_kprobe(struct kprobe *p) 552 { 553 return 0; 554 } 555 NOKPROBE_SYMBOL(arch_trampoline_kprobe); 556