1 /* 2 * Kernel Probes (KProbes) 3 * 4 * This program is free software; you can redistribute it and/or modify 5 * it under the terms of the GNU General Public License as published by 6 * the Free Software Foundation; either version 2 of the License, or 7 * (at your option) any later version. 8 * 9 * This program is distributed in the hope that it will be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write to the Free Software 16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. 17 * 18 * Copyright IBM Corp. 2002, 2006 19 * 20 * s390 port, used ppc64 as template. Mike Grundy <grundym@us.ibm.com> 21 */ 22 23 #include <linux/kprobes.h> 24 #include <linux/ptrace.h> 25 #include <linux/preempt.h> 26 #include <linux/stop_machine.h> 27 #include <linux/kdebug.h> 28 #include <linux/uaccess.h> 29 #include <linux/module.h> 30 #include <linux/slab.h> 31 #include <linux/hardirq.h> 32 #include <asm/cacheflush.h> 33 #include <asm/sections.h> 34 #include <asm/dis.h> 35 36 DEFINE_PER_CPU(struct kprobe *, current_kprobe); 37 DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk); 38 39 struct kretprobe_blackpoint kretprobe_blacklist[] = { }; 40 41 DEFINE_INSN_CACHE_OPS(dmainsn); 42 43 static void *alloc_dmainsn_page(void) 44 { 45 return (void *)__get_free_page(GFP_KERNEL | GFP_DMA); 46 } 47 48 static void free_dmainsn_page(void *page) 49 { 50 free_page((unsigned long)page); 51 } 52 53 struct kprobe_insn_cache kprobe_dmainsn_slots = { 54 .mutex = __MUTEX_INITIALIZER(kprobe_dmainsn_slots.mutex), 55 .alloc = alloc_dmainsn_page, 56 .free = free_dmainsn_page, 57 .pages = LIST_HEAD_INIT(kprobe_dmainsn_slots.pages), 58 .insn_size = MAX_INSN_SIZE, 59 }; 60 61 static int __kprobes is_prohibited_opcode(kprobe_opcode_t *insn) 62 { 63 if (!is_known_insn((unsigned char *)insn)) 64 return -EINVAL; 65 switch (insn[0] >> 8) { 66 case 0x0c: /* bassm */ 67 case 0x0b: /* bsm */ 68 case 0x83: /* diag */ 69 case 0x44: /* ex */ 70 case 0xac: /* stnsm */ 71 case 0xad: /* stosm */ 72 return -EINVAL; 73 case 0xc6: 74 switch (insn[0] & 0x0f) { 75 case 0x00: /* exrl */ 76 return -EINVAL; 77 } 78 } 79 switch (insn[0]) { 80 case 0x0101: /* pr */ 81 case 0xb25a: /* bsa */ 82 case 0xb240: /* bakr */ 83 case 0xb258: /* bsg */ 84 case 0xb218: /* pc */ 85 case 0xb228: /* pt */ 86 case 0xb98d: /* epsw */ 87 return -EINVAL; 88 } 89 return 0; 90 } 91 92 static int __kprobes get_fixup_type(kprobe_opcode_t *insn) 93 { 94 /* default fixup method */ 95 int fixup = FIXUP_PSW_NORMAL; 96 97 switch (insn[0] >> 8) { 98 case 0x05: /* balr */ 99 case 0x0d: /* basr */ 100 fixup = FIXUP_RETURN_REGISTER; 101 /* if r2 = 0, no branch will be taken */ 102 if ((insn[0] & 0x0f) == 0) 103 fixup |= FIXUP_BRANCH_NOT_TAKEN; 104 break; 105 case 0x06: /* bctr */ 106 case 0x07: /* bcr */ 107 fixup = FIXUP_BRANCH_NOT_TAKEN; 108 break; 109 case 0x45: /* bal */ 110 case 0x4d: /* bas */ 111 fixup = FIXUP_RETURN_REGISTER; 112 break; 113 case 0x47: /* bc */ 114 case 0x46: /* bct */ 115 case 0x86: /* bxh */ 116 case 0x87: /* bxle */ 117 fixup = FIXUP_BRANCH_NOT_TAKEN; 118 break; 119 case 0x82: /* lpsw */ 120 fixup = FIXUP_NOT_REQUIRED; 121 break; 122 case 0xb2: /* lpswe */ 123 if ((insn[0] & 0xff) == 0xb2) 124 fixup = FIXUP_NOT_REQUIRED; 125 break; 126 case 0xa7: /* bras */ 127 if ((insn[0] & 0x0f) == 0x05) 128 fixup |= FIXUP_RETURN_REGISTER; 129 break; 130 case 0xc0: 131 if ((insn[0] & 0x0f) == 0x05) /* brasl */ 132 fixup |= FIXUP_RETURN_REGISTER; 133 break; 134 case 0xeb: 135 switch (insn[2] & 0xff) { 136 case 0x44: /* bxhg */ 137 case 0x45: /* bxleg */ 138 fixup = FIXUP_BRANCH_NOT_TAKEN; 139 break; 140 } 141 break; 142 case 0xe3: /* bctg */ 143 if ((insn[2] & 0xff) == 0x46) 144 fixup = FIXUP_BRANCH_NOT_TAKEN; 145 break; 146 case 0xec: 147 switch (insn[2] & 0xff) { 148 case 0xe5: /* clgrb */ 149 case 0xe6: /* cgrb */ 150 case 0xf6: /* crb */ 151 case 0xf7: /* clrb */ 152 case 0xfc: /* cgib */ 153 case 0xfd: /* cglib */ 154 case 0xfe: /* cib */ 155 case 0xff: /* clib */ 156 fixup = FIXUP_BRANCH_NOT_TAKEN; 157 break; 158 } 159 break; 160 } 161 return fixup; 162 } 163 164 static int __kprobes is_insn_relative_long(kprobe_opcode_t *insn) 165 { 166 /* Check if we have a RIL-b or RIL-c format instruction which 167 * we need to modify in order to avoid instruction emulation. */ 168 switch (insn[0] >> 8) { 169 case 0xc0: 170 if ((insn[0] & 0x0f) == 0x00) /* larl */ 171 return true; 172 break; 173 case 0xc4: 174 switch (insn[0] & 0x0f) { 175 case 0x02: /* llhrl */ 176 case 0x04: /* lghrl */ 177 case 0x05: /* lhrl */ 178 case 0x06: /* llghrl */ 179 case 0x07: /* sthrl */ 180 case 0x08: /* lgrl */ 181 case 0x0b: /* stgrl */ 182 case 0x0c: /* lgfrl */ 183 case 0x0d: /* lrl */ 184 case 0x0e: /* llgfrl */ 185 case 0x0f: /* strl */ 186 return true; 187 } 188 break; 189 case 0xc6: 190 switch (insn[0] & 0x0f) { 191 case 0x02: /* pfdrl */ 192 case 0x04: /* cghrl */ 193 case 0x05: /* chrl */ 194 case 0x06: /* clghrl */ 195 case 0x07: /* clhrl */ 196 case 0x08: /* cgrl */ 197 case 0x0a: /* clgrl */ 198 case 0x0c: /* cgfrl */ 199 case 0x0d: /* crl */ 200 case 0x0e: /* clgfrl */ 201 case 0x0f: /* clrl */ 202 return true; 203 } 204 break; 205 } 206 return false; 207 } 208 209 static void __kprobes copy_instruction(struct kprobe *p) 210 { 211 s64 disp, new_disp; 212 u64 addr, new_addr; 213 214 memcpy(p->ainsn.insn, p->addr, insn_length(p->opcode >> 8)); 215 if (!is_insn_relative_long(p->ainsn.insn)) 216 return; 217 /* 218 * For pc-relative instructions in RIL-b or RIL-c format patch the 219 * RI2 displacement field. We have already made sure that the insn 220 * slot for the patched instruction is within the same 2GB area 221 * as the original instruction (either kernel image or module area). 222 * Therefore the new displacement will always fit. 223 */ 224 disp = *(s32 *)&p->ainsn.insn[1]; 225 addr = (u64)(unsigned long)p->addr; 226 new_addr = (u64)(unsigned long)p->ainsn.insn; 227 new_disp = ((addr + (disp * 2)) - new_addr) / 2; 228 *(s32 *)&p->ainsn.insn[1] = new_disp; 229 } 230 231 static inline int is_kernel_addr(void *addr) 232 { 233 return addr < (void *)_end; 234 } 235 236 static inline int is_module_addr(void *addr) 237 { 238 #ifdef CONFIG_64BIT 239 BUILD_BUG_ON(MODULES_LEN > (1UL << 31)); 240 if (addr < (void *)MODULES_VADDR) 241 return 0; 242 if (addr > (void *)MODULES_END) 243 return 0; 244 #endif 245 return 1; 246 } 247 248 static int __kprobes s390_get_insn_slot(struct kprobe *p) 249 { 250 /* 251 * Get an insn slot that is within the same 2GB area like the original 252 * instruction. That way instructions with a 32bit signed displacement 253 * field can be patched and executed within the insn slot. 254 */ 255 p->ainsn.insn = NULL; 256 if (is_kernel_addr(p->addr)) 257 p->ainsn.insn = get_dmainsn_slot(); 258 else if (is_module_addr(p->addr)) 259 p->ainsn.insn = get_insn_slot(); 260 return p->ainsn.insn ? 0 : -ENOMEM; 261 } 262 263 static void __kprobes s390_free_insn_slot(struct kprobe *p) 264 { 265 if (!p->ainsn.insn) 266 return; 267 if (is_kernel_addr(p->addr)) 268 free_dmainsn_slot(p->ainsn.insn, 0); 269 else 270 free_insn_slot(p->ainsn.insn, 0); 271 p->ainsn.insn = NULL; 272 } 273 274 int __kprobes arch_prepare_kprobe(struct kprobe *p) 275 { 276 if ((unsigned long) p->addr & 0x01) 277 return -EINVAL; 278 /* Make sure the probe isn't going on a difficult instruction */ 279 if (is_prohibited_opcode(p->addr)) 280 return -EINVAL; 281 if (s390_get_insn_slot(p)) 282 return -ENOMEM; 283 p->opcode = *p->addr; 284 copy_instruction(p); 285 return 0; 286 } 287 288 struct ins_replace_args { 289 kprobe_opcode_t *ptr; 290 kprobe_opcode_t opcode; 291 }; 292 293 static int __kprobes swap_instruction(void *aref) 294 { 295 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); 296 unsigned long status = kcb->kprobe_status; 297 struct ins_replace_args *args = aref; 298 299 kcb->kprobe_status = KPROBE_SWAP_INST; 300 probe_kernel_write(args->ptr, &args->opcode, sizeof(args->opcode)); 301 kcb->kprobe_status = status; 302 return 0; 303 } 304 305 void __kprobes arch_arm_kprobe(struct kprobe *p) 306 { 307 struct ins_replace_args args; 308 309 args.ptr = p->addr; 310 args.opcode = BREAKPOINT_INSTRUCTION; 311 stop_machine(swap_instruction, &args, NULL); 312 } 313 314 void __kprobes arch_disarm_kprobe(struct kprobe *p) 315 { 316 struct ins_replace_args args; 317 318 args.ptr = p->addr; 319 args.opcode = p->opcode; 320 stop_machine(swap_instruction, &args, NULL); 321 } 322 323 void __kprobes arch_remove_kprobe(struct kprobe *p) 324 { 325 s390_free_insn_slot(p); 326 } 327 328 static void __kprobes enable_singlestep(struct kprobe_ctlblk *kcb, 329 struct pt_regs *regs, 330 unsigned long ip) 331 { 332 struct per_regs per_kprobe; 333 334 /* Set up the PER control registers %cr9-%cr11 */ 335 per_kprobe.control = PER_EVENT_IFETCH; 336 per_kprobe.start = ip; 337 per_kprobe.end = ip; 338 339 /* Save control regs and psw mask */ 340 __ctl_store(kcb->kprobe_saved_ctl, 9, 11); 341 kcb->kprobe_saved_imask = regs->psw.mask & 342 (PSW_MASK_PER | PSW_MASK_IO | PSW_MASK_EXT); 343 344 /* Set PER control regs, turns on single step for the given address */ 345 __ctl_load(per_kprobe, 9, 11); 346 regs->psw.mask |= PSW_MASK_PER; 347 regs->psw.mask &= ~(PSW_MASK_IO | PSW_MASK_EXT); 348 regs->psw.addr = ip | PSW_ADDR_AMODE; 349 } 350 351 static void __kprobes disable_singlestep(struct kprobe_ctlblk *kcb, 352 struct pt_regs *regs, 353 unsigned long ip) 354 { 355 /* Restore control regs and psw mask, set new psw address */ 356 __ctl_load(kcb->kprobe_saved_ctl, 9, 11); 357 regs->psw.mask &= ~PSW_MASK_PER; 358 regs->psw.mask |= kcb->kprobe_saved_imask; 359 regs->psw.addr = ip | PSW_ADDR_AMODE; 360 } 361 362 /* 363 * Activate a kprobe by storing its pointer to current_kprobe. The 364 * previous kprobe is stored in kcb->prev_kprobe. A stack of up to 365 * two kprobes can be active, see KPROBE_REENTER. 366 */ 367 static void __kprobes push_kprobe(struct kprobe_ctlblk *kcb, struct kprobe *p) 368 { 369 kcb->prev_kprobe.kp = __get_cpu_var(current_kprobe); 370 kcb->prev_kprobe.status = kcb->kprobe_status; 371 __get_cpu_var(current_kprobe) = p; 372 } 373 374 /* 375 * Deactivate a kprobe by backing up to the previous state. If the 376 * current state is KPROBE_REENTER prev_kprobe.kp will be non-NULL, 377 * for any other state prev_kprobe.kp will be NULL. 378 */ 379 static void __kprobes pop_kprobe(struct kprobe_ctlblk *kcb) 380 { 381 __get_cpu_var(current_kprobe) = kcb->prev_kprobe.kp; 382 kcb->kprobe_status = kcb->prev_kprobe.status; 383 } 384 385 void __kprobes arch_prepare_kretprobe(struct kretprobe_instance *ri, 386 struct pt_regs *regs) 387 { 388 ri->ret_addr = (kprobe_opcode_t *) regs->gprs[14]; 389 390 /* Replace the return addr with trampoline addr */ 391 regs->gprs[14] = (unsigned long) &kretprobe_trampoline; 392 } 393 394 static void __kprobes kprobe_reenter_check(struct kprobe_ctlblk *kcb, 395 struct kprobe *p) 396 { 397 switch (kcb->kprobe_status) { 398 case KPROBE_HIT_SSDONE: 399 case KPROBE_HIT_ACTIVE: 400 kprobes_inc_nmissed_count(p); 401 break; 402 case KPROBE_HIT_SS: 403 case KPROBE_REENTER: 404 default: 405 /* 406 * A kprobe on the code path to single step an instruction 407 * is a BUG. The code path resides in the .kprobes.text 408 * section and is executed with interrupts disabled. 409 */ 410 printk(KERN_EMERG "Invalid kprobe detected at %p.\n", p->addr); 411 dump_kprobe(p); 412 BUG(); 413 } 414 } 415 416 static int __kprobes kprobe_handler(struct pt_regs *regs) 417 { 418 struct kprobe_ctlblk *kcb; 419 struct kprobe *p; 420 421 /* 422 * We want to disable preemption for the entire duration of kprobe 423 * processing. That includes the calls to the pre/post handlers 424 * and single stepping the kprobe instruction. 425 */ 426 preempt_disable(); 427 kcb = get_kprobe_ctlblk(); 428 p = get_kprobe((void *)((regs->psw.addr & PSW_ADDR_INSN) - 2)); 429 430 if (p) { 431 if (kprobe_running()) { 432 /* 433 * We have hit a kprobe while another is still 434 * active. This can happen in the pre and post 435 * handler. Single step the instruction of the 436 * new probe but do not call any handler function 437 * of this secondary kprobe. 438 * push_kprobe and pop_kprobe saves and restores 439 * the currently active kprobe. 440 */ 441 kprobe_reenter_check(kcb, p); 442 push_kprobe(kcb, p); 443 kcb->kprobe_status = KPROBE_REENTER; 444 } else { 445 /* 446 * If we have no pre-handler or it returned 0, we 447 * continue with single stepping. If we have a 448 * pre-handler and it returned non-zero, it prepped 449 * for calling the break_handler below on re-entry 450 * for jprobe processing, so get out doing nothing 451 * more here. 452 */ 453 push_kprobe(kcb, p); 454 kcb->kprobe_status = KPROBE_HIT_ACTIVE; 455 if (p->pre_handler && p->pre_handler(p, regs)) 456 return 1; 457 kcb->kprobe_status = KPROBE_HIT_SS; 458 } 459 enable_singlestep(kcb, regs, (unsigned long) p->ainsn.insn); 460 return 1; 461 } else if (kprobe_running()) { 462 p = __get_cpu_var(current_kprobe); 463 if (p->break_handler && p->break_handler(p, regs)) { 464 /* 465 * Continuation after the jprobe completed and 466 * caused the jprobe_return trap. The jprobe 467 * break_handler "returns" to the original 468 * function that still has the kprobe breakpoint 469 * installed. We continue with single stepping. 470 */ 471 kcb->kprobe_status = KPROBE_HIT_SS; 472 enable_singlestep(kcb, regs, 473 (unsigned long) p->ainsn.insn); 474 return 1; 475 } /* else: 476 * No kprobe at this address and the current kprobe 477 * has no break handler (no jprobe!). The kernel just 478 * exploded, let the standard trap handler pick up the 479 * pieces. 480 */ 481 } /* else: 482 * No kprobe at this address and no active kprobe. The trap has 483 * not been caused by a kprobe breakpoint. The race of breakpoint 484 * vs. kprobe remove does not exist because on s390 as we use 485 * stop_machine to arm/disarm the breakpoints. 486 */ 487 preempt_enable_no_resched(); 488 return 0; 489 } 490 491 /* 492 * Function return probe trampoline: 493 * - init_kprobes() establishes a probepoint here 494 * - When the probed function returns, this probe 495 * causes the handlers to fire 496 */ 497 static void __used kretprobe_trampoline_holder(void) 498 { 499 asm volatile(".global kretprobe_trampoline\n" 500 "kretprobe_trampoline: bcr 0,0\n"); 501 } 502 503 /* 504 * Called when the probe at kretprobe trampoline is hit 505 */ 506 static int __kprobes trampoline_probe_handler(struct kprobe *p, 507 struct pt_regs *regs) 508 { 509 struct kretprobe_instance *ri; 510 struct hlist_head *head, empty_rp; 511 struct hlist_node *tmp; 512 unsigned long flags, orig_ret_address; 513 unsigned long trampoline_address; 514 kprobe_opcode_t *correct_ret_addr; 515 516 INIT_HLIST_HEAD(&empty_rp); 517 kretprobe_hash_lock(current, &head, &flags); 518 519 /* 520 * It is possible to have multiple instances associated with a given 521 * task either because an multiple functions in the call path 522 * have a return probe installed on them, and/or more than one return 523 * return probe was registered for a target function. 524 * 525 * We can handle this because: 526 * - instances are always inserted at the head of the list 527 * - when multiple return probes are registered for the same 528 * function, the first instance's ret_addr will point to the 529 * real return address, and all the rest will point to 530 * kretprobe_trampoline 531 */ 532 ri = NULL; 533 orig_ret_address = 0; 534 correct_ret_addr = NULL; 535 trampoline_address = (unsigned long) &kretprobe_trampoline; 536 hlist_for_each_entry_safe(ri, tmp, head, hlist) { 537 if (ri->task != current) 538 /* another task is sharing our hash bucket */ 539 continue; 540 541 orig_ret_address = (unsigned long) ri->ret_addr; 542 543 if (orig_ret_address != trampoline_address) 544 /* 545 * This is the real return address. Any other 546 * instances associated with this task are for 547 * other calls deeper on the call stack 548 */ 549 break; 550 } 551 552 kretprobe_assert(ri, orig_ret_address, trampoline_address); 553 554 correct_ret_addr = ri->ret_addr; 555 hlist_for_each_entry_safe(ri, tmp, head, hlist) { 556 if (ri->task != current) 557 /* another task is sharing our hash bucket */ 558 continue; 559 560 orig_ret_address = (unsigned long) ri->ret_addr; 561 562 if (ri->rp && ri->rp->handler) { 563 ri->ret_addr = correct_ret_addr; 564 ri->rp->handler(ri, regs); 565 } 566 567 recycle_rp_inst(ri, &empty_rp); 568 569 if (orig_ret_address != trampoline_address) 570 /* 571 * This is the real return address. Any other 572 * instances associated with this task are for 573 * other calls deeper on the call stack 574 */ 575 break; 576 } 577 578 regs->psw.addr = orig_ret_address | PSW_ADDR_AMODE; 579 580 pop_kprobe(get_kprobe_ctlblk()); 581 kretprobe_hash_unlock(current, &flags); 582 preempt_enable_no_resched(); 583 584 hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) { 585 hlist_del(&ri->hlist); 586 kfree(ri); 587 } 588 /* 589 * By returning a non-zero value, we are telling 590 * kprobe_handler() that we don't want the post_handler 591 * to run (and have re-enabled preemption) 592 */ 593 return 1; 594 } 595 596 /* 597 * Called after single-stepping. p->addr is the address of the 598 * instruction whose first byte has been replaced by the "breakpoint" 599 * instruction. To avoid the SMP problems that can occur when we 600 * temporarily put back the original opcode to single-step, we 601 * single-stepped a copy of the instruction. The address of this 602 * copy is p->ainsn.insn. 603 */ 604 static void __kprobes resume_execution(struct kprobe *p, struct pt_regs *regs) 605 { 606 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); 607 unsigned long ip = regs->psw.addr & PSW_ADDR_INSN; 608 int fixup = get_fixup_type(p->ainsn.insn); 609 610 if (fixup & FIXUP_PSW_NORMAL) 611 ip += (unsigned long) p->addr - (unsigned long) p->ainsn.insn; 612 613 if (fixup & FIXUP_BRANCH_NOT_TAKEN) { 614 int ilen = insn_length(p->ainsn.insn[0] >> 8); 615 if (ip - (unsigned long) p->ainsn.insn == ilen) 616 ip = (unsigned long) p->addr + ilen; 617 } 618 619 if (fixup & FIXUP_RETURN_REGISTER) { 620 int reg = (p->ainsn.insn[0] & 0xf0) >> 4; 621 regs->gprs[reg] += (unsigned long) p->addr - 622 (unsigned long) p->ainsn.insn; 623 } 624 625 disable_singlestep(kcb, regs, ip); 626 } 627 628 static int __kprobes post_kprobe_handler(struct pt_regs *regs) 629 { 630 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); 631 struct kprobe *p = kprobe_running(); 632 633 if (!p) 634 return 0; 635 636 if (kcb->kprobe_status != KPROBE_REENTER && p->post_handler) { 637 kcb->kprobe_status = KPROBE_HIT_SSDONE; 638 p->post_handler(p, regs, 0); 639 } 640 641 resume_execution(p, regs); 642 pop_kprobe(kcb); 643 preempt_enable_no_resched(); 644 645 /* 646 * if somebody else is singlestepping across a probe point, psw mask 647 * will have PER set, in which case, continue the remaining processing 648 * of do_single_step, as if this is not a probe hit. 649 */ 650 if (regs->psw.mask & PSW_MASK_PER) 651 return 0; 652 653 return 1; 654 } 655 656 static int __kprobes kprobe_trap_handler(struct pt_regs *regs, int trapnr) 657 { 658 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); 659 struct kprobe *p = kprobe_running(); 660 const struct exception_table_entry *entry; 661 662 switch(kcb->kprobe_status) { 663 case KPROBE_SWAP_INST: 664 /* We are here because the instruction replacement failed */ 665 return 0; 666 case KPROBE_HIT_SS: 667 case KPROBE_REENTER: 668 /* 669 * We are here because the instruction being single 670 * stepped caused a page fault. We reset the current 671 * kprobe and the nip points back to the probe address 672 * and allow the page fault handler to continue as a 673 * normal page fault. 674 */ 675 disable_singlestep(kcb, regs, (unsigned long) p->addr); 676 pop_kprobe(kcb); 677 preempt_enable_no_resched(); 678 break; 679 case KPROBE_HIT_ACTIVE: 680 case KPROBE_HIT_SSDONE: 681 /* 682 * We increment the nmissed count for accounting, 683 * we can also use npre/npostfault count for accounting 684 * these specific fault cases. 685 */ 686 kprobes_inc_nmissed_count(p); 687 688 /* 689 * We come here because instructions in the pre/post 690 * handler caused the page_fault, this could happen 691 * if handler tries to access user space by 692 * copy_from_user(), get_user() etc. Let the 693 * user-specified handler try to fix it first. 694 */ 695 if (p->fault_handler && p->fault_handler(p, regs, trapnr)) 696 return 1; 697 698 /* 699 * In case the user-specified fault handler returned 700 * zero, try to fix up. 701 */ 702 entry = search_exception_tables(regs->psw.addr & PSW_ADDR_INSN); 703 if (entry) { 704 regs->psw.addr = extable_fixup(entry) | PSW_ADDR_AMODE; 705 return 1; 706 } 707 708 /* 709 * fixup_exception() could not handle it, 710 * Let do_page_fault() fix it. 711 */ 712 break; 713 default: 714 break; 715 } 716 return 0; 717 } 718 719 int __kprobes kprobe_fault_handler(struct pt_regs *regs, int trapnr) 720 { 721 int ret; 722 723 if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT)) 724 local_irq_disable(); 725 ret = kprobe_trap_handler(regs, trapnr); 726 if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT)) 727 local_irq_restore(regs->psw.mask & ~PSW_MASK_PER); 728 return ret; 729 } 730 731 /* 732 * Wrapper routine to for handling exceptions. 733 */ 734 int __kprobes kprobe_exceptions_notify(struct notifier_block *self, 735 unsigned long val, void *data) 736 { 737 struct die_args *args = (struct die_args *) data; 738 struct pt_regs *regs = args->regs; 739 int ret = NOTIFY_DONE; 740 741 if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT)) 742 local_irq_disable(); 743 744 switch (val) { 745 case DIE_BPT: 746 if (kprobe_handler(regs)) 747 ret = NOTIFY_STOP; 748 break; 749 case DIE_SSTEP: 750 if (post_kprobe_handler(regs)) 751 ret = NOTIFY_STOP; 752 break; 753 case DIE_TRAP: 754 if (!preemptible() && kprobe_running() && 755 kprobe_trap_handler(regs, args->trapnr)) 756 ret = NOTIFY_STOP; 757 break; 758 default: 759 break; 760 } 761 762 if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT)) 763 local_irq_restore(regs->psw.mask & ~PSW_MASK_PER); 764 765 return ret; 766 } 767 768 int __kprobes setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs) 769 { 770 struct jprobe *jp = container_of(p, struct jprobe, kp); 771 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); 772 unsigned long stack; 773 774 memcpy(&kcb->jprobe_saved_regs, regs, sizeof(struct pt_regs)); 775 776 /* setup return addr to the jprobe handler routine */ 777 regs->psw.addr = (unsigned long) jp->entry | PSW_ADDR_AMODE; 778 regs->psw.mask &= ~(PSW_MASK_IO | PSW_MASK_EXT); 779 780 /* r15 is the stack pointer */ 781 stack = (unsigned long) regs->gprs[15]; 782 783 memcpy(kcb->jprobes_stack, (void *) stack, MIN_STACK_SIZE(stack)); 784 return 1; 785 } 786 787 void __kprobes jprobe_return(void) 788 { 789 asm volatile(".word 0x0002"); 790 } 791 792 static void __used __kprobes jprobe_return_end(void) 793 { 794 asm volatile("bcr 0,0"); 795 } 796 797 int __kprobes longjmp_break_handler(struct kprobe *p, struct pt_regs *regs) 798 { 799 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); 800 unsigned long stack; 801 802 stack = (unsigned long) kcb->jprobe_saved_regs.gprs[15]; 803 804 /* Put the regs back */ 805 memcpy(regs, &kcb->jprobe_saved_regs, sizeof(struct pt_regs)); 806 /* put the stack back */ 807 memcpy((void *) stack, kcb->jprobes_stack, MIN_STACK_SIZE(stack)); 808 preempt_enable_no_resched(); 809 return 1; 810 } 811 812 static struct kprobe trampoline = { 813 .addr = (kprobe_opcode_t *) &kretprobe_trampoline, 814 .pre_handler = trampoline_probe_handler 815 }; 816 817 int __init arch_init_kprobes(void) 818 { 819 return register_kprobe(&trampoline); 820 } 821 822 int __kprobes arch_trampoline_kprobe(struct kprobe *p) 823 { 824 return p->addr == (kprobe_opcode_t *) &kretprobe_trampoline; 825 } 826